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Abstract

High resolution benthic foraminiferal oxygen and carbon stable isotopes (δ18O, δ13C)
from core EUGC-3B are used here to infer rapid climatic changes for the last 8500 yr in
the Rı́a de Muros (NW Iberian Margin). Benthic foraminiferal δ18O and δ13C potentially
register migrations in the position of the hydrographic front formed between two differ-5

ent intermediate water masses: Eastern North Atlantic Central Water of subpolar origin
(ENACWsp), and subtropical origin (ENACWst). The isotopic records have been com-
pared with two well established North Atlantic marine Holocene paleoceanographic
records from low (Sea Surface Temperatures anomalies off Cape Blanc, NW Africa)
and high latitudes (Hematite Stained Grains percentage, subpolar North Atlantic). This10

comparison clearly demonstrates that there is a strong link between high- and low-
latitude climatic perturbations at centennial-millennial time scales during the Holocene.
Spectral analyses also points at a pole-to-equator propagation of the so-called 1500 yr
cycles. Our results demonstrate that during the Holocene, the NW Iberian Margin
has undergone a series of cold episodes which are likely triggered at high latitudes in15

the North Atlantic and are rapidly propagated towards lower latitudes. Conceivably, the
propagation of these rapid climatic changes involves a shift of atmospheric and oceanic
circulatory systems and so a migration of the hydrographical fronts and water masses
all along the North Atlantic area.

1 Introduction20

In recent years, many researchers have documented the existence of a series of re-
curring millennial-scale cooling events in North Atlantic deep sea sediments (Bond et
al., 1997, 2001; Bianchi and McCave, 1999; Keigwin and Boyle, 2000; Giraudeau et
al., 2001; Andrews et al., 2003; Marchitto and deMenocal, 2003; Oppo et al., 2003;
Solignac et al., 2004) and Subtropical Atlantic (deMenocal et al., 2000a, b; Keig-25

win and Boyle, 2000) with a mean periodicity around 1500±500 years. This sub-
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Milankovitch climate variability has also been recognized in pollen records, lacustrine
deposits (Campbell et al., 1998; Viau et al., 2002; Hu et al., 2003) and speleothems
(McDermott et al., 2001). A distinctive feature that characterizes this pervasive cycle is
that it operates irrespective of whether the system is in a glacial or an interglacial mode
(Bond et al., 1997, 1999; deMenocal et al., 2000b). Although increasing documentation5

of these quasi-periodic cycles during the Holocene has arisen from records around the
world, there is a considerable debate regarding their timing (Schulz and Paul, 2002),
driving force (Bond et al., 2001) and the mechanism that propagates these Holocene
climatic perturbations in the atmosphere-ocean system. It has been argued that subtle
changes in the Atlantic Meridional Overturning Circulation (MOC) may have played a10

major role in the amplification of these millennial scale events due to changes in merid-
ional heat transport (Marchitto and deMenocal, 2003; Oppo et al., 2003) and that a
partial shut-down of the thermohaline circulation (THC) might have triggered and/or
amplified Late Holocene cold episodes, as for example the Little Ice Age (LIA) in the
North Atlantic (Keigwin and Boyle, 2000).15

Marine shallow areas and continental shelves have a great potential as high res-
olution paleo-archives, yet little attention has thus far been directed to these areas
owing to the difficulty to discriminate between local and global climatic-oceanographic
changes in the past. In this sense, the NW Iberian Margin has proved to be particularly
sensitive to short time-scale changes during the late Holocene, both hydrographical20

(Diz et al., 2002; Álvarez et al., 2005; González-Álvarez et al., 2005) and atmospheric
changes (Mart́ınez-Cortizas et al., 1999; Desprat et al., 2003). However, whether these
climatic changes are local or a response to a global forcing is still a matter of debate
(Diz et al., 2002; Álvarez et al., 2005; González-Álvarez et al., 2005). Therefore, more
effort needs to be directed toward these especially sensitive regions, in order to obtain25

high resolution Holocene records with potential to resolve climatic and oceanographic
changes at centennial and millennial time scales.

