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Abstract 13 

 14 

This paper has exploited, for Southern and Central Italy (Mediterranean Sub-Regional 15 

Area), an unprecedented historical dataset as an attempt to model seasonal (winter and 16 

summer) air temperatures in pre-instrumental time (back to 1500). Combining information 17 

derived from proxy documentary data and large-scale simulation, a statistical downscaling 18 

approach in the form of multiscale–temperature regression (MTR)–model was developed to 19 

adapt larger-scale estimations (regional component) to the sub-regional temperature pattern 20 

(local component). It interprets local temperature anomalies by means of monthly-based 21 

Temperature Anomaly Scaled Index in the range -5 (very cold conditions in June) to 2 22 

(very warm conditions). The modelled response agrees well with the independent data 23 

from the validation sample (Nash-Sutcliffe efficiency coefficient >0.60). The advantage 24 

of the approach is not merely increased accuracy in estimation. Rather, it relies on the 25 

ability to extract (and exploit) the right information to replicate coherent temperature 26 

series in historical times. 27 

 28 
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1 Introduction 29 

 30 
Modelling can be described as an art because it involves experience and intuition as well as 31 

the development of a set of – mathematical - skills. 32 
 33 
Mark Mulligan and John Wainwright (eds.), 2004. Environmental Modelling, Wiley, Chichester, p. 8. 34 

 35 
The Mediterranean is one of the few regions in the world holding a large volume of 36 

weather documentary proxies for the past 500-1000 years (Camuffo and Enzi, 1992; 37 

Jones et al., 2009). However, such large amounts of documents and archives have not yet 38 

been fully explored to reproduce with high spatio-temporal resolution the different 39 

climates of Mediterranean (García-Herrera et al., 2007). Determining the climatic history 40 

in these unrepresented places of the world is a challenging and complex issue at both 41 

theoretical and applicative levels. 42 

Modelling is an ideal trial to test the environmental processes over extensive space and 43 

time domains. In the recent decades, considerable progress has been made in pre-44 

instrumental temperature modelling at both hemispheric and regional scales (e.g. Mitchell 45 

et al., 2005; Rutherford et a., 2005). Luterbacher et al. (2004) and Xoplaki et al. (2005) 46 

were able to map seasonally resolved temperature reconstructions across European land 47 

areas back to 1500. In particular, Luterbacher et al. (2004) developed separate multiple 48 

regression equations between each principal component (PC) of the instrumental data and 49 

all leading PC of the proxy records. In this way, they assimilated proxy records into 50 

reconstructions of the underlying spatial patterns of past climate changes. The 51 

reconstructed climate field allows for a special assessment of the spatial coherence of past 52 

annual-to-decadal temperature changes at sub-continental scale, thus providing insight 53 

into the mechanisms or forcing underlying observed variability. In hemispheric, 54 

continental and regional reconstructions, however, multi-proxy coverage is often irregular 55 

and heterogeneous (Esper et al., 2002). Temperature and precipitation reconstructions, 56 

although well developed over large geographical areas, may become poorly accurate at 57 

sub-regional and local scales, or over particular periods (Mann et al., 2000; Ogilvie and 58 

Jónsson, 2001; Diodato et al., 2008). On the other hand, it is not surprising if Mann 59 

(2007), comparing estimated regional temperatures at different locations over the past 60 

1000 years, found that the cold and warm periods were considerably different from region 61 

to region. Then, the issue of sub-regional reconstructions should attract the attention of 62 

scientists as it may exhibit unexpected results, especially regarding some temperature 63 

extremes (Bhatnagar et al., 2002). The issue of downscaling to small spatial and temporal 64 
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scales must be made a priority in order to achieve a better understanding of sub-regional 65 

climates (Riedwyl et al., 2009). Documentary proxies’ investigation remains a reliable 66 

approach to trace back the temperature extremes before the advent of instrumental 67 

recording of meteorological data (Brázdil et al., 2005; Jones et al., 2009). Brewer et al. 68 

(2007) investigated tree-ring sites to support the reconstruction of historical droughts in 69 

