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Abstract

We use a statistical model, the cointegrated vector autoregressive model, to evaluate
the relative roles that orbital, seasonal, and spatial variations in solar insolation play
in glacial cycles during the late Quaternary (390kyr – present). To do so, we estimate
models of varying complexity and compare the accuracy of their in-sample simula-5

tions. Results indicate that variations in solar insolation associated with changes in
Earth’s orbit have the greatest explanatory power and that obliquity, precession, and
eccentricity are needed to generate an accurate simulation of glacial cycles. Seasonal
variations in insolation play a lesser role, while cumulative summer-time insolation has
little explanatory power. Finally, solar insolation in the Northern Hemisphere gener-10

ates the more accurate in-sample simulation of surface temperature while ice volume
is simulated most accurately by solar insolation in the Southern Hemisphere.

1 Introduction

According to Paillard (2001), Adhemar (1842) is among the first to link changes in cli-
mate to variations in Earth’s orbit, specifically precessional changes in the equinox.15

Croll (1875) formalizes this notion by postulating that seasonal changes in solar insola-
tion, which are associated with precession, cause ice sheets to grow and shrink. This
explanation is expanded to include changes in eccentricity, precession, and obliquity
by Milankovitch (1941). His model hypothesizes that glacial cycles coincide with the
23 and 41 kyr periods of precession and obliquity. This hypothesis is confirmed by Hays20

et al. (1976) who examine the periodicity of ice sheets. Since then, the main features
of “the Milankovitch theory” have been confirmed many times.

Despite these successes, not all aspects of glacial cycles can be explained by the
Milankovitch theory. Among the most notable is the so-called “100 kyr problem.” Re-
constructions of ice volume based on δ18O indicate that the accumulation and ablation25

of ice sheets show a very strong 100 kyr cycle during the late Pleistocene (Schackleton
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and Opdyke, 1973). This periodicity is problematic for theories that stress orbital cy-
cles (Imbrie et al., 1993) because the amplitude of the insolation signal associated with
eccentricity is only about 2 W/m2. This change is much smaller than the change asso-
ciated with precession (∼100 W/m2) and obliquity (∼20 W/m2) and is the heart of the
100 kyr problem – why does the climate system respond so strongly to small changes5

in solar insolation that are associated with eccentricity?
Efforts to answer this question in particular, and to better understand glacial cycles

in general, take two approaches. One approach seeks to identify mechanisms that
connect ice-volumes to other climate variables. Mechanisms include changes in the
atmospheric concentrations of carbon dioxide (Saltzman and Maasch, 1990) and inter-10

planetary dust particles (Muller and MacDonald, 1997). To evaluate these hypotheses,
analysts often use statistical techniques (either ordinary least squares or spectral tech-
niques) to link a proxy for the mechanism of interest with either temperature and/or
ice volume. For example, there is a close and seemingly stable correlation between
atmospheric CO2 and temperature (Paillard, 2001; Siegenthaler et al., 2005; Martinez-15

Garcia et al., 2009; Luthe et al., 2008), CO2 and ice volume (Martinez-Garcia et al.,
2009), CO2 and dust (Bender, 2003), and sodium and temperature (Petit et al., 1999;
Wolff et al., 2006). Some of these correlations are strong, as measured by diagnostic
statistics. For example, the linear relationship between CO2 and Antarctic tempera-
ture during the previous 800 kyr has an R2 (also known as the adjusted coefficient of20

determination) of 0.82, which indicates that 82% of the variation in Antarctic temper-
ature is associated with variation in atmospheric CO2 (Luthe et al., 2008). Similarly,
Shackleton (2000) finds that deep water temperature is highly coherent (0.97) with the
Vostok CO2 signal. Despite the obvious relationships among variables, the direction of
cause-and-effect among climate variables is uncertain.25

A second approach, which is not mutually exclusive, is to identify the season(s) when
and the latitude(s) where changes in solar insolation have the greatest effect on glacial
cycles. This approach examines measures of solar insolation that go beyond eccen-
tricity, precession, and obliquity because the complexity of the full Milkankovitch cycle
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implies that the system responds to insolation at many different places and seasons
(Imbrie et al., 1993). Several studies highlight the importance of solar insolation in
the Northern Hemisphere (Hays, 1978; Lorius et al., 1999; Raymo, 1997; Imbrie et al.,
1993; Petit et al., 1999; Masson et al., 2000; Jouzel et al., 2007; Kawamura et al.,
2007). For example, Kawamura et al. (2007) argue that “southern solar insolation is in5

antiphase or is completely out of phase, with Antarctic climate . . . these phasings sug-
gest that Antarctic climate is paced by northern summer insolation presumably through
northern ice sheet variation.” But the importance of Northern Hemisphere insolation is
disputed by others. Huybers and Denton (2008) argue that insolation during the South-
ern Hemisphere summer is the more important driver of temperature in the Antarctic.10

In this paper, we evaluate the roles that orbital, seasonal, and spatial variations
in solar insolation play in glacial cycles during the late Quaternary period (391 kyr –
present) using a recent statistical modelling tool – the cointegrated vector autoregres-
sive (CVAR) model. It represents a general methodology that maintains the assumption
that the mechanisms which generate glacial cycles are highly complex and character-15

ized by strong dynamics and simultaneous feed-back effects. This contrasts with single
equation multiple regression models that postulate a causal mechanism a priori and
disregard feedback effects. If climate mechanisms are inherently simultaneous, multi-
dimensional, and dynamic, then results from such a single equation model can be (and
often are) misleading.20

To assess the role of exogenous drivers for glacial cycles, we estimate models of
varying complexity and compare the accuracy of their in-sample simulations. Results
indicate that variations in solar insolation associated with changes in Earth’s orbit have
the greatest explanatory power and that obliquity, precession, and eccentricity are
needed to generate an accurate simulation of glacial cycles. Seasonal variations in25

insolation play a lesser role, while cumulative summer-time insolation has little ex-
planatory power. Finally, solar insolation in the Northern Hemisphere generates a
more accurate in-sample simulation of surface temperature, ice volume is simulated
most accurately by solar insolation in the Southern Hemisphere, while the accuracy
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of the in-sample simulation for atmospheric CO2 is relatively unaffected by latitutdinal
measures of solar insolation.