In this study we analysed the stable oxygen and carbon (δ18O, δ13C) isotopic com-
position of benthic foraminifera from a core located in the Rı́a de Muros (NW Iberian
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Peninsula), a shallow marine environment with relatively high sedimentation rates. The
gravity core EUGC-3B records the last 8200 cal. yr BP. The Rı́a de Muros is located
in the vicinity of the Finisterre Front, a hydrographic front between two components
of the Eastern North Atlantic Central Water (subpolar and subtropical end-members,
ENACWsp and ENACWst, respectively) and thus it is a potential area for recording5

past oceanographic fluctuations at centennial and millennial time-scales. In order to
determine the possible linkages with general and widespread climatic patterns in the
North Atlantic during the Holocene, we compare our record with previously published
North Atlantic Holocene records which are known to reflect centennial-millennial scale
variability: SST anomaly off Cape Blanc, Hole 658C (Bond et al., 1997, 1999; deMeno-10

cal et al., 2000b) and Hematite Stained Grains percentage (HSG), VM 29-191 (Bond
et al., 1997, 1999; deMenocal et al., 2000b).

2 Study area and regional oceanography

The Rı́a de Muros is the northernmost of the so-called Rı́as Baixas, a set of funnel-
shaped shallow incised valleys that distinguish the NW Iberian coasts (Fig. 1a-c). They15

are under the direct influence of shelf winds that modify the typical two-layer residual
circulation pattern characteristic of partially mixed estuaries (Álvarez-Salgado et al.,
2000). During the upwelling favourable season (April–September) cool and nutrient-
rich intermediate waters (ENACW) are advected into the Rı́as Baixas significantly in-
creasing the primary production in the surface waters and the flux of organic carbon20

to the sediment and also to the adjacent continental shelf (Prego, 1993; Rosón et al.,
1999; Álvarez Salgado et al., 2001). Consequently, during relatively strong or persis-
tent upwelling periods, a large fraction of the organic materials produced within the
Rı́as is exported to the continental shelf, thus contributing to the rapid aging of the up-
welled ENACW (Álvarez-Salgado et al., 2000). Conversely, during the rest of the year,25

downwelling-favourable southerly winds prevail and the circulation pattern reverses ac-
cumulating surface waters into the outer areas of Rı́as Baixas and preventing the en-
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trance of ENACW. Downwelling periods are characterized by lower water renewal rates,
consumption of nutrients and in situ organic matter degradation (Álvarez-Salgado et al.,
2000).

The Galician continental shelf is hydrographically characterized by the presence
of two different intermediate water masses that converge off Cape Finisterre (Fraga,5

1991; Pérez et al., 1993, Figs. 1d–e): ENACW of subtropical origin (ENACWst) and
ENACW of subpolar origin (ENACWsp). ENACWst can be easily identified in a Tem-
perature/Salinity plot as a straight line ranging from 13.13◦C, 35.80 psu (practical salin-
ity units) to 18.50◦C and 36.75 psu (Fiúza, 1984) (Figs. 1d–e). ENACWst is formed
near 35◦ N along the Azores Front as a result of the subduction of large water vol-10

umes due to local evaporation processes and the subsequent winter surface cooling
(Fiuza, 1984). After water mass formation, ENACWst is advected eastward by the
Azores Current to be finally split into two different branches: one spreads southward
to north-western Africa and the other one northwards reaching the occidental mar-
gin of the Iberian Peninsula more aged and progressively less oxygenated (Pérez et15

al., 2001, Fig. 1f). As a consequence, ENACWst is relatively less oxygenated than
ENACWsp at the area of convergence between both water masses at Finisterre Front
(see Fig. 1f). The ENACWsp is relatively colder and less saline than the ENACWst
and can be identified in a T-S plot as a straight line between 10.0◦C, 35.40 psu and
12.20◦C, 35.66 psu (Figs. 1d–e). This water mass is formed in the Northeast Atlantic20

along the 46◦ N parallel (Celtic Sea) due to winter cooling and deep convection (Mc-
Cartney and Talley, 1982). These hydrographical models (Fiúza, 1984) have been
subsequently confirmed by many others authors (Rı́os et al., 1992; Álvarez-Salgado
et al., 1993, 1997, 2003; Castro et al., 1994; Pérez et al., 2001; Peliz et al., 2002).
The convergence of this water masses develops in a subsurficial hydrographic front25

