
Authors’ response to reviewers  
 
We are grateful to both reviewers for their detailed and constructive comments which have greatly improved 
the manuscript. We provide a response to the general comments and then specific comments of each reviewer 
below. All of the resulting changes are included in the track changes version of the manuscript, provided as an 
appendix to this response. The new corresponding line numbers are also indicated in the response to each 
comment.   
 
General Comments, Reviewer 1  
 
[1] Most (all?) of the conclusions could have been found in previous studies.  
 
We do not agree with this statement, particularly as the precipitation results from a number of the studies have 
not previously been published (Section 2) and none of the simulations described have been compared to 
quantitative precipitation proxies. Our study contains several new insights into the hydrology of the Eocene, 
including both model-data comparisons and model intercomparison.  
 
(i) Model-data comparisons. The majority of sites for which we show proxy-model comparisons in this paper 
have not been compared quantitatively to GCM data in the published literature. A low precipitation bias for the 
Canadian Arctic is described by Greenwood et al. (2010) where their proxy estimates are suggested to be 2-4x 
model-derived values. The comparison presented in our paper provides a more systematic exploration of proxy-
model anomalies and shows that a low precipitation model bias is reproducible across a number of high-latitude 
sites including elsewhere within the Arctic, the Antarctic and southern Australia (Figure 10). This is important 
both because precipitation is spatially discontinuous (and more so than temperature) - and because error bars 
on precipitation proxies are currently unavoidably large. That the bias is reproduced at a number of sites 
suggests this is more likely to be a robust data-model anomaly.  
 
As we note on lines 568 - 570, a precipitation model-data comparison was undertaken by Speelman et al. (2010) 
for the Eocene Azolla interval (~49 Ma), but this was an atmosphere-only simulation, run with Eocene proxy-
inferred SSTs i.e. an imposed low tropical-pole temperature gradient. Whilst that study concluded that the good 
match between GCM output and both precipitation estimates and water isotopes supported a low Eocene 
temperature gradient, a range of proxy data were omitted from their analysis or have been published since 
(lines 571 - 574), which greatly extends the spatial coverage, including at high latitudes.  
   
(ii) Model inter-comparison. There has previously been no GCM inter-comparison or assessment of structural 
uncertainty arising from differing model physics, parameterisation schemes and boundary conditions, like there 
has been for temperature (lines 122 - 126). Future climate predictions, such as those shown in the IPCC reports, 
have shown a divergence in the response of the hydrological cycle between GCMs, and so developing an 
understanding of model spread for past warm periods is arguably an important step towards evaluating GCM 
performance. We have shown that model differences are particularly important for the Eocene over tropical 
regions, over peri-Tethys (Figures 3, 5 and 6) and the South Pacific region (Figures 5 and 10). Our new Figure 12 
summarises where the greatest model-data mismatches are found. 
 
Our paper is the first to compare the hydrological cycle simulated across coupled GCMs for the Eocene; much 
work remains to be done in fully characterising the response, but we hope this work will provide a foundation 
for future work. Even if the coupled temperature-precipitation relationship we describe (Figure 11) is somewhat 
intuitive, its demonstration is important for understanding Eocene paleoclimate: it provides independent 
evidence that model-simulated climatology is problematic at high latitudes. 
 
[2] The utility of models is that they can be probed to understand the reason for the solutions that they give… this 
study provides very little insight into the mechanisms responsible for the model differences it describes.  
  
We agree on the utility of models, but to robustly explain the range of hydrological behaviour would require 
common experimental design between all simulations, and/or a number of additional sensitivity studies. As we 
explain in lines 132 - 139 the models differ in a number of boundary conditions and show some substantial 
differences in their simulation for preindustrial climate (Figure 1), where boundary conditions are largely 



constant. Any Eocene differences are therefore both the result of differences in boundary conditions and model 
physics. Some of the models with multiple simulations at different atmospheric CO2 levels hint at underlying 
mechanisms, however, the FAMOUS simulations, performed at 2 x CO2, indicate that a range of behaviour is 
possible within a single model arising from parametric uncertainty alone (Figure 2). Furthermore a number of 
the GCMs have only single Eocene simulations (ECHAM5, GISS-ER), which limits our ability to fully explain 
responses. Following comments 18, 20, 22 and 23, we have also added some further explanations to the paper.  
  
We agree that there is clearly a need to develop a greater mechanistic understanding behind some of the 
differences which our paper has highlighted. Such intercomparisons will be facilitated in the near future via the 
‘DeepMIP’ project - a deep time model intercomparison project*. This will promote common experimental 
designs across modelling groups for deep-time high-CO2 climate states including the Eocene, in a similar way to 
the PMIP framework has done for the Mid-Pliocene, Last Interglacial, Last Glacial Maximum and Mid-Holocene. 
In the meantime, this work aims to understand the differences as best we can in the context of the simulations 
available.  
 
* http://gtr.rcuk.ac.uk/projects?ref=NE/N006828/1 
 
[3] Greenhouse gases other than CO2 are generally not stated, nor are orbital parameters.  
 
In the case of greenhouse gases, where not stated, this is because they are held at preindustrial levels, which we 
have now made clearer in the manuscript (line 145). Where varied, we have stated this in Section 2, and 
estimated the net forcing in terms of CO2 equivalent. We have now included orbital parameters in Table 1. Note 
that some of the simulations within the ensemble adopt a preindustrial orbital configuration, whilst others 
utilise an idealised Eocene orbital configuration, although many configurations would have been possible during 
the sustained warmth of the Early Eocene Climatic Optimum (EECO). Understanding whether there are regional 
effects of these orbital difference on precipitation distribution would require further simulations (see comment 
2). 
 
[4] Differences in geography are also not described, which may be appropriate, since the paleographies appear 
similar. Topography may be a different issue, though, and should be shown. What is the mean continental land 
elevation? To what degree can differences in topography account for regional hydrological changes?  
  
The sources of the paleogeographic reconstructions used in each simulation are summarised in Table 1.  
The effect of topography is a good point, particularly as improvements in the simulation of precipitation 
distribution in modern-day climate simulations often come about through better resolved topography. 
However, there does not appear to be a strong relationship between orography and precipitation distribution. 
We have now included an additional supplementary figure (Fig S5) which shows differences in precipitation rate 
and topography between three pairs of simulations which have a similar global precipitation rate. We have 
added a paragraph to the manuscript which discusses this figure and explains that there is not a strong 
relationship between differences in orography and precipitation rate between the models (lines 437 - 449).  
 
[5] The models also have very coarse resolution, which is well known to degrade the simulation of precipitation. 
Some discussion of this is warranted as well. Is there any connection between atmospheric model resolution and 
precipitation sensitivity or response?  
  
This is a good point, and we have added a statement to the conclusion regarding the need to analyse the 
precipitation response in higher resolution models (lines 662 - 666). We assume here that the reviewer is 
referring to precipitation sensitivity in terms of dp/dT responses shown in Figure 2. Although the models differ 
in their atmospheric grid resolution (Table 1), they do not span a sufficient range of resolution to assess the 
effect, particularly as the highest resolution model, HadCM3L has a similar dp/dT sensitivity to CCSM3. The 
slightly lower resolution GISS-ER has only a single Paleogene simulation. However, FAMOUS is notably lower 
resolution than the other models and was shown to have a different precipitation sensitivity (Figure 2) and we 
agree that this is an area which could be investigated in future via high-resolution Eocene simulations. In terms 
of the spatial patterns of precipitation, high-resolution atmosphere-only simulations (T170 grid; 0.7 ° latitude x 
0.7 ° longitude) have been performed by co-author Matt Huber, with SSTs specified from coupled runs 
(CCSM3_H). The precipitation patterns are qualitatively the same as those we show here, and so we expect 
model-data biases to not be significantly improved.  



 
[6] In general, the paper could use editing and streamlining. It’s too long and rambles in parts.  
  
We have aimed to tighten up the language and streamline the paper where possible. All editorial changes are 
shown on the track changes version of the manuscript.  
  
Specific Comments: Reviewer 1  
  
[7] Title. Change the title. I suggest “Comparison of the early Eocene hydrological. . .”  
 
We have changed the title to: ‘A model-model and data-model comparison for the early Eocene hydrological 
cycle’.  
 
[8] Abstract, line 15. “This is primarily due to elevated atmospheric paleo-CO2.” As shown in the manuscript, this is 
due to elevated temperatures.  
  
This has been clarified (line 33).  
 
[9] p. 3281, lines 1, 6, etc. Surface surface temperature and mean annual temperature are not proper names and 
should be not capitalized.  
  
Corrections have been made throughout the manuscript.  
  
[10] p. 3281, line 26-28. “This has resulted in suggestions. . .” This is an incomplete sentence. Please fix.  
  
This sentence has been clarified (lines 86 - 90).   
  
[11] p. 3289, lines 12-14. What are the sources of these biases? Are they a concern for simulating the Eocene?  
  
These are a concern for the Eocene and part of the reason of showing how well the models perform for the 
preindustrial is to demonstrate that even with good knowledge of boundary conditions, all GCMs are liable to 
produce errors in their precipitation distribution (Sect 3.1). Although similar preindustrial distributions have 
been shown previously (e.g. IPCC model evaluation chapters), we show these here to contextualise our Eocene 
observations (see manuscript Sect 3.3.1). We have added some further references to the manuscript which 
discuss the sources of these biases (lines 248, 252 - 253). 
  
[12] p. 3289. Fig. S1. This figure should be moved to the main text, as it more clearly shows extratropical model 
skill in simulating precipitation than absolute precipitation anomalies. Also, please include the relative anomalies 
for the ocean as well. Some explanation should be added to explain the very large relative biases that show up 
over the continents.   
 
We have added anomalies over the oceans to Fig. S1, but have retained this within the Supplementary 
Information. The reason for this is that our proxy-model comparisons (Figures 10 – 11) show rates and 
anomalies in mm/day, which can more easily be related to the existing Figure 1. We have added some further 
references to the manuscript which discuss the sources of continental biases (line numbers 252 – 253; 263 – 
264). 
 
[13] p. 3290, lines 3-5. “EoMIP models simulate a global precipitation rate which agrees fairly well with 
observational data sets” I agree that this is the case. But, mean annual precipitation is not a good measure of 
model skill for the obvious reason that cancellation of large biases can make a poor model appear skillful (e.g Fig. 
1 of this paper). Mean annual precipitation shouldn’t be the determinant for whether to use a model or not.  
 
We have removed this sentence, but retain the observational data for information purposes. Since we evaluate 
precipitation sensitivity in terms of global precipitation rate (Figure 2), this is a useful confirmation that there is 
some physical basis to the model estimated rate. 
  



[14] p. 3290, lines 23-25. “. . .consider mean annual precipitation to be a robust estimate of the overall sensitivity. 
. .” This may well be the case, however the authors’ justification for this, that the interannual variability in global 
average precipitation is small, is not evidence that this is the case.  
  
We have now removed this sentence.  
  
[15] p. 3290, lines 24-27. This sentence indicates that the authors determined that the observational datasets 
could be used because they compare well with the model results. I assume that the authors did not intend this 
meaning.  
 
We have now corrected this sentence (line number 285 - 286).   
  
[16] p. 3291, lines 6-10. The authors promise here to discuss four reasons for differences in global precipitation 
rates between models. There is considerable discussion of the role of temperature, but almost none of these 
other factors. Please add this discussion.  
  
Our original intention was not to indicate that temperature operated independently of the other controls and so 
we have rephrased this section (line numbers 292 - 294). As we show, differences in Eocene boundary 
conditions – which includes atmospheric CO2 and variation of poorly constrained parameters – such as the cloud 
condensation nuclei or aerosol loading – often impact the global precipitation rate via a mediating effect on 
temperature.  
 
[17] p. 3292, lines 20-24. “may relate to more fundamental differences in model physics” Okay. Please explain and 
demonstrate what these are.  
  
We have clarified our reasoning (line 324 - 329), but note that further simulations with equivalent 
parameterisation schemes for large-scale and convective precipitation would be required to confirm this 
hypothesis.  
 
[18] p. 3293, lines 2-3. The authors need to demonstrate that moisture availability is the reason for the reduced 
sensitivity. They could do this in a number of ways, e.g. by quantifying changes in continental moist availability or 
continental relative humidity.  
  
We have included an additional supplementary figure (Fig. S3) and added discussion on lines 337 - 339. 
 
[19] p. 3294, lines 5-6. “Paleogene boundary conditions other than CO2 are crucial in elevation precipitation rate 
in this model.” Why? How exactly? This point is interesting because it contradicts the conclusions from the 
HadCM3L model (p. 3293, lines 18-20). Why are these models responding differently to Paleogene boundary 
conditions?  
   
We have added some explanation to line 363 - 365.  
 
[20] p. 3295, lines 8-9. “The SPCZ is CCSM is also far weaker in the Eocene simulations. . .” Why?  
  
We have included an additional supplementary figure (Fig. S4) and added discussion on lines 387 - 392. 
 
[21] p. 3295, lines 9-11. “. . .CCSM and HadCM3L strongly diverge in the Eocene. . .” Why?  
 
We have added discussion on lines 394 - 395. 
 
[22] p. 3295, lines 19-20, Fig. 5. It’s not clear why the authors have selected the models in the way that they have, 
on the basis of a “common global precipitation rate”. Results from all the models could be shown by using 
anomalies from the global average rather than absolute values.  
  
The problem in producing a multi-model mean is that there is no CO2-forcing common across all models. 
Furthermore, even where a number of model do have a common-CO2 forcing, differences in parameterisation 
schemes (particularly in the case of FAMOUS simulations and CCSM3_K) would result in taking a mean across 



simulations with substantially different amounts of water vapour in the atmopshere and global precipitation 
rates. Instead, we have chosen simulations which display a near common global precipitation/evaporation rate 
(or have interpolated between simulations assuming linear responses – see caption for Figure 6). This means 
that our multimodel mean provides an indication of how much regional variability exists in precipitation rate 
between a number of simulations which have same global strength of the hydrological cycle.  
 
