
Manuscript prepared for J. Name
with version 3.0 of the LATEX class copernicus.cls.
Date: 23 December 2009

Potential analysis reveals changing number of climate states during
the last 60 kyr
V. N. Livina1, F. Kwasniok2, and T. M. Lenton1

1School of Environmental Sciences, University of East Anglia, Norwich, UK
2School of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK

Abstract. We develop and apply a new statistical method
of potential analysis for detecting the number of states of a
geophysical system, from its recorded time series. Estima-
tion of the degree of a polynomial potential allows us to de-
rive the number of potential wells in a system. The method
correctly detects changes in the number of wells in artificial
data. In ice-core proxy records of Greenland paleotempera-
ture, a reduction in the number of climate states from two to
one is detected sometime prior to the last glacial maximum
(LGM), 23–19 kyr BP. This result is also found in analysis of
Greenland Ca data. The bifurcation can be interpreted as loss
of stability of the warm interstadial state of the Dansgaard-
Oeschger (DO) events. The proposed method can be applied
to a wide range of geophysical time series exhibiting bifur-
cations.

1 Introduction

Knowing the number of states in a geophysical system is cru-
cial for understanding its underlying dynamics and for mod-
eling its behavior. Of particular interest are changes in the
number of states which represent bifurcations of a system.
Commonly the number of system states is inferred either by
simply looking at time series data, or on the basis of theoret-
ical models. Yet when there are two or more states present
in a system the precise number is not always obvious from
examining time series by eye (see e.g. Fig. 2b). In particular,
what looks like a system with two states may actually contain
more states. Consequently we have developed a more formal
(though still necessarily approximate) method of estimating
the number of system states from time series data.

In studies of paleoclimate changes, it is common to de-
scribe the glacial-interglacial cycles as shifts between differ-
ent climate states. For example, one simple model (Paillard,
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2001) assumes three (mild glacial, full glacial, interglacial)
states for Northern Hemisphere ice volume. Within the last
ice age, the Dansgaard-Oeschger events that are recorded in
Greenland ice cores (Dansgaard et al., 1993), North Atlantic
palaeoclimate records (Bond et al., 1997), and are now rec-
ognized further afield (Wang et al., 2001), are commonly
treated as a two-state system (cold stadial, warm intersta-
dial). The DO events are widely explained in terms of a
model (Stommel, 1961; Rahmstorf, 1995; Ganopolski and
Rahmstorf, 2001) for bistability of the Atlantic ocean ther-
mohaline circulation, coupled to changes in sea-ice cover and
atmospheric circulation. Potentially, different combinations
of Northern Hemisphere ice volume and ocean-atmosphere-
sea-ice state could give rise to multiple climate states as
recorded in Greenland. Ice volume clearly affects the stabil-
ity regime of the ocean-atmosphere-sea-ice as the Holocene
interglacial has not exhibited the extreme DO variability seen
in the last ice age.

Here we apply our new method to examine how many cli-
mate states are present in high-resolution Greenland Ice-Core
Project (GRIP) (Dansgaard et al., 1993) and North Greenland
Ice-Core Project (NGRIP) (NGRIP project, 2004) records,
as a function of time through the last 60 kyr (part of the last
ice age and the Holocene). We also consider GRIP calcium
data, which has annual resolution, and although it is avail-
able since 91 kyr BP, we use data from 60 kyr BP to make
comparison on the same time interval with the above two
temperature proxies.

The precise mechanisms causing transitions between cli-
mate states do not concern us here. We make the simplest
assumption that multiple climate states can be approximated
by a non-oscillatory polynomial potential, albeit one that
changes through time. Furthermore, we assume that transi-
tions between climate states are triggered purely by stochas-
tic noise. This is consistent with recent analysis of the DO
events (especially in the GRIP and NGRIP records), which
does not support any underlying periodicity (Ditlevsen et al.,
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2007).