with the ENACWst to the south and the ENACWsp to the north (Fraga, 1991; Pérez et
al., 1993) (Figs. 1d–e). The convergence of water masses together with northerly pre-
vailing winds cause a quasi-permanent summer upwelling of nutrient rich waters. The
regional position of this front varies in short time scales (annual/interannual) migrating
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northward and southward depending on regional climatology and oceanographic fac-
tors (Álvarez-Salgado et al., 1993) and thus deciding the upwelling of either ENACWst
or ENACWsp (Álvarez-Salgado et al., 1993, 1997; Pérez et al., 2001). This mecha-
nism could have operated likewise on longer time scales (centennial-millennial), with
both ENACWst and/or ENACWsp upwelling accordingly to general northward or south-5

ward shifts of hydrographical fronts in the North Atlantic.

3 Material and methods

3.1 Stable isotopes analyses

Gravity core EUGC-3B (42◦ 45.105′N, 9◦ 02.231′W; 412 cm long, 38 m depth) was
recovered within the framework of the EU HOLSMEER project during the 2001 BIO10

Mytilus cruise. The upper part of the core (2.5–0 m) was sampled at 2 cm intervals
and the lower part (4.1–2.5 m) at 3–4 cm intervals. As a general sampling routine, the
outer rind of the core was removed, hence avoiding possible sources of contamination
from the sedimentary column that often take place during core retrieval. Bulk sediment
subsamples were oven dried, weighed and soaked in a disaggregating solution and15

then wet sieved over a >125µm sieve. Between 15 and 25 specimens of the benthic
foraminifera Nonion commune (d’Orbigny) were picked from the >125µm fraction for
stable isotopic (δ18O, δ13C) measurements. Only well preserved individuals (without
clear signals of test alteration and/or partial dissolution) were selected for these anal-
ysis. All samples were firstly sonicated in distilled water in order to remove potentially20

attached clays from the foraminiferal tests.
The relatively high abundance of N. commune along the core (Lebreiro et al., 2006)

and its shallow infaunal preferential habitat (Diz and Francés, in press) make this
species a excellent candidate for the paleoceanographic reconstruction of the selected
area all through the Holocene. Stable carbon and oxygen isotope measurements were25

carried out at the University of Bremen (Geosciences Faculty) using a FINNIGAN MAT
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251 mass spectrometer coupled online with a Kiel automated carbonate preparation
device. Long term reproducibility was calculated using an internal standard (Solnhofen
Limestone) routinely measured over several months (±0.07‰ for δ18O and ±0.05‰ for
δ13C). All the isotopic data were referred to the Vienna Pee Dee belemnite standard
(V-PDB scale).5

3.2 Age model of core EUGC-3B

The age model was established by means of accelerator mass spectrometry (AMS) ra-
diocarbon dating of seven intervals (Table 1) at the AMS Laboratory, Institute of Physics
and Astronomy (University of Aarhus, Denmark). One benthic foraminiferal sample
and 6 well preserved bivalve shells (e.g. unbroken, both valves still articulated, delicate10

structures preserved) were selected for 14C AMS dating. All species are character-
ized by very shallow infaunal habitat preferences (Table 1). Raw radiocarbon 14C ages
were calibrated to calendar ages with the Calib 5.01 software (Stuiver and Reimer,
1993) using the MARINE04 calibration curve (Hughen, 2004). Radiocarbon dates and
calibrated ages (with ±2 sigma ranges) are listed in Table 1. All the ages in this pa-15

per are expressed in calendar years BP unless otherwise specified. The age model
was calculated by linear interpolation between the calibrated ages of the dated levels
(Figs. 2a) resulting on average sedimentation rates of 0.049 cm/yr with intervals of up
to 0.137 cm/yr.