There are clearly caveats to this approach (for example, we have included 2 x HadCM3L simulations (Lunt and 
Loptson) and 2 x CCSM3 simulations (Huber and Winguth), which results in the multimodel mean being biased 
away from the ECHAM model. We have clarified the manuscript on line 400 - 405 to more clearly explain our 
reasoning. 
  
[23] p. 3297, lines 10-11. “HadCM3L displays far greater spatial contrasts in net precipitation change..” Why?  
  
We have included an additional supplementary figure (Figure S5) and added discussion on lines 459 - 463. 
 
 [24] Section 3.4. The authors should omit this section on monsoons. The topic is not given sufficient attention. 
The monsoon results are summarized in a single figure without any real explanation of the results.  
  
The seasonality of precipitation is of particular importance in the Eocene with modelling and proxies sometimes 
producing contrasting results – see e.g. the recently published West et al. (2015). In particular, high latitudes are 
of interest: some studies have suggested Antarctic (Jacques et al., 2014) and Arctic (Schubert et al., 2012) 
regions were subject to seasonal precipitation regimes, whereas other work, including the modelling work of 
Huber and Goldner (2012) have shown more equable, year round precipitation. We believe that analysis is 
worth retaining in the manuscript as it highlights the difference in seasonality at the high-latitudes. This could be 
the reason why colder pole models such as HadCM3L display a greater proxy-model anomaly (lines 640 - 641).    
 
[25] p. 3304, lines 1-4. The explanation given doesn’t make sense. The failure of the models to predict enough 
precipitation isn’t a result of too much rainout. The precipitation is too low either because there is not sufficient 
vapor (the saturation pressure is too low) or because not enough of the vapor is undergoing condensation (the 
lapse rate is too low).  
 
This line has been clarified (line 619). 
 
[26] p. 3304, line 6. “anomalies” should be “differences”  
 
This has been amended to proxy-model differences (line 622). 
  
[27] p. 3304, lines 23-24. I don’t understand the point being made here. Please explain more fully.  
 
We have removed this line in our edits to the manuscript. 
  
[28] p. 3336, Fig. 9. The differences in implied latent heat fluxes between models are quite large. In some models, 
the latent heat flux is symmetrical between hemispheres and in others it is not. Some discussion of these results, 
and the dynamics behind them, are required.  
 
Some edits have been made to this section and we have explained the reasons for the asymmetry in response 
on 533 - 539.    
  
[29] Refs. Gasson et al. (2013) is cited but is missing from the references.  
 
The correct citation has now been added to the reference list.   
 
General Comments, Reviewer 2  
 
[30] As the paper is currently laid out, the proxy data are treated together as an estimate of what Eocene 
precipitation was like, however in reality each proxy estimate provides an independent estimate of what 
precipitation was like at one point in space and time.  



  
We agree and have made this more explicit in the manuscript (lines 577- 579). In practice, this means that 
looking at spatial patterns of proxy-model agreement is particularly problematic and so on the whole we avoid 
such comparisons in favour of the bar charts style plots where comparisons are provided for each data point 
across a range of CO2 simultaneously. These span a range of plausible CO2 including atmospheric concentrations 
suitable for the mid-Eocene. However, this caveat does mean that comparisons like that of Figure 11 are 
somewhat biased as they assume the data points can be treated as a group. More extensive and better dated 
proxies would clearly be beneficial here.    
 
[31] My opinion is that there could be a more complete introduction detailing the climate dynamics that create 
our expectation of hydrologic intensification in warmer climates.  
 
We have added some additional background to the introduction of the manuscript on lines 110 - 116.  
  
[32] P 3299 Line 12: Should the partition of runoff and groundwater not also depend on how vegetation is 
parameterized in the various models?  
 
We agree and have amended this sentence to reflect this (line 505).  
  
[33] Line 17: “the wet become wetter and the dry become drier” seems like useful background for what’s 
generally expected in warmer climates, so perhaps belongs in the introduction. 
 
We have made some edits here, and this has additionally been added to the introduction (lines 110 - 116).   
  
[34] P3300: The discussion of the differing response of meridional heat transport would benefit from more 
explanation of the role of such transport in the global heat budget. If one model produces more latitudinal heat 
transport (by latent heat of water vapor) than another, does that mean that it must necessarily feature less 
meridional heat transport via sensible atmospheric and ocean heat? Or, do the differing effects of pCO2 on the 
surface radiative heat budget at different latitudes mean that different models are allowed to have different total 
meridional heat transport for given levels of pCO2?  
 
We have made some edits to this section of the manuscript along the lines of comments from Reviewer 1 (lines 
533 - 539), but we note that the meridional heat transport is not constrained to be the same within the models. 
Although they have broadly similar solar radiation at the top of the atmosphere, differing amounts of heat 
transport and ocean heat transport occur within the models, giving rise to different temperature gradients (e.g. 
see Lunt et al., 2012).  
  
[35] P3301 Line 10: “They” should be “these” or “the”  
 
This sentence has been corrected (line 554). 
  
[36] Table 3: Clarify what “MA” means here.  
 
Table 3 has been clarified.  
  
[37] Figure 9: It would be nice to see the modern real-world P-E and inferred heat transport to compare to the 
model control cases.  
 
This is challenging, since observational precipitation and evaporation data are not constrained to be in 
equilibrium. For example, one such data source which contains both P and E is the ECMWF ERA reanalysis data (Dee 

et al., 2011). This yields a global precipitation rate of ~2.96 mm/day (c.f. Figure 2) and evaporation of ~2.84 
mm/day. Because of this imbalance, the implied northwards flux does not balance to zero and as such there 
appears to be a net loss of energy from the system via latent heat. We have, however, added the P – E 
distribution of the ERA 40 data to Figure 8. The most noticeable difference to the HadCM3L preindustrial 
distribution is the far stronger net-precipitation zone associated with the ITCZ, whilst the differences in location 
of the net-precipitation and net-evaporation zones is fairly minimal. However, we note that the tropical 



latitudinal maximum in the ERA-40 data is > 50 cm/year a greater than that in the CMAP data. All of the 
observational data have their own biases, which we have not considered in this paper.  
 
[38] Figure 10: Give age ranges for each of the sources of proxy data. This is certainly a complicating factor in 
model-data comparison: many of these data come from different time periods with different climates. Do any of 
them come from within the PETM or other hyperthermals? This would be especially troublesome. 
 
We have added the age ranges from Table S3 to the captions on each subfigure. Note that these vary in their 
precision according to the original reference dating. The spread in age is certainly a complicating factor (also see 
reply to comment 30) and we agree that it is important this should be explicit within the manuscript. None of 
the data within Figure 10 are specifically dated to any of the hyperthermals with the exception of a possible 
PETM-age for the Otaio Gorge (New Zealand) data sample of Pancost et al. (2013), now noted in the text (line 
575).     
 
Editor’s Comment 
 
[39] Assuming that reviews are generally positive, I think there very much should be a new figure 1 that gives a 
tectonic map of the early Eocene world that shows locations which presently have (perhaps) relevant 
observations, and maybe regions (shaded) which indicate areas of maximum interest to test modeling. 
 
We agree with this suggestion, but rather than an introductory figure, we have used this suggestion as a 
concluding figure, which is a useful way of highlighting that some of the regions of greatest model spread occur 
where there is currently a lack of quantitative precipitation estimates for the early-mid Eocene (Figure 12).   
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Abstract  22 
Recent studies, utilising a range of proxies, indicate that a significant perturbation to global hydrology occurred at the 23 
Paleocene–Eocene Thermal Maximum (PETM; 56 Ma). An enhanced hydrological cycle for the warm early Eocene is 24 
also suggested to have played a key role in maintaining high-latitude warmth during this interval. However, 25 
comparisons of proxy data to General Circulation Model (GCM) simulated hydrology are limited and inter-model 26 
variability remains poorly characterised, despite significant differences in simulated surface temperatures. In this 27 
work, we undertake an intercomparison of GCM-derived precipitation and P −E distributions within the extended 28 
EoMIP ensemble (Lunt et al., 2012), which includes previously-published early Eocene simulations performed using 29 
five GCMs differing in boundary conditions, model structure and precipitation relevant parameterisation schemes. 30 

We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation 31 
rates, is simulated for all Eocene simulations relative to preindustrial. This is primarily due to elevated atmospheric 32 
paleo-CO2, resulting in elevated temperatures, although the effects of differences in paleogeography/ice sheets are 33 
also of importance in some models. For a given CO2 level, globally-averaged precipitation rates vary widely between 34 
models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of 35 
precipitation rate to temperature (dP/dT ) display different regional precipitation responses for a given temperature 36 
change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa and the Peri-37 
Tethys, which may represent targets for future proxy acquisition. 38 

A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output 39 
illustrates that a number of GCMs underestimate precipitation rates at high latitudes. Models which warm these 40 
regions, either via elevated CO2 or by varying poorly constrained model parameter values, are most successful in 41 
simulating a match with geologic data. Further data from low-latitude regions and better constraints on early Eocene 42 
CO2 are now required to discriminate between these model simulations given the large error bars on 43 
paleoprecipitation estimates. Given the clear differences apparent between simulated precipitation distributions 44 
within the ensemble, our results suggest that paleohydrological data offer an independent means by which to 45 
evaluate model skill for warm climates.  46 

  47 



1 Introduction  48 

Considerable uncertainty exists in understanding how the Earth’s hydrological cycle will function on a future warmer-49 
than-present planet. State-of-the-art General Circulation Models (GCMs) show a wide inter-model spread for future 50 
precipitation and runoff responses when prescribed with the same greenhouse gas emission trajectories (IPCC, 2013; 51 
Knutti and Sedlácek, 2012). Remarkably few studies have investigated the hydrology of ancient greenhouse climates, 52 
but understanding how the hydrological cycle operated differently during these intervals could provide insight into 53 
the mechanisms which will govern future changes and the sensitivity of these processes (e.g. Pierrehumbert, 2002; 54 
Suarez et al., 2009; White et al., 2001). In particular, characterising the hydrological cycle simulated in GCMs using 55 
paleo-boundary conditions and comparisons to geological proxy data can contribute to developing an understanding 56 
of how well models that are used to make future predictions perform for warm climates.  57 

The early Eocene (56–49 Ma) represents the warmest sustained interval of the Cenozoic, with evidence for 58 
substantially elevated global temperatures relative to modern in both marine (Zachos et al., 2008; Dunkley Jones et 59 
al., 2013; Inglis et al., 2015) and terrestrial settings (Huber and Caballero, 2011; Pancost et al., 2013). This is 60 
particularly evident at high latitudes: pollen and macrofossil evidence indicate near-tropical forest growth on 61 
Antarctica during the Early Eocene Climatic Optimum (EECO; Pross et al., 2012; Francis et al., 2008) and fossils of 62 
fauna including alligators, tapirs and non-marine turtles occur in the Canadian Arctic (Markwick, 1998; Eberle, 2005; 63 
Eberle and Greenwood, 2012). Absolute temperatures for the Paleogene remain controversial (e.g. Taylor et al., 2013; 64 
Douglas et al., 2014; Hollis et al., 2012), but quantitative estimates from multiple proxies support substantial global 65 
warmth. Mean annual sSea sSurface tTemperature (SST) for the Arctic has been estimated at ~ 17–18 °C rising to ~ 23 66 
°C during the Paleocene–Eocene Thermal Maximum (PETM) hyperthermal at 56Ma (TEX86’; Sluijs et al., 2006). SSTs 67 
may have reached 26–28 °C in the Southwest Pacific during the Early Eocene Climatic Optimum (EECO, TEXL 86; Hollis 68 
et al., 2012; Bijl et al., 2009). EECO Mean mean annual aAir tTemperature (MAT) of Wilkes’ Land margin on Antarctica 69 
has been estimated at 16±5 °C (Nearest Living Relative, NLR, based on paratropical vegetation), with summer 70 
temperatures as high as 24–27 °C, inferred from soil bacterial tetraether lipids (MBT/CBT; Pross et al., 2012); similar 71 
but slightly higher MATs were obtained from New Zealand (Pancost et al., 2013). Low Low-latitude data are scarce, 72 
but oxygen isotopes of planktic foraminfera and TEX86 indicate SSTs off the coast of Tanzania > 30 °C (Pearson et al., 73 
2007; Huber, 2008). 74 

Few proxy estimates of early Eocene atmospheric carbon dioxide exist. Paleosol geochemistry indicates 75 
concentrations could have reached ~ 3000 ppmv (Yapp, 2004; Lowenstein and Demicco, 2006), whilst stomatal index 76 
approaches yield more modest values of 400–600 ppmv (Royer et al., 2001; Smith et al., 2010). Recent modelling 77 
indicates that terrestrial methane emissions also could have been significantly greater than modern, representing an 78 
additional greenhouse gas forcing (Beerling et al., 2011). GCM simulations with greenhouse gas concentrations 79 
substantially elevated compared to modern have had greatest success in reproducing proxy-inferred warmth (Huber 80 
and Caballero, 2011; Lunt et al., 2012), providing further evidence that global Eocene warmth was maintained by 81 
elevated concentrations of greenhouse gases. However, simulating warm high high-latitude and equable continental 82 
interior temperatures remains a challenge, with models struggling to replicate the reduced equator-pole temperature 83 
gradient implied by the proxies (Huber and Sloan, 2001; Valdes, 2011; Pagani et al., 2013 and references therein). This 84 
has resulted in suggestions that GCMs may be missing key heat transfer processes, new modelling aimed at reducing 85 
data-model anomalies, as well as re-evaluations of existing proxy data This has resulted in the suggestion that GCMs 86 
may be missing key heat transfer processes or mechanisms for warmth (e.g. Abbot and Tziperman, 2008; Huber et 87 
al., 2004; Korty et al., 2002; Kirk-Davidoff et al., 2002), as well as re-evaluation of existing proxy data and new 88 
modelling aimed at reducing data-model anomalies (Sagoo et al., 2013; Kiehl and Shields, 2013; Loptson et al., 2014; 89 
Sluijs et al., 2006; Huber and Caballero, 2011; Lunt et al., 2012). 90 
 91 

