

Supplementary information

2

3 Methods and data

4

5 *Radiocarbon dating*

6

7 Plant remains were extracted from the sediment by wet sieving, acidified (10% HCl), cleaned with
8 distilled water and dried in pre-cleaned (distilled water) glass vials at 105°C overnight. The dried
9 samples were then submitted to radiocarbon laboratories, where pre-treatment procedures varied
10 slightly. At the Lund Radiocarbon Laboratory (LuS) plant macrofossil samples with <4 mg dry weight
11 were not pre-treated, while samples >4 mg dry weight were pre-treated as follows: 0.5% NaOH at room
12 temperature for 0.5 hr, followed by HCl at 80°C for 1 hr, rinsing with distilled water and drying at
13 105°C overnight.

14

15 Pollen grains were isolated from the sediment samples following chemical and micro-sieving methods
16 described in detail in [1-3]. The resulting pollen concentrates consisted primarily of bisaccate conifer
17 pollen. Pollen concentrates were rinsed with distilled water and dried at 105°C overnight prior to
18 graphitization at the radiocarbon laboratory.

19

20 The insoluble (INS) fraction was pre-treated with 2% HCl at 80°C overnight, followed by 2% NaOH at
21 80°C for 5 hr. At the Poznan (Poz-) and Uppsala (Ua-) radiocarbon laboratories samples were subjected
22 to an acid-alkali-acid treatment that consisted of 1% HCl for 8-10 hr just below the boiling point, 0.5%
23 NaOH for 1 hr at 60°C, and acidification to pH 3, after which the samples were dried at 105°C

24 overnight prior to graphitization.

25

26 The $\delta^{13}\text{C}$ results indicate that samples labeled “plant detritus” were mainly composed of limnic plant
27 material ($\delta^{13}\text{C}$ -11 to -20 ‰), although some samples also contained terrestrial plant fragments ($\delta^{13}\text{C}$
28 >20 ‰) (Table 2). Limnic plant material from hard water lakes is prone to a hard-water effect since
29 limnic plants take up C from the ambient lake water during photosynthesis. However in the case of Les
30 Echets we judged that this effect is negligible except for Poz-2492, because (i) pollen concentrates from
31 comparable levels resulted in similar age determinations and (ii) the 95% confidence interval of the
32 measurements is larger than the hypothetical hard water error [4].

33

34 Because most of the radiocarbon dates of core EC1 are older than the internationally ratified IntCal04
35 calibration curve [5], we evaluated alternative comparison curves [6] for constructing age models. The
36 use of glacial comparison curves is being debated [7-16]. Both Hughen06 [17] and Fairbanks05 [8] (SI
37 Fig 1) are based on marine radiocarbon dates and thus have the added uncertainty of an imprecisely
38 known and possibly varying marine reservoir effect. Hughen06 is based on tuning of its sediment
39 greyscale with the $\delta^{18}\text{O}$ record of the high-resolution ^{230}Th -dated Hulu Cave speleothem [18]. Despite
40 the increased resolution offered by this updated calibration set, it has not yet been securely or
41 independently anchored to known calendar years. The comparison curve of Fairbanks05 is based on
42 independently U/Th dated corals and is therefore not tuned to other records. However, the reliability of
43 the data has been debated [9,13,15]. Both comparison curves possess considerable calendar age
44 uncertainties, quoted as c. 50-100 yr for Fairbanks05 and c. 300-500 yr for Hughen06. Hughen06,
45 obtained from continuous sediment cores, is more evenly spread over time than Fairbanks05, which
46 was derived from individual corals. The resolution of Hughen06 is higher (2-646 yr, average 134) than

47 that of Fairbanks05 (1-3455, average 376). In order to take into account the uncertainties on the
48 calendar as well as the radiocarbon age scales, we re-sampled each data point of the Hughen06 or
49 Fairbanks05 curve assuming normal errors on the radiocarbon and calendar age scales, and repeated
50 this process 10,000 times. From linear interpolations between each sampled data set, we calculated the
51 1 sd highest posterior densities on the radiocarbon age scale at 50 calendar year resolution.