3.3 Spectral analysis20

We have developed a Continuous Wavelet Spectrum (CWS) analysis on the three se-
lected data-sets: NW Iberia benthic δ13C (EUGC-3B), SST anomaly off Cape Blanc
(Hole 658C) and Hematite Stained Grains percentage in subpolar North Atlantic (HSG,
VM 29-191) (Fig. 1a). The CWS is a multi-resolution time-frequency technique that is
useful for exploring data known to be non-stationary (Torrence and Compo, 1998).25

With this approach we can examine possible changes in the nature of most important
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periodicities all along the time period of selected records. For this purpose we have se-
lected a complex Morlet wavelet which offers great frequency resolution but is slightly
less efficient in ascertaining time localization. Results are shown as 2-D contours of
spectral variance (variance normalized CWS) in both time and frequency domains.

4 Results5

4.1 Stable isotopes

Benthic foraminiferal δ13C values range between −0.70‰ and −4.45‰ (Fig. 2, Fig. 3c)
with an average value of −3.13‰. A detailed inspection of this record allows the identifi-
cation of two distinctive intervals: the lower part (from ca. 8200 cal. yr BP to 3800 cal. yr
BP) and the upper part (ca. 3800–536 cal. yr BP) (Figs. 2 and 3c). The older period10

shows a generally decreasing δ13C trend that occurs in three major steps consisting
of an initial depletion of the δ13C values of about −1.3‰ are followed by relatively brief
plateaus (Figs. 2 and 3c). The first step (8200–7314 cal. yr BP) is characterized by
an initial rapid fall in the δ13C values (from −0.30‰ to −1.60‰) which is followed by
relatively stable plateau with an average ratio of −1.51‰. The second isotopic pulse15

(7314–6360 cal. yr BP) also took place with an initial depletion in the δ13C values (from
−1.60‰ to −2.58‰) and the corresponding plateau phase. Finally, the last step (6360–
3735 cal. yr BP) presents a similar initial decrease in the δ13C values (from −2.58‰ to
−3.86‰) finishing with another δ13C isotopic plateau averaging −3.89‰ (Fig. 2 and
3c). The upper part generally shows low δ13C values that are interrupted by several20

abrupt events of rapid enrichments in the δ13C values (Fig. 2 and 3c). In the first and
most significant of these abrupt events (3735–2978 cal. yr BP), δ13C values increase by
2.5‰ immediately after the core δ13C minimum (−4.45‰). Afterwards, low δ13C values
are registered again in the record, presenting a slightly increasing trend towards more
positive values from this point to the core top. Positive excursions also occur at 180425

and 1040 cal. yr BP. The uppermost part of the δ13C record shows a rapid increase
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trend to positive values (Fig. 2 and 3c).
The overall δ18O variability is much lower than that for the δ13C record with δ18O

values ranging between 1.60‰ and 2.15‰ (Figs. 2 and 3a). Three main intervals can
be distinguished (Figs. 2 and 3a). At the core bottom (8170–7331 cal. yr BP), the δ18O
record shows a sharp increase in the δ18O values from 1.60‰to 1.99‰. After this brief5

period, the δ18O record attains more constant values between the 7331–4002 cal. yr
BP interval. The last period (4002–536 cal. yr BP) starts with a new abrupt change in
the δ18O values (from 1.90‰ to 1.75‰). After this decrease, the δ18O record comes
into a new relatively steady period with almost no significant variability until the upper
part of the core. A general overview of the δ18O record indicates the existence of10

at least two different stages or “modes of variability” in the area. Both modes illustrate
different isotopic signatures, the former with relatively higher δ18O values and the latter
with relatively lower δ18O values. The boundary between both modes is located at
around 4000 cal. yr BP. This can also be recognized in the δ13C record as a drastic
event centered at ca. 4000 years and the change in the step-like decreasing δ13C15

trend which is interrupted by a large sudden rises on δ13C values (Figs. 2 and 3c).

4.2 Spectral analysis

Although spectral analyses were performed for both δ18O and δ13C records, significant
results were only obtained in the case of the δ13C record. This is probably caused by
the low variability in the values of the δ18O. The CWS results of the δ13C record in20

core EUGC-3B shows spectral variance maximum centred at ca. 1500 yr (Fig. 4b).
Nevertheless, the spectral variance intensity decrease as we approach the margins
of the spectrum, probably due to edge effects in the dataset and also to a lower time
resolution in the early Holocene period. When compared to the other two selected
proxy records, the pattern formerly depicted is repeated again. The HSG record from25

Core VM 29-191 shows significant spectral variance close to the 1500 yr periodicity
(Fig. 4a), a fact previously described for this record (Bond et al., 1997, 1999). Finally,
the CWS analysis of Hole 658C SST anomaly does not produce any strongly significant
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periodicity in the 1500 yr range, but a rather weaker spectral variance in this band
(Fig. 4c).