The hydrology of this super-greenhouse climate state remains poorly characterised. Initial observations of 92 
globally widespread Eocene laterites and coals (Frakes, 1979; Sloan et al., 1992) and of enhanced sedimentation rates 93 
and elevated kaolinite in the clay fraction of many coastal sections (Bolle et al., 2000; Bolle and Adatte, 2001; John et 94 
al., 2012; Robert and Kennett, 1994; Nicolo et al., 2007) suggested early Eocene terrestrial environments were 95 
characterised by globally enhanced precipitation and runoff relative to today. Diverse geochemical proxies are now 96 
providing a more nuanced interpretation of how the spatial organisation of the Eocene hydrological cycle differed 97 
from that of the modern. This is particularly the case for the PETM. In the Arctic, the hydrogen isotopic composition of 98 
putative leaf-wax compounds is enriched by ~ 55‰ δD at the PETM, thought to reflect increased export of moisture 99 
from low latitudes (Pagani et al., 2006). Enrichment of δD in leaf waxes from tropical Tanzania, coincident with 100 
elevated concentrations of terrestrial biomarkers and sedimentation rates, has been interpreted as indicating a shift 101 
to a more arid climate with seasonally heavy rainfall (Handley et al., 2012, 2008). Whether these changes are typical 102 



of the low latitudes or are highly localised responses remains to be determined. Elsewhere, conflicting evidence for 103 
regional hydrological changes exist: an increased PETM offset in the magnitude of the Carbon Isotope Exursion (CIE) 104 
between marine and terrestrially derived carbonates, including from Wyoming, has been suggested to reflect 105 
increases in humidity/soil moisture of the order of 20–25% (Bowen et al., 2004). Other studies utilising leaf 106 
physiogonomy and paleosols suggest the North American continental interior became drier at the onset of the PETM, 107 
or alternated between wet and dry phases (Kraus et al., 2013; Smith et al., 2007; Wing et al., 2005). 108 

 109 

Modelling studies have suggested future warm climates will be characterised by an exacerbated P - E distribution – 110 
broadly whereresulting in wet climates becomes wetter and the dry becomeing drier, which arises from increased 111 
water vapour transport into moisture convergence zones from moisture divergence zones (Held and Soden, 2006; 112 
Chou and Neelin, 2004). An intensified hydrological cycle, associated with increased meridional transport of water 113 
vapour is therefore consistent with regions of both wetting and drying. However, this thermodynamic response may 114 
be complicated by dynamical shifts in atmospheric circulation (e.g. Chou et al., 2009; Bony et al., 2013; Chadwick et 115 
al., 2013). Despite this framework for understanding warm climate hydrological responses and these proxy indications 116 
of an background early Eocene hydrological cycle different to modern, and of significant hydrological changes at the 117 
PETM, only limited proxy-model comparisons have been made for the early Eocene hydrological cycle (Pagani et al., 118 
2006; Speelman et al., 2010; Winguth et al., 2010). Some analysis of model sensitivity of precipitation and P −E to 119 
imposed CO2 (Winguth et al., 2010), paleogeography (e.g. Roberts et al., 2009) and parametric uncertainty (Sagoo et 120 
al., 2013; Kiehl and Shields, 2013) has been undertaken, but the range of hydrological behaviour simulated within 121 
different models has not yet been assessed. Lunt et al. (2012) undertook a model intercomparison of early Eocene 122 
warmth, EoMIP, based on an ensemble of 12 Eocene simulations undertaken in four fully-coupled atmosphere–ocean 123 
climate models, a summary of which is given in Table 1. This demonstrated differences in global surface air 124 
temperature of up to 9 °C for a single imposed CO2 and differing regions of CO2-induced warming, but the implications 125 
for the hydrological cycle have not been considered. 126 

This study addresses three main questions: (1) how do globally averaged GCM precipitation rates for the 127 
Eocene compare to preindustrial simulations and vary between models in the EoMIP ensemble? (2) How consistently 128 
do the EoMIP GCMs simulate regional precipitation and P −E distributions? (3) Do differences between models affect 129 
the degree of match with existing proxy estimates for mean annual precipitation? 130 

2 Model descriptions 131 

The EoMIP approach of Lunt et al. (2012) is distinct from formal model intercomparison projects which utilise a 132 
common experimental design (e.g. PMIP3, Taylor et al., 2012; CMIP5, Braconnot et al., 2012). Instead, the EoMIP 133 
models differ in their boundary conditions and span a plausible early Eocene CO2 range, utilise different 134 
paleogeographic reconstructions and specify different vegetation distributions. This is in addition to internal 135 
differences in model structure and physics, including precipitation-relevant parameterisations such as those relating 136 
to convection and cloud microstructure. Whilst this may hinder the identification of reasons for inter-model 137 
differences, the ensemble spans more fully the uncertainty in boundary conditions, which is appropriate for deep 138 
time climates such as the early Eocene. 139 

The ensemble, summarised in Table 1, includes a range of published simulations of the early Eocene carried 140 
out with fully dynamic atmosphere–ocean GCMs. We extend the EoMIP ensemble as originally described by Lunt et al. 141 
(2012) to include simulations published by Sagoo et al. (2013), Kiehl and Shields (2013) and Loptson et al. (2014). A 142 
brief description of each model and the corresponding simulation is given below. Each model produces large-scale 143 
(stratiform) and convective precipitation separately, also summarised in Table 1. Greenhouse gases other than CO2 144 
are only varied in some of the simulations and are held at preindustrial levels in a number of the models; we have 145 
therefore estimated the forcing in terms of net CO2-equivalent, detailed below.  146 

2.1 HadCM3L  147 

HadCM3L is a version of the GCM developed by the UK Met Office (Cox et al., 2000). Eocene simulations performed 148 
with atmospheric CO2 at ×2, ×4 and ×6 preindustrial levels were presented by Lunt et al. (2010) in their study of the 149 
role of ocean circulation as a possible PETM trigger via methane hydrate destabilisation. In these simulations, models 150 
were integrated for more than 3400 years to allow intermediate-depth ocean temperatures to equilibrate. Both the 151 



atmosphere and ocean are discretised on a 3.75° longitude × 2.5° latitude grid, with 19 vertical levels in the 152 
atmosphere and 20 in the ocean. Vegetation is set to a globally homogenous shrubland. 153 

The effect of using an interactive vegetation model, TRIFFID (Cox, 2001), on temperature proxy-model 154 
anomalies was considered by Loptson et al. (2014) who performed simulations at ×2 and ×4 CO2, continuations of 155 
those of Lunt et al. (2010). This study indicated that for a given prescribed CO2, the inclusion of dynamic vegetation 156 
acts to warm global climate via albedo and water vapour feedbacks. We refer to these simulations as HadCM3L_T. 157 
The effect of dynamic vegetation on precipitation distributions and global precipitation rate was additionally briefly 158 
considered but comparisons to precipitation proxy data or to other models have not been undertaken.  159 

2.2 FAMOUS 160 

FAMOUS is an alternative version of the UK Met Office’s GCM, adopting the same climate parameterisations 161 
as HadCM3L, but solved at a reduced spatial and temporal resolution in the atmosphere (Jones et al., 2005; Smith et 162 
al., 2008). Atmospheric resolution is 7.5 ° longitude × 5 ° latitude, with 11 levels in the vertical, whilst the ocean 163 
resolution matches that of HadCM3L. Both modules operate at an hourly time-step. Because of its reduced resolution, 164 
FAMOUS has been used for transient simulations with long run-times and in perturbed parameter ensembles where a 165 
large number of simulations are required (Smith and Gregory, 2012; Williams et al., 2013). Sagoo et al. (2013) used 166 
FAMOUS to study the effect of parametric uncertainty on early Eocene temperature distributions by varying 10 167 
climatic parameters which are typically poorly constrained in climate models. Their results demonstrated that a 168 
globally warm climate with a reduced equator-to-pole temperature gradient can be achieved at 2 × preindustrial CO2. 169 
Of the seventeen successful simulations which ran to completion, our focus is on E16 and E17, the simulations with 170 
the shallowest equator-to-pole temperature gradient and which show the optimal match to marine and terrestrial 171 
temperature proxy-data. At the ocean grid resolution, the paleogeography matches that of Lunt et al. (2010). 172 
Vegetation is set to a homogenous shrubland. All simulations were run for a minimum of 8000 model years and full 173 
details of the perturbed parameters are provided in Sagoo et al. (2013). Sagoo et al. show DJF and JJA precipitation 174 
distributions for their globally warmest and coolest simulations, but comparisons to other models or to proxy data 175 
have not been made.  176 

2.3 CCSM3 177 

We utilise three sets of simulations performed with CCSM3, a GCM developed by the US National Centre for 178 
Atmospheric Research in collaboration with the university community (Collins et al., 2006). The first set were was 179 
initially used by Liu et al. (2009) in their study of Eocene–Oligocene sea surface temperatures, and subsequently 180 
compared to terrestrial proxy data in a study of the early Eocene climate equability problem by Huber and Caballero 181 
(2011). These simulations are configured with atmospheric CO2 at ×2, ×4, ×8 and ×16 preindustrial. Models were 182 
integrated for between 2000 and 5000 years, until the sea surface temperature was in equilibrium. The atmosphere is 183 
resolved on a 3.75 ° longitude by ~ ° 3.75 latitude (T31) grid with 26 levels in the vertical and the ocean is resolved on 184 
an irregularly spaced dipole grid. The prescribed land surface cover follows the reconstructed vegetation distribution 185 
utilised in Sewall et al. (2000). Following the approach of Lunt et al. (2012) we refer to these simulations as CCSM3_H.  186 

The second set of simulations, which we refer to as CCSM3_W, were was described by Winguth et al. (2010) 187 
and Shellito et al. (2009) and conducted at ×4, ×8 and ×16 preindustrial CO2. Relative to the CCSM3_H simulations, 188 
these simulations utilised a solar constant reduced by 0.44 %, were integrated for a shorter period (_ 1500 years), 189 
adopted an updated vegetation distribution (Shellito and Sloan, 2006) and utilised a marginal sea parameterisation, 190 
resulting in paleogeographic differences, particularly in polar regions. However, the major difference between the 191 
simulations is that the CCSM3_W simulations utilise a modern-day aerosol distribution, whereas CCSM3_H adopts a 192 
reduced loading for the early Eocene based on a hypothesised lower early Eocene ocean productivity (Kump and 193 
Pollard, 2008; Winguth et al., 2012). However, the extent to which increased volcanism at the PETM might have 194 
increased aerosol loading remains uncertain (Svensen et al., 2004; Storey et al., 2007). 195 

The third set of simulations, CCSM3_K, are is described in Kiehl and Shields (2013). This study investigated 196 
the sensitivity of Eocene climatology to the parameterisation of aerosol and cloud effects, specifically by altering 197 
cloud microphysical parameters including cloud drop number and effective cloud drop radii. Modern day values from 198 
pristine regions are applied homogenously across land and ocean. Simulations were performed at two greenhouse gas 199 
concentrations corresponding to possible pre- and trans-PETM atmospheric compositions which are equivalent to CO2 200 
of ~ ×5 and ~ ×9 preindustrial, respectively. Paleogeography and vegetation distribution are the same as those used in 201 
CCSM3_W and the solar constant is reduced by 0.487% relative to modern. Changes in precipitation distribution 202 



between high- and low-CO2 simulations have previously been shown for the CCSM3_W and CCSM3_K simulations 203 
(Winguth et al., 2010; Kiehl and Shields, 2013), but how robust these Eocene distributions are to GCM choice remains 204 
unknown.  205 

2.4 ECHAM5/MPI-OM  206 

The ECHAM5/MPI-OM model is the GCM of the Max Planck Institute for Meteorology (Roeckner et al., 2003), used by 207 
Heinemann et al. (2009) in their study of reasons for early Eocene warmth. The model was configured with CO2 at ×2 208 
preindustrial, using the paleogeography of Bice and Marotzke (2001) and a globally homogenous vegetation cover, 209 
with lower albedo but larger leaf area and forest fraction than pre-industrial, equivalent to a modern day woody 210 
savannah. Atmosphere components are resolved on a gaussian grid with a spacing of 3.75° longitude and 211 
approximately 3.75° latitude. Relative to the preindustrial simulation, methane is increased from 65 to 80 ppb and 212 
nitrous oxide from 270 to 288 ppb for the Eocene, but these are negligible relative to change in radiative forcing 213 
associated with doubling of preindustrial CO2. Latitudinal precipitation distributions in the simulation relative to 214 
preindustrial were considered by Heinemann et al. (2009) and elevated convective precipitation at high-latitudes 215 
suggested to be consistent with convective clouds as a high high-latitudes warming mechanism (Abbot and 216 
Tziperman, 2008).  217 

2.5 GISS-ER  218 

The E-R version of the Goddard Institute for Space Studies model (GISS-ER; Schmidt et al., 2006) was utilised by 219 
Roberts et al. (2009) in their study of the impact of Arctic paleogeography on high high-latitude early Eocene sea 220 
surface temperature and salinity. Here, we include the simulation with open Arctic paleogeography of Bice and 221 
Marotzke (2001) which is also utilised in the ECHAM5 simulation. The simulation was forced with CO2 at 4× 222 
preindustrial, and CH4 at 7× preindustrial, equivalent of a total Eocene greenhouse gas forcing of ~ 4.3× preindustrial 223 
CO2. The atmospheric component of GISS-ER has a grid resolution of 4° latitude by 5° longitude with 20 levels in the 224 
vertical; the ocean model is of the same horizontal resolution but with 13 levels. Vegetation is prescribed as in Sewall 225 
et al. (2000). The hydrological cycle is shown to be intensified for the Paleogene simulation, with elevated global 226 
precipitation and evaporation rates, but spatial precipitation distributions were not studied.  227 