52

53 *IRSL dating*

54

55 Sampling and preparation for infrared stimulated luminescence (IRSL) dating was carried out under
56 subdued red-light conditions. The outer parts of the half-cores were removed and the inner part that was
57 not exposed to daylight was sampled for dating. Altogether, 32 samples were taken from Core EC-1
58 from which 21 have been investigated so far (Table 2). The polymineral fine grain fraction (4-11 μm)
59 was extracted after chemical pre-treatments (HCl, H_2O_2 , Na-Oxalate) by settling using Stokes' law. The
60 silt fraction was used because sufficient amounts of sand size grains were not available in the lacustrine
61 deposits. We did not attempt to extract the quartz fraction from the samples since usually this mineral
62 has poor luminescence properties in areas around young orogenic systems such as the Alps [19,20].
63 However, previous experience suggests that K-feldspars, which will dominate the investigated IRSL
64 signal from polymineral fine grains, are a reliable natural dosimeter in the Alpine realm [21-23].

65

66 Determination of D_E was carried out using the modified single-aliquot regenerative-dose (SAR)
67 protocol [21]. A preheat temperature of 290°C and a cut heat of 200°C were applied. This procedure
68 was crosschecked by preheat and dose recovery tests, applying a dose of the same magnitude as the
69 natural dose. The average ratio of applied/regenerated dose for the investigated samples is 1.04 ± 0.07 .

70 Measurements were carried out using Risø TL/OSL readers. The detection filter was a combination of a
71 Schott BG-39, a Schott GG400, and a Corning 7-59 giving a peak emission at ~410 nm. IRSL was
72 recorded during a 300 s shine-down of IR-diodes. The integral 200-300 s was subtracted from the rest
73 of the IRSL decay curves as late-light and the signal of the first 5 s was used for constructing dose
74 response curves. All samples showed recycling ratios close to 1.00 and low recuperation (3-4%). At
75 least seven aliquots were measured for each sample. The plot of D_E versus stimulation time shows a flat
76 plateau (data not shown), indicating complete bleaching of IRSL prior to deposition. Furthermore,
77 many previous studies have demonstrated that lacustrine samples are usually well bleached [24-30].
78 Although optical dating of feldspar from some regions seems to systematically underestimate the
79 known age of a sample due to fading of the luminescence signal, previous luminescence dating in the
80 Alpine region [22,31] indicates that feldspars from these areas are not affected by this phenomenon. We
81 can confirm this observation by the results of storage tests carried out for selected samples from Les
82 Echets that do not show any loss of signal within a year.

83

84 Dose rate relevant elements of all samples were determined by ICP-MS [32] using updated conversions
85 factors [33]. The validity of the analytic procedures was cross-checked by measuring certified reference
86 material. The samples could not be tested for radioactive equilibrium due to the limited amount of
87 material available for high-resolution gamma spectrometry. However, sediments such as the silts
88 investigated in the present study are usually not significantly affected by radioactive disequilibrium
89 [26,30-34]. The contribution from cosmic rays to the total dose rate was calculated using present day
90 depth [35]. Dose rates were determined using a mean a -value of 0.07 ± 0.02 . Past changes in water
91 content are seen as the major source of uncertainty in IRSL dating at Les Echets. Due to the
92 consolidation of lacustrine sediments, it is likely that average moisture in the past was higher than

93 today. To estimate the effect of attenuation of radioactive radiation by water in the sediment pores, we
94 corrected present day moisture measurements for an assumed $80 \pm 10\%$ average water content over time.
95 This correction procedure is confirmed by the dating of pre-Eemian sediments from the lowermost part
96 of the core (Preusser, unpublished data).

