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Abstract

Reconstructions of the El Niño-Southern Oscillation (ENSO) ideally require high-quality,
annually-resolved and long-running paleoclimate proxy records in the eastern tropical Pa-
cific Ocean, located in ENSO’s centre-of-action. However, to date, the paleoclimate records
that have been extracted in the region are short or temporally and spatially sporadic, limiting5

the information that can be provided by these reconstructions. Consequently, most ENSO
reconstructions exploit the downstream influences of ENSO on remote locations, known
as teleconnections, where longer records from paleoclimate proxies exist. However, using
teleconnections to reconstruct ENSO relies on the assumption that the relationship between
ENSO and the remote location is stationary in time. Increasing evidence from observations10

and climate models suggests that some teleconnections are, in fact, non-stationary, poten-
tially threatening the validity of those paleoclimate reconstructions that exploit teleconnec-
tions.

This study examines the implications of non-stationary teleconnections on modern multi-
proxy reconstructions of ENSO

:::::::
variance. The sensitivity of the reconstructions to non-15

stationary teleconnections were tested using a suite of idealized pseudoproxy experiments
that employed output from a fully coupled global climate model. Reconstructions of the
variance in the Niño 3.4 index , representing ENSO variability, were generated using four
different methodsto which surface

:
.
:::::::
Surface

:
temperature data from the GFDL CM2.1 was

applied as a pseudoproxy
:::::
were

:::::
used

:::
as

::::::::::::::
pseudoproxies

:::
for

::::::
these

::::::::::::::
reconstruction

:::::::::
methods.20

As well as sensitivity of the reconstruction to the method, the experiments tested the sensi-
tivity of the reconstruction to the number of non-stationary pseudoproxies and the location
of these proxies.

ENSO reconstructions in the pseudoproxy experiments were not sensitive to
non-stationary teleconnections

:::
We

::::
find

:::::
that

:::::::::::::::::
non-stationarities

:::::
can

:::
act

:::
to

:::::::::
degrade

::::
the25

:::
skill

:::
of

::::::
ENSO

:::::::::
variance

:::::::::::::::
reconstructions.

:::::::::
However,

:
when global, uniformly-spaced networks

of
::::::::::::::::
randomly-spaced

:::::::::
networks

:::::::::::
(assuming

:
a minimum of approximately 20 proxieswere

employed
:
)
:::::
were

:::::::::::
employed,

::::
the

:::::::::
resulting

::::::::::::
pseudoproxy

:::::::
ENSO

::::::::::::::::
reconstructions

:::::
were

::::
not
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::::::::
sensitive

:::
to

::::::::::::::
non-stationary

::::::::::::::::
teleconnections. Neglecting proxies from ENSO’s center-of-

action still produced skillful reconstructions, but the chance of generating a skillful
reconstruction decreased. Reconstruction methods that utilized raw time series were the
most sensitive

::::
with

::
a

:::::
lower

::::::::::
likelihood.

:::::::::
Different

::::::::::::::
reconstruction

:::::::::
methods

:::::::::
exhibited

:::::::
varying

:::::::::::
sensitivities

:
to non-stationary teleconnections, while calculating the running variance of5

pseudoproxiesfirst, appeared to improve
::::::::::::::
pseudoproxies,

::::::
which

::::::::
affected

:
the robustness of

the resulting reconstructions. The results suggest that caution should be taken when devel-
oping reconstructions using proxies from a single teleconnected region, or those that use
less than 20 source proxies.

1 Introduction10

Reconstructions of the Earth’s climate prior to instrumental records are necessary for pro-
viding context for anthropogenic climate change, and to provide insight into climate vari-
ability on time scales longer than instrumental records allow. Climate proxies are biotic or
chemical analogues that have a sensitivity to some aspect of the climate, for example ,

:
- oxy-

gen isotope ratios in coral growth rings contain information on temperature and precipitation15

(Pfeiffer et al., 2004). Thus, these proxies are the essential tool for creating paleoclimate
reconstructions. However, high quality proxies can be sparse and difficult to find (McGre-
gor et al., 2010; Neukom and Gergis, 2012), limiting the amount of information that can be
inferred about the climate.

