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Abstract

Since the paper by Hays et al. (1976), spectral analyses of climate proxy records pro-
vide substantial evidence that a fraction of the climatic variance is driven by insolation
changes in the frequency ranges of obliquity and precession variations. However, it
is the variance components centered near 100 kyr which dominate most Upper Pleis-5

tocene climatic records, although the amount of insolation perturbation at the eccen-
tricity driven 100-kyr period is much too small to cause directly a climate change of
ice-age amplitude. Many attempts to find an explanation to this 100-kyr cycle in cli-
matic records have been made over the last decades. Here we show that the double
maximum which characterizes the daily irradiation received in tropical latitudes over the10

course of the year is at the origin in equatorial insolation of not only a strong 100-kyr,
but also of a 11-kyr and a 5.5-kyr periods related respectively to eccentricity and to
precession.

1 Introduction

The tropics have been long neglected by paleoclimatologists who mostly followed the15

hypothesis by Murphy (1876), later popularized by Milankovitch (1941), that the driver
of the long-term climatic variations is summer in the high northern polar latitudes. For
these authors, the progressive build-up of ice sheets requires indeed primarily cool
summers in high latitudes, in order to prevent winter snow to melt. But under these
conditions, northern latitudes winters are receiving more energy. For example, 114 kyr20

ago, 70◦ N in June received 97 Wm−2 less than 126 kyr ago and the equator in De-
cember 63 Wm−2 more. This is representing respectively a relative decrease of 18%
at 70◦ N and a relative increase of about the same amount at the equator. This leads
to more evaporation in the equatorial regions, a larger latitudinal gradient in the north-
ern hemisphere (remember that if we consider the winter hemisphere, the maximum25

of the energy received from the Sun is at the equator), a more active transport to the
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north and possibly more precipitations in polar latitudes. When extended to winter pre-
cipitations, the Milankovitch hypothesis is therefore also involving the equatorial and
intertropical regions. Many new paleoclimate information indicate that these regions
are indeed more important than previously thought. They seem to play an important
role in the glacial-interglacial cycles and even in the warming of the last 50 years (see5

Kerr, 2001, 2003, for a few references).
In this paper, we show an additional reason to believe that the tropics can play an

important role in the response of the climate system to the astronomical forcing. This
reason is the presence of significant 100-kyr, 11-kyr and 5.5-kyr cycles in the amplitude
of the seasonal cycle of the energy that the intertropical regions receive from the Sun,10

cycles directly related to eccentricity and harmonics of precession.

2 Insolation at the Equator

In contrast with the extra-tropical latitudes, which exhibits a simple maximum of insola-
tion each year, the Sun comes overhead twice a year at each latitude in the intertropical
belt. In particular at the equator, the Sun culminates at the zenith at both equinoxes.15

From classical insolation formula (e.g. Berger et al., 1993) the 24-h mean irradiance at
the equator for a given day is given by:

W̄eq =
Sa

π

(
1 + e cos(λ −ω)

1 − e2

)2

cosδ (1)

– Sa is the amount of solar energy received by unit of time on a surface of unit area
perpendicular to the Sun rays and situated at the distance a from the Sun. a is the20

semi-major axis of the Earth’s elliptical orbit around the Sun. It is an invariant in
celestial mechanics contrary to the so-called solar constant S0, which is defined
at the mean distance rm from the Earth to the Sun. On an energy point of view,
rm is given by
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r2
m = a2

√
1 − e2

where e is the eccentricity of the Earth’s orbit. rm and therefore S0 are varying with e
as:

S0 =
Sa√

1 − e2
(2)

In the astronomical theory of paleoclimates, the energy output from the Sun is assumed5

to remain constant over the last millions of years and therefore Sa is a constant taken
to be 1368 Wm−2 in our calculation.

– The declination δ is related to the true longitude of the Sun by

sinδ = sin λ sinε (3)

ε being the obliquity and λ identifying the calendar days.10

– ω is the longitude of the perihelion. Its numerical value is obtained by adding
180◦ to ω̃ calculated from Berger (1978) (see Berger et al., 1993, for more expla-
nations).

– The distance from the Earth to the Sun, r , δ and λ are assumed to be constant
over one day.15

From Eq. (1), the energy received at the equinoxes (δ=0; λ=0 for the spring equinox,
SE, or π, for the fall equinox, FE) and solstices (δ=ε or λ=π

2 for summer solstice, SS
and δ=−ε or λ=3π

2 for winter solstice, WS) can be calculated.