97

98 *Age model*

99

100 Some of the lowermost radiocarbon dates are close to the background limit of the Lund AMS
101 laboratory and might thus not be reliable. AMS laboratories regularly measure samples with no
102 remaining radiocarbon to estimate the background. Samples from the same batch which end up too
103 close (< 2 sd) to this background age are given infinite/”greater than” ages. Two samples were assigned
104 infinite ages (dates LuS6297, >46 k, and LuS6298, >40 k), while samples from the same batch
105 (LuS6299, 38550 ± 1500 ^{14}C BP at 3000 cm depth and LuS6296, 39400 ± 1400 ^{14}C BP at 2830 cm
106 depth) were assigned finite ages. The lowermost date (LuS6154, 39320 ± 600 , 3097 cm depth) has not
107 been pretreated and is therefore not considered to be reliable either. This part of the sediment sequence
108 has several sand layers with sharp, erosive upper and lower boundaries, which indicate reworking and
109 redeposition of sediments and likely also sedimentary hiatuses. This observation gives further evidence
110 that the sediments in the lowest part of the analyzed sequence might be older than suggested by the
111 radiocarbon dates. Therefore we assigned 95% prior outlier probabilities (see below) to the lowermost
112 two radiocarbon dates.

113

114 The prior outlier probabilities were adapted for the dates at 1653 (IRSL date LEI-7k) and 1605 cm
115 (radiocarbon date LuS6180). When their original outlier probabilities were used in initial runs, the age-

116 depth modelling process would put the dates on the comparison curve, with an inferred long-lasting
117 hiatus around those depths as a result. Because there were no stratigraphical or other indications for a
118 hiatus in that section (as opposed to around 2700 cm [36]), we assumed that the dates were erroneous,
119 and adapted their prior outlier probabilities to 95%.

120

121 The age models were constrained by prior information [37,38]: *i*) the depositional setting dictates that
122 the dated depths must be ordered chronologically; *ii*) deposition rates of 5-15 yr/cm are most likely, but
123 other accumulation rates are possible (AlphaM 12, AlphaStd 4); *iii*) the variable stratigraphy suggests
124 that rapid accumulation rate changes and hiatuses could have occurred (Epsilon 2); *iv*) hiatuses are
125 most likely to be short, but could at times last millennia (HiatusA 10^{-4} , HiatusB 10^{-5}); and *v*) every date
126 has a prior probability of being outlying (5% for most dates; 50% for those ^{14}C dates which could not
127 be pre-treated, had a sample weight <1 mg or were possibly altered by a hard-water effect; 95% for
128 dates LUS6180, LEI-7k, LuS6299 and LuS6154; SI Table 1). Outlying dates were not removed but
129 were identified and down-weighted automatically.

130

131 **References SI**

132 [1] Brown, T.A., Nelson, D.E., Mathewes, R.W., Vogel, J.S., and Sounthor, J.R., Radiocarbon dating
133 of pollen by accelerator mass spectrometry, *Quat. Res.* 32 (1989) 205-212.

134 [2] Brown, T.A., Farwell, G.W., Grootes, P.M., Schmidt, F.H., Radiocarbon AMS dating of pollen
135 extracted from peat samples, *Radiocarbon* 34 (1992) 550-556.

136 [3] Regnell, J., Preparing pollen concentrates for AMS dating: a methodological study from a hard-
137 water lake in southern Sweden, *Boreas* 21 (1992) 273-277.

138 [4] Björck, S., Wohlfarth, B. ^{14}C chronostratigraphic techniques in paleolimnology, in W.M. Last, J.

139 P. Smol (Eds.), "Tracking Environmental Changes Using Lake Sediments." (2001) 205-245

140 (Kluwer Academic Publishers, Dordrecht).