Mediterranean areas during the last 500 years. However, temperature series have not been 70 

modelled for this region so far. Moreover, continuous and homogeneous instrumental 71 

series cannot be extended before the 19th century (Camuffo et al., 2010). On the other 72 

hand, high-resolution climate information is increasingly needed for the study of past, present 73 

and future climate changes (Vrac et al., 2007). 74 

Several authors such as Luterbacher and Xoplaki, (2003), Pauling et al. (2003), and Ge 75 

et al. (2005) suggested that pre-modern instrumental weather indices may be promising to 76 

enrich climate reconstructions. Different sets of proxy-variables have indeed been used to 77 

find out relationships between predictors and predictands in high-resolution climate time 78 

reconstructions (e.g. Wang et al., 1991; Briffa et al., 2002; Larocque and Smith, 2005; 79 

Moberg et al., 2005; Diodato, 2007; Davi et al., 2008). Many of these reconstructions 80 

depend on empirical relationships between proxy records and climate data. Comparing 81 

linear algorithms and neural networks, Helama et al. (2009) proved that both the 82 

approaches are reliable for temperature reconstruction. Although regression-based 83 

techniques have been used with considerable success for climate reconstructions, they can 84 

engender bias in the estimates if not employed with care (Robertson et al., 1999; Moberg 85 

et al., 2005; von Storch et al., 2005). Moreover, these relationships are seldom based on a 86 

training process capable to capture all the possible data combinations that occur when 87 

extrapolation is performed (i.e. reconstruction period). With reference to 88 

dendroclimatological studies, correlation between tree-ring proxies and temperature data 89 

was found to only explain about 50% of the (Liang et al., 2008; Helama et al., 2009; Tan 90 

et al., 2009). Documentary data series are expected to better correlate with temperature, 91 

the overall explained variance being of about 70% (Leijonhufvud et al., 2008; Dobrovolný 92 

et al., 2010). However, there are few estimates of uncertainty in documentary based 93 

climate reconstructions (Moberg et al., 2009). 94 

In this study, we have considered an alternative approach to address the statistical 95 

modelling of temperature variability, based on documentary records and previous large-96 

scale reconstructions. In particular, a documentary-based technique was developed based 97 

on multiscale temperature regression (MTR)–model at sub-regional level. An area 98 
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covering Southern and Central Italy and named in this paper Mediterranean Sub-regional 99 

Area (MSA) is the focus of the investigation. The goal was to produce a relatively 100 

simplified multiscaled model acceptable and verifiable by scientists as well as 101 

knowledgeable people. (MTR)–model combines documentary proxy-based local weather 102 

anomalies with large-scale temperature data to adapt regional temperature data to specific 103 

sites and seasons. The selected sub-region, centrally located in the Mediterranean region, 104 

is an interesting test area rich in documentary proxy data and modern weather records 105 

useful to improve the spatial resolution of past climate. The next section describes the 106 

geographical environment, the datasets and the developed methods. Section 3 illustrates the 107 

novel mixed-model approach in detail. Its results on temperature series estimation were 108 

evaluated over the MSA. Conclusions (Section 4) point out the main results and look at 109 

horizons for future research. 110 

 111 

2 Environmental setting, data and methods 112 

 113 

2.1 Study area, datasets and method of analysis 114 

The study is based on a set of both monthly-modelled regional temperatures and 115 

documentary proxy data at a typical Mediterranean area of Central and Southern Italy 116 

(MSA in Fig. 1). This sub-region is frequently crossed by depressions generating over the 117 

Mediterranean Sea (Wigley, 1992) that, reinforced by continental North easterly airflows, 118 

produce important fluctuations in temperature and precipitation and large-scale 119 

atmospheric oscillations (Barriendos Vallve and Martin-Vide, 1998). 120 

Regional temperature data (hereafter called TR) were derived from Luterbacher et al. 121 

(2004) for Europe over 1500-2002. The data, upscaled at about 0.5-degree grid resolution 122 

(~50 km) from historical instrumental series and multi-proxy data 123 

(http://www.ncdc.noaa.gov/cgi-bin/paleo/eurotemp.pl), covers an area extending from 25° 124 

