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Abstract

It is known that changes in ground surface temperatures could be caused by many
non-climatic effects. In this study we propose a method based on utilization of Laplace
equation with nonuniform boundary conditions. The proposed method makes possible
to estimate the maximum effect of deep lakes and “heat islands” (areas of deforesta-5

tion, urbanization, farming, mining and wetland drainage) on the borehole temperature
profiles.

1 Introduction

At present many efforts are made to determine the trends in ground surface tem-
perature history (GSTH) from geothermal surveys. In this case accurate subsurface10

temperature measurements are needed to solve this inverse problem – estimation of
the unknown time dependent ground surface temperature (GST). The variations of
the GST during the long term climate changes resulted in disturbance (anomalies)
of the temperature field of formations. Thus, the GSTH can be evaluated by analyz-
ing the present precise temperature-depth profiles. The effect of surface temperature15

variations in the past on the temperature field of formations is widely discussed in
the literature (Cermak, 1971; Lachenbruch and Marshall, 1986; Beltrami et al., 1992;
Shen and Beck, 1992; Mareschal and Beltrami, 1992; Wang, 1992; Shen et al., 1992,
1995; Bodri and Cermak, 1995, 1997; Kukkonen et al., 1994; Harris and Chapman,
1995; Huang et al., 1996; Huang and Pollack, 1998; Huang et al., 2000; Pollack and20

Huang, 2000; Majorowicz and Safanda, 2005; Hamza et al., 2007). Earlier the forward
calculation approach (FCA) was used to the analysis and interpretation of borehole
temperatures in terms of a GSTH (Eppelbaum et al., 2006). Three groups based on
the geographical proximity were formed. Fifteen borehole temperature profiles from
Europe (5), Asia (4) and North America (6) were selected (Huang and Pollack, 1998;25

www.geo.lsa.umich.edu/∼climate). The objective of this study was the estimation of the
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warming rates in 20th century by the FCA method and comparing with those obtained
by the few parameter estimation (FPE) technique (Huang et al., 1996; Huang and Pol-
lack, 1998). It was reasonable to assume that for close spaced boreholes, the values
of the warming rates obtained by the two inversion methods, should vary in narrow
limits. The results of inversions (FCA) have shown that for boreholes in North Amer-5

ica the current warming rates vary in the 0.41–2.45 K/100 a range. The wide range
for the warming rate of 0.33–2.48 K/100 a was also determined for boreholes in Eu-
rope. Interesting results we obtained (Eppelbaum et al., 2006) for four boreholes in
Asia (China). In this case the warming rate varies in relatively narrow limits (1.16–
1.59 K/100 a). The warming rate estimated by the FPE technique (Huang and Pollack,10

1998) varied in wide ranges: 0.38–2.49 K/100 a (North America); 0.21–3.75 K/100 a
(Europe), and 0.30–2.53 K/100 a (Asia). Thus we can conclude that for boreholes in
North America and Europe both approaches provide practically the same ranges of
warming rates. For Asian boreholes the FCA approach gives a more consistent (nar-
row) range of warming rates (1.16–1.59 K/100 a). The results of temperature inversion15

by both techniques indicate that probably some of non-climatic effects (vertical and
horizontal water flows, steep topography, lakes, vertical variation in heat flow, lateral
thermal conductivity contrasts, thermal conductivity anisotropy, deforestation, forest
fires, mining, wetland drainage, agricultural development, urbanization, etc.) may have
perturbed the borehole temperature profiles (e.g., Carslaw and Jaeger, 1959; Lachen-20

bruch, 1965; Kappelmeyer and Haenel, 1974; Blackwell et al., 1980; Lewis and Wang,
1992; Majorowicz and Skinner, 1997; Powell et al., 1988; Guillou-Frottier et al., 1998;
Lewis and Wang, 1998; Kohl, 1999; Safanda, 1999; Pollack and Huang, 2000; Cermak
and Bodri, 2001; Lewis and Skinner, 2003; Gosselin and Mareschal, 2003; Gruber et
al., 2004; Bodri and Cermak, 2005; Mottaghy et al., 2005; Nitoiu and Beltrami, 2005;25

Taniguchi, 2006; Chouinard and Mareschal, 2007; Hamza et al., 2007; Safandra et al.,
2007).