141 [5] Reimer, P.J., Baillie, M.G.L, Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G.,

142 Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M.,

143 Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Bronk

144 Ramsey, C., Reimer, R.W., Remmele, S., Sounthor, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van

145 der Plicht, J., Weyhenmeyer, C.E., IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr

146 BP, Radiocarbon 46 (2004) 1029-1058.

147 [6] van der Plicht, J., Beck, J. W., Bard, E., Baillie, M. G. L., Blackwell, P. G., Buck, C. E., Friedrich,

148 M., Guilderson, T. P., Hughen, K. A., Kromer, B., McCormac, G., Bronk Ramsey, C., Reimer, P.

149 J., Reimer, R. W., Remmele, S., Richards, D. A., Sounthor, J. R., Stuiver, M., Weyhenmeyer, C. E.,

150 NotCal04 - comparison/calibration ^{14}C records 26-50 cal kyr BP, Radiocarbon 46 (2004) 1-14.

151 [7] van Andel, T. H., The ownership of time: approved ^{14}C calibration or freedom of choice?,

152 Antiquity 79 (2005) 944-948.

153 [8] Fairbanks, R.G., Mortlock, R.A., Chiu, T.-C., Cao, T., Kaplan, A., Guilderson, T.P., Fairbanks,

154 T.W., Bloom, A.L., Grootes, P.M., Nadeau, M.-J., Radiocarbon calibration curve spanning 0 to

155 50,000 years BP based on paired $^{230}\text{Th}/^{234}\text{U}/^{238}\text{U}$ and ^{14}C dates on pristine corals, Quat. Sci. Rev.

156 24 (2005) 17811-1796.

157 [9] Fairbanks, R.G., Chiu, T., Cao, L., Mortlock, R. A., Kaplan, A., Rigorous quality control criteria

158 for screening coral samples and radiocarbon calibration data based on ^{14}C , $^{230}\text{Th}/^{234}\text{U}/^{238}\text{U}$ and

159 $^{231}\text{Pa}/^{235}\text{U}$ dated corals—A reply to the comment by Yusuke Yokoyama and Tezer M. Esat., Quat.

160 Sci. Rev. 25 (2006) 3084-3087.

161 [10] Balter, M., Radiocarbon dating's final frontier, Science 313 (2006) 1560–1563.

162 [11] Bronk Ramsey, C., Buck, C. E., Manning, S. W., Reimer, P. J., van der Plicht, J., Developments
163 in radiocarbon calibration for archaeology, *Antiquity* 80 (2006) 783-798.

164 [12] Mellars, P., A new radiocarbon revolution and the dispersal of modern humans in Eurasia, *Nature*
165 439 (2006) 931-935.

166 [13] P.J. Reimer, M.G.L. Baillie, E. Bard, J.W. Beck, P.G. Blackwell, C.E. Buck, G.S. Burr, R.L.
167 Edwards, M. Friedrich, T.P. Guilderson, A.G. Hogg, K.A. Hughen, B. Kromer, G. McCormac, S.
168 Manning, R.W. Reimer, J.R. Southon, M. Stuiver, J. van der Plicht and C.E. Weyhenmeyer,
169 Comment on “Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired
170 $^{230}\text{Th}/^{234}\text{U}/^{238}\text{U}$ and ^{14}C dates on pristine corals” by R.G. Fairbanks et al., and “Extending the
171 radiocarbon calibration beyond 26,000 years before present using fossil corals” by T.-C. Chiu et
172 al., *Quat. Sci. Rev.* 25 (2006) 855-862.

173 [14] Turney, C.S.M., Roberts, R.G., Jacobs, Z., Progress and pitfalls in radiocarbon dating [with reply
174 by Mellars], *Nature* 443 (2006) E3-E4.

175 [15] Yokoyama, Y., Esat, T.M., Comment on “Extending the radiocarbon calibration beyond 26,000
176 years before present using fossil corals” by T.-C. Chiu, R.G. Fairbanks, R.A. Mortlock, A.L.
177 Bloom, *Quat. Sci. Rev.* 25 (2006) 3081-3083.

178 [16] Danzeglocke, U., Jöris, O., Weninger, B., CalPal-2007^{online}, <http://www.calpal-online.de/>

179 [17] Hughen, K., Southon, J., Lehman, S., Betrand, C., Turnbull, J., Marine-derived ^{14}C calibration
180 and activity record for the past 50,000 years updated from the Cariaco Basin, *Quat. Sci. Rev.* 25
181 (2006) 3216-3227.