5 Discussion

5.1 Hydrographic evolution in the Rı́a de Muros during the Holocene

Downcore variations of benthic foraminiferal stable isotopes in the Rı́a de Muros sug-5

gest that this area has experienced a set of major hydrographic changes during the last
8200 years. There are at least two different components forcing the variability in the
EUGC-3B δ13C record that need to be clearly identified. The overall trend present in
the δ13C record is interpreted to be caused by local changes in sea level, which induce
changes in the supply of organic carbon to the seafloor as well as changes in water10

column ventilation rates. The general decrease of benthic δ13C values from ca. 8200
to 4000 cal. yr BP is caused by the general sea level rise that took place in the Iberian
Atlantic Margin from the Last Glacial Maximum (LGM) to the Holocene Climatic Opti-
mum (HCO) ca. 5000 cal. yr BP (Dias et al., 2000), when sea level was a few meters
above present. The sea level was located about 20 m below present sea level at about15

8200 yr BP (Dias et al., 2000). As the water fills the basin of the ŕıa, the primary pro-
duction of the surface waters progressively increases as does the organic carbon flux
to the sea floor so explaining the continuous decrease of benthic δ13C values. From
4000 cal. yr BP onwards, overall δ13C values continue relatively constantly as sea level
approaches present values after the HCO (Dias et al., 2000).20

The overall trend in the δ13C record is punctuated by at least six (including the LIA)
rapid millennial-scaled events of high δ13C values (grey bars in Fig. 3). These δ13C
enrichments are probably linked with increased influence of the relatively more oxy-
genated ENACWsp over the Rı́a de Muros during enhanced upwelling periods. Up-
welling of this water mass caused both more ventilation at the sea floor and an in-25

crease in the outwelling (export to the shelf) of the organic matter produced at this
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site. According to this model, more positive δ13C values indicate more ventilation and
less in-situ organic matter remineralization coinciding with periods of ENACWsp advec-

tion. Conversely, more negative δ13C values account for reduced ventilation rates and
enhanced in-situ organic matter degradation (i.e. decrease of the outwelling). These
periods are related with the advection of the poorly oxygenated ENACWst (compared5

with the subtropical component) into the Rı́a de Muros (Fig. 3).
Although the centennial and millennial variability of the benthic δ18O record has been

to some extent reduced due to the opposite roles that salinity and temperature play in
oxygen isotopes, the large scale changes in δ18O record are the result of alterations
in the relative influence of the two water masses bathing the Rı́a de Muros. The major10

shift in δ18O towards heavier values at ca. 8200 cal. yr BP is interpreted to be the result
of the establishment of full marine conditions in the Rı́a de Muros due to rapid sea level
rise. After that initial period, the δ18O record shows an abrupt change at ca. 4000 cal. yr
BP that separates an early period with high δ18O values from a late period with low
δ18O values indicating a change in the water mass that predominantly upwells into the15

Rı́a de Muros. According to this interpretation, the predominant water mass upwelling
in the Rı́a de Muros during the early Holocene was the ENACWst whereas during the
late Holocene the ENACWsp entered more frequently into the Rı́a de Muros. This
shift from relatively warm and saltier to relatively cold and fresher waters is certainly in
accordance with a general cooling trend throughout the Holocene as reported in many20

different paleo-records in this area (Marchal et al., 2002).