West to 40° East and from 35° to 70° North (Fig. 1a). From this map and from that 125 

depicted in Fig. 1b, it is also possible to observe the temperature-data missing over 126 

Southern Europe (including the MSA), as suggested by both data-density and correlation 127 

pattern. 128 

In order to fill this deficiency in the data available, a new documentary-dataset was 129 

derived from chronicles found in two main sources, Moio and Susanna Manuscript 130 

(Ferrari, 1977) and Corradi’s Annals (Corradi, 1972). A data bank (Catalogue EVA – 131 
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Environmental Events of the ENEA – Italian National Agency of for New Technologies, 132 

Energy and the Environment, Clemente and Margottini, 1991) was also referred to and 133 

used when necessary. The Italian scientist Alfonso Corradi (1833-1892) carried out 134 

pioneering works in documentary research on the environmental and climatological 135 

extreme conditions that occurred in Italian regions through time. He collected the 136 

historical documents from 5 to 1850 A.C., related to meteorology and epidemics into a 137 

five-volume book (Corradi, 1972). More recently, the historian Umberto Ferrari published 138 

the chronicles of Giovanni Battista Moio and Gregorio Susanna quoting climate extremes, 139 

famines from 1710 to 1769 and weather information over the 16th and 17th centuries for 140 

the Calabrian region (Ferrari, 1977). 141 

For the purposes of modelling, the split-samples approach was used to segregate the 142 

available data into a calibration set and a validation set. Particular attention was paid to 143 

the calibration procedure in order to ensure that the resulting model could produce 144 

reliable outcomes (i.e. time-series reconstruction). Two distinct climate periods (1867-145 

1903 and 1972-2002) were included in the calibration dataset (68 years in total) for two 146 

main reasons. The first was to ensure model calibration accuracy by accounting for both 147 

cold and warm intervals, and the second to ensure that the model was able to simulate air 148 

temperature on periods with either accurate (as in recent times) or inaccurate data (as in 149 

historical times). The validation dataset contained instrumental temperature 150 

reconstruction for the MSA (as performed by Camuffo et al., 2010), including the periods 151 

1742-1754 and 1792-1818. These two intervals are considered the only reliable records in 152 

the historical time for this area. The entire workflow was executed interactively using a 153 

spreadsheet of MS Excel 2003, for data collection, model development and graphical 154 

assembling, with the support of STATGRAPHICS online statistical package 155 

(http://www.statgraphics.com) and Statistics Library–R modules (Wessa, 2009) for 156 

statistics performance and graphical outputs, respectively. The agreement between 157 

estimates and observations was evaluated using a set of statistics, including the modelling 158 

efficiency by Nash and Sutcliffe (1970), ranging from negative infinity to positive unity 159 

(the latter being the optimum value). In order to have a visual inspection of the quality of 160 

results, a set of comparative scatterplots and histograms are also presented. 161 

 162 

2.2 Monthly temperature anomaly scaled index 163 

Information held in the written documentary sources was extracted to derive temperature 164 

related indices. Different types of indices have been proposed in historical climatology 165 
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studies (Pfister, 1999, 2001; Brázdil et al, 2005). As a general reference, a seven-point 166 

scale was employed, ranging from –3 for ‘extreme coldness’ to +3 for ‘extreme hotness’, 167 

with 0 indicating ‘normal’ conditions. However, this ordinal scale bears the limitation of a 168 

limited discrimination across the full range of extremes, since it tends to assign all events 169 

above a certain level to the same extreme class (Glaser and Riemann, 2009). To obtain a 170 

more realistic degree of variability in the temperature modelling, we used a simplified 171 

scaled-index for a more accurate estimate of extreme anomalies. Examples of such events 172 

are recorded only during the Little Ice Age (e.g. rivers freezing), when no instrumental 173 

data could overlap the calibration period. 174 

Based on the above criteria, monthly indices were calculated, thus gaining more than 175 

seven possible classes to preserve the variability described by the written sources similar 176 

to the natural variability, and over a longer period than the calibration interval. These 177 

classes were allocated to their respective index by an asymmetric look-up table in order to 178 

take into account temporal shifts between proxy and actual anomalies in different seasons 179 

of the year. In fact, as an example, a river freezing on March or April is a more negative 180 

anomaly than a frozen river on January. Based on these new classification principles, 181 

temperature anomalies were coded for winter and summer by means of a monthly-based 182 