3 Results  228 

3.1 Preindustrial simulations 229 

The simulation of precipitation is a particular challenge for GCMs given the range of spatial and temporal scales at 230 
which precipitation-producing processes occur, compared to a typical model grid and timestep (e.g. Knutti and 231 
Sedlacek, 2013; Hagemann et al., 2006). Model resolution and the parameterisation schemes which account for sub-232 
grid scale precipitation, in addition to temperature distributions, differ between the GCMs in the ensemble (Table 1). 233 
We initially summarise model skill in simulating preindustrial mMean aAnnual pPrecipitation (MAP) to provide context 234 
for our Eocene model intercomparison and to identify which, if any, precipitation structures are unique to the Eocene, 235 
and which are more fundamentally related to errors particular to a given GCM. 236 

Figure 1 shows preindustrial MAP distributions for each GCM in the EoMIP ensemble and anomalies for each 237 
preindustrial simulation relative to CMAP observations (Centre for Climate Prediction, Merged Analysis of 238 
Precipitation), which incorporates both satellite and gauge data (Yin et al., 2004; Gruber et al., 2000). The following 239 
observations can be made: 240 

i. All of the EoMIP GCMs simulate the principal features of the observed preindustrial MAP distribution, 241 
although errors occur in their position and strength. The Inter-tropical Convergence Zone (ITCZ), North Atlantic and 242 
North Pacific storm stracks and subtropical precipitation minima in over eastern ocean basins are identifiable for each 243 
simulation, but differences are evident between the models. Some biases are common to a number of the models, in 244 
particular those relating to the ITCZ and tropical precipitation. HadCM3L, FAMOUS, ECHAM5 and CCSM3 all simulate 245 
the ITCZ mean annual location north of the Equator, but the South Pacific Convergence Zone (SPCZ) generally extends 246 
too far east in the Pacific, and is too zonal, with precipitation equalling that to the north of the Equator to produce a 247 
“double-ITCZ” – a common bias in GCMs (Dai, 2006; Lin et al., 2007; Brown et al., 2011; Randall et al., 2007). The 248 
localised rain belt minimum is a result of the Pacific cold-tongue, not present in GISS-ER, which instead simulates a 249 
single convergence zone with high mean annual precipitation across the tropics. Other biases which appear common 250 
across the ensemble include over-precipitation in the Southern Ocean and too little precipitation over the Amazon 251 
(Yin et al., 2013; Joetzer et al. 2013), over-precipitation in the Southern Ocean (Randall et al., 2007 and references 252 



therein) and biases in the position of rainfall maxima in the Indo-Pacific (e.g. Liu et al., 2014). and Antarctica (Hack et 253 
al., 2006; Randall et al., 2007 and references therein). 254 

 ii. Errors over the continents are less than those over the oceans. Absolute errors in MAP are largest over 255 
the high precipitation tropical and subtropical oceans, and frequently exceed 150 cm year−1 in the case of ITCZ and 256 
SPCZ offsets. Over the continents, anomalies are generally no greater than 60 cm year−1 and more than 80% of the 257 
multimodel mean terrestrial surface has an anomaly less than 30 cm year−1. In low precipitation regions, these errors 258 
could still result in significant percentage errors (Fig. S1). 259 

iii. Models show regional differences in precipitation skill. Figure 1 demonstrates that some precipitation 260 
biases are individual to particular GCMs. Whilst these are most noticeable over the high precipitation tropical and 261 
subtropical oceans, such as offsets in the location of maximum precipitation intensity or strength of storm tracks, 262 
relative differences within low-precipitation continental regions can also be considerable (Mehran et al., 2014; Phillips 263 
and Gleckler, 2006). This is particuarly the case for the Sahel region of northern Africa and the Antarctic continental 264 
interior (Fig. S2). We hypothesise that GCMs applied to the study of paleoclimates are also likely to show significant 265 
regional differences in their precipitation distribution, underlining the importance of model intercomparison. Figure 2 266 
additionally shows that all of the EoMIP models simulate a global precipitation rate which agrees fairly well with 267 
observational data sets for preindustrial climatology (CMAP, GPCP, Legates and Willmott, 1990). Given that all of the 268 
models simulate the principal features of MAP distribution, we carry all forward to our Eocene analysis. However, it is 269 
important to recognise that significant model biases in simulating precipitation distribution exist, even where 270 
boundary conditions are well constrained.    271 

3.2 Sensitivity of the global Eocene hydrological cycle to greenhouse gas forcing 272 

The EoMIP model simulations were configured with a range of plausible early Eocene and PETM atmospheric CO2 273 
levels, yielding a range of global mean surface air temperatures (Lunt et al., 2012). It is therefore possible to evaluate 274 
how consistently precipitation rates are simulated across the GCMs (i) for a given CO2, (ii) for a given global mean 275 
temperature, or in the case of those models for which multiple simulations have been performed, (iii) for a given CO2 276 
change and (iv) for a given global mean temperature change.  Closure of the GCM global hydrological budget requires 277 
that total annual precipitation and evaporation are equal, providing there is no net change in water storage – the 278 
imbalances, summarised in Table S1 are < 0.01 mm day−1 equivalent. . Mean annual global precipitation rate therefore 279 
provides a zero-order indication of the intensity of the global hydrological cycle. In HadCM3L, the interannual range in 280 
global annual mean precipitation rate across the 95 years over which mean climatology is averaged is 0.07 and 281 
0.06mmday−1 in the ×2 and ×6 CO2 simulations, respectively, such that the maximum global annual precipitation rate 282 
in the timeseries is less than 2.5% above the minimum rate. We therefore consider mean annual precipitation rate to 283 
be a robust estimate of the overall sensitivity of the simulated hydrological cycle.  Precipitation rates calculated from 284 
three modern observational datasets are shown in Fig. 2b (open circles); model-estimated rates derived from 285 
preindustrial simulations (filled circles) and are in relatively good agreement with observational data, the rates 286 
derived from preindustrial simulations (filled circles), providing confidence in this measure. 287 

All of the EoMIP models exhibit a more intense active hydrological cycle for the Eocene (Fig. 2b; squares) 288 
compared to that simulated in the corresponding preindustrial simulations (Fig. 2b; circles). For a given CO2, the 289 
models vary in the intensity of the hydrological cycle they simulate; – for example, ECHAM5 has a global precipitation 290 
rate at 2 × preindustrial CO2 comparable to that of CCSM3_W at ~ 12×preindustrial CO2. In the remainder of this 291 
section, we discuss reasons for these differences, which can be attributed to (i) differences in global/regional 292 
temperatures between the simulations, (ii) differences in Eocene boundary conditions, including CO2 (iii) variation of 293 
poorly constrained parameter values and (iiiiv) more fundamental differences in the ways in which the models 294 
simulate hydrology. 295 

The GCMs within the EoMIP ensemble differ in their global mean temperature for a given CO2 (e.g. Lunt et 296 
al., 2012; Fig. 2a). Consequently, the global precipitation rate for each ensemble member is shown in Fig. 2c relative 297 
to its globally averaged surface air temperature. This demonstrates that much of the variation between models in 298 
precipitation rate arises from these temperature differences. For example, the elevated precipitation rate in the 299 
2×CO2 ECHAM5 is explained by this model’s warmth, being globally > 5 °C warmer than HadCM3L at the same CO2. 300 
Similarly, the enhanced precipitation rate in the CCSM3_K simulations at both ~ ×5 CO2 and ~ ×9 CO2 relative to those 301 
simulated in CCSM3_H and CCSM3_W are attributable to warmer surface temperatures in CCSM3_K, resulting from 302 
alterations to cloud condensation nuclei (CNN) parameters, with a reduction in low-level cloud acting to increase 303 
short-wave heating at the surface (Kiehl and Shields, 2013). The reduced aerosol loading in CCSM3_H results in 304 



surface warming relative to CCSM3_W (Fig. 2a), which explains much of the 7–8% increase in strength of the 305 
hydrological cycle across the CO2 range studied; the ×4 CO2 simulation in CCSM3_W has approximately the same 306 
surface temperature as CCSM3_H at ×2 CO2. There are effects beyond those induced by surface temperature, 307 
however. For example, for a given surface air temperature, the global precipitation rate is consistently weaker in 308 
CCSM_W relative to CCSM_H (Fig. 2c) – possibly a result of modified aerosol-cloud interactions due to the changes in 309 
prescribed aerosols in CCSM_H. 310 

The degree to which the global hydrological cycle will intensify with future global warming has received 311 
much attention (e.g. Allen and Ingram, 2002; Held and Soden, 2006; Trenberth, 2011). Held and Soden (2006) show a 312 
~ 2% increase in global precipitation per degree of warming for AR4 GCMs forced with the A1B emissions scenario, 313 
but with notable inter-model variability. For those simulations with multiple CO2 forcing, it is possible to estimate how 314 
this sensitivity varies for the Eocene. We show the dP/dT relationships for each model as well as the increase in % 315 
precipitation for a 1 °C temperature increase over the range of 15–30 °C (Table 2). Both CCSM3 and HadCM3L appear 316 
to be broadly comparable at ~ 1.8–2.1% increase in the intensity of the hydrological cycle for each degree of warming, 317 
consistent with the future climate simulations. 318 

Some variation in the intensity of the hydrological cycle simulated by the EoMIP models may be expected to occur 319 
independently of global mean surface air temperature. For preindustrial conditions, boundary conditions are largely 320 
constant across the simulations (atmospheric composition, continental positions, orography and ice sheet 321 
distribution), yet the simulations show a spread of ~ 0.30 mm day−1 – which exceeds the precipitation increase for a 322 
doubling of CO2 from ×2 to ×4 preindustrial in both CCSM3_H (0.13 mm day−1) and HadCM3L (0.18 mm day−1). 323 
Differences in global precipitation rate between the preindustrial simulations  – these differences are not explained by 324 
differences in preindustrial temperature (Fig. 2b) but may relate to more fundamental differences in model physics, 325 
particularly between HadCM3L and CCSM3W given that, where thea a more active hydrological cycle is consistently 326 
simulated in HadCM3L for both the Eocene and preindustrial conditions. Further simulations using equivalent 327 
precipitation parameterisation schemes for large-scale and convective precipitation would be required to fully 328 
evaluate this hypothesis. 329 

 330 

 331 

For both the ×2 and ×4 CO2 simulations, the HadCM3L simulations that include the TRIFFID dynamic 332 
vegetation model have a near identical precipitation rate to those without (Fig. 2b). However, the ×4 CO2 simulation 333 
with dynamic vegetation is substantially warmer than the ×4 simulation with fixed homogenous shrubland. The 334 
inclusion of the dynamic vegetation model acts to warm the surface climate as described in Loptson et al. (2014), but 335 
this does not yield an associated increase in precipitation. This may be related to the fact that temperature 336 
differences induced by TRIFFID are concentrated over the land surface. N Relative to the fixed shrubland simulations, 337 
the TRIFFID simulations show a reduction in continental evapotranspiration in response to doubling of CO2, which 338 
results in diminished moisture availability over the tropical landmass, for a given temperature (Fig S3). The TRIFFID 339 
simulations therefore exhibit a reduced hydrological sensitivity of only ~ 1.3% increase in precipitation per degree of 340 
warming (dP/dT ) compared with ~ 1.8% for the non-TRIFFID simulations. 341 

In the FAMOUS simulations undertaken by Sagoo et al. (2013; Fig. 2d), all simulations are performed at 342 
2×CO2, but global temperatures range between 12.3 and 31.8 °C on account of simultaneous variation of 10 uncertain 343 
parameter values, some of which directly influence cloud formation and precipitation. Within these simulations there 344 
is also a linear relationship between surface air temperature and global precipitation (R2 = 0.965; n = 17) suggesting 345 
the global intensity of the hydrological cycle remains primarily coupled to global temperature, despite greater scatter 346 
around the dP/dT relationship. Despite this, the overall dP/dT relationship in FAMOUS is higher than that of HadCM3L 347 
and HadCM3L+TRIFFID, with an ~ 2.8% increase in precipitation for each degree of warming (Table 2). 348 

In HadCM3L, the 1×CO2 Eocene and preindustrial simulations have similar global precipitation rates (Fig. 2a), 349 
implying that Eocene boundary conditions other than CO2 do not exert a major influence on the intensity of the 350 
hydrological cycle, raising global precipitation rate by only ~ 0.10 mm day−1. HoweverMoreover, even this small , this 351 
increase is consistent with and likely driven by a small increase in global surface air temperature. Furthermore, the 352 
preindustrial simulations for both CCSM3 and HadCM3L lie on, or close to, the Eocene-derived dP/dT lines (Fig. 2c), 353 
suggesting that globally, precipitation rate for a given temperature is not increased/decreased for the Eocene, despite 354 
differences in low-latitude land–sea distribution, ocean gateways and a lack of Eocene ice sheets. Intriguingly, 355 
extrapolating the dP/dCO2 relationship backwards to 1×CO2 for CCSM_W would require an Eocene precipitation rate ~ 356 



7% above that of the preindustrial rate. This suggests a more substantial effect of Eocene boundary conditions on 357 
elevating absolute precipitation rates for CCSM3_W than that seen in HadCM3L, but still operating via temperature 358 
effects. GISS-ER has a marginally more vigorous hydrological cycle than the other models for a given global 359 
temperature. Roberts et al. (2009) show that the global precipitation rate in a preindustrial 4×CO2 simulation in GISS-360 
ER is ~ 4% greater than that of the preindustrial, whereas the Paleogene simulation has a precipitation rate ~ 23% 361 
above that of the preindustrial. Therefore non-greenhouse gas Paleogene boundary conditions other than CO2 are 362 
crucial in elevating precipitation rate in this model. , in contrast to HadCM3L. However, this also appears to be 363 
mediated by temperature effects, given that the Eocene simulations of Roberts et al. (2009) are also substantially 364 
warmer than preindustrial geography simulations with 4 x CO2 greenhouse gas concentrations.  365 