One region where information from paleoclimate proxies is limited is the central and east-20

ern tropical Pacific Ocean. This area can be described as the centre-of-action of the El
Niño-Southern Oscillation (ENSO), which is the most important regulator of interannual cli-
mate variability, globally. ENSO involves changes in eastern equatorial Pacific sea surface
temperature (SST) and an associated swing in precipitation and pressure anomalies across
the tropical Pacific Ocean. While its most noticeable effects are in the tropical Pacific region,25

it also induces downstream effects, influencing climate variability in many parts of the world

3



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

via teleconnections (e.g. Power et al., 1998; Brönnimann et al., 2006; Liu et al., 2013; Ding
et al., 2014).

Due to the global reach of ENSO, understanding its behaviour is of great so-
cietal and economic importance (Solow et al., 1998; McPhaden et al., 2006).
There are still uncertainties about past ENSO (Gergis and Fowler, 2009) and5

whether ENSO behaviour will change in response to future climate change
(Collins et al., 2010; Vecchi and Wittenberg, 2010; Yeh et al., 2014)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Collins et al., 2010; Vecchi and Wittenberg, 2010; Watanabe et al., 2012; Yeh et al., 2014) .

One reason for this is that the instrumental record is too short (∼ 150 years) to measure
long term changes in ENSO and its teleconnections (Wittenberg, 2009; Gergis et al.,
2006, references therein). Modelling suggests that five centuries of data may be required10

to understand the full range of natural ENSO variability (Wittenberg, 2009). Thus, climate
proxy reconstructions of past fluctuations in ENSO are an essential tool in determining the
full range of natural ENSO variability.

As previously described, the centre-of-action of ENSO is largely devoid of long, con-
tinuous, high-quality paleoclimate proxy records (Wilson et al., 2010). Tropical corals15

are the dominant proxy type in this region
:
,
:::::
and

::::
are

:::::::
known

:::
to

::::::::
provide

::::::
very

::::::
skilful

::::::::::::::
reconstructions

::
of

::::
the

::::::::::::
surrounding

:::::
SSTs

::::
and

:::::::
ENSO. However,

:::
the

::::::::
addition

::
of

::::::::::::
non-climatic

:::::
noise

:::
to

::::::
these

:::::::
proxies

:::::
also

::::::::::::
complicates

::::
the

::::::::::
estimation

:::
of

::::
the

::::::::::::
significance

:::
of

:::::::::
changing

::
in

:::::
past

:::::::
ENSO

::::::::::
variability

:::::::::::::::::::::::::::
(Russon et al., 2014, 2015) ,

::::
as

::::::
does

:
their limited life span

results in records that
::::
(i.e.,

::::::::
records

:
are on average about 50 yrs in length, with the20

longest records less than two centuries(Cobb et al., 2013; Neukom and Gergis, 2012)
:
)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cobb et al., 2013; Li et al., 2013; Neukom and Gergis, 2012) . This has motivated the
use of paleoclimate proxies from single or multiple regions that are teleconnected with
ENSO for the generation of reconstructions. For example, ENSO reconstructions have
been developed using paleoclimate proxies from the south-west US and northern Mexico25

(D’Arrigo et al., 2005), northern New Zealand (Fowler, 2008) and using multiple prox-
ies from locations in the tropical and subtropical Pacific outside ENSO’s centre-of-action
(Braganza et al., 2009; Wilson et al., 2010)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Braganza et al., 2009; Cobb et al., 2013; Wilson et al., 2010) .

Multi-proxy reconstructions are generally considered to be more robust and more likely to

4
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contain a larger climate signal to local noise ratio (Mann et al., 1998; Gergis and Fowler,
2009).

There are several issues when using teleconnected proxies for paleoclimate reconstruc-
tions. Teleconnections may be non-linear in nature, for example, responding to El Niño
events much more strongly than La Niña events (Hoerling et al., 1997). If this is not de-5

tected and accounted for in the reconstruction, ENSO variability and amplitude may be
misrepresented (McGregor et al., 2013). However, perhaps an equally important issue, is
the variability of the teleconnection itself. ENSO reconstructions exploiting teleconnected
locations implicitly assume that the teleconnected relationship does not vary significantly in
time – that it is stationary. However, it is often difficult or impossible to assess stationarity10

due to the brevity of the instrumental records (Gallant et al., 2013), causing many to skip
this check altogether, noting it as an assumption.