For the present-day with e=0.0167, ω=282◦ and ε=23◦27′, SE=439 Wm−2,
SS=387 Wm−2, FE=433 Wm−2 and WS=413 Wm−2 leading to a seasonal contrast of20

52 Wm−2 (SE-SS) Because of precession, the insolation at SE will alternatively be
larger and lower than at FE (see Fig. 1). The same holds for the insolation at SS and
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WS. However, strictly speaking, the insolation values at SE and FE on one hand, and
at SS and WS on the other hand, do not provide the absolute maxima and minima over
the year. Indeed, these extrema do not occur exactly at the equinoxes and solstices
because the Earth-Sun distance modulates the effect of δ in the course of the year.

Fortunately however, the error made by assuming that the maximum is occurring5

at one of the equinoxes (Fig. 2) and the minimum (Fig. 3) at one of the solstices re-
mains small. For example, assuming that the summer solstice occurs at the perihelion
maximizes the energy received at that particular time. At 198 kyr BP, ω'90◦ and the
absolute maximum arises in August (with 451 Wm−2), but is only 13 Wm−2 larger than
the insolation at the fall equinox (438 Wm−2). This means that the error assuming10

that the maximum occurs at FE is less than 3%. As the minimum is actually at WS
(364 Wm−2), the real seasonal difference amounts to 87 Wm−2, instead of 74 Wm−2 if
FE-WS is used. Although the error on the seasonal difference reaches 15%, it does
not affect the spectral characteristics of the long-term variations of this seasonal differ-
ence calculated between the maximum and the minimum values. So for an analytical15

calculation we will assume that the maximum is occurring at the equinoxes (SE, spring,
or FE, fall) and the minimum at the solstices (SS, summer, or WS, winter).

If we assume e and ε constant over a precessional period, it is easy to see that:

SE is maximum for −90◦ ≤ ω ≤ 90◦

FE is maximum for 90◦ ≤ ω ≤ 270◦

SS is minimum for 180◦ ≤ ω ≤ 360◦

WS is minimum for 0◦ ≤ ω ≤ 180◦

(4)

In these conditions, the seasonal contrast measured by ∆=Max (SE,FE)–min (SS,WS)20

(Fig. 4) is equal to:

SE–WS for 0◦ ≤ ω ≤ 90◦

FE–WS for 90◦ ≤ ω ≤ 180◦

FE–SS for 180◦ ≤ ω ≤ 270◦

SE–SS for 270◦ ≤ ω ≤ 360◦

(5)
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(let us recall that the perihelion coincides with the spring equinox for ω=0◦, with the
summer solstice for ω=90◦, with the fall equinox for ω=180◦ and with the winter solstice
for ω=270◦).

This is again an approximation because the insolation at the equinoxes and solstices
are also functions of e and ε. This approximation is actually used to allow an easy an-5

alytical range of ω values to be calculated (in reality, the boundaries of these ranges
are not constant in time, varying slightly around 0, 90, 180 and 270◦). However, calcu-
lations over the last and next million years show that ∆ is practically equivalent to the
real seasonal amplitude of insolation at the equator.

The most striking feature of Fig. 5 (top panel), reproducing the long term variations10

of ∆ over the last 1 Myr is the significant eccentricity cycles (both the 100 and the 400-
kyr) dominating its long-term variations. In addition, a clear and significant 5-kyr period
is present with a large amplitude (∼10 Wm−2) for large values of e and a small one for
low values of e. The explanation of the high frequency variability finds an origin simi-
lar to the half-precession cycle discussed in Berger and Loutre (1997). It was indeed15

stressed that, although the insolation at the equinoxes follows the climatic precession
pattern, the existence of a double maximum at the equator offers the possibility of gen-
erating a half-precession cycle (∼11 kyr) if the climate system is supposed to respond
automatically to the largest value of the two. This is clearly seen in Figs. 2 and 3. If now,
the largest seasonal amplitude, ∆, is supposed to drive the climate system behaviour,20

the two maxima and the two minima are involved. ∆(=Max(SE,FE)–min(SS,WS)) is
therefore equal to the largest value of the four following parameters: SE–WS, FE–WS,
FE–SS, SE–SS (Fig. 5). This means that, according to Eq. (4), a one-fourth-precession
cycle is generated. The signal of obliquity, which comes from SS and WS is actually
weak compared to the harmonics of precession because ε is not a purely periodic25

function, but instead is equal to a constant plus a series of periodic terms, the most
important having a period of 41 kyr. Therefore cosε can be considered as a constant
to the first order of approximation.
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As all values at the equinoxes and solstices are principally a function of precession,
their amplitude is modulated by eccentricity (which is therefore the envelope of insola-
tion). Therefore, through the procedure of the maximum and minimum selection, this
envelope becomes naturally the carrier of the “seasonal” contrast of insolation at the
equator leading to the existence of eccentricity in the spectra.5

As a consequence, the spectrum of ∆ shows the 400, 100, 41, ∼10 and ∼5-kyr
quasi-periods, all being significant, with a maximum centred at ∼100 and ∼5-kyr (Fig. 5
middle and lower panels). The characteristic of their behaviour are the same as those
of eccentricity and precession discussed in Berger et al. (1998).