We should note that all climate reconstruction methods are based on one-
dimensional heat conduction equation. It is assumed that a uniform boundary condition

417

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/4/415/2008/cpd-4-415-2008-print.pdf
http://www.clim-past-discuss.net/4/415/2008/cpd-4-415-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
4, 415–432, 2008

Borehole
paleoclimatology

V. T. Balobaev et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

is applied on a plane surface, the formation is a laterally homogeneous medium, and
the thermal properties can only depend on a depth. For this reasons any subsurface
temperature variations arising from conditions that depart from that theoretical model
have the potential to be incorrectly interpreted as a climate change signature (Pollack
and Huang, 2000). As was mentioned by Nitoiu and Beltrami (2005) from over 10 0005

borehole temperature logs worldwide (The International Heat Flow Commission global
geothermal data set), only about 10% of these data are currently used for climate stud-
ies because a number of known non-climatic energy perturbations are superimposed
on the climatic signal.

Therefore, an extreme caution should be used in selection of temperature-depth10

profiles for inferring the ground surface temperature histories. To demonstrate the
well selection procedures we briefly present two examples. In the study conducted
by Guillou-Frottier et al. (1998), only 10 from 57 temperature profiles were selected for
inversion of past ground surface temperatures.

The following criteria were considered in rejecting boreholes from the study: steep15

topography, proximity of lakes, water circulation, instrumental problems, other identifi-
able terrain effects (such as heat refraction, permafrost effects), and recent changes in
surface conditions (clearing of trees). For most of the boreholes that were discarded,
the shallowest part of the temperature profile is perturbed. As was mentioned by co-
authors these perturbations are often similar to the perturbations due to changes in20

surface temperature. If the terrain conditions had not been considered, warming would
have been inferred for 25 boreholes. Ten boreholes show apparent cooling, and only
one shows no difference. To screen out borehole temperature data from Eastern Brazil
with indications of possible perturbations arising from non-climatic effects, the following
quality assurance conditions were imposed (Hamza et al., 2007):25

1. The borehole is sufficiently deep that the lower section of the temperature-depth
profile allows a reliable determination of the geothermal gradient, presumably
free of the effects of recent climate changes. Order of magnitude calculations
indicate that surface temperature changes of the last centuries would penetrate
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to depths of nearly 150 m,

2. The time elapsed between cessation of drilling and the temperature log is at least
an order of magnitude large compared to the duration of drilling,

5

3. The temperature-depth profile is free from the presence of any significant non-
linear features in the bottom parts of the borehole, usually indicative of advection
heat transfer by fluid movements, either in the surrounding formation or in the
borehole itself,

10

4. The elevation changes at the site and in the vicinity of the borehole are relatively
small so that the topographic perturbation of the subsurface temperature field at
shallow depths is not significant, and

5. The lithologic sequences encountered in the borehole, have relatively uniform15

thermal properties, and are of sufficiently large thickness that the gradient
changes related to variations in thermal properties do not lead to systematic
errors in the procedure employed for extracting the climate related signal.

Out of a total of 129 temperature logs only 17 were found to satisfy the above set of20

quality assurance conditions (Hamza et al., 2007). Corrections can be applied, for
example, to correct borehole temperature profiles for the effect of topography (Lachen-
bruch, 1965; Blackwell et al., 1980; Safanda, 1994, 1999). However, this is rarely
done because the amplitude of the climatic signals is often smaller than the uncer-
tainty on these corrections (Chouinard and Mareschal, 2007). Safandra et al. (2007)25

presented interesting results of repeated temperature logs from Czech, Slovenian and
Portuguese borehole climate observatories within a time span of 8–20 yr. The repeated
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logs revealed subsurface warming in all the boreholes amounting to 0.2–0.6◦C below
20 m depth. The warming rate of 0.05◦C/yr. at the Czech observatory (located in a park
within the campus of the Geophysical Institute in Prague) was estimated. This warm-
ing rate is two times more than the simulated value (using the surface air temperature
as a forcing function). It was assumed that subsurface temperature at the station is5

influenced by new structure built within the campus of the Geophysical Institute within
the last 10–20 yr and/or by other components of infrastructure built 40–50 yr ago. The
authors (Safandra et al., 2007) conducted a quantitative analysis of these effects by
solving numerically the heat conduction equation in a three dimensional geothermal
model of the borehole site. It was found out that the mentioned anthropogenic struc-10

tures influence the temperature in the borehole quite strongly.
Nitoiu and Beltrami (2005) attempted to correct borehole temperature data for the ef-

fects of deforestation. The authors simulated the ground surface temperature changes
following deforestation by using a combined power exponential function describing
the organic matter decay and recovery of the forest floor after a clear-cut (Covington,15

1981). The presented examples demonstrate that application of this correction could
allow incorporate many borehole data into the borehole climatology database (Nitoiu
and Beltrami, 2005).