However, significant changes in the relationship between ENSO and the climates of re-
mote, teleconnected locations have been detected in models (Coats et al., 2013; Gallant
et al., 2013), instrumental observations (López-Parages and Rodríguez-Fonseca, 2012;15

Gallant et al., 2013) and paleoclimate data (Hendy et al., 2003; Rimbu et al., 2003; Timm,
2005). If these teleconnections were changed by some dynamical regime rather than
through stochastic influence (e.g. random weather events), the relationship should not be
considered as stationary. While these dynamical changes could be related to external cli-
mate forcing, such as with anthropogenic climate change (Müller and Roeckner, 2008;20

Herceg Bulić et al., 2011), there is evidence that they also change with internal climate
forcing. For example, significant changes in teleconnections on near-centennial time scales
are apparent in model simulations forced by internal dynamics alone (Gallant et al., 2013).

The changes to teleconnections via internal dynamics will result from either changes
to ENSO itself(i.e., changes in the spatial structure of the SST anomalies), or from non-25

linear interactions with other regulators of climate variability. An example of the latter is the
Southern Annular Mode, which is thought to affect the magnitude of south Pacific ENSO
teleconnections (Fogt et al., 2011). The evidence suggests that this occurs on time scales
around 30 years or longer. Using running correlations as a statistical descriptor of the re-
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lationship between ENSO and a remote climate variable, several studies highlighted that
running correlations employing 11–25 year windows of data exhibit large, stochastic vari-
ability only (Gershunov et al., 2001; Sterl et al., 2007; van Oldenborgh and Burgers, 2005).
However, a study using longer windows of data spanning 31–71 years (Gallant et al., 2013),
found that stochastic processes could not explain the changes in observed and modelled5

running correlations in a significant number of locations in Australasia. Similar results are
also found using model simulations (Coats et al., 2013; Gallant et al., 2013). Thus, there are
numerous locations that display changes in ENSO’s teleconnections that can be classified
as “non-stationary” and thus, are thought to be due to dynamical processes. This places
increasing stress on the assumption that teleconnections are stationary. Further to this, it10

::::
This

:
raises the question as to whether non-stationarities have an appreciable influence on

the robustness of past paleoclimate reconstructions.
This study examines if and when non-stationary teleconnections degrade the skill of

multi-proxy reconstructions of ENSO variability
::::::::
variance

:
by employing a series of pseu-

doproxy experiments from a fully coupled global climate model (GCM). The
::::::::::
robustness15

::
of

::::::
ENSO

:::::::::
variance

::::::::
changes

::::::::::::::::::::::::::::
(Russon et al., 2014, 2015) is

::::
not

:::::::::
examined

:::
in

:::
this

:::::::
paper.

::::
The

experiments test how reconstruction skill varies with different proxy network locations and
sizes. The sensitivity of the results to the reconstruction method is also tested. The model
and the data used for these experiments is described in Sect. 2 and the methods are de-
scribed in Sect. 3. The experimental outcomes are presented in Sect. 4, discussed in Sect. 520

and conclusions are provided in Sect. 6.

2 Model data

This study uses 500 years of a pre-industrial control run of the Geophysical Fluid Dynamics
Laboratory Coupled Model 2.1 (GFDL CM2.1) for all pseudoproxy experiments, which are
described in detail in Sect. 3. ENSO is represented using the Niño 3.4 index, calculated25

from the model as the area average of SST anomalies from the central Pacific region (5◦ S–
5◦ N, 190◦–240◦ E). In the GFDL CM2.1 simulations, the monthly variations in the Niño 3.4

6
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index very closely correspond to the variations of the first Empirical Orthogonal Function
(EOF) of tropical Pacific SSTs, demonstrating that the Niño 3.4 index accurately represents
ENSO variability in the model (Wittenberg et al., 2006).