182 [18] Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.-C., Dorale, J.A., A high-
183 resolution absolute-dated monsoon record from Hulu Cave, China, *Science* 294 (2001)
184 2345-2348.

185 [19] Klasen N., Preusser, F., Fiebig, M., Blei, A., Radtke, U., Luminescence properties of glaciofluvial
186 sediments from the Bavarian Alpine Foreland, *Radiat. Meas.* 41 (2006) 866-870.

187 [20] Preusser, F., Ramseyer, K., Schlüchter, C., Characterisation of low luminescence intensity quartz
188 from Westland, New Zealand, *Radiat. Meas.* 7-8 (2006) 871-877.

189 [21] Preusser, F., IRSL dating of K-rich feldspars using the SAR protocol: Comparison with
190 independent age control, *Ancient TL* 21 (2003) 17-23.

191 [22] Preusser, F., Geyh, M.A., Schlüchter, C., Timing of Late Pleistocene climate change in lowland
192 Switzerland, *Quat. Sci. Rev.* 22 (2003) 1435-1445.

193 [23] Preusser, F., Schlüchter, C., Dates from an important early Late Pleistocene ice advance in the
194 Aare Valley, Switzerland, *Eclogae Geol. Helv.* 97 (2004) 245-253.

195 [24] Doran P.T., Berger G.W., Lyons W.B., Wharton R.A., Davisson M.L., Southon J., Dibb J.E.,
196 Dating Quaternary lacustrine sediments in the McMurdo Dry Valleys, Antarctica, *Palaeogeogr.*
197 *Palaeocl.* 147 (1999) 223-239.

198 [25] Wolfe A.P., Frechette B., Richard P.J.H., Miller G.H., Forman S.L., Paleoecology of a >90,000-
199 year lacustrine sequence from Fog Lake, Baffin Island, Arctic Canada, *Quat. Sci. Rev.* 19 (2000)
200 1677-1699.

201 [26] Lang, A., B. Zolitschka, Optical dating of annually laminated lake sediments: A test case from
202 Holzmaar/Germany, *Quat. Sci. Rev.* 20 (2001) 737-742.

203 [27] Berger, G. W., Doran, P.T., Luminescence-dating zeroing tests in Lake Hoare, Taylor Valley,
204 Antarctica. *J. Palaeolimn.* 25 (2001) 519-529.

205 [28] Berger G.W., Melles M., Banerjee D., Murray A.S., Raab A., Luminescence chronology of non-
206 glacial sediments in Changeable Lake, Russian High Arctic, and implications for limited Eurasian
207 ice-sheet extent during the LGM, *J. Quat. Sci.* 19 (2004) 513-523.

208 [29] Preusser, F., Drescher-Schneider, R., Fiebig, M. & Schlüchter, C., Re-interpretation of the
209 Meikirch pollen record, Swiss Alpine Foreland, and implications for Middle Pleistocene
210 chronostratigraphy, *J. Quat. Sci.* 20 (2005) 607-620.

211 [30] Vandergoes, M.J., Newnham, R.M., Preusser, F., Hendy, C.H., Lowell, T.V., Fitzsimons, S.,
212 Hogg, A., Kasper, H.U., Schlüchter, C., 2005, Southern Ocean terrestrial record showing local
213 modification of glacial-interglacial climate signals, *Nature* 436 (2005) 242-245.

214 [31] Preusser, F., Lumineszenzdatierung fluviatiler Sedimente - Fallbeispiele aus der Schweiz und
215 Norddeutschland. *Kölner Forum Geol. Paläon.* 3 (1999) 63 p.

216 [32] Preusser, F., Kasper, H.U., Comparison of dose rate determination using high-resolution gamma
217 spectrometry and inductively coupled plasma – mass spectrometry, *Ancient TL* 19 (2001) 17-21.