5.2 Links between high and low latitudes climatic patterns

Periods characterized by the presence of ENACWsp and strong upwelling events in the

Rı́a de Muros (more positive benthic δ13C values) correlate (within age model uncer-
tainties) with cold SST anomalies off Cap Blanc (deMenocal et al., 2000b) (Fig. 3d).25

Such anomalies have been interpreted to be caused either by a southward advection
of colder subpolar waters and/or by an intensification of large upwelling events that

1293

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/3/1283/2007/cpd-3-1283-2007-print.pdf
http://www.clim-past-discuss.net/3/1283/2007/cpd-3-1283-2007-discussion.html
http://www.egu.eu


CPD
3, 1283–1309, 2007

Holocene climate
variability in NW

Iberia

L. D. Pena et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

typically occur in this area (deMenocal et al., 2000b). Moreover, it has been previously
proposed that these cooling events in the subtropical North Atlantic are directly linked
with the HSG percentage fluctuations in the subpolar North Atlantic (Bond et al., 1997;
deMenocal et al., 2000b). This strongly indicates that the presence of colder water
masses and enhanced upwelling events entering into the Rı́a de Muros (i.e. increased5

influence of ENACWsp) are strongly linked with North Atlantic cooling events associ-
ated with ice rafted debris episodes. Not surprisingly, both locations are directly under
the influence of the western North Atlantic Subpolar-Subtropical Gyre (Canary Cur-
rent). Therefore, any alteration in this regional system (i.e. intensification of northerly
winds and/or southward displacement of the hydrographical fronts) should be recorded10

simultaneously in both areas. In the same way as North Atlantic polar front migrated
southwards to a more zonal position during the LGM (Keffer et al., 1988), it is likely that
minor cooling events in the North Atlantic induced similar southward displacements
of the subpolar-subtropical gyre and the hydrographical fronts. Indeed, increased in-
fluence of ENACWsp into the Rı́a de Muros entails a southward displacement of the15

ENACWsp/ENACWst front.
We suggest that these Holocene cold spells are propagated southward from the

North Atlantic region by means of minor shifts in the general atmospheric and oceanic
circulation patterns. Despite of the fact of that inaccuracies in the radiocarbon age
model of core EUGC-3B could not enable to assess the synchronicity of those events,20

it has been argued that for the full suite of Holocene cooling events there is no any
systematic temporal offset between subpolar and subtropical Atlantic within the cali-
brated radiocarbon chronologies (deMenocal et al., 2000b). In fact, the timing of the
positive δ13C excursions in core EUGC-3B shows a significant correlation (r2=0.812)
with the timing of the subtropical Atlantic SST anomalies record (Figs. 3a–d). There-25

fore, we conclude that the propagation of such cold episodes in the North Atlantic
towards southern latitudes could have been nearly instantaneous, at least in terms of
centennial-millennial scale changes. These relatively brief perturbations of the climatic
system involved large-scale ocean and atmosphere reorganizations that were accom-

1294

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/3/1283/2007/cpd-3-1283-2007-print.pdf
http://www.clim-past-discuss.net/3/1283/2007/cpd-3-1283-2007-discussion.html
http://www.egu.eu


CPD
3, 1283–1309, 2007

Holocene climate
variability in NW

Iberia

L. D. Pena et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

plished within centuries or perhaps decades.

5.3 Persistence of centennial-millennial scale climatic variability

Current radiocarbon chronologies in the selected records do not allow for assessing
temporal leads-lags or time offsets in the three selected Atlantic areas. However, it
might be possible to determine the persistence of these cycles and whether the paleo-5

records have been mainly dominated by global climatic cycles or by local and/or more
regional influences.

Continuous wavelet time-frequency spectrums (Figs. 4a–c) illustrate that there is
a general rhythmic pattern in the three time series with a mean periodicity of about
1500 yr, although the relative significance of the spectral signatures vary between the10

time series. Subpolar and mid-latitude records have been influenced by pervasive cli-
mate variability during the Holocene with a periodicity around 1500 yr as previously
stated by several authors (O’Brien et al., 1995; Bond et al., 1997, 1999; Bianchi and
McCave, 1999). The subtropical SST anomalies record spectral periods in the range
of 1500 yr although the significances of these periods are quite low (Fig. 4c). Provided15

that the temporal resolution of this record should be enough to resolve centennial and
millennial scale variability, it is likely that the influence of the northern 1500 yr cycle
reaches these low latitudes somehow muted. Another possibility is that subtropical
SST anomalies are affected by more regional hydrographic changes. In fact, Hole 658C
is under the influence of the African monsoon, which in turn is controlled by insolation20