Using climate data directly from GCMs is ideal for the evaluation of reconstruction meth-
ods (Zorita et al., 2003; Lee et al., 2008; von Storch et al., 2009) because models can5

provide the long time series necessary to robustly assess multidecadal to near-centennial
scale variability in teleconnections (Wittenberg, 2009). The ENSO indices can be calcu-
lated directly from the model, representing a “true” Niño 3.4 index for the reconstructed
indices to be compared to. This allows the skill of reconstructions to be compared and their
sensitivities to be studied.10

The GFDL CM2.1 simulation fixes all external climate forcings at 1860 levels. Thus, any
changes to ENSO teleconnections will be the product of internal variability only. The model
is fully coupled and comprises of the Ocean Model 3.1 (OM3.1), Atmospheric Model 2.1
(AM2.1), Land Model 2.1 (LM2.1), and the GFDL Sea Ice Simulator (SIS). The OM3.1
resolution is 1◦ latitude by longitude with increasing resolution equatorward of 30◦, with 5015

vertical layers and a tripolar grid (for more information see Griffies et al., 2005). The AM2.1
and LM2.1 resolution is 2◦ latitude by 2.5◦ longitude with 24 vertical levels in AM2.1. For
more information on AM2.1 and LM2.1, see Delworth et al. (2006).

The GFDL CM2.1 was selected due to its realistic representation of ENSO characteristics
(Wittenberg, 2009, references therein). The seasonal SST structure and ENSO evolution20

is well represented when compared to observations (Wittenberg et al., 2006; Joseph and
Nigam, 2006), while also matching their power spectra (Wittenberg et al., 2006; Lin, 2007).
The representation of the strength of local teleconnections in the model, Fig. 1b, shows
that the regional responses of surface temperature (TS) and the Niño 3.4 index (shading)
are quite similar to the observations (contours). Note that hereafter “TS” refers to SST tem-25

peratures over model ocean points and land surface temperatures over model land points.
Hence, ENSO in the GFDL CM2.1 is imposing downstream effects, i.e. teleconnections, that
are broadly consistent with the observations, even if the strength of the connection is not
as is observed (Wang et al., 2012). It has also been shown that the model teleconnections,

7
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represented by correlations in 31 year windows between grid points and the Niño 3.4 index
generated from the model, do exhibit variability between periods and

:::::::
change

:::::
over

:::::
time,

:::
and

::::::
differ compared to correlations calculated over the entire period (Fig. 1a, Wittenberg,

2012). There is significant variation in teleconnection strength (i.e. the range of possible
correlations) when using shorter windows of data compared to those of the entire data set.5

It has been noted that the strengths, temporal and spatial structures of localised ENSO
teleconnections can be poorly represented in GCMs (Joseph and Nigam, 2006; Rowell,
2013; Gallant et al., 2013). This is also seen in CM2.1, as there are teleconnections that are
poorly represented at the local level, particularly on the “edges” of the main teleconnections
regions (e.g. on the coast of Australia and North America). This is due to inaccuracies in the10

representation of the mean climate, annual cycle, ENSO, and the other modes of climate
variability that are influenced by, or which influence, ENSO, such as the Southern Annual
Mode (Delworth et al., 2006). While this limits the conclusions that can be drawn about real-
world teleconnections, it still allows for an examination of reconstructions and the associated
influence of the non-stationarity of teleconnections, internal to the GCM.15

As ENSO events are generally synchronised to the seasonal cycle, the modelled TS was
converted to June–July

:::::::::
July–June

:
averages to capture ENSO event initiation and termina-

tion within one year (Rasmusson and Carpenter, 1982; Tziperman et al., 1997). This has
the added benefit of reducing 500 years of monthly TS data (6000 values) to 499 annual
values, minimising the computational cost and matching the resolution of the majority of20

ENSO proxies. The 499 year mean was removed from the dataset and the grid point time
series were then linearly detrended by calculating the residuals from a line-of-best fit using
linear regression, to remove long-term trends such as model drift. This modified TS dataset
is used for all calculations and experiments in this study. Modelled precipitation, only briefly
discussed in Sect. 4, was subjected to the same processing prior to any calculations.25

8
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3 Methods

This section describes how the model data is used as a substitute for climate proxies and
are

:
is

:
selected for multi-proxy reconstructions. Non-stationarity in this paper is defined in

Sect. 3.2, and the paleoproxy reconstruction methods tested will be described in Sect. 3.3.

