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Abstract

Pollen-based climate reconstructions were performed on two high-resolution pollen –
marines cores from the Alboran and Aegean Seas in order to unravel the climatic
variability in the coastal settings of the Mediterranean region between 15 000 and
4000 cal yrs BP (the Lateglacial, and early to mid-Holocene). The quantitative climate5

reconstructions for the Alboran and Aegean Sea records focus mainly on the recon-
struction of the seasonality changes (temperatures and precipitation), a crucial pa-
rameter in the Mediterranean region. This study is based on a multi-method approach
comprising 3 methods: the Modern Analogues Technique (MAT), the recent Non-Metric
Multidimensional Scaling/Generalized Additive Model method (NMDS/GAM) and Par-10

tial Least Squares regression (PLS). The climate signal inferred from this comparative
approach confirms that cold and dry conditions prevailed in the Mediterranean region
during the Heinrich event 1 and Younger Dryas periods, while temperate conditions pre-
vailed during the Bølling/Allerød and the Holocene. Our records suggest a West/East
gradient of decreasing precipitation across the Mediterranean region during the cooler15

Late-glacial and early Holocene periods, similar to present-day conditions. Winter pre-
cipitation was highest during warm intervals and lowest during cooling phases. Several
short-lived cool intervals (i.e., Older Dryas, another oscillation after this one (GI-1c2),
Gerzensee/Preboreal Oscillations, 8.2 ka event, Bond events) connected to the North
Atlantic climate system are documented in the Alboran and Aegean Sea records indi-20

cating that the climate oscillations associated with the successive steps of the deglacia-
tion in the North Atlantic area occurred in both the western and eastern Mediterranean
regions. This observation confirms the presence of strong climatic linkages between
the North Atlantic and Mediterranean regions.
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1 Introduction

Research on the natural climate variability during the recent decades has been im-
mensely stimulated by the increasing manifestation of anthropogenic climate change.
Such research can provide support in evaluating future climate scenarios and as such
may be instrumental in extending the lead time for adaptation (e.g., Alley et al., 2003;5

Mayewski et al., 2004; IPCC, 2007). The Mediterranean region is particularly sensi-
tive to short-term climate change due to its intermediate position between the higher-
latitude (i.e., North Atlantic-influenced) and lower-latitude (i.e., monsoonally influenced)
climate systems. Consequently, future climate change can be expected to be particu-
larly strong in this region and will likely have a strong impact on terrestrial ecosystems10

(Cheddadi et al., 2001).
The present-day Mediterranean climate is characterised by a strong seasonality,

with hot, dry summers and cool, wet winters. Both terrestrial (i.e., pollen, ostracods,
speleothems, lake-levels) and marine (i.e., planktic foraminifera, dinoflagellate cysts,
coccoliths) proxies show that the Mediterranean region experienced very different cli-15

matic and environmental conditions during the Lateglacial and much of the Holocene,
and that these climate changes differ significantly across the Mediterranean from north
to south (e.g. Wijmstra, 1969; Pons and Reille, 1988; Zonneveld, 1996; Combourieu-
Nebout et al., 1998; Geraga et al., 2000; Colmenero-Hidalgo et al., 2002; Pérez-
Folgado et al., 2003; Lawson et al., 2004; Drescher-Schneider et al., 2007; Davis and20

Stevenson, 2007; Magny et al., 2003, 2006b, 2007; Zanchetta et al., 2007; Kotthoff et
al., 2008a, b). The quantitative paleoclimatic reconstructions inferred from pollen and
chironomids records (e.g. Huntley et al., 1999; Davis et al., 2003; Heiri et al., 2007;
Kotthoff et al., 2008a, b; Larocque and Finsinger, 2008), along with model simulations
(e.g. Wiersma and Renssen, 2006; Brewer et al., 2007b) also indicate complex cli-25

mate trends and regional climate patterns across the Mediterranean region for the last
15 000 yrs. A key parameter within this climatic evolution is the seasonal distribution of
temperature and precipitation (Rohling et al., 2002).
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In view of the above, we here aim to reconstruct the climatic trends and estimate
the magnitude of temperature and precipitation changes in the Mediterranean region
over the past 15 000 years; moreover, we explore the extent of climatic linkages be-
tween the North Atlantic and Mediterranean regions. Our reconstructions are based
on quantitative climate estimates derived from two high-resolution pollen records in the5

eastern (core SL 152; Kotthoff et al., 2008a, b) and western (ODP Leg 161 Site 976;
Combourieu-Nebout et al., 1999, 2002). The quantitative climate estimates were per-
formed with a special emphasis to reconstructing changes in seasonality, summer and
winter temperatures, and summer and winter precipitation. Because each of the differ-
ent procedures used in the climatic interpretation of paleoecological signals has its own10

set of advantages and limitations (Birks and Birks, 2006; Brewer et al., 2007a), we here
follow an approach that integrates the climate data inferred from climate three quanti-
tative methods. A similar approach has been successfully applied to other regions and
time intervals. It has been shown to field more precise and robust climate estimates
than approaches that relied on only one method (e.g. Lotter et al., 2000; Peyron et al.,15

2000, 2005, 2006; Brewer et al., 2008). Here, the Modern Analogue Technique (MAT;
Guiot, 1990), the well-known Partial Least Squares regression (PLS; Wold et al., 1984)
and the recently developed Non-Metric Multidimensional Scaling/Generalized Additive
Model (NMDS/GAM; Goring et al., 2009) methods are used.

2 Data and methods20

This study is based on two well-dated high-resolution pollen records from marine cores
located along a West/East gradient across the Mediterranean Sea (Fig. 1). Core ODP
Leg 161 Site 976 (Combourieu-Nebout et al., 1999, 2002, 2009) was retrieved from the
Alboran Sea located between South Iberia and North Africa (36◦12′ N, 4◦18′ W, 1108 m
water depth). The lands bordering the Alboran Sea are dominated by mountains com-25

posed of the Baetic Sierras (Spain) and the Rif (Morocco). The modern Alboran Sea
hydrology is marked by an antiestuarine circulation. The Mediterranean intermediate
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and deep saline waters leave the Mediterranean Sea from the East to the West through
the Gibraltar strait (Béthoux and Prieur, 1984).

