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Abstract

A systematic coherence analysis is presented for the set of the most prominent millen-
nial reconstructions of Northern hemispheric temperature. The large number of mutual
coherences underwent a clustering analysis that revealed five significant, mutually in-
coherent (“inconsistent”) clusters. The use of multiple proxies seems to be causing the
clustering, at least in part, but not in an easily definable, physical way. Alternatively, a
multidimensional scaling is performed on the same set of coherences. This results in
a graphic, two-dimensional rendering of the reconstructions whose geometry (location
and distance) is given by the coherences. Both approaches offer complementary ways
in dealing with the inconsistencies.

1 Introduction

How inconsistent do two models have to be in order to dismiss at least one of them?
— For example, if model M1 purports that at least 60% + 5% of all crows are green
and model M2 purports 55% + 5% are red, then, using classic logical and arithmetical
reasoning, the models are inconsistent and at least one model must be dismissed as
being wrong. (Of course, both can be wrong.) But what happens if the uncertainty is
slightly larger (10% instead of 5%)? And are these arguments still valid in times of “rea-
soning under uncertainty” (Shafer and Pearl, 1990; Parsons, 2001) and an emergence
of “paraconsistent” logics (Priest, 2000, 2002; Arieli, 2008)?

Such questions may arise when investigating the modeling — or reconstructing — of
past millennial Northern hemispheric (NH) temperature. They arose in me, at least,
in an attempt to understand the reconstructions of the latest IPCC report (Jansen et
al., 2007; Fig. 6.10), of which the following extend back to the year 1000: (Jones et
al., 1998; Mann et al., 1999; Briffa, 2000; Esper et al., 2002; Mann and Jones, 2003;
Moberg et al., 2005; d’Arrigo et al., 2006). The figure in that report displays an overlap
of the 10 and 20 uncertainty bands of the reconstructions, weighted accordingly, that
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approximates the “most likely” temperature for any given year. In the present study
I am going to define a notion of “consistency” that is suited to these reconstructions,
based on time series coherence. | have for completeness also included the recon-
structions (Crowley and Lowery, 2000) and (Mann et al., 2008), making a total of ten
reconstructions listed in Table 1. In statistical terms, the mentioned IPCC figure entails
what is known as a “probability mixture model” (McLachlan and Peel, 2000), with all
sub-models weighted equally. The reconstructions are thus tacitly considered as mu-
tually consistent, and conflicting variations between any two of them are not resolved
but instead add to an overall uncertainty of a unique, albeit unknown NH temperature.

That all reconstructions are weighted equally is mainly due to the lack of better evi-
dence. Many verification attempts (Briffa et al., 1988; Mann et al., 1998, 2008; Ruther-
ford et al., 2005; Wahl et al., 2006) suffer from insufficient independent verification
data, which severely obscures the corresponding statistics (Blrger, 2007; Christiansen
et al., 2009). This lack of data can partly be evaded by using the synthetic data of
a climate simulation, where “pseudo” proxies, which are temperature grid points de-
graded by noise, are used to track temperature (Von Storch et al., 2004; Mann et al.,
2005; Lee et al., 2008; Christiansen et al., 2009). The variance of the noise, or the
signal-to-noise ratio (SNR), is determined from local temperature-proxy correlations.
According to these studies, none of the tested methods revealed a performance con-
clusive enough to provide reliable temperature estimates for the entire millennium, at
least not for the appropriate setting, that is, a small proxy network with a low SNR. It
should be noted, moreover, that the reported performance measures are likely too op-
timistic anyway, as the local temperature-proxy error model — independent white noise
— has been shown to be inadequate (Blrger et al., 2006; Blrger, 2007); see also (Von
Storch et al., 2006).

With verification being thus poor, debates about competing approaches to climate
reconstruction, such as regional curve standardization (Briffa et al., 1992; Esper et al.,
2002), or different variants of regression (Von Storch et al., 2004; Mann et al., 2005)
remain largely undecided.
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If such “unilateral” validation approaches fail, bilateral analyses may offer some guid-
ance to assess millennial climate reconstructions. | am aware of only one systematic
analysis of such kind. (Juckes et al., 2007) calculate cross correlations of six recon-
structions, four of which are also considered here. But their analysis has a number
of caveats. For example, the corresponding low-pass filtered versions (21-year run-
ning mean) have been described as “highly correlated”, but no significance analysis
has been supplied that would put “high” into context. Moreover, their estimates are
optimistically biased as they include the instrumental period which was used for cali-
bration.

| follow a similar approach here by systematically analyzing the mutual consistency of
the ten reconstructions of Table 1. To avoid the “synchronization” effect from the calibra-
tion, the analysis will be based exclusively on pre-instrumental variations. Additionally,
spectral coherence is used to measure the mutual consistency of the reconstructions.
Estimates of coherence and corresponding uncertainties rely on little more than very
general stationarity assumptions (Brillinger, 2001) and therefore present a better pro-
tection against, e.g., spurious significance (Granger and Newbold, 1974). This should
provide a more stringent criterion to judge the mutual consistency of any two series.