3.1 Pseudoproxy generation5

The model TS and precipitation data were used to represent the climate proxies for
all reconstructions. These data are commonly referred to as pseudoproxies and rep-
resent a “perfect” proxy, free of non-climatic noise (von Storch et al., 2009). Unlike
Lee et al. (2008) , these

::::
The pseudoproxies are not degraded by adding noise (which would

add realism)
:::::::::::::::::::::
(e.g. Lee et al., 2008) , as the effects of noise on the reconstructions are not in10

the scope of this study. Pseudoproxies are randomly selected from a subset of the globe,
determined by several conditions, depending on the experiment. The most basic condition,
present in all experiments, is that the absolute correlation between the model grid point
and the Niño 3.4 index is above 0.3 in the calibration window. This threshold is an arbitrary
criterion that is simply there to ensure the pseudoproxies represent ENSO to some extent,15

making them at least partly relevant for reconstructing the ENSOsignal
::
at

:::::
least

::::::::
partially

:::::::::
represent

:::::::
ENSO.

::::
The

:::::::::::
calibration

:::::::
window

:::
is

:::
the

:::::
time

:::::::
period

::::::
where

::::::::::::
relationships

:::::::::
between

:::
the

:::
TS

::::
grid

:::::::
points

::::
and

:::
the

:::::::
model

:::::
Niño

:::
3.4

::::::
index

::::
are

:::::::::::
established. It is entrusted to the re-

construction methods to enhance the signal to noise ratio.
Networks of three to 70 pseudoproxies were used so that the effect of increasing network20

size could be examined. The same pseudoproxy was not used in the same network more
than once, but could be used in multiple networks. One thousand random networks were
selected and used to

::
To

:
produce reconstructions of the model Niño 3.4 index

::::::::
variance,

:::::
1000

::::::::
random

:::::::::
networks

:::::
were

:::::::::
selected

::::
per

::::::::
network

:::::
size,

:::::::::::
calibration

::::::::
window

:::::::
length,

::::
and

:::::::::
calibration

::::::::
window

::::::::
position. The randomised selection process over a large number of grid25

points means that there is only a very small chance that a network would be replicated
within 1000 iterations.

9
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The correlation at
:::::::
between

:::::::
ENSO

::::
and

:
each grid point

::::
time

:::::::
series

::::
(i.e.

::::::::
Niño3.4

:
&

:::
TS)

over the whole time period (499 years) and ENSO is assumed to represent the true tele-
connection strength, as its use for calibrating the proxies should result in more accurate
reconstructions. In reality , however, information is limited to the observational record. As
such, calibration can only occur during a relatively brief period, which we expect to result in5

reconstructions that are not as accurate as they potentially could be. To assess the effects
of the use of different calibration windows, we carry out three versions of each experiment.

– The first version represents the scenario where all pseudoproxies with a good corre-
lation, defined as |r| ≥ 0.3 , over the whole time period (499 years long)

:
,
:
can be used

in the reconstructions
:
(Fig. 1b). This can be conceptualised by using Fig. 1a, with10

this series
:::::::
version corresponding to selecting the areas where |r|> 0.3 on the x axis

(where r is 499 year correlation). Information from the entire time series is available in
this scenario, and can be thought of

:::
as using a calibration window 499 years long.

– The second version represents the realistic scenario, where calibration information is
restricted to within a relatively small window and the long term correlation is unknown,15

much like the effects of limited instrumental data in reality. This can be thought of se-
lecting the areas where |r|> 0.3 on the y axis (where r is correlation in the calibration
window). This implies that there is a chance that the mean correlation over the whole
time series is zero, or perhaps the opposite to the expected sign, and this is when
non-stationarities are likely to be the largest problem for reconstructions. This would20

vary with calibration window, and is reflected in Fig. 2b, d and f, with the narrowing of
the percentile lines as the length of the calibration window increases.

– The third version represents a combination of the first two series
::::::
version, selecting

the proxies with a good correlation in the calibration window, but also over the whole
time period (which would normally be unknown). This is equivalent to the case where25

a proxy is selected during a calibration period, but also happens to have good corre-
lations outside the window – the ideal proxy. This is represented by the overlapping
areas of the first two series

:::::::
versions

:
in Figs. 1a, and 2b, d and f for corresponding
10
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window lengths. This scenario uses a small calibration window like the second ver-
sion of experiments, but uses information from the 499 years of data as an additional
more stringent pseudoproxy selection criterion.