3.3 Variability in mMean aAnnual pPrecipitation (MAP) distribution  366 

3.3.1 Spatial distribution of MAP 367 

Figure 3 shows MAP distributions for each EoMIP simulation. Eocene distributions are relatively similar to those for 368 
preindustrial conditions (Fig. 1), with clearly recognisable inter-tropical convergence zone (ITCZ), )and South Pacific 369 
convergence zone (SPCZ) structures, and subtropical precipitation minima, the distributions of which appear to be 370 
longstanding characteristics of Cenozoic precipitation. Relative to preindustrial simulations, the Eocene distributions 371 
exhibit increased precipitation at high latitudes as a consequence of elevated Eocene temperatures in these regions. 372 
In CCSM in particular, the Eocene is characterised by a more globally equable precipitation rate: the expansion of 373 
zones of highest precipitation in the Eocene relative to preindustrial is muted compared with a more extensive loss of 374 
low precipitation regions. Additional support for this is provided by a comparison of mean precipitation rates for land 375 
and ocean (Table S2). The preindustrial ratio of land : ocean precipitation is maintained in the Eocene HadCM3L and 376 
ECHAM simulations, whereas in CCSM, precipitation rates over land and ocean are typically equal. The effects of 377 
differences in simulated surface air temperatures between models within the ensemble are also evident: for a given 378 
global surface temperature, HadCM3L maintains cooler poles than CCSM3 and ECHAM5 (Sect. 3.3.2) and regions with 379 
MAP< 300 cm year−1 persist in the Arctic and Antarctic, even at ×4 CO2. 380 

Modelled Eocene MAP features are frequently traceable to those identified in predindustrial simulations 381 
(Sect. 3.1), including the single tropical convergence zone in the GISS ×4 CO2 simulation and the double ITCZ in a 382 
number of the models. Elsewhere, the Eocene precipitation distributions diverge from those of the preindustrial 383 
simulations and may be related to specific Eocene paleogeography, elevated CO2, or other boundary conditions. In 384 
HadCM3L, there is a clear trend towards a more south-easterly trending SPCZ in the higher CO2 simulations, which is 385 
not replicated in the warm simulations of the sister model FAMOUS. The SPCZ in CCSM is also far weaker in the 386 
Eocene simulations, compared to preindustrial simulations. The mechanisms which control the SPCZ in the modern 387 
day, particularly its northwest-southeast orientation, are only partially understood with zonal SST gradients, intensity 388 
of trade winds and the height of the Andes all suggested to be important influences (Matthews et al., 2012; Cai et al., 389 
2012). In the EoMIP simulations, CCSM3 shows much slacker surface winds at the equator with reduced low-level 390 
convergence, whilst HadCM3L mantains stronger convergence of south-easterly trade winds with north-easterlies 391 
originating from the Pacific subtropical high (Fig S4). Despite similar preindustrial precipitation distributions over 392 
tropical Africa, CCSM and HadCM3L strongly diverge in the Eocene, with CCSM showing far more intense equatorial 393 
precipitation. In CCSM, evaporation is consistently less than the precipitation rate, which likely results in recharge of 394 
soil moisture throughout the year and an availability of moisture for convective precipitation. The FAMOUS 395 
simulations E16 and E17 represent two realisations of very warm climates with a reduced equator-pole temperature 396 
gradient – in these simulations significant increases in mid-latitude precipitation are particularly accentuated over the 397 
Pacific Ocean; increases in convection in the subtropics and mid-latitudes are sufficient to eliminate the precipitation 398 
minima seen in other models at these latitudes. 399 

For a given CO2, differing boundary conditions, paramaterisation schemes and simulated model air 400 
temperatures prevent direct assessment of whether Eocene regional precipitation distributions are robust to GCM 401 
selectionchoice. Model simulations have a substantially different amount of water vapour in the atmosphere and 402 
differing global precipitation rates and it is not meaningful to average these simulations. Instead, w We show a 403 
multimodel mean in Fig. 5 for simulations with a common global precipitation rate to provide an assessment of 404 
regional variability between model simulations with the same global strength hydrological cycle. Elevated high-405 
latitude precipitation for the early Eocene relative to preindustrial conditions is robust between GCMs, although 406 
absolute values remain variable between models, particularly in the Southern Hemisphere, likely due to differing 407 
Antarctic orography. Differences between models in the mid-latitudes are smaller, resulting in some confidence that 408 



the secondary precipitation maxima were polewards of their preindustrial location during the Eocene. Equatorial 409 
precipitation remains highly variable between models but is accentuated relative to preindustrial.  410 

3.3.2 Controls on precipitation distribution  411 

Precipitation rates for each simulation are summarised in Table S2, including separate rates calculated over land and 412 
ocean surfaces and rates deconvolved into those arising from convective and large-scale contributions. These data 413 
show that elevated precipitation rates in the high CO2 Eocene simulations are largely the result of increased 414 
convection, although in the ECHAM5 model a greater percentage of precipitation is generated by large scale 415 
mechanisms in both the Eocene and preindustrial simulation. Figure 4 shows how convective and large-scale 416 
precipitation rates vary with latitude for a selection of the EoMIP simulations. This reveals differences between 417 
models in the mechanisms responsible for precipitation distributions which can be related to surface air temperature 418 
distributions. In the HadCM3L simulations, the mid-latitude maxima in both large scale and convective precipitation 419 
advance polewards with increasing CO2 with precipitation increases over the high northern latitudes driven almost 420 
exclusively by enhanced large-scale precipitation. CCSM3 has substantially warmer poles which results in much 421 
enhanced high-latitude large scale precipitation relative to HadCM3L, although large scale latitudinal contributions 422 
differ somewhat for preindustrial simulations at both low and high latitudes. In CCSM3_K, the warmest CCSM3 423 
simulations, polar temperatures are elevated compared to CCSM3_H as is total precipitation in these regions, but in 424 
this case large scale precipitation is reduced over much of the high latitudes and the higher total precipitation is due 425 
to convective processes. Mid-latitude precipitation maxima within the ECHAM5 simulation arise from large-scale 426 
mechanisms rather than convection; however, this is also true of the preindustrial simulation and does not relate to 427 
Eocene boundary conditions. 428 

In the warmest FAMOUS simulations of Sagoo et al. (2013), the high latitudes experience particularly 429 
significant increases in large scale precipitation, such that the maximum values are those at the poles in the E17 430 
simulation, and in the Southern Hemisphere the local mid-latitude precipitation maximum is lost. Elevated mid mid-431 
latitude temperatures in the warm FAMOUS simulations additionally result in significant increases in convective 432 
precipitation which are not simulated in the cooler simulations and models. Overall, convective precipitation in 433 
FAMOUS increases as both global temperatures rise and equatorial-to-polar temperature gradients decrease, 434 
regardless of the underlying parameter configuration; this emphasises the fundamental control of temperature 435 
distribution on precipitation, as opposed to the effect of alteration of any one specific parameter. 436 

Improvements in the simulation of precipitation in modern day climate simulations are often related to 437 
better resolved topography (e.g. Gent et al., 2010).  However, given the variety of differences in boundary 438 
conditions between the EoMIP simulations, topography appears to only have limited power in 439 
explaining differences between regional precipitation responses. Figure S5 shows differences in topography and 440 
precipitation rate between three sets of simulations with similar global precipitation rates: (i) HadCM3L and FAMOUS 441 
– where the models have similar parameterisation schemes but differ in atmospheric grid resolution; (ii) CCSM3_W 442 
and HadCM3L – different models, but with a similar resolution; (iii) CCSM3_W and CCSM3_H – the same model but 443 
slightly different topographic boundary conditions. The HadCM3L and CCSM3_W simulations show some substantial 444 
differences in the topography around the Rockies, with the increased elevation in CCSM3 possibly accounting for the 445 
increased precipitation in this region. However, differences in topography over the Asian subcontinent do not result in 446 
any systematic differences in precipitation rate. Regions of similar topography elsewhere, including over the Tropics, 447 
have far more divergent precipitation responses between the models, which do not relate to local differences in 448 
topography. 449 

For HadCM3L and CCSM3, simulations at different CO2 concentrations provide an insight into how regional 450 
Eocene precipitation distributions are impacted by warming, and anomaly plots for high – low CO2 simulations are 451 
shown in Fig. 6. For the same CO2 forcing, CCSM3 is globally cooler than HadCM3L (Lunt et al., 2012), but the 452 
anomalies for 16 – 4 CO2 (CCSM_W) and 6 – 2 CO2 (HadCM3L) display similar global changes in both temperature and 453 
therefore precitation rate on account of similar dP/dT relationships (Fig. 2; Table 2). Intriguingly, HadCM3L displays far 454 
greater spatial contrasts in net precipitation change, particularly over the ocean: between the pair of HadCM3L 455 
simulations, some 23% of the Earth’s surface experiences an increase or decrease in precipitation greater than 60 cm 456 
year−1, compared to just 6% in the CCSM3 simulations. Some spatial patterns are robust between models – including 457 
the dipole-like pattern over the Pacific, SPCZ migration, and subtropical reductions in precipitation at the expense of 458 
greater moisture transport to higher latitudes Ignoring differences in the spatial pattern of atmospheric circulation 459 
- such as those relating to differing SPCZ (Sect 3.3.1), the underlying response appears to be an increase in 460 



precipitation in the deep tropics and a reduction in precipitation in the subtropics, at least over the Pacific Ocean. This 461 
increase in moisture in the convergence zone and decrease in the divergence zones appears to relate to a more 462 
vigorous change in tropical atmospheric circulation in the HadCM3L model relative to CCSM3 (Fig S56) . Other 463 
changes are model dependent: in HadCM3L, there is a clear increase in the strength of storm tracks along the eastern 464 
Asian coastline, which is not repeated in CCSM. In HadCM3L, additional  decreases in precipitation occur around the 465 
Peri-Tethys and along the coastline of equatorial Africa. Whilst Therefore, although models within the EoMIP 466 
ensemble therefore showexhibit similarities in their global rate of precipitation change with respect to temperature, 467 
regional precipitation distributions are strongly model dependent, diverging within the EoMIP ensemble according to 468 
surface air temperature characteristics.  469 

3.4 Precipitation seasonality 470 

The evolution and timing of the onset of global monsoon systems in the Eocene has been the subject of 471 
debate (Licht et al., 2014; Sun and Wang, 2005; Wang et al., 2013). Proxy studies for the early Eocene have 472 
highlighted differences in precipitation seasonality relative to modern (Greenwood et al., 2010; Greenwood, 1996; 473 
Schubert et al., 2012) and possible changes to seasonality at the PETM have also been invoked in a number of studies 474 
(Sluijs et al., 2011; Schmitz and Pujalte, 2007; Handley et al., 2012). Previous modelling work utilising CCSM3 has 475 
suggested that much of the mid-late Eocene was monsoonal, with up to 70% of annual rainfall occurring during one 476 
extended season in North and South Africa, North and South America, Australia and Indo-Asia (Huber and Goldner, 477 
2012). Similarly, GCMs have been shown to differ greatly in their prediction of future monsoon systems (e.g. Turner 478 
and Slingo, 2009; Chen and Bordoni, 2014), therefore so we examine the similarities and differences in Eocene models 479 
with respect to the seasonality of their precipitation distributions. 480 

Figure 7 shows the percentage of precipitation falling in the extended summer season (MJJAS for Northern 481 
Hemisphere; NDJFM for Southern Hemisphere) following the approach of Zhang and Wang (2008) and also utilised in 482 
the Eocene studies of Huber and Goldner (2012) and Licht et al. (2014). This metric has been shown to correlate well 483 
with the modern-day distribution of monsoon systems. Overall, the models show a global distribution of early Eocene 484 
monsoons in high CO2 climates that is similar to those simulated under preindustrial simulations (Fig. S6S7). Australia 485 
is markedly less monsoonal than in preindustrial simulations due to its more southerly Eocene paleolocation. Note 486 
that regions where winter season precipitation dominates fall at the lower end of the scale; these tend to be over the 487 
ocean surface but also include regions around the Peri-Tethys and both the Pacific and Atlantic US coasts. 488 

HadCM3L is notable in that it is more seasonal at high latitudes, simulating an early Eocene monsoon 489 
centred over modern day Wilkes’ Land region of Antarctica. Although proxy data have suggested highly seasonal 490 
precipitation regimes for both the Arctic (Schubert et al., 2012) and Antarctic (Jacques et al., 2014) during this 491 
interval, these systems are maximised in the ×2 CO2 simulation and weaken somewhat in the simulations with 492 
elevated CO2. This arises due to the high temperature seasonality of Arctic/ Antarctic Eocene regions in HadCM3L 493 
relative to the other models (e.g., Gasson et al., 2013). In austral winter, Antarctic temperatures are sufficiently low to 494 
suppress precipitation, although whilst this constraint is lifted somewhat in the higher CO2 simulations which produce 495 
more equable rainfall distribution. The effect of elevated global warmth on the extent of Eocene monsoons is 496 
additionally consistent across the models, with a decline in terrestrial areas with seasonal precipitation regimes at 497 
higher CO2 simulations (Table 3). HadCM3L simulates a 6% reduction in the extent of terrestrial regions influenced by 498 
monsoonal regimes for HadCM3L ×1 CO2 relative to the preindustrial simulation, which appears to be related to the 499 
warmer surface temperatures and absence of Antarctic ice sheet.  500 