Core SL 152 (Kotthoff et al., 2008a, b) was obtained from the Mount Athos Basin,
Northern Agean Sea (40◦19′ N, 24◦36′ E, 978 m water depth). Pollen carried into the
Mount Athos Basin through aerial and fluvial transport is predominately derived from5

the northern borderlands of the Aegean Sea (Kotthoff et al., 2008a, b).
The chronology of each core is based on six 14C dates between 15 000 and

4000 yrs BP (Combourieu-Nebout et al., 1999, 2002; Kotthoff et al., 2008a, b). The
dates were corrected assuming a reservoir ages of 400–600 years following Siani et
al. (2001), and were converted into calendar years after Stuiver et al. (1998) and Fair-10

banks et al. (2005). The sampling resolution ranges from 40 to 250 yrs for the core from
ODP Site 976, and from 30 to 180 yrs for core SL 152 with the highest resolution of 270
to 350 cm. The preparation of pollen samples was carried out following the classical
protocol (Faegri and Iversen, 1964).

2.1 Pollen data15

Figure 2 and Table 1 summarize the main vegetation changes in the Alboran and
the Aegean Seas over the past 15 000 yrs. In-depth descriptions of the palynological
changes documented in both cores are available in Combourieu-Nebout et al. (2009)
for the Alboran Sea and in Kotthoff et al. (2008a, b) for the Aegean Sea.

2.2 Climate reconstruction methods20

The quantitative reconstructions are derived from the Modern Analogue Tech-
nique (MAT), the Non-Metric Multidimension Scaling/Generalized Additive Model
(NMDS/GAM) method, and the Partial Least Square regression (PLS) approach.

The MAT (Guiot, 1990) uses modern pollen surface samples and the corresponding
modern climate to infer paleoclimate parameters. The method consists of selecting a25

set of modern samples (or analogues) that most closely resemble each fossil pollen
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sample. The dissimilarity between each fossil sample and modern pollen assemblage
is evaluated by a chord distance (Guiot, 1990). Usually, the five to ten modern spectra
that have the smallest distance from a given pollen spectrum are considered as the
best modern analogues and subsequently used for the reconstruction. If the chord
distance is above a threshold defined by a Monte-Carlo method (Guiot, 1990), the5

modern samples are considered as poor analogues and not taken into account in the
reconstruction. Estimates of climatic parameters are obtained by using a weighted
average of the values for all selected best modern analogues, where the weights used
are the inverse of the chord distance.

The NMDS/GAM method (Goring et al., 2009) reconstructs climate parameters by10

applying an NMDS ordination to the modern pollen data and fitting a GAM for the
climate parameter of interest to the NMDS ordination output. This technique reduces
the effects of co-linearity among pollen taxa, accounts for long species gradients and,
since NMDS is a non-parametric ordination procedure, reduces the likelihood that the
statistical assumptions common in standard pollen-based reconstruction methods –15

such as normal distributions for pollen proportions – will be violated by the methods.
The PLS method used in this study is a technique that eliminates co-linearity among

predictor variables through the selection of orthogonal components obtained from the
singular decomposition of the response (climate parameters) and predictor (pollen
taxon) variables. This improves the similar principal components regression since the20

response variable is specifically taken into account in the initial component decom-
position (Wold et al., 1984). The PLS method is commonly used and may be paired
with weighted averaging (ter Braak and Juggins, 1993), although this does not always
improve the prediction results (Goring et al., 2009).

All three methods are based on present-day environmental conditions and therefore25

require high-quality, taxonomically consistent modern pollen and climate datasets. The
modern pollen dataset used here is based on 3542 modern samples, among which
more than 2000 are from the Mediterranean region (Bordon et al., 2008). For the
present study, bisaccate pollen (Pinus) was removed from the pollen sums because it
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is generally overrepresented in marine pollen assemblages.
The three methods were used to reconstruct the annual precipitation (PANN), sea-

sonal precipitation (PWinter and PSummer), mean temperature of the coldest month
(MTCO) and mean temperature of the warmest month (MTWA). For these climate pa-
rameters, an “average” curve has been calculated based on the results of each method.5

3 Results and discussion

3.1 Heinrich event 1 (to 14 700 yrs)

The pollen data indicate cold and arid conditions for the borderlands of the Alboran
and Aegean Seas (Figs. 3 and 4) before 14 700 cal yrs BP. The mean curve derived
from the individual quantitative reconstructions confirms the prevalence of cold and10

dry conditions before 14 700 yrs BP in the Alboran Sea, with low winter (−6 to −8◦C)
and summer (16 to 17◦C) temperatures and winter precipitation values below modern
(Fig. 3). High percentages of semi-desert species (Artemisia and Chenopodiaceae) in
both records are in agreement with terrestrial pollen records from Tenaghi Philippon in
Greece (Wijmstra, 1969), Lake Maliq in the Balkans (Bordon et al., 2008) and marine15

pollen records from western Iberia (Naughton et al., 2007). Low temperatures during
this period are supported by foraminifera abundance data from the Myrtoon basin (SW
Aegean Sea), where cold species dominate the assemblages (Geraga et al., 2000).
Reconstructed winter anomalies are in agreement with estimates from Lago Grande
di Monticchio in Central Italy (Huntley et al., 1999). Annual precipitation values at20

15 000 cal yrs BP reconstructed from the Alboran pollen record are slightly lower than
today. This result is similar to the situation reconstructed for the Balkans (Bordon et al.,
2008). It is also supported by previous pollen-based climate reconstructions from the
Alboran Sea (Kageyama et al., 2005).