The first and third versions of experiments produced substantially better reconstructions
than the second version. This was ultimately because using much larger calibration win-5

dows and using information about the long term strength of teleconnections results in
more robust reconstructions. However, in reality, the generation of paleoclimate reconstruc-
tions would apply an assumption equivalent to that of the second version of experiments,
which limit the information on teleconnection strength to the calibration period only as they
are constrained by the instrumental record. However, our experiments showed that this10

assumption also produces larger errors in the reconstruction (not shown).
For the remainder of the paper, we show

::
As

::::
the

:::::::
second

:::::
case

::
is

::::
the

:::::
most

:::::::
realistic

::::::
case,

:::
we

::::::
mainly

::::::
focus

:::
on

:
the second version of the experiments only, as it represents the most

realistic case
::::::::::::
experiments

:::
for

:::
the

::::::::::
remainder

:::
of

::::
the

::::::
paper. For each grid-box, the 499 year

time series was split into ten calibration windows, of lengths 31, 61 and 91 years to match the15

running correlations performed previously. The mid-point of the calibration windows were
spaced evenly in the 499 year dataset, regardless of the amount of overlap or gap between
them. Experiments were repeated for the different calibration window lengths and positions,
so that the sensitivity of reconstruction skill to calibration window characteristics could be
examined. This resulted in ten thousand reconstructions for each calibration window length,20

for each experiment. The experiments based on pseudoproxy selection are described in
Sect. 4.

3.2 Identifying non-stationarities

This study examines the conditions when non-stationary teleconnections impact the validity
of paleoclimate reconstructions. Therefore it is necessary to identify which grid points have25

non-stationary teleconnections, so that its impact on the reconstruction of ENSO can be
assessed. The strength and variability of a location’s relationship with ENSO was measured
by calculating the running correlation between the grid point TS or precipitation time series,

11
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and the modelled Niño 3.4 index. Running correlations used windows of 31, 61 or 91 years,
in order to examine multidecadal scale variations on a number of time scales.

This study uses the same definition of non-stationarity as described in detail in Gallant
et al. (2013). Non-stationarity was tested against the null hypothesis that the running cor-
relations from the GFDL CM2.1 were stationary. For this purpose, the running correlations5

computed from the GFDL CM2.1 were compared to the expected range of variation that
the running correlations would exhibit if they were

:::
only

:
influenced by random noise (e.g.

weather events) at the grid point locationonly. A Monte Carlo approach (similar to van Old-
enborgh and Burgers, 2005; Sterl et al., 2007; Gallant et al., 2013) was used to generate
stochastic simulations of TS and precipitation data at each grid point. The simulated data10

were constructed to have the same statistical attributes as the TS and precipitation data
from the GFDL CM2.1 simulation. One thousand stochastic time series were computed for
each grid point in order to determine this range, according to the following equation from
Gallant et al. (2013).

υ(t) = a0+ a1c(t)+συ
√
1− r2[ηυ(t)+Bηυ(t− 1)] (1)15

υ(t) is the stochastic TS or precipitation time series. The first two terms represent the sta-
tionary teleconnection strength, with a0 and a1 the regression coefficients between the grid
point temperature or precipitation and the Niño 3.4 index c(t). The other terms represent
the added noise. A red noise process ηυ(t)+Bηυ(t− 1), was used and is weighted by the
standard deviation συ of the local TS or precipitation time series, and the proportion of the20

regression’s unexplained variance
√
1− r2 (where r is correlation of the local time series

to the Niño 3.4 index). The red noise is generated by the sum of Gaussian noise (ηυ) and
autocorrelation (B) of the TS or precipitation time series at lag of 1 year.

A 95% confidence interval was generated at each grid point from the stochastic sim-
ulations and was used to represent the range of running correlations possible, assuming25

a teleconnection was stationary. Thus, if a running correlation from the GFDL CM2.1 fell
outside the range from the stochastic simulations, it was unlikely to have been influenced by
stochastic processes alone. Hence, the teleconnection is defined as non-stationary. How-
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ever, as a 95% confidence interval was employed, and assuming independent and identi-
cally distributed data, such a test would falsely detect a non-stationarity in around 5% of
the time series. So, to decrease the likelihood of detecting false-positives in the time series
of running correlations a grid point was defined as non-stationary only if the model running
correlation time series fell outside the 95% confidence interval more than 10% of the time,5

which is double than expected by chance alone. As correlations are bounded, the running
correlations were converted to Fisher Z scores using the following equation.