218 [33] Adamiec, G., Aitken, M.J., Dose-rate conversion factors: update, *Ancient TL* 16 (1998) 17-30.

219 [34] Thomas, P.J. Murray, A.S., Sandgren, P., Age limit and age underestimation using different OSL
220 signal from lacustrine quartz and polymineral fine grains, *Quat. Sci. Rev.* 22 (2003) 1139-1143.

221 [35] Prescott, J. R., Hutton, J. T., Cosmic ray contributions to dose rates for luminescence and ESR
222 dating: large depth and long time variations, *Radiat. Meas.* 23 (1994) 497-500.

223 [36] Wohlfarth, B., Veres, D., Ampel, L., Lacourse, T., Blaauw, M., Preusser, F., Andrieu-Ponel, V.,
224 Keravis, D., Lallier-Vergès, E., Björck, S., Davies, S., de Beaulieu, J.-L., Risberg, J., Hormes, A.,
225 Kasper, H.U., Possnert, G., Reille, M., Zander, A., Rapid ecosystem response to abrupt climate
226 changes during the last glacial period in Western Europe, 39-16 kyr BP, *Geology* 36 (2008)
227 407-410.

228 [37] Blaauw, M. & Christen, J.A. Radiocarbon and peat chronologies and environmental change.
229 *Appl. Stat.* 54 (2005) 805-816.

230 [38] Blaauw, M., Bakker, R., Christen, J. A., Hall, V. A., van der Plicht, J.A, Bayesian framework for

231 age-modelling of radiocarbon dated peat deposits: case studies from the Netherlands,
232 Radiocarbon 49 (2007) 357-367.

233

234 **Captions SI**

235

236 SI Table 1. Radiocarbon dates and outlier probabilities of core Les Echets. *a*: material consisted of plant
237 detritus (pld), plant remains (plr), pollen concentrates (pol), or sediment/insoluble material (sed). *b*:
238 material was treated as follows: HCl followed by NaOH followed by HCl (aba), NaOH followed by HCl
239 (ba), HCl followed by NaOH (ab), rinsed with distilled water (H₂O), or no treatment (-). *c*: prior outlier
240 probabilities, *d*: posterior outlier probabilities Hughen06 run, *e*: posterior outlier probabilities
241 Fairbanks05 run. Mean posterior outlier probability 33.6% for Hughen06, 37.1% for Fairbanks05.

242

243 SI Table 2. IRSL dates and outlier probabilities of core Les Echets. *a*: prior outlier probabilities, *b*:
244 posterior outlier probabilities Hughen06 run, *c*: posterior outlier probabilities Fairbanks05 run. Mean
245 posterior outlier probability 6.8% in Hughen06 run, 6.6% in Fairbanks05 run.