These results and the methods used to obtain them are described in four sections.
Section 2 describes the data and the statistical techniques that are used to estimate
and compare the statistical models. Results are described in Sect. 3. Section 4 dis-5

cusses how these results can be used to test various hypotheses about the roles that
orbital, seasonal, and spatial variations in solar insolation play in glacial cycles. Sec-
tion 5 concludes by describing how future efforts will build on this statistical approach
to estimate temperature sensitivity, test hypotheses about climate dynamics, and test
the hypothesis that human activity had a significant effect on climate well before the10

start of the industrial revolution.

2 Data and statistical methodology

2.1 Data

The late Quaternary “Vostok” period contains four “glacial cycles” and our empirical
focus on this period reduces data aggregation across cores. We assemble data on15

three measures of glacial cycles; land surface temperature (Temp), carbon dioxide
(CO2), and ice volume (Ice). Surface temperature, atmospheric CO2, and ice volume
are among the most commonly used proxies for glacial cycles and are thought to be
directly related to one another, and so their inclusion requires little justification.

Data for surface temperature and carbon dioxide are obtained from cores drilled into20

the Antarctic ice sheet, and therefore represent local conditions. Carbon dioxide is
a well-mixed gas and so measurements from the Antarctic ice sheet probably repre-
sents global levels. The temperature measure represents local conditions, but can be
converted to global values (Masson-Delmotte et al., 2006, 2010). Data on ice volume
are derived from 57 cores drilled by the Deep-Sea Drilling Project and Ocean Drilling25

Program across the globe.
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To make these data amenable to a statistical analysis, we convert them to a common
time scale (EDC3) using conversions from Parrenin et al. (2007) and Ruddiman and
Raymo (2003). Unevenly spaced observations are interpolated (linearly) to generate
a data set in which each time series has a time step of 1 kyr. Sources for these data,
the number of observations, units of measure, and their original time scale are given in5

Table 1.
Solar insolation is exogenous to the statistical models and this driver is represented

using several time series. Changes in Earth’s orbit are represented by times series for
precession, obliquity, and eccentricity. These changes generate spatial and temporal
variations that are represented by time series for the radiation received at a specific lat-10

itude (e.g. 65◦ N) on a given day (e.g. 21 June–Summer). We also represent the effect
of summer-time insolation with cumulative insolation on days during which insolation
exceeds a pre-defined threshold (Huybers and Denton, 2008). For example, Insol275
is a time series for cumulative annual insolation for days on which daily insolation ex-
ceeds 27 W/m2 at a specific latitude.15

2.2 Statistical analysis of stationary versus nonstationary data: an introductory
discussion

There are many ways to describe climate time series – here we focus on the difference
between stationary and non-stationary time series. A stationary time series does not
exhibit trending behavior whereas a nonstationary series does. Such trends can be20

either deterministic or stochastic, the difference being that the increments of a deter-
ministic trend are constant over time whereas those of a stochastic trend are random.
While both can appear in climate data, stochastic trends are more valuable because
they offer a way of identifying the underlying causes of permanent shocks to the cli-
mate.25
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A simple example of a variable containing a stochastic trend is given by the so called
random walk model:

xt = xt−1 + εt, (1)

or

∆xt =εt5

where εt is an independently, identically, normally distributed random shock with vari-
ance σ2

ε and ∆ is the first difference operator (e.g. xt−xt−1). An equivalent description
of Eq. (1) is:

xt = x0 + ε1 + ε2 + ... + εt =
t∑

i=1

εi + x0, t = 1, ... t (2)

showing that today’s value of xt (for example temperature) is the sum of all previous10

temperature shocks, ε, starting from an initial date x0. This cumulation of random

shocks,
t∑

i=1
εi , is called a stochastic trend.

The random walk model can be seen as a special case of the AR(1) model:

xt = ρ xt−1 + εt (3)

which can be written as:15

xt =
t∑

i=1

ρt−iεi + ρtx0, t = 1, ... t

which is stationary if |ρ|<1.0. In this case the effect of the shock (for example due to an
increase in CO2), εt, on the temperature would die out over time. How long this takes
depends on the size of ρ: the closer to 1.0 the longer it takes. At the other opposite, if
ρ=0, a shock would have no permanent effect on temperature.20
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The variance of an AR(1) process is

VAR(xt) = σ2
ε/(1 − ρ). (4)

showing that the variance becomes very large when ρ is close to 1.0. If ρ= 1, then xt
is nonstationary and Eq. (4) becomes undefined. In this case the variance increases
over time, i.e. VAR(xt) = tσ2

ε and the mean is zero, i.e. E (xt) = 0. Because variance5

increases over time, it is not possible to predict when or if a random walk will cross its
mean value: a nonstationary variable is not significantly mean reverting. This implies
that the sample average x̄ is a biased estimator of the mean and that the sum of
squares

∑
(x−x)2

t is not an appropriate measure of the variance of a nonstationary
variable. In other words, x is a very poor “reference line” when xt is a random walk (as10

evident from the graphs of Temp, CO2, and Ice in Fig. 1a–c).

2.3 Why is it important to differentiate between stationary and nonstationary
time series when doing OLS regressions?

The preceding discussion may cause the reader to wonder, why is this important?
Consider the “best guess” one would make about the value of x at time t+1 given15

information about x up to time t. For a random walk, this is xt, whereas for a stationary,
non-trending time series the best guess would be the average value. Therefore, when
the series is stationary and time independent the deviation from the average is a good
measure of how much xt has changed, whereas when xt is nonstationary it is the
deviation from the previous value that measures how much xt has changed. In this20

case
∑

(xt−x)2 �
∑

(xt−xt−1)2.
This has implications both for how to calculate R2 and for how to measure asso-

ciations between variables. If a stationary time independent variable is regressed on
another variable, R2 would correctly measure how much more the regressor variable
has been able to explain of the variation in the regressand compared to its mean value.25

If a nonstationary variable is regressed on another nonstatioanary variable, one would
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say that it has explanatory value only if it beats the random walk model. In this case
R2 should be calculated for a model defined for ∆xt rather than xt.