3.5 P −E distributions  501 

The difference between precipitation and evaporation (P −E) is important to consider in the characterisation 502 
ofessential for understanding the wider impacts of an enhanced Eocene hydrological cycle. Over land, this parameter 503 
broadly determines the how much of precipitation will precipitation available to become soil water and surface 504 
runoff, the partitioning itself being dependent on the land surface and vegetation schemes within the models (e.g. 505 
Cox et al., 1998; Oleson et al., 2004). Over the ocean, P −E drives differences in salinity which can affect the Eocene 506 
ocean circulation (Bice and Marotzke, 2001; Waddell and Moore, 2008). We show mean annual (P −E) budgets for 507 
each of the EoMIP simulations in Fig. 8. In warmer climates, an exacerbation of existing (P −E) is expected – that is, the 508 
wet become wetter and the dry drier, as the moisture fluxes associated with existing atmospheric circulations 509 
intensify (Held and Soden, 2006). Broadly, the EoMIP simulations support this paradigm for the Eocene relative to 510 
preindustrial (Fig. 5). CCSM3 shows fairly minor changes in the boundaries between net-precipitation and net-511 
evaporation zones at higher CO2 (Fig. 8), although the net-evaporation zones in HadCM3L do migrate polewards over 512 



the eastern Pacific and North Atlantic at high CO2. Other dynamic changes within HadCM3L are coupled to the 513 
precipitation responses: the more meridionally-orientated SPCZ results in a weaker zonally averaged Southern 514 
Hemisphere evaporative zone (Fig. 9) and the expansion of precipitation along the Asian coastline results in a more 515 
positive (P −E) balance in this region. Over continents the models also display different responses of P-E to warming. 516 
For example, Over over equatorial and northern Africa, HadCM3L simulates increasingly wet climates in the high CO2 517 
simlations, driven by increases in precipitation coupled to reductions in evaporation. In CCSM3, the net moisture 518 
balance is less responsive with respect to temperature, although instense equatorial precipitation means this region is 519 
much wetter than in HadCM3L. 520 

Because of the large latent heat fluxes involved in evaporation and condensation, the global hydrological 521 
cycle acts as a meridional transport of energy. Net evaporation in the subtropics stores energy in the atmosphere as 522 
latent heat, releasing it at high latitudes via precipitation (Pierrehumbert, 2002). An intensified hydrological cycle, 523 
associated with increased atmospheric transport of water vapour, has therefore been suggested as a potential 524 
mechanism for reducing the equator-pole temperature gradient during greenhouse climates (Ulfnar et al., 2004; 525 
Caballero and Langen, 2005). By integrating the area-weighted estimates of P −E with latitude, we show how these 526 
contributions differ between the EoMIP models and associated preindustrial simulations in Fig. 9. Relative to 527 
preindustrial climatology, the intensification of the hydrological cycle associated with increased drying in the net-528 
evaporative zones and increased moistening of the net-precipitation zones implies a stronger latent heat flux and. 529 
within Within the EoMIP ensemble, the implied high polewards energy fluxes of the E16 and E17 FAMOUS simulations 530 
and ×2 CO2 ECHAM simulation are particularly significant. GISS-ER has a particularly strong low low-latitude 531 
equatorially-directed latent heat transfer which arises from the much elevated Eocene precipitation rate in the deep 532 
tropics. The asymmetry in some of the models’ implied flux is due to a hemispheric imbalance in precipitation/evaporation. 533 
For example, in FAMOUS e17 simulation, there is greater precipitation than evaporation in the southern hemisphere and so 534 
more energy is released from the atmosphere by latent heat than is stored, meaning that the implied heat flux does not 535 
cross zero at the equator. However, since total precipitation is equal to total evaporation globally (Table S1), this is balanced 536 
out in the northern hemisphere; note the intense evaporation zone over the North Atlantic is not matched in the Southern 537 
Hemisphere for this model. In the majority of the other models, there is greater symmetry in P-E with latitude and the 538 
implied flux crosses close to the origin of the graph on Figure 9. 539 

 At face value, it may seem that the elevated latent heat transport at mid to high latitudes could contribute 540 
towards the reduced equator-pole temperature gradient in the EoMIP simulations, but we note that theoretical and 541 
modelling based studies suggest increased latent heat transport is associated with an increased equator-pole 542 
temperature gradient (Pagani et al., 2014). Within the EoMIP ensemble, meridional temperature gradients and global 543 
surface air temperatures covary and so it is not possible to separate clearly the effects of these different controls (Fig. 544 
S3S8). Nevertheless, these results illustrate that relative to preindustrial, the Eocene hydrological cycle acts as to 545 
elevate the meridional transport of latent heat, particularly around 45–50° N/S of the equator.  546 

4 Proxy-model comparison  547 

A range of proxy data provide constraints on how the early Eocene hydrological cycle differed to that of the modern, 548 
including oxygen isotopes from mammalian, fish and foraminiferal fossils (Clementz and Sewall, 2011; Zachos et al., 549 
2006; Zacke et al., 2009) and the distribution of climatically sensitive sediments (e.g. Huber and Goldner, 2012). 550 
Changes in regional hydrology at the PETM have also been inferred from geomorphological (John et al., 2008; Schmitz 551 
and Pujalte, 2007), biomarker (Handley et al., 2011; Pagani et al., 2006) and microfossil (Sluijs et al., 2011; Kender et 552 
al., 2012) proxies. These have often resulted in qualitative interpretations of hydrological change, although the 553 
climatic variables and temporal signal they proxies record are often uncertain in many instances (e.g. Handley et al., 554 
2011, 2012; Tipple et al., 2013; Sluijs et al., 2007). However, quantitative estimates of mMean aAnnual pPrecipitation 555 
(MAP), derived from micro- and macro-floral fossils have been made for a number of early Eocene and PETM-aged 556 
sections which can be compared directly with the GCM-estimated precipitation rates described in Sect. 3. 557 

Paleoprecipitation estimates are primarily produced by two distinct paleobotanic methods – leaf 558 
physiogonomy and Nearest nearest Living living Relative relative (NLR) approaches. In the former, empirical univariate 559 
and multivariate relationships have been established between the size and shape of modern angiosperm leaves and 560 
the climate in which they grow, with smaller leaves predominating in low precipitation climates (e.g. Wolfe, 1993; Wilf 561 
et al., 1998; Royer et al., 2005). The NLR approach estimates paleoclimate by assuming fossilised specimens have the 562 
same climatic tolerances as their presumed extant relatives. This approach can utilise pollen, seeds and fruit in 563 
addition to leaf fossils (Mosbrugger et al., 2005). Relative to mMean aAnnual air tTemperature, geologic estimates of 564 



MAP are less precise, which may relate to decoupling between MAP and local water availability (Peppe et al., 2011; 565 
Royer et al., 2002), a greater importance of growing season climate (Mosbrugger and Utescher, 1997) or in the case 566 
of physiogonomical approaches, competing influence of other climatic variables on leaf form(Royer et al., 2007). 567 

Our data compilation is provided in Table S3. Some of the data has been compared previously with 568 
precipitation rates from an atmosphere-only simulation performed with isoCAM3 for the Azolla interval (~ 49 Ma; 569 
Speelman et al., 2010). Our proxy-model comparison includes data for the remainder of the early-mid Eocene, 570 
including a number of recently-published estimates such that the geographic spread is widened to include estimates 571 
from Antarctica (Pross et al., 2012), Australia (Contreras et al., 2013; Greenwood et al., 2003), New Zealand (Pancost 572 
et al., 2013), South America (Wilf et al., 2005) and Europe (Eldrett et al., 2014; Mosbrugger et al., 2005; Geisental et 573 
al., 2011). We select Ypresian-aged data where multiple Eocene precippitation rates exist, including estimates for the 574 
PETM (Pancost et al., 2013), but have additionally included some Lutetian and Paleocene data, particularly in regions 575 
where Ypresian data does not exist. This approach is justified in some respects given the range of plausible Eocene 576 
CO2 with which simulations have been performed. However, each data point is an independent estimate of 577 
precipitation for a given point in time and direct comparisons between data points are hindered given that 578 
considerable climatic change occurred throughout this interval (e.g. Zachos et al., 2008). 579 

Figure 10 shows paleobotanical estimates for MAP for a range of the data in Table S32, along with model-580 
estimated rates for each of the EoMIP simulations. Mean precipitation estimates from each model are derived by 581 
averaging over grid boxes centred on the paleolocation in a similar approach to Speelman et al. (2010). This is a nine 582 
cell grid of 3×3 gridboxes for HadCM3L, GISS, ECHAM and CCSM3, although in some instances an eight cell grid of 2×4 583 
is used along paleocoastlines. Differing model resolutions and land–sea masks result in averaging signals from slightly 584 
different paleogeographic areas, but this approach allows for an assessment of the regional signal and error bars are 585 
included to show the range of precipitation rates present within the locally defined grid. In the reduced resolution 586 
model, FAMOUS, mean and range are derived from 2×2 gridboxes to ensure regional climatologies remains 587 
comparable. Error bars on the geologic data are generally provided as described in the original publications, with 588 
further details also provided in Table S3. 589 

Our results confirm different regional sensitivities across the models. Over New Zealand (Fig. 10b), HadCM3L 590 
shows a strong sensitivity to increases in CO2, whereas in CCSM3, elevated CO2 has little effect on precipitation rate. 591 
This can be interpreted in terms of thearises from differing SPCZ precipitation structures, with HadCM3L simulating a 592 
shift of the rain-belt towards New Zealand in the warmer simulations (Fig. 6). Conversely, in the Western US (Fig. 10g), 593 
HadCM3L precipitation is stable with respect to increases in CO2 whilst CCSM3 produces increases in precipitation in 594 
higher CO2 simulations. Furthermore,  significant variations occur between the degree of match the models show with 595 
proxy precipitation estimates. At grid boxes corresponding to modern day Axel Heiberg Island (Fig. 10h), HadCM3L 596 
and GISS-ER are unable to produce sufficient precipitation, whereas the high CO2 CCSM3 and E16/17 FAMOUS 597 
simulations are in closer agreement. Over Wilkes Land, Antarctica, all of the EoMIP models show sensitivity to CO2, 598 
but unanimously all produce too little precipitation, although the FAMOUS and CCSM_K simulations with warmer 599 
polar temperatures (Fig. 4) come closest to replicating the central estimates of geologic data. However, some 600 
(although some caution is required in how these differencess are interpreted, given that preindustrial GCM errors are 601 
also typically of the order of 300 mm year−1 too little precipitation over this region). A similar pattern is apparent in the 602 
Paleocene North West Territory data (Fig. 10l), with the models using low CO2 and/or yielding cooler polar 603 
temperatures cooler pole models and those at low CO2 showing a dry bias. At the mid mid-latitudes, model biases 604 
relative to paleoprecipitation estimates are reduced, including for the continental US (Fig. 10f), Argentina (Fig. 10g) 605 
and central Europe (Fig. 10m), where proxy data are within the precipitation range simulated across the suite of 606 
simulations. 607 

At Tanzania (Fig. 10e), all model simulations appear to overprecipitate overestimate precipitation and in a 608 
number of models elevating CO2 has relatively little impact on precipitation rate in a number of the models. In the 609 
HadCM3L simulations in particular, elevating CO2 to levels required to produce a match with early Eocene high-610 
latitude data results in considerable over-precipitation at this site. , although it should be noted that the Mahenge 611 
data are likely mid-Eocene in age, and could be representative of a lower CO2 climate. With a scarcity of low low-612 
latitude data, this interpretation remains tentative, particularly given that a number of the models show a marginal 613 
preindustrial wet bias over tropical Africa (Fig. 1) and leaf physiognomic methods tend to result in lower precipitation 614 
estimates than those provided by other proxies (e.g., Peppe et al., 2011).  615 



The more most robust observation from our comparison is that the models produce too little precipitation 616 
at locations corresponding to Eocene high high-latitude sites, and this This is consistent with suggestions that GCMs 617 
fail to simulate high-latitude warmth for the Early Eocene.  given that If high high-latitude temperatures are too cold 618 
in the model, then the saturation vapour pressure of the atmosphere is suppressed and polewards-moving airmasses 619 
lose moisture via rainout earlier in their trajectory. We demonstrate this coupling of data-model temperature and 620 
precipitation errors in Fig. 911. In HadCM3L, increasing CO2 from ×2 to ×6 decreases temperature and precipitation 621 
anomalies proxy-model differences at the majority of sites, resulting in better overall match to the geologic data. In 622 
the case of CCSM3, a relatively good match with precipitation proxy estimates is achieved at both low and high CO2, 623 
but models appear too cold at low CO2. In FAMOUS and CCSM3_K, parameter sets which reduce the equator-pole 624 
temperature gradient and warm the high latitudes are able to minimise errors in both temperature and precipitation 625 
with the majority of the geologic data at low CO2. However, in FAMOUS, E17 simulates surface air temperatures> 45 626 
°C in Colombia, which produces a significant temperature data-model anomaly. 627 

 628 

Whilst our compilation allows for some degree of model intercomparison, it is far from a global data set, 629 
with a bias towards mid and high latitude sites, and a lack of data from low latitudes (Fig. S5Fig. 12; Fig S9; Fig S5). 630 
There is also a need for further proxy-model comparisons from high latitudes to corroborate our analysis. The 631 
paleobotanic estimates included here support the concept of a “ fossil climate” at high latitudes – i.e. a paleoclimatic 632 
state with no modern analogue, which compromises the application of the Nearest Living RelativeNLR concept and 633 
leaf area analysis, especially given leaf size is thought to be a trade off between maximising photosynthesis and 634 
minimising water loss (Peppe et al., 2011). Furthermore, on a warm Earth, the potential for decoupling between 635 
precipitation rate and water availability may have been enhanced at the high latitudes, particularly if increased 636 
precipitation was offset by elevated evaporation. Since P −E is typically > 0 over land surfaces (Greve et al., 2014), land 637 
aridity indices such as P/PET which describe the atmopsheric water demand relative to the land surface may also 638 
assist in understanding demands on plants in a high CO2 world. The effect of a different Eocene seasonal cycle also 639 
requires further consideration. The models which are cooler at the poles such as HadCM3L show a stronger seasonal 640 
cycle in precipitation (Fig. 5) and analysis of growing season precipitation from these simulations may minimise the 641 
data-model anomaly we have described. Nonetheless, current best estimates of early and mid Eocene precipitation 642 
rate provide independent evidence for a proxy-model anomaly at high latitudes. 643 