Using a distance measure that is based on coherence, aggregated across relevant
frequencies, a clustering analysis is performed on the set of reconstructions. This re-
sults in a structured view of the reconstructions, with any two clusters being inconsis-
tent. Based on the same distance metric, a multi-dimensional scaling (MDS) analysis
of the ten reconstructions is performed. In two dimensions, a very graphic rendering of
the reconstructions is obtained that may already be useful for, e.g., detecting outliers,
and may help to design new reconstructions from the ones given. And it may ultimately
lead to a better logical understanding, as indicated above, of what has actually been
reconstructed.
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2 Clustering reconstructions

The following coherence analysis establishes statistically whether corresponding co-
variations represent coherent behavior or just pure chance. The analysis is constrained
to reconstructed data prior to 1850, to ensure that the estimated coherence is not
inflated by calibrating effects from the instrumental period. All reconstructions are
rescaled to have zero mean and unit variance.

We use the multitaper spectral estimator (Percival and Walden, 1993). Coherence,
K, as a spectral measure depends on frequency, f. An appropriate summary measure
is given by the quantity

K=1/0.2 / Kk(f)df, (1)
0<f<0.2

representing the average coherence in the spectral band 0< f <0.2, which means vari-
ability above 5 years. This is the time scale where significant temperature-proxy inter-
action is to be expected (Cook et al., 1998, 2000, 2004; Biondi et al., 2001; d’Arrigo
et al., 2001; Briffa et al., 2002; Gray et al., 2003, 2004; Wilson et al., 2007). Table 2
shows the complete set of mutual coherences k for the millennial reconstructions. Of
all 120 =45 pairs, only a small fraction (7) turns out to be significantly nonzero, in-
dicating nonrandom behavior. Among these, the pairs dA06, BrOO and dA06, Es02
(abbreviations from Table 1) stick out with values of 0.65 and 0.6; and, adhering to
what can be called the transitive law of coherence, Br00, Es02 follow with x = 0.55.

More systematically, a hierarchical clustering analysis (Hastie et al., 2001) is applied
to Table 2, using as a distance metric the term

d=1-%. @)

Starting from each single reconstruction as a cluster, new clusters may be formed re-
cursively from any given set of clusters by merging the two nearest (most coherent)
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clusters, the distance of any two clusters being taken as the maximum of all member
distances (“complete linkage”). If that distance is smaller than the distance correspond-
ing to the level of k significance in Eq. (2) (from the 99% level), the two clusters are
called consistent and merged to form a new cluster. A looser criterion of forming clus-
ters is “single linkage” where maximum distance is replaced by minimum distance. But
in that case, two clusters are merged if only any two members are significantly coher-
ent, and so clusters are populated with mutually incoherent members (reconstructions)
which should be avoided after all. Therefore, single linkage clustering is generally
dropped from this analysis. The clustering process is shown in Fig. 1, the resulting
group of internally coherent but mutually incoherent clusters signified by different col-
ors. The height of a node is given by the distance of its two constituents. Five clusters
are so obtained: {Br00, Es02, dA06}, {MJO3, Mo05}, {CL00, Jo98}, {Ma08L, Ma08},
and {Ma99}.

A more graphic representation of the reconstruction clustering is obtained from using
multidimensional scaling (MDS) (Hastie et al., 2001). In MDS, the ten reconstructions
are mapped onto a low (here two) dimensional Euclidean space, so as to optimally
represent the distance matrix of Table 2 as Euclidean distances between the mapped
points. The result is shown in Fig. 2. BrOO occupies the center of the plot, with relatively
moderate (albeit mostly inconsistent) distances to the other reconstructions; dA06 is
similar. In this display, MaO8L appears as the most “excentric” reconstruction, followed
by CL0O0, Ma99, and Mo05. Ma08L and Ma99 show the greatest distance, that is, of all
pairs they are maximally inconsistent. Note that all five clusters are well represented in
the plot (which is not too surprising as that is exactly the purpose of MDS).