Temperature Anomaly Scaled Index (TASI), according to the look-up table scheme (Table 183 

1a). The geometric interpretation of the classification process is shown in Fig. 2. The 184 

asymmetric profile for winter and summer seasons is a bi-dimensional simplification based 185 

on observations and documentary-proxy data. For the study-area, positive (red line) and 186 

negative (blue line) temperature anomalies result asymmetrically arranged around the mean 187 

seasonal values (black line). The latter are long-term average temperatures calculated, for 188 

the study-area, from the European database of Luterbacher et al. (2004). In the case of 189 

negative anomalies, the baseline is the freezing point of water (0 °C). A baseline for all 190 

seasons was not set to reproduce positive anomalies. In this case, in fact, temperature 191 

extremes are dictated by the Mediterranean latitudes. Although this region presents a 192 

twofold climate regime, where both tropical and mid-latitude aspects play a role, the 193 

latitudinal radiative flux stands out as the main factor determining the temperature. 194 

Advective transport off northern Africa can also occasionally affect the Mediterranean, but 195 

the seasonal variations are well marked (e.g. Schiano et al., 2000; Lionello et al., 2006) and, 196 

notably, temperatures in winter are never as high as summer values. Negative anomalies 197 

were assigned to cover the gap between the mean value and the freezing point, which is 198 

only sporadically (or never) approached in summertime (N/A). In winter (December, 199 
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January, and February), values of -1 (cold) / +1 (warm) and -2 (very cold) / +2 (very 200 

warm) are consistent with temperature values deviating up to three and four times the 201 

standard deviation, respectively. Abrupt jumps from “very cold” (-2) to “freezing” (-4) in 202 

winter are due to the lack of appreciative intermediate states during the calibration period. 203 

In the case of positive anomalies, a similar scheme is reproduced for summer season 204 

(June, July and August). Negative anomalies are instead doubled (July-August) or tripled 205 

(June) compared to winter, because most evidence of “cold” and “very cold” conditions 206 

in the historical sources only refers to cooling to temperatures well below the seasonal 207 

mean. 208 

Once the magnitude of the indices array was defined, then the proxies were 209 

transformed into a time series with a clearly defined temporal resolution. This kind of 210 

understanding is offered in the form of an exemplary table layout (Table 1b), 211 

incorporating monthly and seasonal values of the TASI, and the relative sources for the 212 

period 1752-1757. 213 

 214 

3 Modelling of sub-regional winter temperatures 215 

 216 
In this study, regional temperatures (case) from Luterbacher et al. (2004) are the basis for 217 

modelling sub-regional temperatures (response). In this situation, it is possible to have 218 

more than one response for each case. Thus, a central problem in the analysis of 219 

multiresponse situations, is finding a function that combines several responses to 220 

determine more realistic estimates. This is also the case of air temperature, for which 221 

multi-scale predictors are needed to model over different space- and time-domains (after 222 

Bates and Watts, 2007). In this way, the information collected (regional temperature data) 223 

was downscaled to reasonably approximate the behaviour of the disturbance terms (or 224 

stimulus variables) driving the temperature measurements at sub-regional scale. These 225 

approximations reside on the general assumption that sub-regional air temperature 226 

depends on two disturbance terms: regional-synoptic forcing and local weather 227 

conditions. The regional scale can drive the general temperature trend, while area-specific 228 

temperatures are met by local conditions. Weather variables and climate indices were 229 

both used as predictors as basis of the multi-scale regression model. 230 

 231 

3.1 Inferences for multi-scale temperature estimation 232 

A statistical model of sub-regional temperature estimation was created with aims of 233 

prediction and explanation. For prediction, the model structure was generated based on 234 
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Box and Draper (1972). In particular, a determinant parameter-estimation criterion for 235 

multiresponse data was derived upon the primary assumption that the disturbance terms 236 