As this double culmination of the Sun at the zenith is true for the whole intertropical10

belt, it is interesting to see if this equatorial features holds for all the other intertropical
latitudes. Actually, the spectra for these latitudes continue to show all the frequencies
but the amplitude of the 100, 11 and 5.5 kyr-cycles decreases rapidly when getting
away from the equator. For example, at 5◦ N, the largest spectral amplitude is related
to precession, followed by eccentricity, then the obliquity and the 11 kyr. The harmonic15

5.5 kyr is still present but its amplitude is 10 times less than the amplitude of the 11-kyr
harmonic.

3 Conclusions

More papers are now questioning whether the origin of the glacial-interglacial cycles
lies in the high latitudes. They show some evidence that the low latitudes are maybe as20

or more important than the high latitudes. For example, Hagelberg et al. (1994) found
climate variability at periods from 10 to 12 kyr (equal to harmonics of precession) in
three locations for the late Pleistocene. They concluded that this variability may derive
from high sensitivity of the tropics to summer time insolation in both hemispheres. An
amplified response of tropical precipitation and temperature may then be transmitted25

to high latitudes in the Atlantic via advective transport, a mechanism appearing con-
sistent with their observations. McIntyre and Molfino (1996) suggested from spectra
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of high resolution records from the equatorial Atlantic spanning the last 50 kyr, that
climatic changes in high polar latitudes may be caused by events that occur in low
latitudes. Turney et al. (2004) found semi-precessional periods and suggested that
climate variations in the tropical Pacific Ocean exerted an influence on North Atlantic
climate through atmospheric and oceanic teleconnections. Thibault de Garidel-Toron5

et al. (2005) inferred from high resolution records of sea-surface temperature from the
Pacific warm pool that the temperature contrast across the equatorial Pacific Ocean
might have had a significant influence on the mid-Pleistocene climate transition. But
the most significant proof of the existence of half-precessional cycles comes from the
Chinese loess. According to Sun and Huong (2006), the well-defined half-precessional10

cycle found in magnetic susceptibility and particle size records from the north west-
ern Loess Plateau in China is a direct response of the low-latitude insolation forcing
through its modulation on the East Asian Summer monsoon. It might be expected that,
if resolution permits, the 5.5-kyr cycle might be found and used as a relevant test of the
real role played by the tropics.15

These are a few examples only and more must be made to show that indeed the
tropics can play a leading role in generating long-term climatic variations. In this paper
we have demonstrated that the spectrum of the insolation forcing at the equator is as
informative than in the high polar latitudes where only the precession and obliquity sig-
nals are present. The double insolation maximum and minimum arising in the tropical20

regions in the course of one year, which is at the origin of the 100 and 5.5 kyr cycles
might explain some of the important features of the climate system and environment
over the Pleistocene and the Holocene, like it is suggested also by Lorenz et al. (2006)
and Reuning et al. (2006) for example.
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Fig. 1. Seasonal cycle of insolation at the equator at present (full line), at 10 kyr BP (dotted
line) and at 17 kyr BP (dashed line). Units are Wm−2.
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10

Figure 2: Time evolution over the last 200 kyr of the 24-hour mean irradiance at the equator at
spring equinox (black curve) and at autumn equinox (red curve). The time evolution of the
maximum of these two series is drawn in green. Units are Wm-2.

Fig. 2. Time evolution over the last 200 kyr of the 24-h mean irradiance at the equator at spring
equinox (black curve) and at autumn equinox (red curve). The time evolution of the maximum
of these two series is drawn in green. Units are Wm−2.
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Figure 3: Time evolution over the last 200 kyr of the 24-hour mean irradiance at the equator at
summer solstice (black curve) and at winter solstice (red curve). The time evolution of the
minimum of these two series is drawn in green. Units are Wm-2.

Fig. 3. Time evolution over the last 200 kyr of the 24-h mean irradiance at the equator at
summer solstice (black curve) and at winter solstice (red curve). The time evolution of the
minimum of these two series is drawn in green. Units are Wm−2.
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Fig. 4. Time evolution over the last 100 kyr of the amplitude of the 24-h mean irradiance at
the equator between spring equinox and summer solstice (black), spring equinox and winter
solstice (red), autumn equinox and summer solstice (green) and autumn equinox and winter
solstice (blue), and the largest amplitude in the seasonal cycle (purple). Units are Wm−2.
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Fig. 5. From top to bottom: (top) time evolution between 1000 kyr BP and 100 kyr AP of the
maximum of the amplitude of the seasonal cycle of the 24-h mean irradiance at the equator,
(centre) the modulus of the wavelet transform of the signal on top, (bottom) amplitude in the
multi taper analysis of the signal on top.
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