Figure 3 displays the reconstructed time series grouped by cluster. Cluster {Br00,
Es02, dA06} shows warm conditions at about the years 1000, 1400 and 1550, and
cooler conditions from 1200 to 1350 and at 1450 and 1600. Cluster {MJ03, Mo05}
is, like all remaining clusters, dominated by a fairly strong negative trend. On top
of that there is an extended cooling in the 17th century, followed by much warmer
conditions in the 18th century. Not much variability is in cluster {CL0O, Jo98}, only
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the apparent negative trend which seems stronger for CLO0. The series are weakly
coherent. Finally, the clusters {Ma08L, Ma08} and {Ma99} are both characterized by
little variability, interrupted by sporadic outbreaks of strong cooling (1350, 1450, 1700)
that might be related to volcanic events.

To exemplify the inter- and intra-cluster coherence | have plotted in Fig. 4 typical co-
herence spectra from the clusters {Br00, Es02, dA06}, {MJ03, Mo05}, {Ma08L, Ma08},
and {Ma99}, together with the 90%, 95%, and 99% confidence band of no coherence
(which is known to be independent of frequency). BrO0O and dAO06 are significantly
(99%) coherent on all timescales, whereas MJ03 and Mo05 are coherent at the lower
frequencies (f <0.2) only. An extreme case of cross-cluster inconsistency are the two
most distant reconstructions Ma99 and Ma08L, which are nowhere coherent except at
very small frequencies, signifying their common negative trend.

A potential cause of the cluster incoherence may lie in the different target areas of
the reconstructions. For example, BrOO reconstructs the NH extratropical land temper-
ature only, while MoO05 is targeted at the entire NH. Inspecting Table 3 shows that in fact
the five clusters are nicely lined up with their respective target configurations, with the
exception of {Ma08, Ma08L} which are distinguished by using sea surface information.
But this characterization is not unique as, e.g., {MJ03, Mo05} and {Ma99} are inco-
herent but share the same targets. Moreover, the different targets are not so different
in the first place, as Table 4 shows: a millennial climate simulation (Gonzalez-Rouco
et al., 2003) shows that the various target areas are strongly coherent for the relevant
time scales >5y, with k ~0.95 or d ~0.05.

If the different target areas cannot sufficiently account for the different clusters, hav-
ing a sufficiently even type and processing of proxies seems to lead to coherent recon-
structions. This applies to the cluster {Br00, Es02, dA06}, all whose reconstructions
are based on tree rings and a similar technique (age band decomposition and regional
curve standardization) to retain low-frequency information for the proxy standardiza-
tion.
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It should be noted that choosing a narrower spectral band, such as for example 0<
f <0.1, that is, decadal and longer, does not alter the dendrogram of Fig. 1 substantially.
Similarly, the 95% significance level (d=0.61) yields identical clusters, while under the
90% level (d=0.65) clusters {Br00, Es02, dA06} and {MJ03, MoO5} merge.

3 Discussion

By avoiding the (calibrating) instrumental period, and by using a fairly robust spectral
measure for low-frequency performance, the above coherence analysis has uncov-
ered several inconsistencies among the group of millennial reconstructions that figured
prominently in the latest IPCC report and elsewhere. An immediate lesson from this
is that simple visual inspection of smoothed time series, grouped and overlaid into a
single graph, can be very misleading. For example, the two reconstructions Ma99 and
MaO08L, which have previously been described to be in “striking agreement” (cf. Mann
et al., 2008), turned out to be the most incoherent of all in our analysis.

The most obvious, pragmatic, response to the inconsistencies is to inspect the meth-
ods and try to improve and harmonize them. But as | have pointed out, without a
functioning, uncontroversial verification procedure this will not lead very far.

Having therefore to live, for now, with pairwise inconsistent reconstruction clusters
there is more than one way to interpret the coherence results meaningfully. Two com-
plementary views regarding the “true” NH temperature are possible, depending on the
focus lying on the clustering or on the MDS:

a) five inconsistent clusters each representing a possible truth

b) ten independent approximations of an otherwise unknown truth

ad a) With no obvious means at hand to dismiss any of the five inconsistent recon-
structions, one would have to deal with derivations involving inconsistent statements.
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As mentioned in the beginning, this requires a non-standard approach to the logical
discourse, perhaps along the lines of, e.g., (Arieli, 2008).
ad b) This viewpoint, which may be somewhat more realistic than a), is closer to the
conventional approach where all reconstructions are seen as approximations to a sin-
gle, true temperature curve. However, the error metric is fundamentally different here.
The conventional metric would operate on the reconstructed temperatures themselves
and construct a real temperature average. The view suggested here (mainly through
Fig. 2) is that the best estimate of truth is near the “center” of the reconstructions in
the MDS rendition. But this rendition is non-physical, or not directly physical, as the
MDS dimensions are not related to the original temperature series in a simple way.
Least-squares approaches do not work here, so that estimating the center by simple
temperature averaging is impossible. That center represents a compromise of the re-
constructions, in the sense that it would be, on average, maximally coherent with all of
them. It is likely to be “close” to BrO0 and Ma08, and may be found by prudently merg-
ing techniques and proxies from both approaches. If not, one would probably have to
resort to trial and error.