2 Dynamical framework

We treat the climate system as a nonlinear dynamical sys-
tem which can possess multiple states, with shifts between
these different climate states induced by stochastic forcing.
A one-dimensional conceptual model for this is given by the
Langevin equation

dz = −U ′(z) dt + σdW, (1)

where U(z) is a potential function, σ is the noise level and
W denotes a Wiener process. The state variable z represents
a large-scale climate variable like Greenland palaeotemper-
ature and is here identified with ice-core proxy (δ18O sta-
ble water isotope) records. In (Ditlevsen, 1999), the Fokker-
Planck equation was used to derive the potential of the GRIP
calcium record, with white non-Gaussian noise and two noise
terms in the Langevin equation.

The shape of the potential is given by a polynomial

U(z) =
L∑

i=1

aiz
i, (2)

where the order L is even and the leading coefficient aL is
positive for Eq. (1) to possess a stationary solution. The or-
der of the polynomial controls the complexity of the poten-
tial. Increasing values of L allow more states to be accom-
modated; for example, a fourth-order polynomial can capture
a system with two states (double-well potential) (Kwasniok
and Lohmann, 2009a,b).

The number of system states is estimated by means of a
polynomial fit of the probability density function of the data.
Suppose the system is governed by Eq. (1). The correspond-
ing Fokker-Planck equation for the probability density func-
tion p(z, t)

∂tp(z, t) = ∂z[U ′(z)p(z, t)] +
1
2
σ2∂2

zp(z, t) (3)

has a stationary solution given by (Gardiner, 2004)

p(z) ∼ exp[−2U(z)/σ2]. (4)

Given this one-to-one correspondence between the potential
and the stationary probability density of the system, the po-
tential can be reconstructed from time series data of the sys-
tem as

U = −σ2

2
log pd, (5)

where pd is the empirical probability density of the data.
This is estimated using a standard Gaussian kernel estima-
tor (Silverman, 1986). We applied Matlab code with built-in

kdensity function and the NAG Fortran library (comput-
ing the Gaussian kernel density estimator using a fast Fourier
transform). The estimator is

f̂(z) =
1

nh

n∑
i=1

K

(
z − zi

h

)
, (6)

where K denotes the Gaussian kernel, n is the length of the
data set and h is the bandwidth controlling the smoothness
of the estimator. Following (Silverman, 1986), we chose
h = 1.06s/n1/5, where s is the standard deviation of the
data set. Then least-square fits of − log pd weighted with
the probability density of the data (Kwasniok and Lohmann,
2009a) with polynomials of increasing even order L are cal-
culated, starting with L=2, until a negative leading coeffi-
cient aL is encountered. The polynomial of highest degree
before first obtaining a negative leading coefficient is consid-
ered the most appropriate representation of the probability
density of the time series, both locally and globally, avoiding
overfitting of sampling fluctuations in the probability density.

The number of states S in the system is then determined
as

S = 1 +
I

2
, (7)

where I is the number of inflection points of the fitted poly-
nomial potential of appropriate degree L as described above.
This definition takes into account not only the degree of the
polynomial but its actual shape. We only look at even-order
potentials with positive leading coefficient. These have pos-
itive curvature both at minus and plus infinity. Thus, inflec-
tion points can only occur in pairs (if any). Any potential
has at least one state (with no inflection points). Then we
count one further state for each pair of inflection points. This
can be either a real minimum (well) or just a flattening in the
potential corresponding to a degeneracy in the potential; def-
inition (7) accommodates both possibilities. The number of
inflection points is numerically given as the number of sign
changes in the second derivative on a fine mesh.

Examples of the polynomial fits for simulated data
are given in Fig. 1. Given double-well potential data
(U(z)=z4−2z2), the probability density of the time se-
ries has bimodal shape. The empirical potential given as
U=−σ2

2 log pd can be fitted by polynomials of various or-
ders, but only those of degree 2 and 4 have a positive leading
coefficient. Higher-order polynomials have negative leading
coefficients — although fitting the data better and better lo-
cally, they are clearly inadequate globally. The fourth-order
polynomial is the appropriate representation of the proba-
bility density and the method identifies the time series as
double-well potential.