of different cases are uncorrelated. A corollary assumption was that, in a single case, the 237 

disturbance terms have a fixed, unknown variance-covariance matrix for different 238 

responses. A model was written along this path, assuming multiple responses and 239 

dependence on a set of parameters, as referred to by Bates and Watts (2007): the 240 

temperature random variable is a function depending on some predictors by a set of 241 

parameters, and assuming the sum of the errors equal to zero. 242 

To contribute to the aim of explanation, influential predictors were identified and 243 

insight gained into the relationship between the predictors and the outcome based on 244 

climate history and modelling background. In this path, the temperature random variable 245 

comprises predicting variables at regional, (.)R, and sub-regional, (.)SR, scales (Fig. 3). 246 

Once regional and sub-regional components are identified, one can estimate the 247 

relationship between expected temperature and predictors. To extend the procedure for 248 

extrapolations outside the range represented by the calibration sample, the model was 249 

iteratively rearranged towards a robust solution whereby two additive components are 250 

used (non-linear regional component, linear-and-local component): 251 

 252 

( ) ( )∑+Ω+⋅+⋅= STASITTkTy SRRMTR β                         (1) 253 

 254 

where the first term, y(TMTR), is the seasonal mean temperature output (°C) of the (MTR)–255 

model; TR is the regional component of temperature (°C) supplied as a boundary 256 

condition; the part in brackets is the sub-regional component of temperature (°C) supplied 257 

as a local constraint. 258 

A recursive procedure was performed in order to obtain the best fit of a regression 259 

equation Y=a+b·X, where Y=model estimates and X=actual data, according to the 260 

following criteria: 261 

 262 
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b

a

                                                                                                                 (2) 263 

 264 

where the first condition is to set null intercept (a), the second is to approximate the unit 265 

slope (b) of the straight line that would minimize the bias, and the third is to maximize the 266 

goodness-of-fit (R2) of the linear function. Since the different assumptions cannot be 267 
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guaranteed a priori, the parameters were estimated using an iterative, knowledge-driven 268 

approach to bias correction steps (after Box et al., 1978). For instance, after a first run, it 269 

was found that regional temperatures (TR) introduced increasingly biased and imprecise 270 

estimates over historical times. Likewise, earliest regional inferences in Mann et al. 271 

(2000) tended to be associated with decreased performance. To account for this non-272 

invariance over the historical time-scale, a power law was assigned to TR with the 273 

exponent forced to be lower than one (and finally set equal to 0.5) to rebalance internally 274 

the quality of calibration. Such iterative fitting of the data allowed for correcting the bias 275 

initially observed and capturing the full range of sub-regional scale variability. 276 

The scale parameter k (°C2) was initially set equal to one and, for reasons of parsimony as 277 

by Grace (2004), not treated as a free parameter because the initial value resulted in a fit 278 

that satisfied the criteria outlined above (Eq. 2). TR appears in both the square root (power 279 

of 0.5) and linear term. In the first case, it returns a direct, non-linear effect, while in the 280 

brackets it crosses the sub-regional anomalies identified by the TASI to correct the bias 281 

observed in the historical times. The square root of TR and parameter β are mainly to 282 

define the order of magnitude of the process used to downscale the (MTR)–model to the 283 

sub-regional scale. The other two terms into the brackets are seasonally-varying (index S) 284 

shift parameters (°C) of TR, which force the model with meteorological (ΣTASIS, sum of 285 

monthly values of the Temperature Anomaly Scaled Index defined above) and 286 

climatological (ΩS, hereafter indicated as Ωw and Ωs for winter and summer, respectively) 287 

boundary conditions. 288 

 289 

3.2 Model parameterization and evaluation 290 

For (MTR)–model (Eq. 1), the values of the parameters obtained from a particular set of 291 

observations with a recursive procedure are: β=0.268, Ωw=11.0 °C, Ωs=43.5 °C. Using the 292 

estimated parameter values, the non-linear response to TR is depicted in Fig. 3, as 293 

translated into Eq. 1 for different values of ΣTASIS. 294 

In the temperature series supplied by Luterbacher et al. (2004), standard deviation (sd) 295 

for winter increases in more recent years, i.e. after the LIA (sd=0.96 against 0.74 for 296 