If a nonstationary time series is analyzed statistically using ordinary least
squares (OLS) methods designed for stationary time series, the results may easily
suggest a relationship when none exists. This problem, already shown by Yule (1929),5

can be illustrated with the following simple example:
Consider two unrelated random walks:

∆x1,t = ε1,t where ε1,t ∼ IN
[
0,σ2

ε1

]
∆x2,t = ε2,t where ε2,t ∼ IN

[
0,σ2

ε2

]
where IN stands for independent normal and Cov(ε1,t,ε2,t)=0. Assume that the equa-10

tion of interest is:

x1,t = β x2,t + ut (5)

Using OLS to estimate Eq. (5) implicitly assumes that ut is a stationary, independent
error term. In this case the t-statistic (as calculated by a standard regression package)

for testing H0/β = 0 would satisfy P
(∣∣tβ1=0

∣∣≥2.0 H0

)
= 0.05. When β = 0 in Eq. (5),15

ut = Σ ε1,i and, therefore ut is nonstationary. Based on a Monte Carlo experiment
Hendry and Juselius (2000) show that a critical value of 14.8 (rather than 2.0) defines
the 5% rejection frequency under the null for T =100. Clearly, using OLS to analyze the
relationship between nonstationary variables would often lead us to mistakenly believe
that there is a relationship between variables in Eq. (5) when no relationship exists.20

This is what Yule called a spurious relationship.
The condition that two nonstationary variables are truly related is that they share the

same stochastic trend. Regressing x1,t on x2,t in this case will eliminate the stochas-
tic trend rendering ut stationary and x1,t and x2,t are said to be cointegrated. Thus
a cointegrating relation, x1,t −βx2,t, can be stationary in spite of x1,t and x2,t both25
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being nonstationary. This property is exploited and formalized by the Cointegrated
VAR (CVAR) model.

2.4 Analysing relationships among nonstationary time series: the CVAR model

The Cointegrated VAR model builds on the above results: nonstationary variables
(containing stochastic trends) can be made stationary by differencing the series and5

by taking certain linear combinations of the series. While differencing removes all
long-run information in the data, cointegration ensures that it is preserved. Beyond
generating reliable and precise results, the CVAR model is able to capture both the
long run equilibrium relationships among time series for endogenous climate variables
and exogenous solar insolation and the dynamics by which the endogenous variables10

move towards equilibrium. These general aspects of the CVAR model are described
below – for a formal description of the statistical properties of the CVAR model, see
Juselius (2006).

The CVAR model assume that all climate variables, xt, are endogenously deter-
mined, whereas all solar variables, wt, are exogenous. Maintaining this distinction, the15

CVAR model is defined by the following equation:

∆xt = Γ1∆xt−1 + Π
(
x′

t−1, w
′
t−1

)′
+ A0∆w t + A1∆w t−1 + µ + εt (6)

where xt is a p×1 vector of variables whose behavior is being modeled endogenously
(e.g. Temp, CO2, and Ice), w t is a pw ×1 vector of exogenous solar variables (e.g. ec-
centricity, obliquity, and precession), Γ1, Π, A0, A1 are matrices of regression coeffi-20

cients, µ is a p×1 vector of constant terms, and εt ∼Niid(0,Ω).
When the data are nonstationary, the long-run matrix Π is generally of reduced rank,

r . This is formulated as:

Π = α β′ (7)

where α is a p× r matrix of adjustment coefficients and β is r ×p matrix of25

cointegration coefficients that define stationary deviations from long-run equilibrium
2566

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/6/2557/2010/cpd-6-2557-2010-print.pdf
http://www.clim-past-discuss.net/6/2557/2010/cpd-6-2557-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
6, 2557–2591, 2010

Glacial cycles:
drivers

R. K. Kaufmann and
K. Juselius

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

relationships. If the stochastic trend movements in xt are exclusively associated with
the movements of the exogenous drivers, the Π matrix would be of full rank and each
climate variable would be cointegrated with the exogenous drivers, i.e. xi ,t = f (w t)+ui ,t
where ui ,t is a stationary error term. If the exogenous solar variables are not suffi-
cient to explain the stochastic trend movements in xt, then the Π matrix would be of5

reduced rank. This would imply that the internal climate dynamics generate additional
stochastic trends that drive glacial cycles.

The CVAR model is designed to simulate why temperature changes from the previ-
ous period to the present based on lagged dynamic effects from previous changes in
temperature, CO2, and Ice (Γ1∆xt−1), current and lagged dynamic effect from changes10

in solar variables (A0∆w tA1∆w t−1) and finally by the dynamic adjustment towards
long-run equilibrium states Π(x′

t−1, w
′
t−1)′.

If Π is set to zero (as some modellers do) the VAR model would only describe station-
ary changes of the climate variables, but such a model could not represent the more
important long-run properties of climate data.15

If the VAR model is specified in levels of variables (without transforming into differ-
ences and cointegrated relations) then the problem of nonstationarity (or near non-
stationarity) discussed in Sect. 1 would invalidate the statistical inference and render
measures such as R2 useless.1

In contrast, the CVAR formulation preserves all long-run information in the data while20

at the same time guarantees the correct use of standard statistical tables (χ2, F, t). As
the endogenous variables in the CVAR are given as ∆xt, the validity of R2 is ensured.
By replacing the concept of correlation with cointegration, the CVAR model can be
used to evaluate whether climate variables are causally associated without the peril of
spurious correlations.25

1
Also a correlation coefficient (defined in terms of deviations from a constant mean) is only appropriate for station-

ary variables but not for nonstationary variables. In the latter case it is generally meaningless and can be completely
misleading (Granger and Newbold, 1974).
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Thus, the problem of pronounced time dependence typical of climate variables is
likely to invalidate the estimates from many of the most commonly used regression
models. We use the CVAR model as our statistical model is because it specifically
designed to analyze nonstationary time series – ignoring this aspect of climate data
can easily generate very misleading results.5

2.5 A CVAR model for paleoclimate data

As the main purpose is to evaluate the role that orbital, seasonal, and spatial variations
in solar insolation play in glacial cycles, we estimate CVAR models that differ according
to the components of solar insolation included and evaluate the ability of these models
to simulate glacial cycles of Temp, CO2, and Ice. For example, one possible scenario10

postulates that solar variables alone explain these long-run movements in glacial cy-
cles. Another scenario postulates that internal climate dynamics play a crucial role
in the generation of glacial cycles. A third scenario postulates that glacial cycles are
driven by both exogenous solar variables and internal climate dynamics.