In his study Taniguchi (2006) attempted to attribute the rise in ground surface tem-
perature in Bangkok as a result of both global climate change and urbanization. As20

was mentioned by Taniguchi (2006) the “heat island effect” on subsurface temperature
due to urbanization is one of the global environmental issues. It was determined that
the magnitude of surface warming, evaluated from subsurface temperature in Bangkok,
was 1.7◦C which agreed with the meteorological data during the last 50 yr. The results
show that the expansion of urbanization in Bangkok reaches up to 80 km from the city25

center (Taniguchi, 2006).
Thus by analyzing the regional temperature profiles one should be aware that

changes in GST could be caused by many non-climatic effects. These effects need
to be documented since they produce distortions of the borehole temperature profiles
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similar to those produced by climate change (Chouinard and Mareschal, 2007). In this
study we make an effort to estimate the maximum effect of deep lakes and “heat is-
lands” on the borehole temperature profiles. We will consider areas of deforestation,
urbanization, farming, mining and wetland drainage as “heat islands”. In all cases we
will assume that surface temperature anomalies (due to lakes) and the above men-5

tioned non-climatological factors existed for a very long time. Therefore, the Laplace
differential equation can be utilized to evaluate the maximum impact of deep lakes and
“thermal islands” on borehole temperature profiles.

The ultimate objective of this study is to assist in choosing drilling sites for borehole
climate observatories where the effect of lakes and non-climatological factors will be10

minimal. A simulated example that demonstrates the effect of a deep lake on temper-
ature profiles of wellbores located within 300 m (400 m from the center of the lake) is
presented.

2 Working equations

Let us assume that the well site is located within or outside of a deep lake. In our case15

the term “deep lake” means that the long term mean annual temperature of bottom
sediments can be considered as a constant value. We will assume that z=0 is the
vertical coordinate of the lake’s bottom.

The temperature regime of formations in this area (within and outside of the lake)
is subjected to the thermal influence of the lake. The extent of this influence depends20

mainly on the lake’s dimensions, on the current depth, the distance from the lake, and
on the difference between the long term mean annual temperature of bottom sediments
and the long term mean annual temperature of surrounding lake formations (at z=0).
We will assume that the island existed for an infinitely large period of time.

The following designations will be used below:25

ρ, φ, z are the cylindrical coordinates (ρ is the distance from the z axis, φ describes
the angle from the positive xz-plane to the point, and z is depth); Tis is the long term
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mean annual temperature of bottom sediments; and Tot is the long term mean annual
temperature of surrounding lake formations at z=0. Firstly, let consider a lake of an
arbitrary contour (Fig. 1).

The Laplace equation for the semi-infinite solid area is

∂2T
∂ρ2

+
1
r
∂T
∂ρ

+
1

ρ2

∂2T
∂ϕ2

+
∂2T
∂z2

= 0 (1)5

The boundary conditions are:

T (ρ,φ, z = 0) = Tis within the lake area

T (ρ,φ, z = 0) = Tot outside the lake area

T (ρ = ∞, φ, z) = Tot + Γz

where Γ is the regional (outside the lake area) geothermal gradient.10

The solution of Laplace equation is possible by division of an arbitrary contour lake
into sectors. However, the solution is expressed through a complex Poisson integral
and fairly elaborate and time-consuming computations are needed (Balobayev and
Shastkevich, 1974).

Let ρmax be the maximum value of the set ρ1, ρ2, . . . . ρn (Fig. 1). By introducing a15

safety factor (the maximum thermal effect of the lake on temperature profiles) we can
assume that the lake has a circular shape with a radius Ri=ρmax. In some cases the
radius of the lake can be approximated by

Ri =

√
S
π

where S is the surface area of the lake. Now the Laplace equation and boundary20

conditions are

∂2T
∂ρ2

+
1
r
∂T
∂ρ

+
∂2T
∂z2

= 0, (2)
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T (ρ, z = 0) = Tis, ρ ≤ Ri ,

T (ρ,φ, z = 0) = Tot, ρ > Ri ,

T (ρ = ∞, z) = Tot + Γz.