The mean temperature of the coldest month reconstructed for the Aegean Sea dur-25

ing this time period are −4◦C; the mean temperature of the warmest month are 18◦C
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and annual precipitation is 100 mm lower than modern precipitation values for the re-
gion (Fig. 4). The transition between the Oldest Dryas and the Bølling/Allerød is more
pronounced and rapid in the reconstructions from the Alboran Sea than in the Aegean
Sea. This dramatic transition seen in the Alboran record is similar to those seen in
marine and terrestrial records from western Spain (Naughton et al., 2007).5

3.2 Bølling/Allerød (14 700 to 12 500 yrs)

From 14 700 to 12 500 cal yr BP, both marine pollen records indicate an early temper-
ate phase marked by the expansion of deciduous and Mediterranean forest elements
(Fig. 2 and Table 1). This suggests warm, moist climate conditions for the borderlands
of the Western and Eastern Mediterranean Sea (Combourieu-Nebout et al., 1999; Zon-10

neveld, 1996). The presence of Pistacia in the Alboran Sea record during this period
suggests a mild winter since Pistacia is not found at sites with minimum temperatures
below 5◦C (Mudie et al., 2002; Quenzel and Medail, 2003).

Warm, moist conditions are also evident from the pollen-based climate reconstruc-
tions during this period (Figs. 3 and 4). They indicate the establishment of a seasonal15

“Mediterranean” rainfall regime with hot, dry summers and cool, wet winters (PWinter:
200 mm, PSummer: 75–100 mm). Our results from the Alboran Sea suggest that a
seasonality comparable to modern condition in that region (with high winter precipita-
tion and low summer precipitation) first occurred at 14 750 cal yrs BP and is comparable
to modern seasonality observed in the Alboran Sea. The transition to modern precipi-20

tation seasonality is not observed in the Aegean core, SL 152, suggesting that it may
have taking place earlier than 15 000 cal yr BP (Fig. 4).

The results shows at least three rapid and abrupt short-term events which punc-
tuate the Late-glacial interstadial in the Alboran and Aegean Seas at 14 100–
13 900 cal yrs BP, 13 500–13 400 cal yrs BP and 13 000–12 600 yrs BP, and could coin-25

cide with the Older Dryas, Greeland Interstadial-1c2 (GI-1c2) and the Gerzensee Os-
cillation respectively (Rasmussen et al., 2006; Brauer et al., 2000). Here, the pollen-
based precipitation reconstructions show sharp drops in annual and summer precipi-
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tation for the borderlands of the Aegean Sea, and smaller drops in the borderlands of
the Alboran Sea that correlate with the GI-1b and GI-1d events in the GRIP and NGRIP
records (Figs. 3 and 4; Bjorck et al., 1998; Rasmussen et al., 2006). These successive
oscillations are well documented in Northern and Central Europe (Lotter et al., 1992;
Peyron et al., 2005; Magny et al., 2006a), and to a lesser extent, in the Mediterranean5

region (Asioli et al., 1999; Magny et al., 2006b; Drescher-Schneider et al., 2007).
Our study reveals strong temperature responses to these events in the Aegean Sea

pollen record, with drops of up to 4◦C in winter temperature, and equivalent, but some-
what earlier changes in the Alboran Sea. The precipitation record shows a similar
pattern, with smaller changes in the Alboran resulting in an overall precipitation gra-10

dient from East to West (with dryer conditions in the East) that matches the modern
gradient in the Mediterranean. The study of new sites, particularly in the center of the
Mediterranean Sea, could test this assumption.

3.3 Younger Dryas (12 500 to 11 700 yrs)

In both the records, a rapid decrease in temperature and annual precipitation occurred15

during the Younger Dryas (Figs. 3 and 4). During this interval, Artemisia pollen per-
centages increased in the Alboran (+20%) and Aegean Sea cores (+30%) indicating
a pronounced aridity (Fig. 2). These results are in agreement with increases in semi-
desert pollen taxa recorded in the marine pollen cores MD 90-2043 (Alboran Sea;
Fletcher and Sanchez-Goñi, 2008) and MD 90-917 (Adriatic Sea; Combourieu et al.,20

1998, 1999), and in the terrestrial pollen record from Padul, Spain (Pons and Reille,
1988). In the Alboran Sea, winter temperature values around −4◦C during the Younger
Dryas correspond to a strong decline in temperatures with MTCO anomalies of −10◦C
and MTWA anomalies of −6◦C (Fig. 3). In general, the amplitude of the Younger Dryas
cooling event is larger for the MAT reconstruction than the NMDS/GAM and PSL meth-25

ods. The results obtained with the MAT for Mean Temperature of the Coldest Month
and Annual Precipitation are however in agreement with those simulated by Renssen
et al. (2001).
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For the Younger Dryas, the temporal resolution of the Aegean core SL 152 is higher
than that of the Alboran core. Hence, it allows to discern three distinct climatic phases
during the Younger Dryas (Fig. 4) with colder conditions during the first and third phase
at 12 600 and 12 000 yrs (MTCO: −5◦C). The middle period of the Younger Dryas at
12,300 yrs shows a temperature increase of 3–5◦C as compared to the colder phases.5

This pattern is in agreement with GRIP and NGRIP ice-core records (Bjorck et al.,
1998; Rasmussen et al., 2006), pollen-based reconstructions from the Jura (Peyron et
al., 2005) and the Balkans (Bordon et al., 2008), and chironomid-based reconstructions
from North Italy (Larocque and Finsinger, 2008).