In the first case, Π matrix would be full rank and equal to the number of endoge-15

nous variables. Each climate variable would cointegrate with some (or all) exogenous
solar variables so that these cointegrating relations would define a unique equilibrium
for each endogenous climate variable as a function of the exogenous variables. In
the other two cases the Π matrix would have reduced rank, which suggests that the
mechanisms underlying glacial cycles need to be explained both by exogenous solar20

variables and the internal climate dynamics. Regardless of which case is correct, the
estimated Π̂ matrix can be used in the simulations as illustrated below.

Consider the first row of the Πzt−1 matrix where for illustrative purposes z′t = (x′
t, w t)

and x
′
t = [Tempt, CO2t

, Icet] and w t =obliquityt :

π1 zt = α11 β′
1 zt + α12 β′

2 zt + α13 β′
3 zt25

If Π has full rank then β
′
izt∼I(0), i = 1, 2, 3. Because a linear combination of station-

ary variables is also stationary, π1zt is also stationary, i.e. π1zt defines a stationary
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relation. If Π has reduced rank, say 2, then the third component, β′
3zt, is nonstationary

and α13 =0. Also in this case π1z would define a stationary relation. If however β′
3zt is

a near unit root process in the sense discussed above, then β
′
3zt would exhibit a pro-

nounced persistence and α13, though close to zero, might nevertheless be significant.
For example, assume that α13 = 0.01. If significant, it would correspond to an average5

adjustment time of ln(2)/0.01=70 periods. Though not very important in the short run
it would be very important for the long-term properties of the model. If not significant,
it would just add noise to the simulations and, therefore, imply some small efficiency
loss. This, however, would not in general be harmful to the simulation results.

As shown by Eq. (7), αβ
′
xt−1 is equal to Πxt−1 and we can use either to investigate10

the feed-back properties of the system. For the purpose of this paper (to evaluate the
role that exogenous orbital, seasonal, and spatial variations in solar insolation play in
glacial cycles) there is no benefit of using αβ

′
xt−1 rather than Πxt−1, and the simula-

tions are, therefore, based on the latter. Because a cointegration relation that exhibits
fairly pronounced persistence can have significant predictive power in simulations over15

the long run (while over the short run it does not add much explanatory power) the rank
of the Π matrix conditional on the exogenous drivers has been liberally selected. This
means that that the simulations are based on a CVAR model with a dynamic structure
containing a characteristic root which is fairly close to, but not on the unit circle.

2.6 Experimental design20

The fully parameterized CVAR model (Eq. 6) is used to generate in-sample simulations
for each of three endogenous variables, Temp, CO2, and Ice. Simulations are initial-
ized with observed values prior to the start date (391 kyr before present). To identify
the component(s) of solar insolation that determines the ability of the CVAR model to
simulate glacial cycles, we estimate three basic models that vary according to the set25

of exogenous variables (Table 2). The three basic models are motivated by three basic
hypotheses, which are given below:
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Hypothesis 1: Glacial cycles can be simulated by strong correlations among
surface temperature, CO2, and ice volume

To test this hypothesis, we specify Model 1, which includes three endogenous vari-
ables, Temp, CO2, and Ice, and one exogenous variable, solar insolation as measured
by annual solar insolation (Insol0) at 65◦ N. This variable is chosen because it is com-5

monly used as a driver of glacial cycles (Kukla et al., 1981; Imbrie et al., 1993). If
hypothesis 1 is correct, Model 1 should generate accurate in-sample simulations for
Temp, CO2, and Ice. Failure to generate accurate in-sample simulations indicates
either that; (1) strong correlations among surface temperature atmospheric concentra-
tions of carbon dioxide, and ice volume are not sufficient to simulate glacial cycles or10

(2) cumulative annual solar insolation at 65◦ N does not fully capture the role of solar
insolation in glacial cycles.

Hypothesis 2: Some aspects of orbital, seasonal, and spatial variations in solar
insolation play a more important role in glacial cycles than others

To test this hypothesis we create several versions of Model 2, each of which extends15

Model 1 (the control) by including one or more of the following groups of variables for
solar insolation:

1. precession, obliquity, and eccentricity capture variations in solar insolation that
are associated with changes in Earth’s orbit,

2. solar insolation on 21 March (SunSpr ), 21 June (SunSum), 21 September (Su-20

nAut), and 21 December (SunWin) at 65◦ N capture seasonal variations in solar
insolation,

3. cumulative annual solar insolation at 65◦ N for days on which the diurnal aver-
age insolation intensity exceeds 275 W/m2, (Insol275) and cumulative annual so-
lar insolation for days on which intensity exceeds 550 W/m2 (Insol550) at 65◦ N,25

2570

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/6/2557/2010/cpd-6-2557-2010-print.pdf
http://www.clim-past-discuss.net/6/2557/2010/cpd-6-2557-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
6, 2557–2591, 2010

Glacial cycles:
drivers

R. K. Kaufmann and
K. Juselius

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

capture the effects of summer-time variations that are described by Huybers and
Denton (2008).

Because results indicate that group 1 (precession, obliquity, and eccentricity) gen-
erates the most accurate in-sample simulations, and because there is an extensive
literature on the role of each component, additional models examine the ability of pre-5

cession, obliquity, and eccentricity to individually simulate glacial cycles.

