Supplementary Material

Dynamics of ~100-kyr glacial cycles during the early Miocene

D. Liebrand^{1,*}, L. J. Lourens¹, D. A. Hodell^{2,**}, B. de Boer³, and R. S. W. van de Wal³

¹Department of Earth Sciences, Faculty of Geosciences, Utrecht University. Budapestlaan 4, 3584 CD Utrecht, The Netherlands
²Department of Geological Sciences, University of Florida, 241 Williamson Hall, P.O. Box 112120, Gainesville, Florida 32611, USA
³Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
*now at: School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton SO14 3ZH, UK
**now at: Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK

Correspondence to: D. Liebrand (diederik.liebrand@noc.soton.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Supp. Fig. 1. Data reproducibility. **(A)** Reproducibility between the first and second run δ^{13} C of the same samples (not necessarily the same foraminifer) on the three inter-calibrated mass spectrometers. **(B)** As in panel (A), but then for δ^{18} O. **(C)** Reproducibility of δ^{13} C between measurements done at the University of Florida (UF) and Utrecht University (UU), on specimens from the same sample. **(D)** As in panel (C), but then for δ^{18} O.

Supp. Fig. 2. Outlier removal and the splice. **(A)** Specification in which lab each stable isotope measurement has been done. Outliers were defined by an upper and lower boundary of 2 standard deviations (of the entire series) added or subtracted from a 13-point moving average (gray areas). Outliers defined in δ^{13} C or in δ^{18} O were removed from both records because of the paired analysis. Depth scale is in meters composite depth (mcd). **(B)** Splice of Site 1264, showing from which hole the samples were taken.

Supp. Fig. 3. 1-D inverse modelling output. The δ^{18} O record (as measured), δ_w , eustatic sea level, δ_T , Northern Hemisphere (40-80° Latitude) annual average temperature and deepwater temperature calculated by the model, are depicted (De Boer et al., 2010). The δ_w , δ_T , and ΔT_{dw} values all represent oceans average values, because the model cannot resolve single water masses and/or oceans. In Summary: δ_T = Temperature contribution to δ^{18} O, δ_w = seawater contribution (from ice volume) to δ^{18} O, ΔT_{NH} = NH mean (40-80N) temperature relative to present day and ΔT_{dw} = mean deep-water temperature relative to present day.

References

De Boer, B., Van de Wal, R. S. W., Bintanja, R., Lourens, L. J., and Tuenter, E.: Cenozoic global icevolume and temperature simulations with 1-D ice-sheet models forced by benthic δ^{18} O records, Ann. Glaciol., 51, 23–33, 2010.