A simplified version of definition (7) would be to only
count the relative minima (real wells) in the potential. We
opt here for the more comprehensive definition of system
states as degenerate or nearly degenerate potentials have been
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shown to occur in the context of ice-core records (Kwasniok
and Lohmann, 2009a,b). Moreover, even if the system pos-
sesses real potential wells (for example, the artificial data
shown in Fig. 2) changes in the number of states (bifurca-
tions) tend to be picked up more quickly when using the in-
flection point definition as this is a more sensitive feature.

3 Data

To test the method for estimating the number of system
states, we generated four sets of artificial data for four differ-
ent potentials: one-well (U(z) = z2), double-well (U(z) =
z4 − 2z2), triple-well (U(z) = z6 − 4.5z4 + 5z2) and four-
well potential (U(z) = z8 − 6.5z6 + 13z4 − 8z2) (Fig. 2a).
Simulated data of these systems were obtained by numeri-
cally integrating eq. (1) using the Euler scheme. The noise
level σ = 1.5 was adopted, resulting in a mean state tran-
sition time (Kramers waiting time) similar to that occurring
in the palaeoclimatic records when interpreting system time
units as kyr. The sampling interval is 0.05 system time units.
For each of the potentials, 150 time units worth of data were
generated, resulting in 3000 data points. The subsets are
combined to produce a record with 12 000 data points, corre-
sponding to time running from 0 to 600 (Fig. 2b).

Having tested the methods on artificial data, we exam-
ined ice-core proxy records of palaeotemperature at two dif-
ferent sites 325 km apart in Greenland; GRIP (Dansgaard
et al., 1993) (Fig. 3a) and NGRIP (NGRIP project, 2004)
(Fig. 3c), on the most recent GICC05 time scale (Svensson
et al., 2008). The data are δ18O stable water isotope records,
which are a proxy for past air temperature at the ice-core
sites. The records can also be influenced by changing water
source temperatures and snowfall seasonality. There are sig-
nificant differences between the two records during the last
ice age, with NGRIP systematically colder (depleted in 18O),
and more variable, when Northern Hemisphere ice sheets are
more extensive (NGRIP project, 2004). This may be because
NGRIP received a greater fraction of colder air coming over
the northern side of the Laurentide ice sheet. Importantly,
the difference between the two records does not show a com-
ponent of millennial variability. Here we consider the last
60 kyr NGRIP series with resolution 20 yr and a part of the
GRIP series (which is 112 kyr long) in the same interval (60–
0 kyr BP) with the same temporal resolution of 20 yr. For the
detection of changing numbers of states we use sliding win-
dows of varying length through each dataset.

To further test initial results obtained on the δ18O data, we
also examined Ca data from the GRIP project (Fig. 4) that
has annual resolution and spans the interval 91–11 kyr BP. In
our analysis, we consider a subset of this dataset starting at
60 kyr BP to make it comparable with the other two datasets.

4 Results

We visualize the estimated number of system states as a
colour contour plot, expressed as a function of the time at
the middle of the data window (x-axis, aligned with the data
time scale) and the time length of the data window (y-axis).
As the results are plotted at the middle of their corresponding
time windows, each point in the contour plot should be com-
pared with the segment of the time series data centered at that
particular point, and having the length of the corresponding
time window.

In the artificial data, the number of states is generally iden-
tified correctly; changes are picked up quickly and reliably
(Fig. 2c). For the smallest time windows, there are sporadic
misidentifications of the number of states, due to poor statis-
tics. Generally time windows of order 400 data points (20
time units) are sufficient to get reliable results.