In the borderlands of the Alboran and Aegean Seas, the mean temperature of the10

coldest month ranged from −5◦C to 0◦C during the Younger Dryas. These are close to
values from Central Italy (Huntley et al., 1999), the central Balkans (Bordon et al., 2008)
but colder than model simulations (Renssen et al., 2001). In the Alboran and Aegean
Seas, our three pollen-based climate reconstructions show pronounced declines in all
three precipitation parameters, particularly for annual and winter precipitation (PANN15

decline: ∼400 mm; PWinter decline: ∼100 mm). Thus, the Younger Dryas event seems
to affect principally the winter season (Denton et al., 2005).

The cooling during the Younger Dryas seems to have had little effect on summer cli-
mate parameters (both precipitation and temperature) in the borderlands of the Aegean
and Alboran Seas. This interpretation is well consistent with the current interpretation20

of the Younger Dryas event by Renssen et al. (2001). It is of note that wet summer con-
ditions are depicted (1) in the Aegean Sea with the Modern Analogue Technique model
and (2) in the Alboran Sea with the NMDS/GAM model. In the Balkans at Lake Maliq,
a pollen-inferred climate reconstruction also shows increased precipitation seasonality
during the Younger Dryas, characterised by arid winter conditions and wetter summer25

conditions (Bordon et al., 2008). The present-day summer conditions in the Mediter-
ranean area are relatively dry due to downward motion in the atmosphere associated
with areas of high surface pressure, such as the Azores High. During the Younger
Dryas, these high-pressure centers may have moved slightly to the South, enabling de-
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pressions to reach the Mediterranean more easily during the summer. However, these
interpretations should be treated with caution since the underlying climate reconstruc-
tions may also be a result of bias in the modern pollen dataset: Artemisia-dominated
pollen assemblages are today predominantly found in Asian steppes (including Tibet
and Kazakhstan) characterized by low annual precipitation and precipitation maxima5

in the spring or summer. This study should confirm this interpretation: the wet condi-
tions reconstructed for the borderlands of the Aegean Sea during the Younger Dryas
are probably due to the seasonality regime of the modern semi-desert modern pollen
assemblages. Only the PSL method indicates a decline in summer precipitation, in
both the Alboran and Aegean Seas (Figs. 3 and 4). The summer precipitation values10

simulated by the REMO model present a negative anomaly than the present day over
the Europe (Renssen et al., 2001). But the use of another method such as the inverse
modelling method which includes a vegetation model could help to better understand
this seasonality pattern (Guiot et al., 2000).

3.4 Early to mid-Holocene (11 700 to 4000 yrs)15

3.4.1 Transition Younger Dryas/Holocene (11 700 to 9500 yrs around)

The pollen data from the Alboran and Aegean cores clearly indicate warm and moist
conditions through this interval, which was climatically much more stable than the Late-
glacial (Figs. 3 and 4). Both pollen diagrams show a significant expansion of Quercus
and temperate taxa (Fig. 2), with the development of temperate forests resulting from20

an increase in temperature and moisture (Figs. 3 and 4; Combourieu-Nebout et al.,
1999, 2009; Kotthoff et al., 2008a, b).

Between 11 700 and 9500 yrs BP, our quantitative climate reconstructions results in-
dicate a trend toward increasing precipitation in the borderlands of the eastern and
western Mediterranean Sea (PANN: 550–650 mm for the Alboran Sea, 400–800 mm25

for the Aegean Sea; PWinter: 150–250 mm for the Alboran Sea, 100–250 mm for the
Aegean Sea). Summer precipitations remained relatively high and stable during the
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transition from the Younger Dryas to the Holocene, while the winter and summer tem-
peratures increase slightly. Although precipitation increased, the gain in effective pre-
cipitation was likely to be small because rising temperatures trend to result in increased
in evaporation (Renssen and Isarin, 2001). The amplitude of the transition from the
Late-glacial to the Holocene is largest in the core from the Aegean Sea with regard to5

winter temperatures. This observation is consistent with the results of Renssen and
Isarin (2001) for the same interval. In the borderlands of the Alboran Sea, the sum-
mer warming was likely more important than the January warming: the MTCO reaches
0◦C at 11 500 yr BP, which is 5◦C lower than the value obtained by Renssen and Is-
arin (2001) for Spain using the ECHAM4 atmospheric general circulation model, and10

3◦C less than the value obtained for Southwest in Europe by Davis et al. (2003) from
pollen data.

In the borderland of the Aegean Sea, the warming trend was interrupted by a short-
lived cooling between 11 400 and 10 900 cal yr BP (Fig. 4) that may be related to the
Preboreal Oscillation (PBO; Björck et al., 1997), a response to meltwater pulses and15

a sudden decrease in solar activity (Magny et al., 2007). In northern Europe, the
PBO is marked by a ∼4–5◦C decline in temperature in association with low annual
and winter precipitation (Davis et al., 2003). Here too, dryer conditions and a more
complex pattern in summer (Fig. 4) are in agreement with declining lake-levels inferred
from the Lake Accesa record in Central Italy (Magny et al., 2007). In the Alboran Sea20

core, the warming trend was interrupted by three short-term cold dry oscillations at
10 800, 10 300 and 10 000 cal yr BP (Fig. 3c, d and e). These temperature oscillations
are also documented in foraminifera and pollen records from the western and central
Mediterranean region (Favaretto et al., 2008) and in the alkenone SST records (Sbaffi
et al., 2001) (Fig. 3).25

3.4.2 Holocene optimum (9500 to 7500 yrs around)

The early Holocene (9500 to 7500 yrs BP) was characterized by high temperatures
and moist annual and winter conditions in both the western and eastern Mediterranean
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regions. Previous studies have shown that annual precipitation reached a maximum
during this period both in the eastern Mediterranean region (Bar-Matthews et al., 1999;
Rossignol-Strick, 1999; Kotthoff et al., 2008a, b), and in northern Africa and central Eu-
rope (Magny et al., 2002). According to the results of our study, precipitation seasonal-
ity increased strongly during this period, with winter precipitation attaining a maximum5

at both sites and summer precipitation simultaneously reaching a minimum (PSum-
mer: 75 mm). These trends are evidenced in all three reconstruction methods applied.
Jalut et al. (2008) reconstructing a similar pattern in the Aegean and Alboran Seas
with short dry summer periods since the beginning of the Holocene that correspond
to present-day Mediterranean conditions. This pattern differs from results obtained for10

other geographical regions, for example in Northernmost Europe (Allen et al., 2007),
and in the Eastern Mediterranean (Rossignol-Strick, 1999) which found abundant year-
round moisture with higher precipitation during the summer.