Hypothesis 3: Solar insolation at 65◦ N is the best proxy for spatial and temporal
specific effects of orbital changes in solar insolation

To test this hypothesis, the four time series of seasonal solar insolation and the three
time series of cumulative annual solar insolation measured at 65◦ N in Model 2e are10

successively replaced by measurements from each of twelve latitudes spaced 5◦ apart
from 60◦ to 85◦ North and South (Model 3). For example, one of the twelve versions of
Model 3 specifies SunSpr, SunSum, SunAut, SumWin, Insol0, Insol275, and Insol550
measured at 75◦ S.

Choosing the most accurate in-sample simulation15

We test these hypotheses by comparing the accuracy of in-sample simulations gener-
ated by competing models. The ability of Models 1–3 to simulate Temp, CO2, and Ice
is assessed using the following loss function:

dt =
(
xt − x̂i ,t

)2 −
(
xt − x̂j,t

)2

where xt is the observed value of endogenous variable x for period t, x̂s,t, s= i ,j , is20

the in-sample simulation for endogenous variable x simulated by model s for period t.
Values of dt are used to calculate the S2a test statistic (Lehman, 1975) as follows:

S2a =

∑
I+ (dt) − 0.5 N
√

0.25 N
2571
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in which I+(dt)=1 if dt >0, and 0 otherwise and N is the number of observations (391).
The S2a statistic tests the null hypothesis that models i and j are able to simulate

endogenous variable x with equal accuracy. Under this null hypothesis, the S2a test
statistic is asymptotically standard normal. A positive value for the S2a statistic that
exceeds the p = .05 threshold (1.96) indicates that the in-sample simulation for en-5

dogenous variable x generated by model j is closer to the observed value than the
in-sample simulation for endogenous variable x generated by model i more often than
expected by random chance and, hence that model j generates a more accurate in-
sample simulation of variable x than model i .

Are results sensitive to a model’s number of explanatory variables?10

Reviewers of a previous version of this manuscript express concern that increasing
the number of explanatory variables increases the explanatory power of a model by
definition. The effect of adding more variables on the statistical significance of results
is captured by the degrees of freedom, which measures the number of values in the
final calculation of a statistic that are free to vary. Because the number of observations15

is large (391), the penalty for adding additional explanatory variables is small. For
example, each equation in Model 1 (the model with the fewest explanatory variables)
has 380 degrees of freedom. Model 2e, and all versions of Model 3 (the models with the
greatest number of explanatory variables) have 353 degrees of freedom. This reduction
in the degrees of freedom has a tiny effect on the critical value of the t distribution that is20

used to evaluate diagnostic statistics. For example, the significance level for a t statistic
with a value of 2.0 and has 380 degrees of freedom is 0.0462, the significance level
is 0.0463 for 353 degrees of freedom. Consistent with this small effect, increases in
the number of explanatory variables do not automatically increase explanatory power.
For example, Sect. 4 includes several comparisons in which increasing the number25

of explanatory variables in a model does not increase the accuracy of its in-sample
simulation.
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3 Results

Are climate time series stationary or nonstationary? As can be seen from Figures
1a-c there is a pronounced persistence in the way Temp, CO2, and Ice evolve over
time. Such persistence suggests that the variable is nonstationary with ρ= 1 (a unit
root process) or approximately so with ρ close to 1 (a near unit root process). For5

all models tested, the rank of the Π matrix seems less than full rank suggesting that
solar variables alone cannot explain glacial cycles. For all models, the adjustment
coefficients to the last cointegration relation are small in absolute size but borderline
significant. As already discussed, this is an indication that the last cointegrating relation
contains information which has a tiny short-run effect on the climate whereas potentially10

very important long-run effect on glacial cycles. Therefore, the Π matrix is assigned
full rank, implying that the number of cointegrating relationships is set equal to the
number of endogenous variables. We conclude that the endogenous climate variables
are nonstationary (or very closely so) and that glacial cycles are driven by exogenous
solar variables and internal climate dynamics.15

For most comparisons (57/63), the S2a statistic (Table 3) rejects (p< 0.05) the null
hypothesis, which indicates that one model generates a more accurate in-sample sim-
ulation than another. The latitudinal set of exogenous variables for solar insolation that
generates the most accurate simulation varies among the three endogenous variables
(Table 4). The most accurate simulation for each of the endogenous variables is chosen20

from among the twelve simulations based on the number of “wins” relative to “losses”.
Wins are defined as a comparison in which the S2a statistic identifies the simulation as
more accurate (p< .05) – losses are defined as a comparison in which the S2a statistic
identifies the simulation as less accurate (p< .05).

Using this criterion, there is fairly strong evidence for a “most accurate simulation”25

for surface temperature and ice volume (Table 4). Surface temperature is simulated
most accurately (nine wins, no losses) by a version of Model 3 that measures solar
insolation at 75◦ N. Conversely, ice volume is simulated most accurately (nine wins, no
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losses) by a version of Model 3 that measures solar insolation at 60◦ S. The twelve
versions of Model 3 differ little in their ability to simulate atmospheric concentrations
of carbon dioxide. There are only fifteen comparison in which one version of Model 3
generates a more accurate (less accurate) simulation, compared to thirty three for sur-
face temperature and thirty nine for ice volume. Of these fifteen definitive comparisons,5

there is some indication that insolation in the Southern Hemisphere generates the most
accurate in-sample simulations for CO2, as indicated by models that measure solar in-
solation at 65◦ S (three wins no losses) and 70◦ S (four wins, no losses).