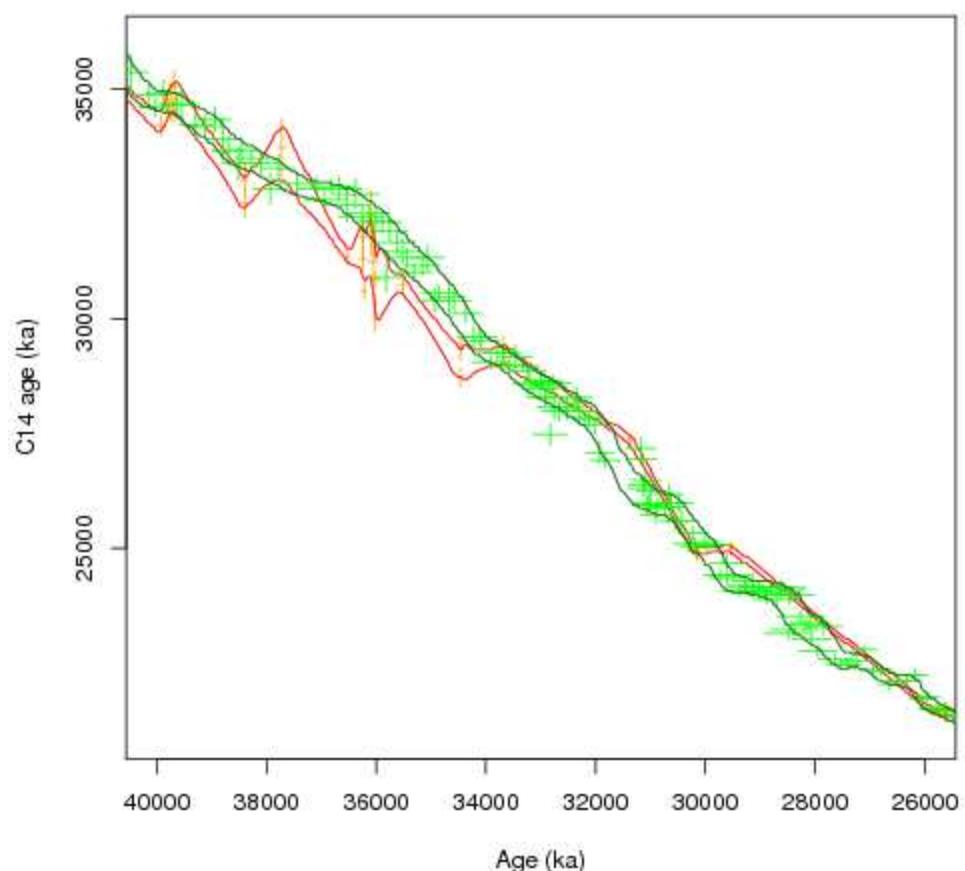
246

247 SI Fig 1. The Hughen06 (green [25]) and Fairbanks05 (red [26]) comparison curves from 40 to 26 ka.
248 Shown are 1 standard deviation error envelopes, taking calendar age uncertainties into account.

249 SI Table 1

Lab id.	depth (cm)	material ^a (dry, mg)	weight (dry, mg)	treatment ^b	¹⁴ C age (BP ± sd)	prior ^c (%)	Hugh06 ^d (%)	Fair05 ^e (%)
Poz2492	566	pld	19	aba	17090 ± 90	50	67.9	66.4
LuS6151	1120	pld	3	--	15310 ± 160	50	92.9	94.9
LuS5988	1300	pld	1	--	17100 ± 400	50	66.0	77.4
LuS6180	1605	pld	2	--	20030 ± 140	95	95.5	96.4
LuS6152	1670	plr	8	ba	22625 ± 120	5	2.3	18.3
LuS6179	1740	plr	5	ba	22210 ± 120	5	3.0	61.1
LuS6072	1770	plr	8	ba	23175 ± 105	5	3.9	6.5
Poz2493	1829	plr	48	aba	23890 ± 150	5	0.5	30.1
LuS6387	1896	pol	4	H2O	23500 ± 150	5	0.9	4.7
LuS6178	1953	plr	8	ba	24490 ± 170	5	5.4	36.2
LuS6069	1987	plr	2	--	21090 ± 170	50	100.0	100.0
LuS6177	2022	plr	15	ba	23820 ± 140	5	1.2	54.1
LuS6070	2031.5	plr	13	ba	24945 ± 120	5	79.1	39.2
LuS6289	2052	plr	9	ba	24350 ± 250	5	0.5	1.3
Ua16654	2080	plr	1.5	aba	24310 ± 470	5	0.3	0.5
LuS6176	2113	plr	10	ba	24725 ± 140	5	0.2	1.0
LuS6073	2171.5	plr	2	--	24455 ± 210	50	63.5	74.4
Ua16739	2185.5	plr	2.3	aba	26115 ± 195	5	1.1	2.4
LuS6291	2300	sed	>50	ab	27700 ± 250	5	1.6	0.7
Ua16770	2312	plr	0.5	aba	21245 ± 220	50	100.0	100.0
LuS6292	2354	sed	>50	ab	30850 ± 350	5	99.5	99.3
LuS6386	2378	pol	4	H2O	23200 ± 150	5	100.0	100.0
LuS6293	2384	sed	>50	ab	30150 ± 400	5	41.0	17.6
LuS6294	2412	sed	>50	ab	28600 ± 300	5	1.0	0.7
LuS6353	2424	pol	12	H2O	28800 ± 300	5	0.7	0.5
LuS6295	2440	sed	>50	ab	29450 ± 300	5	0.6	0.4
Ua16660	2474	plr	2.4	aba	30005 ± 190	5	6.0	7.4
LuS6352	2486	pol	6	H2O	26950 ± 200	5	100.0	100.0
LuS5990	2508	plr	2	--	27600 ± 500	50	96.9	96.7
LuS6385	2510	pol	4	H2O	29750 ± 200	5	0.9	0.7
Ua16658	2547	plr	1.8	aba	31170 ± 850	5	0.4	0.5
Ua16824	2562	plr	2.5	aba	31200 ± 350	5	0.1	1.9
LuS6300	2582	pol	13	H2O	27400 ± 200	5	100.0	100.0
LuS6354	2622	pol	12	H2O	31200 ± 350	5	0.5	0.6
Ua16749	2630	plr	1.7	aba	30815 ± 340	5	0.6	0.5
Ua16850	2668	plr	2.3	aba	32010 ± 225	5	0.1	1.6
LuS6384	2706	pol	4	H2O	31950 ± 250	5	0.5	0.7
LuS6355	2730	pol	12	H2O	31800 ± 350	5	0.6	0.9
LuS6020	2735	sed	10	ab	32700 ± 400	5	0.8	1.0
LuS5991	2748	plr	2	--	27450 ± 700	50	100.0	100.0
Ua17108	2815.5	plr	2.3	aba	35300 ± 365	5	8.6	9.2
LuS6296	2830	sed	>50	ab	39400 ± 1400	5	1.3	1.5
LuS6018	2840	sed	10	ab	40000 ± 800	5	1.0	1.6