changes (deMenocal et al., 2000a; Kuhlmann et al., 2004). Hence, during time periods
of strong subtropical monsoon the subpolar signal might be to some extent veiled, or
perhaps completely erased from the sediment record. It has been widely recognized
that the Holocene records of low latitudes has been strongly forced by monsoon pro-
cesses (Neff et al., 2001; Fleitmann et al., 2003; Russell and Johnson, 2005). These25

factors could explain the lower contribution of these rhythmic climatic changes during
the Holocene. On the contrary, the EUGC-3B δ13C record (located at a mid point be-
tween the subtropical SST record and the subpolar HSG %) is strongly affected by the
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1500 yr cycles (Fig. 4b). It seems, therefore, that the primary origin of the 1500 yr
periodicity is placed somewhere at the Northern Hemisphere high latitudes and that
signal is rapidly (sub-centennially) propagated southward where its effects are weak-
ened or perhaps dampened by low latitude climatic processes (e.g. African monsoon).
Further support for these interpretation comes from a recent work in the Alboran Sea5

(Western Mediterranean Sea) which clearly establish a dissimilarity in spectral patterns
between marine-based proxies (biomarkers SSTs presenting a significant 1500 yr pe-
riodicity) and land-based proxies (i.e. Saharian dust input without significant 1500 yr
periodicity)(Moreno et al., 2005).

6 Conclusions10

The analyses of benthic foraminiferal stable isotopes in gravity core EUGC-3B has al-
lowed the reconstruction of the Holocene paleoceanographic history of the NW Iberian
Margin.

Benthic foraminiferal oxygen and carbon isotopes register the predominant water
mass advection and/or upwelling into the Rı́a de Muros for the last 8200 cal. yr. BP.15

Oxygen isotopes indicate that the Early Holocene (8200–4000 cal. yr. B.P) was mainly
influenced by ENACWst whereas the late Holocene (4000–500 cal. yr. B.P) was af-
fected by ENACWsp. More negative δ13C values correspond to the presence of
ENACWst, reduced ventilation rates and increased in-situ organic matter degradation.
Six major benthic foramniferal positive δ13C isotopic events were registered for the last20

8200 cal. yr BP, clearly indicating the presence of cold and well ventilated ENACWsp
and increased exportation of organic carbon to the adjacent continental shelf. We
have interpreted these isotopic excursions as northward and southward migrations of
the hydrographical front between both water masses in the area, the Finisterre Front.

There is a clear link between these cold events in the Rı́a de Muros and more25

widespread Holocene centennial-millennial time scale climatic perturbations at high
and low latitudes in the North Atlantic region. Spectral analyses indicate that these
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events present a recurrent 1500 yr periodicity throughout the Holocene. These cold
episodes are likely triggered at high latitudes and then rapidly propagated towards
lower latitudes by means of southwards shifts of atmospheric and oceanic circulatory
systems. This periodicity is somewhat diluted as it approaches lower latitudes, be-
ing superimposed by regional climatic and oceanographic features as well as by more5

general low latitude processes.
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Table 1. AMS radiocarbon dated levels from core EUGC-3B. All the analyses were performed
at the AMS Laboratory, Institute of Physics and Astronomy (University of Aarhus, Denmark).
Raw radiocarbon 14C ages were δ13C corrected and calibrated to calendar ages using the
Calib 5.01 program (Stuiver and Reimer, 1993).

Sample (cm) Sample type 14C Age (BP) Calibrated age± 2 stdv. δ13C (‰) VPDB

EUGC-3B (1) Benth. Foram. (Nonion commune) 920±65 [435–638 cal. BP] (536 cal. BP) −2.53
EUGC-3B (57) Bivalve Shell (Venus nux) 1229±39 [682–879 cal. BP] (780 cal. BP) −1.97
EUGC-3B (93) Bivalve Shell (Myrtea spinifera) 1575±40 [1035–1246 cal. BP] (1140 cal. BP) −0.84
EUGC-3B (178) Bivalve Shell (Myrtea spinifera) 2623±45 [2154–2430 cal. BP] (2292 cal. BP) −0.14
EUGC-3B (238) Bivalve Shell (Venus nux) 3355±55 [3057–3357 cal. BP] (3207 cal. BP) −0.04
EUGC-3B (321) Bivalve Shell (Myrtea spinifera) 4805±50 [4922–5266 cal. BP] (5094 cal. BP) 0.17
EUGC-3B (407) Bivalve Shell (Lucinoma borealis) 7610±60 [7938–8194 cal. BP] (8066 cal. BP) 2.23