1739-1783). This contrasts with the instrumental observations, for instance those 297 

performed by Domenico Cirillo in the 18th century (sd=1.1) and documented by the 298 

Meteorological Diaries of the Royal Society of London for the Kingdom of Naples 299 

(Derham, 1733-1734). The reconstructed series based on Eq. (1) gives sd~1.0 for both 300 
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recent and historical times. For summertime, sd~0.6 was registered for 1739-1783 in the 301 

regional dataset, also approached by the reconstructed series. 302 

The parameter values estimated from the data roughly matched the observations. In 303 

Fig. 4, negligible departures of the data-points from the 1:1 line (observed versus 304 

predicted values) indicate the presence of limited bias in the residuals with both winter 305 

(graph a) and summer (graph b) calibration datasets. The Nash-Sutcliffe efficiency index 306 

and the correlation coefficient, equal to 0.88 and 0.94 for winter and 0.87 and 0.88 for 307 

summer (Table 2), are also satisfactory. Fig. 5 shows the results of model validation 308 

against independent time-series data. In general, fluctuations of observed and (MTR)–309 

model predicted temperatures compare well in both seasons. In particular, absolute 310 

minimum and maximum observed values are both reflected in the predictions (black lines 311 

in Fig. 5a, b). The Nash-Sutcliffe efficiency values, equal to 0.66 (winter) and 0.63 312 

(summer) are also satisfactory (Table 2). In contrast, the regional model by Luterbacher et 313 

al. (2004) poorly reflects the variability of actual winter temperature in both seasons 314 

(circles in Fig. 5a), as also confirmed by the correlation coefficient and the Nash-Sutcliffe 315 

efficiency values (equal to 0.26 and –0.43, for winter, and 0.50 and –0.30 for summer, 316 

Table 2, validation dataset). In wintertime, regional estimates suffer from reduced 317 

precision in Southern Europe where temperatures are more variable than Central Europe. 318 

In summertime, when estimated and observed variances are similar, most assessments of 319 

the poor performance of regional estimates focus on the weak correlation with 320 

observations (Fig. 1b). For (MTR)–model, the residuals distribution denote a quasi-321 

Gaussian trend (Fig. 6a, b), with the QQ-plots reflecting theoretical values (Fig. 6a1, b1) in 322 

both seasons. 323 

Independence-of-errors due to the possible presence of significant autocorrelations 324 

among the residuals was also tested. Strong temporal dependence may in fact induce 325 

spurious relations according to standard inference in an ordinary regression model (see 326 

Granger et al., 2001), and the same problem is further increased in the context of 327 

nonlinear models (Stenseth et al., 2003). The Durbin-Watson (Durbin and Watson, 1950, 328 

1951) d statistic in the following form was calculated to verify the presence of 329 

autocorrelation in the residuals e (the index t indicating the tth year): 330 

 331 



 12

( )

∑

∑

=

=

−−

=
T

t

t

T

t

tt

e

ee

d

1

2

2

1
1

                                                                                                        (3) 332 

 333 

Two critical values, dL,α and dU,α, vary depending on the level of significance (α), the 334 

number of observations, and the number of predictors in the regression equation. In the 335 

calibration dataset, indication of possible correlation is produced at 0.01<α<0.05 336 

significance level for winter only (Table 2). The existence of the autocorrelation can be 337 

understood as the result of a functional misspecification problem (e.g. Green, 2003). This 338 

aspect is similar to the multicollinearity problem in linear regression, usually dealt with 339 

separately from autocorrelation, but also examined by its autocorrelation effect in the 340 

error term (e.g. Ramsey III et al., 2001). In our case, autocorrelation may be due to some 341 

internal constraint in the calibration stage, probably related to the fact that winter 342 

temperatures in the regional dataset and model outputs are more similar in recent times 343 