5 Conclusions 644 

The simulations within the EoMIP ensemble support an intensified hydrological cycle for the early Eocene, 645 
characterised by enhanced global mean precipitation and evaporation rates and increased meridional latent heat 646 
transport. The sensitivity of Eocene precipitation rates to warming is within the range suggested for future IPCC-style 647 
climate change scenarios, although some variation is introduced by models which incorporate additional feedbacks 648 
such as the TRIFFID simulations of Loptson et al. (2014). Differences in Eocene surface temperature distributions drive 649 
differences between models in their regional precipitation rates including for models with similar global precipitation 650 
sensitivities (dP/dT ). Anomalies between simulations at high and low CO2 may provide a way by which to constrain 651 
changes in precipitation occurring during hyperthermals (Winguth et al., 2010). Regions which are particularly 652 
different between HadCM3L and CCSM3 include coastal regions around the Peri-Tethys, the South Pacific, and 653 
tropical Africa which may represent targets for future proxy-data acquisition. We additionally show a summary of 654 
where the greatest model spread in some of the simulations of the EoMIP ensemble can be found, along with the 655 
existing paleobotanic precipitation estimates in Figure 12. This emphasises the need for additional data from the low 656 
latitudes in order to assess which models perform most realistically. The modern-day distribution of monsoons 657 
appears largely similar to that of the early Eocene across the EoMIP ensemble and the presence of monsoons across a 658 
range of CO2 corroborates the work of Huber and Goldner (2012). The results suggest a decline in the extent of 659 
monsoon-influenced terrestrial regions in high-CO2, warm climates, which may have implications for the 660 
interpretation of proxy data from hyperthermal events, such as the PETM, and for understanding the long-term 661 
evolution of monsoon systems.There is now a need to move towards coordinated Eocene experiments between 662 
modelling groups which will improve the ability to mechanistically explain inter-model differences. Simulations with 663 
higher resolution ‘state-of-the-art’ GCMs would also be valuable, given the impacts that improved representation of 664 
orography and smaller scale atmospheric dynamics have had in reducing biases such as double ITCZ, representation of 665 
storm tracks and monsoon precipitation (e.g.Hack et al., 2006; Delworth et al., 2012; Gent et al., 2010). 666 



Our proxy comparison emphasises the coupling between temperature and precipitation data-model 667 
anomalies. For high high-latitude sites, model simulations are typically too cold, resulting in suppressed precipitation 668 
across a number of the models. Model simulations which enhance high-latitude warmth are in better agreement with 669 
existing proxy data, but the size of precipitation error bars prevents an identification of a “best” simulation. Models 670 
which warm the poles via high CO2 (Liu et al., 2009; Winguth et al., 2010) are equally successful as models which 671 
achieve warmth at low CO2 via by varying poorly constrained parameter values (Sagoo et al., 2013; Kiehl and Shields, 672 
2013). Better constraints on uncertain early Eocene boundary conditions, including CO2, and more data from low 673 
latitudes are now required, as are other proxy approaches which can verify the high high-latitude anomaly we have 674 
observed. Forward proxy modelling of water isotopes (Speelman et al., 2010; Sturm et al., 2009; Tindall et al., 2010) 675 
and comparison to archives which incorporate an Eocene δD or δ18O signal (Zacke et al., 2009; Krishnan et al., 2014; 676 
Fricke and Wing, 2004) represents one such avenue. 677 

Proxies sensitive to hydrological changes offer an independent means to temperature by which to assess 678 
paleoclimatic model performance. Whilst elevated CO2 causes a near-global increase in model-simulated surface 679 
temperatures, the same warming results in regions of both increased and reduced precipitation and P −E within 680 
climate models .(Figs. 5 and 9) Even without tightly constrained absolute changes in precipitation or net hydrological 681 
balance, the spatial pattern of qualitative indicators may therefore provideprove a critical test of GCM ability for warm 682 
paleoclimates. Where estimates of absolute precipitation rates do exist, our preliminary model-data comparison 683 
indicates that GCMs are broadly unable to simulate sufficient high-latitude precipitation for the early Eocene, even 684 
with CO2 configured at the upper end of proxy inferred estimates. Precipitation biases within models are coupled to 685 
those of temperature and our analysis is therefore consistent with the prevailing view of enhanced early Eocene high 686 
high-latitude warmth. Our study represents a first step towards characterising the variability of the Eocene 687 
hydrological cycle simulated in GCMs. Further work is now required to study how other modelled aspects of the 688 
hydrological cycle such as runoff and salinity vary within the Eocene, and how these hydrological changes may relate 689 
to signals preserved in the geological record.  690 

The Supplement related to this article is available online at doi:10.5194/cpd-11-3277-2015-supplement. 691 
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Figure 1 

No changes. 

Figure 2 

No changes. 

Figure 3 

No changes. 

Figure 4 
Replacement Figure 4. 
 
Figure 4. Latitudinal temperature and precipitation distributions in the HadCM3L and ECHAM5 (left), CCSM3_H and 
CCSM3_K (centre) and FAMOUS (right) members of the EoMIP ensemble. (a–c) show mean surface air temperature, (d–f) 
total precipitation rate, (g–i) convective precipitation and (j–l) large-scale precipitation. The HadCM3L, ECHAM5 and 
CCSM3 atmospheric CO2 levels are shown in the key. All FAMOUS simulations are at 2_PI CO2, but differ in value for 10 
uncertain parameters (Sect. 2). Simulation names E1–E17 shown in the legend correspond to those given by Sagoo et al. 
(2013). Black dotted lines show output from preindustrial simulations., with the exception of ECHAM5, shown in orange. 
 

Figure 5 

No changes. 

Figure 6 

No changes. 

Figure 7 

No changes. 

Figure 8 

No changes. 

Figure 9 

Replacement Figure 9. 

Figure 9. Latitudinal P -– E E - P distributions (top) and implied northwards latent heat flux (bottom) in the EoMIP 
simulations. The black lines indicate preindustrial simulations with dotted and unbroken lines in (d and h) corresponding to 
the GISS-ER and ECHAM5 simulations respectively. Heat flux expressed in petawatts (1PW= 1015 W). Observational E – P in 
(a) is based on ECMWF ERA reanalysis data (Dee et al., 2004). 
 

Figure 10 

Replacement Figure 10. 

No change required to caption. 

Figure 11 

No changes. 

Figure 12 

New Figure 12. 

Figure 12 Summary of regions which show a significant model spread, based on the Eocene multimodel mean described in 

Figure 5. Paleobotanical estimates of quantitative precipitation rate included in the data compilation are shown by green 

markers. Regions where the standard deviation is greater than 1 mm/day are marked by a red outline and regions where 

the coefficient of variation (standard deviation/multimodel mean) is greater than 40% are outlined blue. 

Table 1 

Updated with Replacement Table 1. This includes changes to the caption. 

 

 



Figure Captions  

Figure 1 Preindustrial precipitation distributions as simulated in the EoMIP models. Panels a, b, d, f, h, j and l show Mean 

Annual Precipitation (MAP; left colour bar) and panels c, e, g, i, k, and m show anomalies relative to CMAP observations, 

1979 – 2010, GCM output – observations (right colour bar). 

Figure 2 Global sensitivity of the Eocene hydrological cycle in the EoMIP simulations. Global mean surface air temperature 

relative to model CO2 (a), global mean precipitation rate relative to model CO2 (b) and global mean surface air temperature 

(c); note the logarithmic scale on the horizontal axis in (a) and (b). Preindustrial simulations and Eocene simulations are 

shown as circles and squares respectively. The CCSM3 simulations share a preindustrial simulation, shown in green. Open 

circle symbols in (b) show modern day estimates of global precipitation rate calculated based on CMAP data (red), GPCP data 

(blue) and Legates and Willmott (1990) climatology (green). Also shown is the sensitivity of the hydrological cycle to global 

mean Surface Air Temperature in the 17 successful simulations of Sagoo et al. (2013) using FAMOUS (d; blue squares), with 

HadCM3L simulations (red; Lunt et al., 2010) shown for comparison. All best fit lines are based on Eocene simulations only.  

Figure 3 Mean annual precipitation distributions for each member of the EoMIP ensemble in cm/yr. CO2 for each model 

simulation is shown above each plot. The FAMOUS simulations are both at 2 x CO2.  

Figure 5 Multimodel Mean Annual Precipitation (a) and Mean Annual Precipitation – Evaporation rate (b) for Eocene (red) 

and preindustrial (blue) boundary conditions. For the Eocene multimodel mean, simulations have a global mean precipitation 

rate of 3.40+/-0.02 mm/day which are: HadCM3L (x4), HadCM3L_T (x4), ECHAM (x2), CCSM3_H (x4) and a linearly 

interpolated distribution between the x4 and x8 CO2 CCSM3_W simulations. Error bars represent the range in values across 

simulations.   

Figure 6 Anomaly plots for Mean Annual Precipitation cm/yr between high and low CO2 model simulations for (a) HadCM3L 

x6 CO2 – x2 CO2 and (b) CCSM3_W x16 CO2 – x4 CO2. 

Figure 7 Percentage of mean annual precipitation falling in the extended summer season (MJJAS for northern hemisphere, 

NDJFM for southern hemisphere); regions with >55% summer precipitation are outlined in blue. Results from preindustrial 

simulations are shown in the Appendix. CO2 for each model simulation is shown above each plot. The FAMOUS simulations 

are both at 2 x CO2. 

Figure 8 Mean annual P-E distributions for each member of the EoMIP ensemble in mm/day. CO2 for each model simulation 

is shown above each plot. The FAMOUS simulations are both at 2 x CO2 ,.  

Figure 10 Proxy-model comparisons for Mean Annual Precipitation (MAP) for the EoMIP ensemble a) Chickaloon Fm, Alaska; 

data from Sunderlin et al., 2011,2014; b) Waipara, New Zealand; data from Pancost et al., 2013; c) South East Australia and 

Tasmania; d) Wilkes Land; data from Pross et al., 2012; data from Greenwood et al., 2005 and Contreras et al., 2014; e) 

Tanzania; data from Jacobs and Herendeen, 2004 and Kaiser et al., 2006; f) Patagonia; data from Wilf et al., 2005.; g) Western 

US; data presented in Wing et al., 1993 and recalibrated by Wilf et al., 1998; h) i) Axel Heiberg island; data from Greenwood 

et al., 2010; j) ODP Site 913; data from Eldrett et al., 2009; k) Cerrejon Formation, Colombia; Wing et al. (2009); l) North West 

Territory; Greenwood et al., 2010; m) central Europe; Mosbrugger et al., 2005; Grein et al., 2011.  Error bars show the mean 

with range based on nine model grid cells closest to given paleocoordinates. Full details are given in Supplementary 

Information Table S3.  

Figure 11 Surface air temperature and mean annual precipitation proxy-model anomalies for low and high CO2 climates 

shown by closed and open circles respectively. Simulations are at x2 and x6 CO2 for HadCM3L (a), e17 for FAMOUS (b), x2 

and x16 CO2 for CCSM3_H (c), and x5 and x9 CO2 for CCSM3_K (d). The data points represent averaged signals for the sites 

shown in Figure 8. Estimates of maximum(minimum) error are calculated as anomalies between the highest(lowest)  data 

estimate and the lowest(highest) value within the local model grid.  

  



Figure S1 Percentage error between preindustrial model simulated Mean Annual Precipitation and CMAP observational 

data, calculated as (model-observations)/observations x 100% 

Figure S2 Coefficient of variation for preindustrial model simulations, calculated as standard deviation of multi-model 

mean (n=5) divided by multi-model mean. This is robust against larger standard deviations in regions of higher 

precipitation. 

Figure S3 Changes in mean annual evapotranspiration 4 x CO2 – 2 CO2 simulations in HadCM3L in (a) the fixed shrubland 

simulations of Lunt et al. (2010) and (b) the TRIFFID dynamic vegetation simulations of Loptson et al. (2014). The 

differences in mean specific humidity relative to air temperature over tropical continents is shown in (c).  

Figure S4 Surface pressure and winds over the South Pacific in Eocene simulations (a) HadCM3L, 2 x CO2 and (b) CCSM3W, 

4 x CO2. The length of vectors is proportional to wind strength. The blue line shows the outline of the region where mean 

precipitation is greater than 5 mm/day.  

Figure S5 Differences in topography (a – c) and precipitation rate (d – f) in pairs of simulations; HadCM3L 6 x CO2 – 

CCSM3H 8 x CO2 (a,d); HadCM3L 4 x CO2 – FAMOUS e10 (b,e) and CCSM3H 4 x CO2 and CCSM3W 8xCO2. Simulations are 

chosen which have similar global precipitation rates (Figure 2).  

Figure S6 Vertical velocity of atmosphere averaged over 150°E to 150°W for HadCM3L simulations (left) and CCSM3(W) 

simulations (right). The bottom figures shows anomalies for the high CO2 – low CO2 simulations.  

Figure S7 Percentage of mean annual precipitation falling in the extended summer season (MJJAS for northern 

hemisphere, NDJFM for southern hemisphere) for preindustrial simulations; regions with >55% summer precipitation are 

outlined in blue.  

Figure S8 Variations in the peak extratropical (>25°N/S) latent heat flux in petawatts (1 PW = 1015 W) between the EoMIP 

model simulations relative to global mean surface air temperature and the average difference in surface air temperature 

between the poles and equator. With the exception of the FAMOUS simulations of Sagoo et al. (2013), we join simulations 

performed with the same GCM for clarity.  