The current study shows evidence of strong seasonality with hot dry summers and
wet winters (MTWA: 22◦C, MTCO: 3–5◦C). Temperatures for the coldest and warmest15

months reached modern levels by 9500 yrs. In the Myrtoon Basin of the southern
Aegean Sea SST values reached modern values at the same period (Geraga et al.,
2000). The reconstruction of moist conditions during the early to mid-Holocene is con-
sistent with speleothem evidence that shows a substantial increase in winter rainfall in
Central Italy during this period (Zanchetta et al., 2007), and with marine and lacustrine20

records from the Nile cone (Chedaddi et al., 1995) and the central Italy (Ariztegui et al.,
2000). SST reconstructions for the early Holocene do not show a clear pattern. Some
authors suggest cooler conditions (Kallel et al., 1997) and others warmer conditions
(Marchal et al., 2002) in the northeast Atlantic and Mediterranean. In contrast to Davis
et al. (2003), and in agreement with our own study, the inferred climate for this period25

in a number of marine-based studies has also been warm and wet during the winter in
the Mediterranean region (Rohling and De Rijk, 1999, Ariztegui et al., 2000, Myers and
Rohling, 2000). In the Aegean Sea, the period from 9500 to 7000 cal yr BP represents
Sapropel S1 (Ariztegui et al., 2000; Kotthoff et al., 2008a, b). Estimates of the duration
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for Sapropel S1 from the Aegean are longer (9.4–6.8 kyr) than those from the Adriatic
Sea (e.g., 8.3–6.3 kyr, Jorissen et al., 1993; Mercone et al., 2000).

3.4.3 Mid-Holocene (7500 to 4500 yrs around)

During this period, temperatures decline by 3◦C in the western Mediterranean region
whereas the annual and winter precipitation decrease by ∼50 mm, while PSummer5

increases slightly by the same amount. Precipitation declined following in the 8.2 ka
event. This decline began at ∼7800 cal yr BP in the borderlands of the Alboran Sea and
at ∼7200 cal yr BP in those of the Aegean Sea (Figs. 3 and 4). A drying phase also be-
gins at 7900 yr in Italia, in Lake Lagaccione pollen record and between 8000 to 7600 yr
in Sicily, Lago di Pergusa (Jalut et al., 2008). The Mid-Holocene generally humid con-10

ditions ended between 7700 to 7200 years in Algero-Balearic basin (Jimenez-Espejo
et al., 2008). These results are in agreement with the Alboran Sea record presented
here. In Turkey (Eski Acigöl), the beginning of the dry interval is at 6500 yr (Roberts et
al., 2001). Decreasing humidity seems to develop along a West-to-East gradient.

At 6000 cal yr BP, winter temperatures are also in agreement with other tempera-15

ture reconstructions in Mediterranean for the mid-Holocene period (Cheddadi et al.,
1997; Davis et al., 2003; Brewer et al., 2007b; Wu et al., 2007; Davis and Stevenson,
2007). At that time, precipitation in the borderlands of the Alboran and Aegean Seas
predominantly occurred during the winter, and summers experienced increasingly dry
conditions (+50 to 75 mm/yr as evidenced in all three methods). Wu et al. (2007) have20

obtained similar results for the Mediterranean area at 6000 yrs BP based on a vegeta-
tion model using the inverse method (Guiot et al., 2000).

The cooling and drying trend which began in Mid-Holocene continues to 4000 yr BP
in Northeast Atlantic and Mediterranean (Marchal et al., 2002).
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3.4.4 The 8.2 ka event and others short-term Holocene events

The short-lived cooling event that occurs in Alboran and Aegean Seas between 8400–
8200 cal yr BP in our reconstructions could correspond to the regional expression of
the 8.2 ka event well known from ice, marine and terrestrial archives in the Northern
Hemisphere (e.g. Von Grafenstein et al., 1998; Mayewski et al., 2004; Alley and Agusts-5

dottir, 2005). The duration of this event is 200 to 300 yr (Seppä et al., 2007). These
temperature and precipitation anomalies of the 8.2 ka event are explained by large-
scale changes in the atmospheric circulation resulting from a meltwater outflow into
the North Atlantic Ocean and slowdown in North Atlantic deep-water formation (Barber
et al., 1999; Rohling and Pälike, 2005).10

The timing of the Sapropel S1 interruption in the Aegean Sea core clearly coincides
with the 8.2 ka event (Kotthoff et al., 2008b). The precipitation signals inferred from our
reconstructions indicate that the 8.2 ka event resulted in drier conditions in the border-
lands of the Alboran and Aegean Seas (Fig. 5). For the Aegean region, this finding
is in agreement with existing model simulations (Renssen et al., 2001; Wiersma and15

Renssen, 2006) as well as with terrestrial (Kotthoff et al., 2008b; Pross et al., 2009) and
marine (Rohling et al., 2002) proxy data. This pattern also is consistent with various
studies for the Northern hemisphere (Magny et al., 2003; Alley and Agustsdottir, 2005).