4 Discussion

4.1 Testing H1: Strong statistical associations among endogenous variables10

temperature, CO2, and ice volume are sufficient to explain glacial cycles

As suggested by (Fig. 1a–c), Model 1 is not able to reproduce the large fluctuations in
Temp, CO2, and Ice in a meaningful fashion. For example, the in-sample simulation
generated by Model 1 is able to account for only 21% of the observed variation in
temperature.15

This inability may seem surprising given that previous analyses indicate that strong
statistical associations exist among Temp, CO2, and Ice. But, because R2 measures a
model’s fit of an endogenous variable given the observed values of the other variables,
it need not be a good measure of a model’s ability to simulate glacial cycles. To illus-
trate, we use Model 1a to simulate temperature and ice endogenously assuming that20

CO2 (along with annual solar insolation at 65◦ N) is given exogenously, i.e. endoge-
nously simulated values of CO2 are replaced with observed values for CO2, which al-
lows Temp and Ice to adjust towards equilibrium values implied by the observed values
of CO2.

This change in model specification increases the ability of Model 1a to simulate25

values for temperature (Fig. 1a). Measured by the R2 of the in-sample forecast, Model
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1a can account for 64% of the variation in temperature. This, however, is still less than
the R2 between observed values of CO2 and temperature, which is 0.77.

The inability of Model 1 to reconstruct glacial cycles accurately based on the very
strong correlations among Temp, CO2, and Ice, highlights the power of the CVAR
model and the importance of exogenous drivers of the climate system. If the CVAR5

model is based simply on correlations, the strong correlations among Temp, CO2, and
Ice, would allow Model 1 to simulate glacial cycles accurately. That Model 1a can-
not simulate glacial cycles accurately even when given the historical observations for
CO2 suggests that the correlations among surface temperature, CO2, and ice volume
are driven by some other factor, either a component of solar insolation not included10

in Model 1 (Sect. 3.2) or a component of the climate system that is not included in
Model 1.

4.2 Testing H2: Orbital, seasonal, and spatial variations in solar insolation are
particularly important for glacial cycles

The inability Model 1 to reproduce the glacial cycles may be sensitive to the variable15

used to represent solar insolation, Insol0. For example, Milankovitch and others argue
that mid-summer insolation at 65◦ N is critical because that is the season and latitude
where ice sheets wax and wane. To test the importance of orbital and seasonal vari-
ations in solar insolation, we estimate Models 2a–c that contain variables for solar
insolation from one of three groups: (1) Model 2a orbital changes (precession, obliq-20

uity, eccentricity); (2) Model 2b seasonal variations (SunSpr, SunSum, SunAut and
SunWin) and; (3) Model 2c variations in cumulative summer insolation (Insol275 and
Insol550).

Figures 2a–c suggest that including orbital or seasonal variations in solar insolation
enhance the ability of Model 2a and Model 2b to simulate glacial cycles relative to25

Model 1. This result is confirmed by values of the S2a statistic, which indicate the in-
sample simulations of Temp, CO2, and Ice generated by Model 2a and Model 2b are

2575

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/6/2557/2010/cpd-6-2557-2010-print.pdf
http://www.clim-past-discuss.net/6/2557/2010/cpd-6-2557-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
6, 2557–2591, 2010

Glacial cycles:
drivers

R. K. Kaufmann and
K. Juselius

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

more accurate than the simulations generated by Model 1 (Table 3). Of these, Model
2a generates more accurate in-sample simulations than Model 2b.

To evaluate the explanatory power of seasonal variations (e.g. the Milankovitch forc-
ing) relative to orbital variations, we estimate Model 2d, which adds the seasonal mea-
sures of solar insolation to Model 2a. The results indicate that Model 2d generates a5

more accurate (p< .05) simulation of CO2 (S2a = 3.44, p< .001) and Ice (S2a = 2.33,
p< 0.021). Conversely, the in-sample temperature simulation generated by Model 2d
is not statistically different from that generated by Model 2a (S2a = 0.81, p> 0.41). To-
gether, these results indicate that seasonal variations in solar insolation at 65◦ N have
explanatory power about glacial cycles that extend beyond aggregate measures of or-10

bital variations.
Conversely, the simulations generated by Model 2c are not more accurate than those

generated by Model 1 (Table 3). Similarly, adding Insol275 and Insol550 to Model 2d
(to create Model 2e) does not increase the accuracy of the in-sample simulation for
Temp (S2a = 1.32, p > 0.18) and CO2 (S2a = 1.11, p > 0.26). For Ice the in-sample15

forecast generated by Model 2e is less accurate than the in-sample forecast gener-
ated by Model 2d (S2a = 6.18, p< 0.001). Together, these results indicate that simply
adding more variables to the CVAR does not improve its performance and that Insol275
and Insol550 have little explanatory power relative to orbital and seasonal variations
in solar insolation. The latter can be interpreted at least three ways; (1) cumulative20

summer solar insolation is unimportant, (2) the effect of cumulated summer insolation
is subsumed by orbital or seasonal measures of solar insolation, or (3) the effect of
cumulative summer-time insolation occurs at a latitude other than 65◦ N (Sect. 4.4).

4.3 Further tests of H2: Obliquity paces late Pleistocene terminations

Continuing with the logic from the previous section, it has been argued that some25

components of orbital changes are more important to glacial cycles than others. To test
the null hypothesis that glacial terminations are independent of precession, obliquity,
or eccentricity, Huybers and Wunsch (2005) analyze the leading empirical orthogonal
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function of ten well-resolved marine δ18O records. Results reject the null hypothesis
that glacial terminations are independent of obliquity at the five percent significance
level. Conversely, this hypothesis cannot be rejected for eccentricity or precession,
which implies that obliquity alone paces late Pleistocene terminations.

We evaluate these results by estimating versions of Model 2 that include either:5

obliquity (Model 2f), eccentricity (Model 2g), or precession (Model 2h). None of the
three models simulates changes in Temp, CO2, and Ice in a way that can be considered
a meaningful representation of glacial cycles (Fig. 3a–c). Of the three, Model 2g, the
model that includes precession, generates the most accurate in-sample simulations
(Table 3), but only because its small amplitude keeps it closer to the simple mean10

values for temperature, CO2, and ice volume. Conversely, Model 2f, simulates large
changes that can be interpreted as glacial and interglacial periods.