(the period of years used for calibration) than it was in historical times. The calibration 344 

dataset is from recent times (covering periods around the 20th century), when estimates 345 

from Luterbacher et al. (2004) better approach observed temperatures. Under such 346 

conditions, the model likely represents some redundancy in the explanatory variables that 347 

means, other predictors than the regional temperature component might not be effective in 348 

improving upon the sub-regional estimates. However, both calibration results in summer 349 

and the results of data validation in both seasons assume statistical independence of the 350 

residuals, with type-I error probability of 0.09 and 0.36 of Durbin-Watson test statistic 351 

(Table 2). 352 

The mean absolute error (0.24-0.33), similar between calibration and validation and 353 

between seasons, and the other statistics of Table 2 indicate for the validation set a 354 

satisfactory performance. This suggests that the proposed approach is a promising tool for 355 

future applications in temperature estimation. 356 

The scope of our modelling approach and model parameterization was restricted to 357 

capturing the temporal variability of seasonal temperature data in the study-area, and 358 

some limitations of the methodology should be acknowledged. Uncertainty ranges in the 359 

estimation of parameters were not formally accounted because parameter estimation was 360 

achieved in more steps, which makes confidence bounds for model parameters not easily 361 

quantifiable. The model error (mismatch between the observed and the modelled value) is 362 
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however an indication of total model uncertainty (e.g. Shrestha and Solomatine, 2008), 363 

and Nash-Sutcliffe efficiency values of 0.6 can discriminate between bad and good 364 

performances (e.g. Lim et al., 2006). The efficiency values obtained in the validation 365 

stage (>0.8) thus indicate limited model uncertainty; likely associated with narrow 366 

parameter uncertainty. Since the results of model calibration were satisfactory, the 367 

robustness of the solution was relied on and sensitivity analysis was not added to the 368 

study. The reconstruction of temperatures series has thus used generic optimized 369 

parameters, which are crude estimates over multiple years. This ensures a generic 370 

representation for the MSA, with evidence of improved performance compared to 371 

previous estimates. Since geographical locations have characteristics that require specific 372 

model structures and local optimization, then the application of the model to other sub-373 

regions may be limited by the ability to provide representative drivers and parameter 374 

values. 375 

 376 

4 Conclusions 377 

 378 
The main novelty of this paper is the introduction of a relatively simple model to 379 

reconstruct past seasonal (winter and summer) temperature variability at sub-regional 380 

scale based on proxy and simulated datasets. In general, the use of data deriving from 381 

different spotted sources is not straightforward to reconstruct climate in Southern Europe. 382 

Data used in the previous seasonal temperature reconstruction over Europe, especially 383 

over the Mediterranean areas, are from few and early instrumental series (data before 384 

1850) that, for their nature, are difficult to find, evaluate, correct and convert or present in 385 

a Celsius scale in terms of temperature anomalies. 386 

The multi-scale regression approached here overcomes the inherent loss of variance in 387 

both early instrumental records and univariate least-squares calibration equations. In 388 

general, multi-scale, process-based climate models can be accurate. However, the authors 389 

argue that improvements in model sophistication may not be as profitable as the ability to 390 

reconstruct confidently the overall picture of temperature-related events (and therefore 391 

temperature data) over historical times and in different geographical places. Validation, 392 

from this point of view, is a major statistical instrument to develop a reliable model to add 393 

robustness to past temperature reconstructions. Furthermore, in this paper, we took 394 

advantage of the (MTR)-model versatility to evaluate, through proxy-documentary data, 395 

how the sub-regional temperatures signal is driven by local and boundary conditions. The 396 
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accuracy of these signals depends not only on the intrinsic properties of the model itself, 397 

but also from the possibility to recover homogeneous documentary records able to 398 

maintain unchanged the climate information and to replicate, through the model 399 

application, the actual temperature series. Once such conditions are satisfied, the 400 

modelling approach may potentially be suitable for applications elsewhere in the 401 

Mediterranean basin, provided that model parameters will be documented for other sub-402 

regions than the one investigated here. Further research extending the modelling approach 403 

developed here towards other sub-regions of the Mediterranean area would provide 404 

additional insight into the implications for the production of valuable knowledge from 405 

proxy documentary data and can be considered the natural evolution of this study. 406 

 407 
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