251 SI Table 2


252

253	Lab id.	IRSL age (yr \pm sd)	depth (cm)	prior ^a (%)	Hughen06 ^b (%)	Fairbanks05 ^c (%)
254	LE1-1k	24900 \pm 3200	549	5	2.8	2.2
	LE1-2k	24300 \pm 3100	655.5	5	1.3	1.0
	LE1-3m	21200 \pm 2700	829.5	5	0.3	0.3
	LE1-5m	23000 \pm 3000	1132.5	5	0.4	0.4
	LE1-6k	24300 \pm 3200	1393	5	0.3	0.3
	LE1-7k	23800 \pm 3000	1653	95	58.9	57.1
	LE1-8k	32400 \pm 4300	1810	5	0.4	0.5
	LE1-9k	28700 \pm 3700	1895.5	5	0.3	0.2
	LE1-10k	28000 \pm 3800	2000	5	0.3	0.3
	LE1-12m	28700 \pm 3800	2104.5	5	0.3	0.2
	LE1-15k	40600 \pm 6300	2241.5	5	0.7	0.8
	LE1-16m	33000 \pm 4400	2314	5	0.3	0.2
	LE1-21k	33500 \pm 4400	2551	5	0.2	0.3
	LE1-22m	40000 \pm 5300	2653.5	5	0.3	0.4
	LE1-24m	37500 \pm 5000	2707.5	5	0.3	0.3
	LE1-26k	44500 \pm 6000	2793.5	5	0.5	0.4
	LE1-28k	68200 \pm 9000	2851	5	8.8	8.0
	LE1-29m	65200 \pm 9200	2910.5	5	2.6	2.7
	LE1-30k	83600 \pm 11800	2930	5	28.2	27.7
	LE1-32k	90500 \pm 13000	2985	5	38.6	37.9
	LE1-33m	76900 \pm 12100	3050.5	5	3.7	4.0

255 SI Fig. 1

256

257