The GRIP (Fig. 3a) and NGRIP (Fig. 3c) palaeotempera-
ture data are highly variable and non-stationary. Neverthe-
less, the algorithm detects a number of interesting common
features in both records (Fig. 3b,d). Over 60–25 kyr BP, two
climate states are most commonly detected, consistent with
the conventional view of the Dansgaard-Oeschger events.
Exceptions of 1-state detection appear to be caused when
long intervals of steady cooling, e.g. circa 55–50 kyr BP, oc-
cupy a significant part of the analysis window.

The most pronounced feature, common to both records, is
a change from 2-well to 1-well potential, generally detected
by 25 kyr BP and inferred to have occurred somewhat prior
to its detection. The transition is most sharply detected in
the GRIP data. In the NGRIP data, the transition is less
pronounced, consistent with the greater noise level in this
dataset obscuring the detection of states. In both records, the
shift to a 1-well potential is persistent, indicating a bifurca-
tion in the climate system that occurred late in the last ice age
but prior to the Last Glacial Maximum (LGM) 23–19 kyr BP
(Yokoyama et al., 2000).

The return of a second state in the climate is only detected
in both records, for most window sizes, around 12 kyr BP
(i.e. at the end of the Younger Dryas), although it is sporadi-
cally detected earlier, from the time of the Bolling warming,
especially in the NGRIP data. This reflects the growing in-
fluences of changes during the deglaciation on the algorithm.
The detection of up to four states as the data window spans
the interval of the last glacial termination is probably an arte-
fact of the nonstationarity in the time series. Although these
four climate states plausibly represent the LGM, Bolling-
Allerod warm interval, Younger Dryas cold interval, and the
Holocene, it is perhaps more accurate to interpret the system
as having two states about a moving trend.

As the end of the analysis window advances into the
Holocene, the estimated number of system states declines.
However, the number of climate states only reduces to
one for both datasets when the analysis window comprises
only the data since around 10 kyr BP, i.e. the start of the
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Holocene. For the GRIP data, there is some indication that
the 8.2 kyr BP event can influence the algorithm sufficiently
that two climate states are detected when using small win-
dows that span the event. The 8.2 kyr BP event is also visible
in the NGRIP data but has poorer signal-to-noise ratio, so
does not exert the same influence on the algorithm.

Given that the ice-core time series are much shorter (in
terms of the number of recorded transitions between states)
than the simulated time series used above, the question arises
how robust our results on the ice-core data are statistically.
The mean recurrence time (Kramers waiting time) between
DO events is 2.8 kyr which is about the same as in the arti-
ficial data in nondimensional system time units. Hence the
maximum window size of 20 kyr in Fig. 3b,d corresponds to
20 units on the vertical axis in Fig. 2c. This is just enough to
enable a correct detection of the number of states with very
high probability. Together with the fact that our results are
robust for a range of window sizes between 10 and 20 kyr
this gives us some confidence that our conclusions are reli-
able.

As a further test, we examined GRIP Ca data, and the
obtained result (Fig. 4) confirms the detected bifurcation in
GRIP and NGRIP δ18O, although the datasets have different
origin and temporal resolution.

5 Conclusions

The results support the widely held view of the Dansgaard-
Oeschger events that they represent switches between 2 states
of the climate system, which were present from before the
start of our analysis 60 kyr BP. Most interesting is the de-
tection of a bifurcation in the climate system that reduced
the number of states from 2 to 1, sometime prior to the last
glacial maximum (LGM) 23–19 kyr BP. This can be inter-
preted as the loss of a stable warm interstadial state. This
result is not inconsistent with the conventional labelling of
DO warming event 2 occurring at 23.4 kyr BP timing ac-
cording to (Rahmstorf, 2003) or the earlier DO events 3 at
27.8 kyr BP and 4 at 29.0 kyr BP. Rather we suggest that al-
though transitions to a warm state were still triggered up to
the LGM, the resulting state became not even marginally sta-
ble. In the case of DO event 2 at least (and possibly 3 and
even 4), the system was always destined to revert back to a
cold state at a rate determined by its internal dynamics and/or
the removal of some forcing factor. Indeed shortening of the
duration of the warm interstadial state can be seen in the time
series (Fig. 3a,c) as time progresses toward the LGM.