The temperature anomalies recorded in the Aegean and the Alboran Sea cores dur-
ing the winter and summer are around −3◦C. Thus, their magnitudes are similar to the20

cooling observed at Lake Maliq in the Balkans (Bordon et al., 2008) and at Ammersee
in Central Europe (Von Grafenstein et al., 1999). The 8.2 ka event was particularly
significant for summer temperatures with a drop of ∼4◦C in the Western Mediterranean
(Perez-Folgado et al., 2003) and values of ∼1–2◦C elsewhere in Europe (Alley and
Agustsdottir, 2005). The summer anomaly in this study is in agreement with Perez-25

Folgado et al. (2003) but the summer drop is smaller than the winter anomaly in this
study.
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At both sites, the amplitude of variations associated with the 8.2 ka event is stronger
for the PLS model and comparable for MAT and NMDS/GAM model. All models re-
construct wetter conditions during the summer for the 8.2 ka event and all methods
show similar patterns of change. These results are comparable to those obtained from
Lake Accesa in Italy (Magny et al., 2007), where wetter summer conditions have been5

inferred from higher lake-level during the 8.2 ka event.
During the Holocene, five additional short-lived cool and dry events are indicated

during for the intervals 11 200–10 800 cal yr BP (Figs. 3 and 4, event 8), 10 400–
10 200 cal yr BP (Figs. 3 and 4, event 7), 9500–9600 cal yr BP (Figs. 3 and 4, event 6),
8400–8000 cal yr BP (Figs. 3 and 4, event 5 or 8.2 ka), 6000–5500 cal yr BP (Figs. 310

and 4, event 4) and 5900–4200 cal yr BP (Fig. 4, event 3 in the Aegean Sea). Dur-
ing these events, the winter and summer temperatures decrease slightly (∼2◦C) along
with annual and winter precipitation values. Some of these events can be correlated
with phases of lake-level changes described by Magny et al. (2002) in the Western
Mediterranean around 11 500 cal yr BP, 10 500 cal yr BP, 9000 cal yr BP, 7000 cal yr BP,15

4000 cal yr BP. The succession of these phases agrees well with the lake-level fluc-
tuations at Lake Accesa (Italy) (Magny et al., 2007). These events correspond to
some of the Bond events centred at 11 100 cal yr BP, 10 300 cal yr BP, 9500 cal yr BP,
8200 cal yr BP, 5900 cal yr BP and 4300 cal yr BP in the North Atlantic. The Holocene
events appear to be the most recent manifestation of a pervasive millennial-scale cli-20

mate cycle operating independently of the glacial-interglacial climate state (Bond et al.,
1997).

The short Holocene cooling events such as those at 4, 5, 6, 7, and 8 (Figs. 3 and 4)
are likely transmitted from the Atlantic Ocean to the Western Mediterranean Sea and
the signal is amplified in the central Mediterranean settings (Cacho et al., 2002). Dur-25

ing the short-term Holocene events we observed no precipitation differences between
the Alboran and Aegean Sea records. This is in contrast to the precipitation gradi-
ent reconstructed during the Late-glacial events, such as the Older Dryas, Gerzensee
Oscillation and GI-1c2.
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In the Aegean Sea, two short-term cool and dry oscillations are also detected at
∼7300 and at ∼6400 yr, the termination of Sapropel 1 formation. Similar short cooling
events were detected using foraminiferal assemblages in the Adriactic Sea and the
Aegean Sea at ∼7500–7000 and 6500–6000 yr (De Rijk et al., 1999, Geraga et al.,
2000, Jimenez-Espejo et al., 2008).5

4 Comparaison of methodologies applied, and reliability of the climate
signal inferred

Some indication of the relative reliability of the models can be obtained from the dif-
ferences between model outputs. Clear differences in model response can be seen in
several locations throughout the reconstructions, for example, the absence of a strong10

MTWA signal in the MAT model for the Aegean, during the 8.2 ka event (Fig. 5), de-
clines in NMDS/GAM PSummer values in the Alboran during the PBO, and generally
dissimilar PLS results in all models. For both records the variability of the NMDS/GAM
model is lower than the variability of either the MAT or PLS model. While Guiot (1990)
uses low variability as an indication of the reliability of model construction when test-15

ing MAT distance metrics, it is possible that, among these methods low variability for
the NMDS/GAM model is a result of statistical artifacts of the method since the GAM
function used has a relatively high smoothing penalty to avoid overfitting of the data.
MAT and NMDS/GAM model appear to have greater similarity to one another than to
the PLS model. In general the PLS reconstructions are more sensitive to changes20

in one or two pollen taxa. For example the PLS reconstruction of PSummer for the
Aegean Sea has a very high correlation to changes in Asteraceae (r2=0.82 for the
PLS method compared to r2=0.17 for NMDS/GAM) which are unlikely to be borne out
in reality given the regional nature of the pollen record and the complex landscape
dynamics in the surrounding region.25

The NMDS/GAM method shows a smoother trend of increasing precipitation through
the early Holocene in the Aegean Sea and in general has lower correlations between
individual pollen taxa and the precipitation reconstructions. Since pollen taxa are rank-
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weighted in the NMDS/GAM method to generate the initial ordination, it is unlikely that
any one pollen taxon will dominate the climate signal. This combined signal results in a
smoother trend curve, except in cases where rapid, multi-species responses to climate
are seen. It is clear that the NMDS/GAM method picks up rapid changes in climatic
parameters in the Alboran Sea where the trend between the PLS and NMDS/GAM5

reconstructions are similar, but again, the NMDS/GAM method shows smaller variation
about the trend, likely as a result of decreased sensitivity to a single pollen taxon.