Figure S9 Proxy estimates of mean annual precipitation shown relative to latitudinal precipitation distribution for each of 

the EoMIP simulations. Model CO2 or simulation name in the case of FAMOUS are shown above each panel. Preindustrial 

precipitation is shown as a black dotted line. Geologic data are represented by a lower, central and upper estimate based 

on combined data for the following sites: Wilkes Land, Antarctic Peninsula, southern Australia, New Zealand, Chile, 

Tanzania, Colombia, eastern China, continental US, central Europe, North West Territories, Alaska, Site 913 and Axel 

Heiberg Island. Model estimates from gridboxes corresponding to the paleo-locations are shown as coloured circles.    
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Figure 12 Summary of regions which show a significant model spread, based on the Eocene 

multimodel mean described in Figure 5. Paleobotanical estimates of quantitative precipitation rate 

included in the data compilation are shown by green markers. Regions where the standard deviation 

is greater than 1 mm/day are marked by a red outline and regions where the coefficient of variation 

(standard deviation/multimodel mean) is greater than 40% are outlined blue. 
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Figure S3 Changes in mean annual evapotranspiration 4 x CO2 – 2 CO2 simulations in HadCM3L in (a) 

the fixed shrubland simulations of Lunt et al. (2010) and (b) the TRIFFID dynamic vegetation 

simulations of Loptson et al. (2014). The differences in mean specific humidity relative to air 

temperature over tropical continents is shown in (c).  



 

Figure S4 Surface pressure and winds over the South Pacific in Eocene simulations (a) HadCM3L, 2 x 

CO2 and (b) CCSM3W, 4 x CO2. The length of vectors is proportional to wind strength. The blue line 

shows the outline of the region where mean precipitation is greater than 5 mm/day.  



 

Figure S5 Differences in topography (a – c) and precipitation rate (d – f) in pairs of simulations; HadCM3L 6 x CO2 – CCSM3H 8 x CO2 (a,d); HadCM3L 4 x CO2 – FAMOUS e10 

(b,e) and CCSM3H 4 x CO2 and CCSM3W 8xCO2. Simulations are chosen which have similar global precipitation rates (Figure 2).  

 



 

Figure S6 Vertical velocity of atmosphere averaged over 150°E to 150°W for HadCM3L simulations 

(left) and CCSM3(W) simulations (right). The bottom figures shows anomalies for the high CO2 – low 

CO2 simulations.  
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Model Eocene simulation reference Model reference Atmosphere  

resolution 

Ocean  

resolution 

Paleogeography Sim. length  

(years) 

CO2 levels Orbital configuration 

HadCM3L 

HadCM3L (T) 

Lunt et al. (2010) 

Loptson et al. (2014) 

Cox et al. (2001) 96 x 73 x 19 96 x 73 x 20 Proprietary > 3400 x 1,2,4,6 

x 2,4 

Preindustrial orbit. 

 

ECHAM5 Heinemann et al. (2009) Roeckner et al. (2003) 96 x 48 x 19 142 x 82 x 40 Bice and Marotzke (2001) 2500 x 2 e = 0.0300; o = 23.25; p = 270 

CCSM3 (W) Winguth et al. (2010, 2012) Collins et al. (2006); Yeager et al. (2006) 96 x 48 x 26 100 x 116 x 25 Sewall et al. (2000) with 

marginal sea parameterisation 

1500 x 4,8,16 e = 0; o = 23.5;  

CCSM3 (H) Liu et al. (2009); 

Huber and Caballero (2011) 

Collins et al. (2006); Yeager et al. (2006) 96 x 48 x 26 100 x 122 x 25 Sewall et al. (2000) 1500 x2,4,8,16 Preindustrial orbit. 

CCSM3 (K) Kiehl and Shields (2013) Collins et al. (2006); Yeager et al. (2006) 96 x 48 x 26 100 x 116 x 25 As CCSM(W) >2000 

> 3600 +  

x~5 

x ~9 

As CCSM(W) 

 

GISS E-R Roberts et al. (2009) Schmidt et al. (2006) 72 x 45 x 20 72 x 45 x 13 Bice and Marotzke (2001) 2000 x ~4 e = 0.0270; o = 23.20, p = 180 

FAMOUS Sagoo et al. (2013) Jones et al. (2005), Smith et al. (2008). 48 x 37 x 11 96 x 73 x 20 Proprietary > 1500 x 2 

 

Preindustrial orbit. 

 

Model Stratiform precipitation Convective precipitation Vegetation  Aerosols 

HadCM3 Large-scale precipitation is calculated based on cloud water 

and ice contents (similar to Smith, 1990) 

Bulk mass flux scheme (Gregory and Rowntree, 1990), 

with improvement by Gregory et al. (1997) 

Homogenous shrubland (Lunt) 

Dynamically evolving vegetation 

TRIFFID (Loptson) 

As control 

ECHAM5 Prognostic equations for the water phases, bulk cloud 

microphysics (Lohmann and Roeckner, 1996) 

Bulk mass flux scheme (Tiedtke 1989) with modifications 

for deep convection according to Nordeng (1994). 

Homogenous woody savannah As control 

CCSM_W Prognostic condensate and precipitation parameterisation 

(Zhang et al., 2003) 

Simplified Arakawa and Schubert (1974) (cumulus 

ensemble) scheme developed by Zhang and McFarlane 

(1995) 

Shellito and Sloan (2006) As control 

CCSM_H Sewall et al. (2000) Reduced aerosol loading. 

CCSM_K Sewall et al. (2000)  Cloud microphysical parameters altered. 

GISS E-R Prognostic stratiform cloud based on moisture convergence 

(Del Genio et al. 1996) 

Bulk mass flux scheme by Del Genio and Yao (1993) Sewall et al. (2000) As control 

FAMOUS Precipitation parameterisation schemes are based on those of HadCM3.  Homogenous shrubland. Uncertain perturbed parameters include those relating to 

cloud microphysical properties. 

 
Table 1 Summary of model simulations in the ensemble adapted from Table 1 of Lunt et al. (2012). Additions detailing precipitation schemes are from Table 2 of Dai (2006). 

Some models have irregular grids in the atmosphere and/or ocean, or have spectral atmospheres. The atmospheric and ocean resolution are given in number of gridboxes, X x 

Y x Z where X is the effective number of gridboxes in the zonal, Y in the meridional, and Z in the vertical. e = eccentricity; o = obliquity; p = longitude of perihelion.  



 

Model 

simulations 

P-T regression* % increase P per °C  

warming over range** 

HadCM3L P=0.0542T+2.1747 1.81 

HadCM3L(T) P=0.0398T+2.4278 1.32 

CCSM3_H P=0.0594T+2.0506 2.02 

CCSM3_K P=0.0628T+1.9739 2.15 

CCSM3_W P=0.0596T+1.9341 2.11 

FAMOUS P=0.0774T+1.6006 2.80 

 

 

Table 2 Summary of relationships between global Surface Air Temperature and precipitation 

rate. *T = SAT °C, P = global precipitation mm/day.  

** Precipitation sensitivity is calculated over the range of 15 – 30°C. 

 



Model PI x1 
CO2

x2 
CO2

x4/5 
CO2

x6/8/9 
CO2

x16 
CO2

HadCM3L 60.1 66.3 62.6 57.7 52.3

HadCM3L(T) 62.0 51.6

ECHAM5 50.1 41.6

GISS E-R 47.7 37.6

CCSM(H) 50.1 47.3 44.2 42.4 35.1

CCSM(K) 47.5 34.12

FAMOUS 48.9 28.1 E16
23.6 E17

Table 3 % land surface characterised by extended summer precipitation > 55% MAP



Simulation Global mean 

precipitation 

(mm day-1) 

Global mean 

evaporation 

(mm day-1) 

Residual 

water mass  

( x 1012 kg) 

Latent heat 

forcing 

( x 1013 W) 

HadCM3L     

Preindustrial 2.915 2.910 2.565 6.710 

Eocene x1 3.007 3.005 1.254 3.279 

Eocene x2 3.202 3.199 1.380 3.610 

Eocene x4 3.376 3.372 1.707 4.465 

Eocene x6 3.510 3.507 1.878 4.916 

Preindustrial TRIFFID 2.866 2.866 0.2212 0.5786 

Eocene x2 TRIFFID 3.233 3.233 0.1615 0.4225 

Eocene x4 TRIFFID 3.415 3.415 0.1819 0.4758 

ECHAM5     

Preindustrial 2.749 2.759 -5.154 -13.48 

Eocene x2 3.423 3.433 -5.264 -13.77 

GISS-ER     

Preindustrial 2.968 2.966 0.5774 1.510 

Eocene x4 3.675 3.673 1.077 2.816 

FAMOUS     

Preindustrial 2.908 2.912 -2.361 -6.176 

E16 3.936 9.939 -1.545 -4.042 

E17 4.135 4.137 -1.245 -3.255 

CCSM3     

Preindustrial 2.650 2.648 1.164 3.044 

Eocene H x2 3.288 3.285 1.082 2.830 

Eocene H x4 3.415 3.413 1.121 2.932 

Eocene Hx8 3.572 3.570 1.208 3.159 

Eocene Hx16 3.790 3.780 5.062 13.24 

Eocene Wx4 3.168 3.166 1.080 2.824 

Eocene Wx8 3.332 3.330 1.166 3.049 

Eocene Wx16 3.499 3.496 1.248 3.263 

Eocene Kx5 3.678 3.677 1.321 3.455 

Eocene Kx9 3.969 3.966 1.640 4.290 

 

 
Table S1 Assessment of the imbalance between global precipitation and evaporation rates in the 

EoMIP ensemble. The imbalance is additionally shown as a global residual water mass and 

equivalent latent heat forcing. 



Table S2 Sensitivity of the global Eocene hydrological cycle. Rates shown represent annual mean precipitation mm day-1. GL = globally 

averaged rate; LA = land surface rate; OC = sea surface rate. TOT = total precipitation rate; CV = convective precipitation; LS = large-scale 

precipitation. Note that CV and LS sum to give total precipitation rate, but land and ocean represent averages over those regions.  

* CCSM_W, CCSM_H and CCSM_K share a preindustrial simulation.

GL PTOT 2.91 2.87 2.91 2.65 2.75 2.97 3.01 3.20 3.23 4.13 3.42 3.29 3.38 3.42 3.42 3.17 3.67 3.68 3.51 3.57 3.33 3.97 3.79 3.50

GL PCV 2.16 2.37 1.99 1.80 2.38 2.56 2.60 3.75 2.37 2.65 2.73 2.80 2.78 2.57 3.12 2.89 2.96 2.76 3.39 3.19 2.93

GL PLS 0.71 0.54 0.66 0.95 0.63 0.64 0.63 0.39 1.05 0.63 0.64 0.62 0.63 0.60 0.56 0.62 0.61 0.58 0.58 0.60 0.57

GL PCV/PTOT 0.75 0.81 0.75 0.65 0.79 0.80 0.80 0.91 0.69 0.81 0.81 0.82 0.81 0.81 0.85 0.82 0.83 0.83 0.85 0.84 0.84

GL Temp /°C 12.72 11.87 14.36 11.62 13.54 13.79 14.57 17.87 19.11 31.77 23.36 19.96 21.35 23.86 22.10 19.82 24.79 26.39 24.00 24.83 22.56 31.32 28.67 25.56

LA PTOT 2.14 2.20 2.62 1.90 1.81 2.45 2.08 2.25 2.29 3.22 2.57 3.11 2.40 2.36 3.36 2.90 3.12 3.66 2.65 3.61 3.18 3.93 3.86 3.43

LA PCV 1.66 2.17 1.40 1.05 1.59 1.71 1.77 2.63 1.37 2.37 1.84 1.80 2.61 2.26 2.98 2.07 2.85 2.52 3.23 3.10 2.76

LA PLS 0.54 0.44 0.50 0.76 0.49 0.54 0.52 0.60 1.21 0.74 0.56 0.55 0.75 0.64 0.69 0.58 0.76 0.66 0.70 0.76 0.67

LA PCV/PTOT 0.75 0.83 0.74 0.58 0.76 0.76 0.77 0.82 0.53 0.76 0.77 0.76 0.78 0.78 0.81 0.78 0.79 0.79 0.82 0.80 0.80

LA Temp /°C 6.26 5.65 10.64 6.18 7.70 8.19 8.05 12.07 14.64 30.01 20.90 16.24 16.54 21.03 18.93 16.71 21.98 24.65 20.14 22.17 19.99 30.68 26.85 23.59

OC PTOT 3.23 3.14 3.12 2.96 3.12 3.18 3.38 3.59 3.62 4.80 3.74 3.35 3.77 3.85 3.43 3.26 3.87 3.68 3.86 3.56 3.38 3.98 3.77 3.52

OC PCV 2.36 2.52 2.23 2.10 2.70 2.90 2.94 4.58 2.75 2.75 3.09 3.21 2.85 2.68 3.17 3.23 2.99 2.83 3.44 3.22 2.99

OC PLS 0.76 0.61 0.73 1.02 0.68 0.69 0.68 0.23 0.99 0.60 0.68 0.64 0.59 0.58 0.52 0.63 0.57 0.55 0.54 0.55 0.53

OC PCV/PTOT 0.75 0.81 0.75 0.67 0.80 0.81 0.81 0.95 0.74 0.82 0.82 0.83 0.83 0.82 0.86 0.84 0.84 0.84 0.86 0.85 0.85

LA/OC PTOT 0.66 0.70 0.84 0.64 0.58 0.77 0.62 0.63 0.63 0.67 0.69 0.93 0.64 0.61 0.98 0.89 0.81 0.99 0.69 1.01 0.94 0.99 1.02 0.97

OC Temp /°C 15.35 14.41 17.14 13.88 15.88 16.12 17.23 20.23 20.92 33.08 24.29 21.21 23.30 25.02 23.17 20.86 25.91 26.96 25.58 25.72 23.43 30.68 26.85 23.59
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