Clearly a warm state reappears during the deglaciation, in
the form of the Bolling warming event (conventionally la-
belled DO event 1 at 14.6 kyr BP (Rahmstorf, 2003)), but
whether it is appropriate to liken this to the earlier intersta-
dials or the Holocene is unclear from our analysis. Likewise
whether the Younger Dryas cool event should be likened to
the earlier cold stadial state is ambiguous. Clearly North-

ern Hemisphere ice volume had declined significantly prior
to either of these events, and was undergoing a transition
from glacial to interglacial states. For the last 10 kyr of the
Holocene, under interglacial ice volume only 1 stable At-
lantic ocean-atmosphere-sea-ice state is detected. We inter-
pret the 8.2 kyr BP cooling event as a meltwater induced tran-
sient change in ocean-atmosphere-sea-ice from which the
system was always destined to recover.

In this view the stability regime of the Atlantic ocean-
atmosphere-sea-ice system is reshaped and sometimes bifur-
cated by longer timescale changes in ice volume, as sug-
gested by a number of models, e.g. (Ganopolski and Rahm-
storf, 2001; Colin de Verdiere et al., 2006). Bistability of
the Atlantic ocean-atmosphere-sea-ice system is present for
intermediate Northern Hemisphere ice volumes, whereas un-
der glacial maximum conditions there is only one stable cold
state for Greenland temperature, and under interglacial con-
ditions there is only a single (different) stable warm state.

The Langevin equation (eq. (1)) used in the present pa-
per as a conceptual model is a fairly natural starting point
which is already quite general but admittedly has limitations.
The model is of first order; a higher-order model could ac-
commodate a richer dynamics. Sometimes, palaeoclimatic
cycles are treated as oscillations, e.g. (Ghil et al., 1987). Our
method can be readily extended to a second-order stochasti-
cally driven potential model supporting oscillatory behaviour
(Kwasniok and Lohmann, 2009b). Moreover, eq. (1) does
not allow for non-random external forcing, e.g. orbital forc-
ing. Also the possibility of state-dependent noise rather than
purely additive noise as well as coloured noise would be in-
teresting to include. The proposed approach is initial, and
further generalization of the method is to be developed.
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Fig. 1. Empirical potential (magenta curve) of double-well poten-
tial artifical data and its polynomial fits of 2nd, 4th and 6th orders.
The parabolic fit (2nd order) is not as accurate as the 4th-order poly-
nomial, whereas the fit of 6th order approximates the potential only
locally, becoming negative for large |z|. The numerical algorithm
chooses the highest order of polynomial that approximates the po-
tential globally with positive leading coefficient; in this case it is
the 4th-order polynomial. The method correctly classifies the data
as double-well potential.
figure
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Fig. 2. Detection of the number of states in artificial data: a) four
different potentials with increasing number of wells from one to
four; b) the resulting time series; c) contour plot of the number of
detected states versus time and size of sliding window (red – one,
green – two, cyan – three, purple – four). The number of detected
states is mapped at the middle of the sliding time windows.

Fig. 3. GRIP ice-core data: a) time series; b) contour plot of the
number of detected states versus time and size of sliding window,
mapped at the middle of the sliding time windows (red – one, green
– two, cyan – three, purple – four). NGRIP ice-core data: c) time
series; d) contour plot of the number of detected states versus time
and size of sliding window, mapped at the middle of the sliding time
windows (red – one, green – two, cyan – three, purple – four).
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Fig. 4. GRIP calcium data: a) time series; b) contour plot of the
number of detected states versus time and size of sliding window,
mapped at the middle of the sliding time windows (red – one, green
– two, cyan – three, purple – four).