But obliquity is not a sufficient explanatory variable for glacial terminations. As in-
dicated in Fig. 3a–c, Model 2f simulates several false terminations, which we define
as large reductions in ice cover (and increases in temperature and atmospheric CO2)15

that are not present in the observational record. For example, Model 2f simulates a
large reduction in ice volume about 90 kyr before the present (Fig. 3c), but there is no
noticeable reduction in the observational record.

Huybers and Wunsch (2005) recognize this difficulty and suggest that the climate
state skips one or two obliquity beats before deglaciating. By way of explanation, they20

suggest that high latitude insolation and thickness of the ice sheet determine whether
a glacial termination event occurs. This explanation seems unlikely. Replacing annual
solar insolation at 65◦ N with corresponding values at latitudes between 60◦ and 85◦

from the Northern or Southern Hemisphere does not allow a modified version of Model
2f to improve its ability to differentiate obliquity cycles that do and do not generate25

deglaciations. The thickness of ice may determine whether an obliquity cycle generates
a deglaciation event, but Model 2f is not able to simulate ice volume with sufficient
accuracy to do so.
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Conversely, Model 2a, which contains precession and eccentricity in addition to obliq-
uity, generally is able to translate obliquity cycles into glacial terminations (Fig. 2a–c).
This capability suggests that eccentricity and precession influence, either directly or in-
directly via other endogenous climate variables (e.g. ice thickness), whether changes
in obliquity generate a glacial termination. As such, these results contradict the findings5

by Huybers and Wunsch (2005) that glacial terminations are independent of eccentric-
ity and precession.

4.4 Testing H3: solar insolation in the Northern Hemisphere drives glacial
cycles

The results reported in Table 4 indicate that glacial cycles in Ice and maybe CO2 are10

best simulated by solar insolation in the Southern Hemisphere. Although there is no
clear best simulation for CO2, in general, the better simulations are generated by mod-
els that measure solar insolation in the Southern Hemisphere. This relation can be
explained in terms of recent hypotheses about the role of ocean circulation. According
to these hypotheses, ice cover (Stephens and Keeling, 2000) and ocean overturning15

(Francois et al., 1997; Toggweiler, 1997; Watson and Garabato, 2006) in the high lat-
itudes of the Southern Ocean drive atmopspheric CO2 concentrations that influence
glacial cycles. Similarly, results that indicate solar insolation in the Northern Hemi-
sphere is most strongly related to surface temperature are consistent with hypotheses
about the role of North Atlantic deep water in glacial cycles (Imbrie et al., 1993; Gildor20

and Tziperman, 2001). Finally, that solar insolation in the Southern Hemisphere gen-
erates the most accurate simulations for ice volume is consistent with findings by (Petit
et al., 1999) and results that indicate driving a single column atmosphere model with
cumulative summer insolation in the Southern Hemisphere generates the most accu-
rate simulation of ice volume at Dome F (Huybers and Denton, 2008).25

Conversely, our results contradict statistical results and mechanistic explanations
for the relations between hemispheric insolation and surface temperature and/or ice
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volume. For example, Huybers and Denton (2008) argue that insolation in the Southern
Hemisphere summer is the more important driver of temperature in the Antarctic.

5 Conclusions

Although the statistical models for glacial cycles reported here cannot replace models
based on physical mechanisms, a CVAR can be used to test competing hypotheses5

against the observational record. Here, we demonstrate that a CVAR can simulate
much of the variation in Temp, CO2, and Ice that is associated with glacial cycles. To
do so, the CVAR must include a suite of variables for solar insolation that represent
changes in Earth’s orbit and seasonal variations at various latitudes. Solar insolation
in the Southern Hemisphere generates the most accurate in-sample simulations for ice10

volume and maybe atmospheric CO2 while solar insolation in the Northern Hemisphere
generates the most accurate in-sample simulation for surface temperature.

The ability of the CVAR to identify the drivers of glacial cycles extends well beyond
previous efforts. Statistical relationships among time series in the CVAR model are
not spurious. The presence of cointegrating relationships indicates that time series15

share the same stochastic trend, which implies that time series have a long-run rela-
tionship. These long-run relationships and the dynamics by which variables adjust to
disequilibrium are embodied in the Π matrix of Eq. (2).

In this first step of an on-going research effort organized around a CVAR model, we
do not disentangle long- and short-run relationships. Future research will add endoge-20

nous variables that may connect solar insolation to surface temperature, atmospheric
CO2, or ice volume and/or may proxy the physical mechanisms that connect these
three endogenous variables. To test hypotheses about these linkages, the Π matrix of
this expanded CVAR model will be decomposed by imposing over-identifying restric-
tions. Identifying the CVAR will allow us to explore the following topics:25
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– Quantify the long-term temperature sensitivity to a doubling of atmospheric CO2
(∆T2x). The identified CVAR also will allow us to separate the direct effect from
the full ice-albedo feedback.

– Quantify the dynamics by which changes in solar insolation affect endogenous
variables and the mechanisms by which these effects are transmitted through the5

climate system. This will build on current efforts that seek to match turning points
in time series (Caillon et al., 2003).

– Test hypotheses about the mechanisms that drive changes in the endogenous
variables. For example, testing whether iron dust, sea-surface temperature,
and/or non sea salt sodium are part of the cointegrating relationship for CO2 will10

allow us to test whether iron fertilization, ocean overturning, and/or ice cover, re-
spectively, play an important role in controlling atmospheric CO2 during glacial
cycles (Sigman and Boyle, 2000).

– Test the hypothesis that the nature of glacial cycles changes over time. For most
of the endogenous variables, data are available over the last 750 kyr. We will es-15

timate the CVAR over this full period and test whether the long-term relationships
and/or rates of adjustment change in a statistically meaningful way. We will also
use the model to “backcast” the endogenous variables and compare the simu-
lated values for ice volume over the last several million years, for which data are
available.20

– Test the “Ruddiman hypothesis” that anthropogenic climate change starts about
5000 years ago. We will include times series for atmospheric CO2 and CH4 emis-
sions associated with anthropogenic activities as exogenous variables and test
whether anthropogenic emissions improve the model’s ability to simulate the last
glacial termination, which it currently does poorly.25
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We do not expect any one of these analyses to be definitive. But they will add to
on-going investigations by using rigorous statistical techniques to test what is and is
not consistent with the observational record.
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Table 1. Time seres included in the CVAR.