The solution of Eq. (2) is following (Balobayev and Shastkevich, 1974):

T (ρ, z) = Tot + Γz +M (Tis − Tot) (3)5

M(ρ, z) = 1 − A1

[
A2Π(α2

1, k) + A3Π(α2
2, k)

]
(4)

A1 =
z

π
√
z2 + (Ri + ρ)2

; A2 =

√
z2 + ρ2 − Ri√
z2 + ρ2 + ρ

(5)

A3 =

√
z2 + ρ2 + Ri√
z2 + ρ2 − ρ

; α2
1 =

2ρ
r + ρ

; α2
2 = − 2ρ

r − ρ
(6)

r2 = ρ2 + z2; k2 =
4ρRi

z2 + (Ri + ρ)2
(7)

where Π(α2
1, k) and Π(α2

2, k) are the complete elliptical integrals of the third order10

(Abramowitz and Stegun, 1965).
At all climate reconstruction methods the reduced temperatures, TR(ρ, z), are uti-

lized.
From Eq. (3) we obtain

TR(ρ, z) = T (ρ, z) − Tot − Γz = M(Tis − Tot) (8)15

It is easy to see that the Eqs. (3–8) can be also used to describe the effect of “heat
islands” on borehole temperature profiles. In this case Ri is the radius of the “heat
island” (for example, area of deforestation), Tis is its surface temperature, and Tot is the
land’s (outside of the “heat island”) surface temperature. Both values (Tis and Tot) are
temperatures at the depth with practically zero oscillation of the annual temperature.20
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3 Example of calculations

Consider a 30 m deep lake with a radius of Ri=100 m and Tis=10◦C. The regional
geothermal gradient is Γ=0.0300◦C/m and Tot=20◦C. The drilling sites of 5 wellbores
(500 m deep each) are located at distances from 100 m to 400 m from the center of the
lake (Table 1).5

What are the magnitudes of the formation temperature perturbations (expressed
through the reduced temperatures) caused by the lake? The results of calculations
after Eqs. (4) and (8) are presented in Table 1 and Figs. 2 and 3. We have to note
that bottom of the lake has a coordinate z=0 and because of this the actual depth is
z∗=z+30 m. In our case Tis−Tot=−10◦C and the lake has a cooling effect on the tem-10

perature profiles. The values of TR(ρ, z) are decreasing with depth and practically can
be neglected for radial distances of 550–600 m from the center of the lake (Figs. 2 and
3). A commercially available software, Maple 7 (Waterloo Maple 2001), was utilized to
compute the function M(ρ, z).

4 Conclusions15

A proposed method allows to estimate the maximum effect of deep lakes and “heat
islands” (areas of deforestation, urbanization, farming, mining and wetland drainage)
on the borehole temperature profiles. An example of calculations is presented which
shows to what extent the proximity of a deep lake affects the borehole temperature
profiles.20
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Table 1. Function M(ρ, z) for five boreholes.

z, m
Distance from the center of the lake, m

100 150 200 300 400

20
50
70
100
120
150
200
250
300
400
500

0.3828
0.2815
0.2332
0.1787
0.1510
0.1189
0.0827
0.0598
0.0449
0.0275
0.0184

0.0525
0.0950
0.1023
0.0985
0.0919
0.0805
0.0628
0.0488
0.0384
0.0249
0.0172

0.0168
0.0370
0.0456
0.0518
0.0528
0.0512
0.0450
0.0379
0.0315
0.0219
0.0157

0.0042
0.0100
0.0134
0.0174
0.0193
0.0212
0.0222
0.0215
0.0198
0.0159
0.0125

0.0017
0.0041
0.0056
0.0076
0.0087
0.0101
0.0116
0.0122
0.0122
0.0111
0.0095
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Fig. 1. Division of an arbitrary contour lake into sectors (Balobayev and Shastkevich, 1974).
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Fig. 2. The reduced temperatures for two wellbores.
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Fig. 3. The reduced temperatures versus radial distance for two depths.
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