Holocene climatic oscillations are less pronounced with the MAT and NMDS/GAM
method than the PLS method in both sites. In the Aegean site, the results of the
MAT and NMDS/GAM models are close to the mean curve while in the Alboran Sea,10

the MAT curve appears to overstate the MTWA, MTCO, PANN and PWinter. Lack of
close analogue assemblages may be responsible for the strong differences between
NMDS/GAM and MAT models and the PLS model. Since the PLS model relies more
strongly on individual pollen taxa, it may be more effective in predicting climate parame-
ters for regions that are poorly sampled in the dataset, whereas MAT and NMDS/GAM15

models use complete pollen assemblages to determine climate parameters. Since
pollen in the Alboran Sea, the pollen comes both from Southern Spain and Morocco
(with the presence of Cedrus from Morocco’s Mountains) there are likely to be less
analogues in the European pollen dataset, potentially causing statistical artifacts in the
reconstruction, and resulting in greater differences between the PLS model and the20

MAT and NMDS/GAM models.
To address model quality, we tested the root mean squared error (RMSE) for the

three different model types, MAT, NMDS/GAM and PLS. To do this, we randomly se-
lected 67% of the complete pollen dataset to build the pollen-based climate transfer
functions and subsequently predicted the remaining 33% of the dataset (ter Braak,25

1995), this selection and modelling procedure was repeated fifty times for NMDS/GAM
and PLS method to arrive at a mean RMSEP value with valid standard deviations.
Using this method, we find that model error for modern pollen is lowest with the MAT
method for all climate parameters in this dataset (Table 2). Although NMDS/GAM ap-

752

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/5/735/2009/cpd-5-735-2009-print.pdf
http://www.clim-past-discuss.net/5/735/2009/cpd-5-735-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
5, 735–770, 2009

Terrestrial climate
variability and

seasonality changes
in the Mediterranean

I. Dormoy et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

pears to work better than MAT in situations where pollen samples are spatially sparse,
or climatic gradients are sparsely sampled (Goring et al., 2009). However as coverage
in a region increases and the number of potential analogues passes a threshold de-
fined by local pollen variability, the MAT begins to perform better than NMDS/GAM. In
all cases, PLS appears to perform relatively well. It is interesting to note that even with5

relatively high RMSE values, all models are well correlated to the climate variables
they reconstruct. This we may be relatively certain, that although the models show
differing absolute magnitudes of temperature or precipitation, the general trend over
time remain well reconstructed. It seems perhaps surprising that error for temperature
and precipitation parameter are so high, however these values are somewhat lower10

than those reported by Brewer et al. (2008) for MTCO using PLS and MAT methods,
although, strictly speaking the method for RMSE calculation differs between this paper
and those in Brewer et al. (2008). Given the diversity of the pollen dataset and the
broad climatic range, it is not surprising that the errors are so high. To ensure that
there was no systematic bias in the prediction of error (for example, from the inclu-15

sion of steppe samples) we tested the spatial autocorrelation of RMSEP values using
Moran’s statistic (Cliff and Ord, 1981) and found no significant spatial autocorrelation
(l m=0.007, p=0.630). From this, we conclude that the models used here perform as
well or better than other models used for climate reconstruction at a continental level in
Europe and that there is no significant spatial bias in our pollen-based climate models.20

5 Conclusions

This study aims to quantitatively reconstruct climatic trends and seasonality changes
in the west and east Mediterranean region between 15 000 and 4000 cal yrs BP. The
palaeoclimate reconstructions are based on a new multi-method approach with three25

different and complementary methods: Modern Analogue Technique, Non-Metric Multi-
dimensional Scaling/Generalized Additive Model and Partial Least Square regression.

The three methods produce patterns that show similar trends throughout the pollen

753

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/5/735/2009/cpd-5-735-2009-print.pdf
http://www.clim-past-discuss.net/5/735/2009/cpd-5-735-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
5, 735–770, 2009

Terrestrial climate
variability and

seasonality changes
in the Mediterranean

I. Dormoy et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

records for both sites. Cold and dry conditions prevailed during the Heinrich 1 and
Younger Dryas. For the Younger Dryas, the reconstructions show a reduction in win-
ter precipitation. More temperate conditions were established during the Lateglacial
interstadial and continued through the Holocene with the establishment of a seasonal
“Mediterranean” precipitation regime (hot dry summers and cool wet winters). A tem-5

perature and precipitation optimum is observed for the Early to mid-Holocene. Fol-
lowing the optimum of precipitation and temperature (after 7800 yr BP), a progressive
desiccation and a slight decrease in temperature is recorded in both sites.

Evidence of strong climatic links between the North Atlantic and Mediterranean are
found throughout the reconstructions. Evidence of events that have punctuated the10

deglaciation in the North Atlantic (such as Older Dryas, GI-1c2, Gerzensee and Pre-
boreal Oscillations and 8.2 ka event) appears in both the Aegean and Alboran Sea
cores. These oscillations appear to have been stronger in the Aegean region than in
the Alboran Sea. Our study suggests a West/East precipitation gradient across the
Mediterranean region, with short-term climate changes being markedly stronger ex-15

pressed and dryer in the Aegean region.
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Table 1. Vegetation changes of core ODP Leg 161 site ODP 976 and core SL 152.

ODP Leg 161 site 976 – Pollen 
signature Chronology Biozones GeoTü SL 152 – Pollen signature 

Quercus and temperate forest (45-
70%) 
Persistence of Cichorioideae (10-
25%) and Chenopodiaceae (5%) 

 

Quercus and temperate forest (60-
80%) 

Persistence of  Cichorioideae  
(15%) 

Quercus and temperate forest 
decrease (<55%) 
Cichorioideae  increase (>25%) 8.