1303

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/3/1283/2007/cpd-3-1283-2007-print.pdf
http://www.clim-past-discuss.net/3/1283/2007/cpd-3-1283-2007-discussion.html
http://www.egu.eu


CPD
3, 1283–1309, 2007

Holocene climate
variability in NW

Iberia

L. D. Pena et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Figure 1 Pena et al.
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Fig. 1. (a) Map showing the location of core site EUGC-3B (42◦ 45′N, 09◦ 02′W, 38 m water
depth) and the two other North Atlantic core sites selected for comparison, VM 29-191 (54◦

16′N, 16◦ 47’W, 2370 m water depth, Bond et al., 1997) and ODP Site 658C (20◦ 45′N, 18◦

35′W, 2263 m water depth, Cape Blanc, Mauritania, deMenocal et al., 2000b). (b) Schematic
representation of the subsurface hydrographic front formed between ENACWsp and ENACWst
(Fraga, 1991) over the continental shelf in the vicinity of Cape Finisterre and close to the lo-
cation of core EUGC-3B. (c) Detailed bathymetric chart of the Rı́a de Muros (NW Spain) and
core site EUGC-3B. (d–e) Hydrographic section of the western Iberian Margin illustrating the
mean annual temperature and salinity fields that characterize ENACWsp and ENACWst water
masses (Conkright et al., 2002). Isotherms and isohalines plotted as defined by Fiúza (1984).
MOW: Mediterranean Outflow Water. The red star shows the location of core EUGC-3B be-
tween the two water masses. (f)Triple plot of depth (m), oxygen concentration (ml/l) and salinity
(psu) from western Iberia Margin. Note that for a constant depth, ENACWsp is relatively more
oxygenated than ENACWst (Conkright et al., 2002).
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a) b) c) d)

Fig. 2. Compilation of data from core EUGC-3B. (a) Age model based on 7 AMS radiocar-
bon dates (see Table 1 for details). Open diamonds are raw radiocarbon ages whereas black
triangles are marine reservoir calibrated ages. All ages are expressed in cal. yr BP. (b) Sedi-
mentation rates (cm/yr). (c) Benthic foraminifera (Nonion commune) δ13C record vs. depth. (d)
Benthic foraminifera (Nonion commune) δ18O record vs. depth.
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Fig. 3. Comparison of the EUGC-3B benthic foraminiferal δ18O and δ13C records (a–c) with
two other North Atlantic records: (d) Sea Surface Temperature anomalies for the warm and
cold seasons from ODP Site 658C (20◦ 45′N, 18◦ 35′W, 2263 m water depth, Cape Blanc,
Mauritania, deMenocal et al., 2000b) and (e) Hematite Stained Grains percentage (%HSG) of
core VM 29-191 (54◦ 16′N, 16◦ 47′W, 2370 m water depth, Bond et al., 1997). Radiocarbon
ages (cal. yr BP) and uncertainty bars are shown for each record. Grey bands illustrate the
correlation between cold periods in these three records, with periods of predominant ENACWsp
at the NW Iberian Margin linked to colder SST anomalies in the subtropical North Atlantic and
higher percentages of HSG in the subpolar North Atlantic. Bold numbers refer to the Holocene
cold events (Bond et al., 1997). LIA: Little Ice Age.
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Fig. 4. Multiple spectral analyses of the selected records. As a routine, linear trends were re-
moved in every data-set before running spectral analysis in order to reduce red noise (i.e. back-
ground power decreases with increasing frequencies). (a–c) Continuous Wavelet Spectrum
(CWS) illustrating the spectral variance through time in the three selected records. Colour
scales show the different spectral variances intensities for each plot. Vertical axes represent
periods (yr) computed at every single time step of the time series.
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