Variable Source Unit Time Scale Obs

Temp Jouzel et al. (2007) ∆avg. last 1 kyr EDC3 710
CO2 Lüthi et al. 2008 ppmv ECD3 517
Ice Lisiecki and Raymo (2005) δ18O (per mil) LR04 390
Eccentricity Paillard et al. (1996) Dimensionless – 391

index

Obliquity Paillard et al. (1996) Degrees – 391
Precession Paillard et al. (1996) Dimensionless – 391

index

Seasonal Paillard et al. (1996) W/m2 – 391
Insolation

Cumulative Huybers and Denton (2008) Giga Joules – 391
Summer Insol
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Table 2. Specification of the estimated CVARs.

Endogenous Exogenous Variables

Model 1 T , CO2, Ice Insol0,
Model 1(a) T , Ice CO2, Insol0,
Model 1(b) T , CO2, Ice SunSum,
Model 2a T , CO2, Ice Insol0, Obl, Prec, Ecc
Model 2b T , CO2, Ice Insol0, SunSpr, SunSum, SunFall, SunWin
Model 2c T , CO2, Ice Insol0, Insol275, Insol550
Model 2d T , CO2, Ice Insol0,Obl, Prec, Ecc, SunSpr,

SunSum, SunFall, SunWin

Model 2e T , CO2, Ice Obl, Prec, Ecc, SunSpr, SunSum, SunFall,
SunWin, Insol0, Insol275, Insol550

Model 2f T , CO2, Ice Insol0, Obl
Model 2g T , CO2, Ice Insol0, Prec
Model 2h T , CO2, Ice Insol0, Ecc
Model 3 T , CO2, Ice Obl, Prec, Ecc, SunSpr, SunSum, SunFall,

SunWin, Insol0, Insol275, Insol550
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Table 3. In-sample accuracy of Model 2a–Model 2g as indicated by the S2a statistic.

Model j
Model 2a Model 2b Model 2c Model 2f Model 2g Model 2h

Model i
Temperature Comparison.
Model 1 5.87** 6.58** 1.42 −8.51** −1.52 −10.13**
Model 2a −2.03* −5.67** −11.34** −6.99** −11.54**
Model 2b −7.80** −10.43** −8.00** −10.53**
Model 2c −7.09** −3.04** −10.13**
Model 2f 8.10** 0.20
Model 2g −10.23**

CO2 Comparison
Model 1 7.09** 6.38** 1.11 −11.14** −3.24** −9.52**
Model 2a −1.82+ −5.47** −11.57** −7.49** −10.03**
Model 2b −6.07** −12.46** −6.48** −9.82**
Model 2c −11.34** −3.85** −9.62**
Model 2f 11.34** 7.39**
Model 2g −10.23**

Ice Comparison
Model 1 9.52** 7.80** 1.01 −14.28** −4.66** −12.66**
Model 2a −3.33* −7.19** −16.61** −9.92** −15.70**
Model 2b −7.49** −16.20** −9.32** −14.79**
Model 2c −13.87** −6.48** −13.87**
Model 2f 15.39** 7.19**
Model 2g −14.48**
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Table 4. Summary statistics of the 12×11 comparison for in-sample accuracy as generated
by the S2a statistics for each of the three endogenous variables.

Temp CO2 Ice
Wins Losses Wins Losses Wins Losses

North 60 1 1 0 2 1 5
North 65 0 5 1 2 1 4
North 70 0 7 0 5 0 11
North 75 9 0 1 0 1 2
North 80 1 3 0 3 1 6
North 85 3 1 0 1 4 1
South 60 4 2 1 1 10 0
South 65 2 4 3 0 6 0
South 70 6 1 5 0 5 1
South 75 0 7 0 2 1 6
South 80 6 0 3 0 5 1
South 85 2 3 3 1 5 3
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Fig. 1. (a) Observed values of temperature and values simulated by various versions of
Model 1. (b) Observed values of atmospheric CO2 and values simulated by various versions
of Model 1. (c) Observed values of ice volume (as proxied by δ18O) and values simulated by
various versions of Model 1.
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Fig. 2. (a) Observed values of temperature and values simulated by various versions of
Model 2. (b) Observed values of atmospheric CO2 and values simulated by various versions
of Model 2. (c) Observed values of ice volume (as proxied by δ18O) and values simulated by
various versions of Model 2.

2590

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/6/2557/2010/cpd-6-2557-2010-print.pdf
http://www.clim-past-discuss.net/6/2557/2010/cpd-6-2557-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
6, 2557–2591, 2010

Glacial cycles:
drivers

R. K. Kaufmann and
K. Juselius

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

-12 

-9 

-6 

-3 

0 

3 

6 

391 361 331 301 271 241 211 181 151 121 91 61 31 1 

D
e
g

re
e
s 

C
e
ls

iu
s 

KYr before Present 

Observed 

Model 2f 

Model 2g 

Model 2h 

(a)
150 

170 

190 

210 

230 

250 

270 

290 

310 

330 

350 

370 

391 361 331 301 271 241 211 181 151 121 91 61 31 1 

P
P

M
 

Kyr Before Present 

Observed 
Model 2f 
Model 2g 
Model 2h 

(b)

2 

2.5 

3 

3.5 

4 

4.5 

5 

391 361 331 301 271 241 211 181 151 121 91 61 31 1 

δ1
8O

 

KYr before present 

Observed 
Model 2f 
Model 2g 
Model 2h 

(c)

Fig. 3. (a) Observed values of temperature and values simulated by Model 2f–h. (b) Observed
values of atmospheric CO2 and values simulated by Model 2f–h. (c) Observed values of ice
volume (as proxied by δ18O) and values simulated by Model 2f–h.
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