2k
a 

Quercus and temperate forest 
decrease (<60%) 
Cichorioideae  increase (>35%) 
 

Quercus increase (40   60%) 
Poaceae and Cyperaceae increase  Quercus increase (30   80%) 

 

Quercus and temperate forest 
decrease (<40%) 
Cedrus increase (15%) 
 

PB
O

 Quercus and temperate forest 
decrease (<15%) 
Cichorioideae  increase (>35%) 

temperate forest increase (40%) 
Artemisia and Ephedra decrease, 
persistence of Chenopodiaceae 

 

Ea
rly

 to
 M

id
-H

ol
oc

en
e 

(1
1,

70
0 

to
 4

00
0 

yr
s)

 

temperate forest increase (30-40%) 
semi-desert decrease (<10%) 

semi-desert increase: Artemisia 
(15%), Chenopodiaceae (15%), 
Ephedra (5%) 
Quercus decrease (15%) 

Younger 
Dryas 

(12,500 to 11,700 
yrs) 

semi-desert increase (Artemisia 10-
15%, Chenopodiaceae 10-15%, 
Ephedra 10-20%) 
Quercus decrease (20%) 

temperate forest and Quercus 
increase  temperate forest and Quercus 

increase 

temperate forest decrease (<25%) 
semi-desert increase (Artemisia-
Chenopodiaceae >10%) G

er
ze

ns
ee

 
O

sc
ill

at
io

n 

temperate forests decrease (<30%) 
semi-desert increase (>25% 
Artemisia-Chenopodiaceae ) 

temperate forest and Quercus 
increase  temperate forest and Quercus 

increase 

temperate forest decrease (<30%) 
semi-desert increase (Artemisia-
Chenopodiaceae >20%) G

I-
1c

2 temperate forests decrease(<30%) 
semi-desert increase (>20% 
Artemisia-Chenopodiaceae) 

Quercus increase (40-45%)  

A
lle

rø
d 

(1
3,

40
0 

to
 1

2,
50

0 
yr

s)
 

Quercus increase (40%) 

temperate forest decrease (<15%) 
semi-desert increase (Artemisia-
Chenopodiaceae >15%) 

Older Dryas 
(13,500 to 13,400 

yrs) 

temperate forests decrease(<20%) 
semi-desert increase (>30%) 

Temperate increase (30%) and 
mediterranean forests (15%) 
semi-desert decrease (<15%) 
 

Bølling 
(14,700 to 13,500 

yrs) 

temperate forests increase (40-
50%) 
semi-desert decrease(<20%) 

Low percentages in Quercus and 
temperate forest (<10% 
Semi-desert associations 
(Artemisia 15%, Chenopodiaceae 
5%, Ephedra 10%) 

Heinrich event 1 
(to 14,700 yrs) 

Low percentages in Quercus and 
temperate forest (<15%) 
Semi-desert associations 
(Artemisia 5%, Chenopodiaceae 
5%, Ephedra 10%) 

 
Table 1. Vegetation changes of core ODP Leg 161 site ODP 976 and core SL 152. 
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Table 2. Root mean squared error for climate variables used in this study, based on boot-
strapped models using data subsets consisting of 67% of the entire pollen dataset (1181 pre-
dicted values).

Climate variable MAT NMDS/GAM PLS

R2 RMSE R2 RMSEP R2 RMSEP

MTWA 0.87 2.55 0.85 3.04 0.84 3.68
MTCO 0.94 4.02 0.98 4.94 0.91 6.39
PANN 0.80 186.70 0.75 227.27 0.74 271.92
PSummer 0.87 16.01 0.78 50.39 0.77 67.52
PWinter 0.78 27.02 0.76 77.69 0.75 91.59
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Fig. 1. Map of the Mediterranean Sea with locations of the cores ODP 976 and SL 152 (dark
stars). Inserts show modern climate conditions for both sites with temperature and precipitation
for each month.
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Fig. 2. Simplified pollen diagrams from cores ODP Leg 161 Site 976 (Alboran Sea; Combourieu-Nebout et al., 2002)
and GeoTü SL 152 (Aegean Sea; Kotthoff et al., 2008a, b). Horizontal grey bands mark cooling phases.
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Fig. 3. Climate reconstructions for the borderlands of the Alboran Sea based on the pollen data from core ODP
Leg 161 Site 976 (Combourieu-Nebout et al., 2009). Percentages of temperate taxa and semi-desert taxa in percent
are marked in green and red, respectively. MTWA=mean temperature of the warmest month, MTCO=mean tem-
perature of the coldest month. Annual (PANN), winter (PWinter) and summer (PSummer) precipitation is indicated as
reconstructed with the MAT, NMDS/GAM and PSL methods: dark curve represents the mean result for each parameter.
Horizontal grey bands correspond to cool climate oscillations: Heinrich 1, Older Dryas, GI-1c2, Gerzensee oscillation,
Younger Dryas, 8.2 ka event are indicated in black. The short-term events defined by Bond et al. (1997) are named “4
to 8” in blue. The events indicated by Favaretto et al. (2008) are named “c, d and e” in red. NGrip δ18O after North
Greenland Ice Core Project members (2004). 768
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Figure 4

Fig. 4. Climate reconstructions for the borderlands of the Aegean Sea based on the pollen data from core SL 152
(Kotthoff et al., 2008a, b). Percentages of temperate taxa and semi-desert taxa are marked in green and red, re-
spectively. MTWA=mean temperature of the warmest month, MTCO=mean temperature of the coldest month. Annual
(PANN), winter (PWinter) and summer (PSummer) precipitation is indicated as reconstructed with the MAT, NMDS/GAM
and PSL methods: dark curve represents the mean result for each parameter. Horizontal grey bands correspond to
cool climate oscillations: Heinrich 1, Older Dryas, GI-1c2, Gerzensee oscillation, Younger Dryas, Preboreal oscillation
(PBO), 8.2 ka event are indicated in black. The short-term events defined by Bond et al. (1997) are named “3 to 8” in
blue. The events indicated by Geraga et al. (2000) are named “a and b” in red. NGrip δ18O after North Greenland Ice
Core Project members (2004).
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Fig. 5. Expression of the 8.2 ka event as reconstructed from the pollen records of cores ODP Leg 161 Site 976
and SL 152. Climatic parameters presented are mean temperature of the warmest month (MTWA), mean temperature
of the coldest month (MTCO), annual precipitation (PANN), summer precipitation (PSummer) and winter precipitation
(PWinter) estimated.
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