One may as well choose to neglect the reported incoherences. But then the follow-
ing, and likely more, semantic subtleties from the inconsistent reconstructions have to
be resolved:

— Can they skillfully represent NH temperatures?
— Can they lie within a common uncertainty bound?

— If they come to an identical conclusion — such as the non-existence of a Medieval
Warm Period, what does it mean for that conclusion?

Using inconsistent reconstructions to approximate the temperature curve has one par-

ticular visual consequence. Whether overlaying them in one figure or forming an aver-

age, the result tends to be a cancellation of larger amplitudes as inconsistency means

here to be indistinguishable from random covariations. Together with the mentioned
667

synchronization through the instrumental calibration period, such “synthesis” figures
automatically resemble a hockey-stick.

It was shown that the target area plays only a minor role. Furthermore, if type and
processing of proxies are sufficiently even, coherent reconstructions are produced. If
that is true in general, the main source of reconstruction inconsistency is the use of
mixed types of proxies (“multi-proxies”), and their role for temperature reconstruction
should be revised. One should systematically check whether “uni’-proxy reconstruc-
tions tend to be more coherent than multi-proxy reconstructions, and if so, which types
of proxies actually create the inconsistencies.
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Table 1. The ten reconstructions used in this study, with target season and proxy type.

Symbol Reference Season  Proxies
Broo Briffa, 2000 Summer trees
dA06 d’Arrigo et al., 2006 Annual trees

Es02 Esper et al., 2002 Annual trees
MJ03 Mann and Jones, 2003 Annual multi-proxy
Mo05 Moberg et al., 2005 Annual multi-proxy
CLoOo Crowley and Lowery, 2000 Annual  multi-proxy
Jo98 Jones et al., 1998 Summer  multi-proxy
MaO8L  Mann et al., 2008 Annual multi-proxy
Ma08 Mann et al., 2008 Annual multi-proxy
Ma99 Mann et al., 1999 Annual multi-proxy
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Table 2. Mutual coherence « between millennial (1000 to 1850) reconstructions, averaged over
frequencies > 5y. Significant values (k >0.47 as the 99% level) are highlighted.

K Bro0O dA06 Es02 MJO3 MoO5 CLOO Jo98 MalO8L Ma08 Ma99

Br0O 1

dA06 0.65 1

Es02 055 0.6 1

MJ03 04 038 0.44 1

Mo95 046 041 042 0.54 1

CLOO 038 035 031 032 0.33 1

Jo98 042 04 0.36 0.31 0.27 0.54 1

Ma08L 03 028 022 035 0.31 0.28 0.25 1

Ma08 042 036 036 048 042 032 0.27 0.48 1

Ma99 0.37 034 038 038 0.31 0.34 044 0.26 0.3 1
673

Table 3. Target area for reconstructions.

Bro0O dA06 Es02 MJO3 Mo05 CLO0O Jo98 Ma0O8L Ma08 Ma99

NH | | [ |

NH extratropics | | | | | |
land + sea | | [ | | | |
land | | | | | |
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Table 4. Coherence between target areas as simulated by ECHO-G Erik.

K NH  NH extratropics
land + sea 0.93 0.89
land 0.90 0.91
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0.5

0.4r

0.3f

Bro0 dA06 Es02 MJ0O3 Mo05 CLOO Jo98 Ma99 Ma08L Ma08

Fig. 1. Dendrogram of reconstructions, with distance metric d based on coherence « (see
text). Each node immediately below the 99% significance level of d=0.525 corresponds to a
significant cluster, signified by the coloring.
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Fig. 2. MDS image of the ten climate reconstructions, based on mutual coherence. The five
colors represent the five inconsistent clusters, {Br00, Es02, dA06} (blue), {MJ03, Mo05} (or-
ange), {CL00, Jo98} (green), {Ma08L, Ma08} (red), and {Ma99} (black).
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Fig. 3. The five clusters of reconstructions (smoothed).
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Fig. 4. Intra- and inter-cluster coherence spectrum (smoothed). The gray areas mark, from

dark to light gray, the 90%, 95%, and 99% significance level. The vertical dashed line indicates
the frequency threshold below which reconstructions are compared for clustering.
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