Z = 1/2 ln[(1+ r)/(1− r)] (2)

Z is the Fisher Z score, while r is the running correlation values.
Figure 2a, c and e shows the number of non-stationary years

::::::::
windows

::::::::
(outside

:::
the

:::
95%10

::::::::::
confidence

::::::::
interval)

:
identified in the TS time series at each grid point for the different run-

ning correlation windows. Note that the points classified as non-stationary are denoted by
the coloured areas in panels a, c, and e, while white areas indicate stationary telecon-
nections. There are more non-stationary grid points (N value on plot) with larger running
correlation windows, suggesting that non-stochastic influences on teleconnections increase15

as time scales increase. Of further note is a large non-stationary area in the equatorial Pa-
cific, ;

:
given this is the area surrounding our ENSO index it is debatable whether this should

be considered as a non-stationarity. Rather, we expect the changing relationship in this
surrounding region to be the result of ENSO’s

::::::::::::
complexities

::
of

::::::
ENSO

:::::
that

::::
may

:::
not

:::::::::
captured

::
by

::::
the

::::::
simple

::::::::::
stochastic

:::::::
model

::
of

:::::::::::
stationarity.

::::
For

:::::::::
instance,

:::::::
ENSO

:::::::::
displays:

::
(i)

::::::::::
significant20

non-linearities (An and Jin, 2004) and/or
::
in

::
its

:::::::::::
magnitude

::::::::::::::::::::::
(An and Jin, 2004) and

::::::::
duration

::::::::::::::::::::::::::::
(Okumura and Deser , 2010) ;

:::
(ii)

::::::::::
differences

:::
in

:::
the

:::::::::
evolution

:::
of

::::::
events

:::::
with

:::
La

::::::
Niñas

::::
and

:::::
most

:::::
small

::
to

::::::::::
moderate

::
El

::::::
Niños

:::::::
having

:::::::
SSTAs

:::::
(sea

:::::::
surface

::::::::::::
temperature

:::::::::::
anomalies)

::::
that

:::::::::
propagate

::::::
from

::::
east

:::
to

::::::
west,

::::::
while

::::
the

::::::
SSTA

:::
of

:::::
large

:::
El

:::::
Niño

::::::::
events

::::::::::
propagate

:::::
from

::::
west

:::
to

::::
east

::::::::::::::::::::::
(Santoso et al., 2013) ;

:::::
and

:::
(iii)

:
changes in its spatial structure (CP-EP type25

events) which may be considered different flavours of events rather than non-stationarity

:::::::::::::
non-stationary

:
teleconnections of the event (Gallant et al., 2013; Sterl et al., 2007).
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3.3 Reconstruction methods

This study examines the likely
::::::::
potential

:
effects of non-stationarities on multi-proxy re-

constructions of the running variance of the Niño 3.4 index (representing the variability
of ENSO) using pseudoproxy data.

::
All

::::::::
running

::::::::::
variances

:::::
were

::::::::::
calculated

::::::
using

:::
30

:::::
year

::::::::
windows.

:
Four simple, commonly-used multi-proxy reconstruction methods were selected.5

In some methods, such as composite plus scaling (CPS), there are variants to the tech-
nique designed to improve climate proxy reconstructions (Jones et al., 2009). However, the
impact of non-stationarity on these will not be examined in this study. The reconstruction
methods to be tested are as follows:

3.3.1 Median Running Variance (MRV) method10

The MRV method was developed by McGregor et al. (2013) to reconstruct the running vari-
ance of paleo-ENSO from climate proxy data. It involves calculating the running variance
of each of the normalised (zero mean and unit variance) proxy time series, and then cal-
culating the median of these time series. The selected proxies have a demonstrated link
to ENSO, identified by a correlation above the prescribed value, to ensure the resulting15

median time series contains information about ENSO variability.

3.3.2 Running Variance of Median (RVM) method

This method was also devised by McGregor et al. (2013), as an alternate to the MRV for cal-
culating ENSO running variance. Here, if the constituent pseudoproxy series is negatively
correlated to Nino

::::
Niño 3.4, it is flipped in sign before being used for calculations. Each of20

the proxy time series are normalised to zero mean and unit variance before the median of
the group is calculated. This median time series is then normalised prior to calculating its
running variance, which is the RVM reconstruction. Despite only differing in the order of
operations with the MRV, this method was included in the study as it uses raw time series
data, rather than pre-processed data as for the MRV method.25
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3.3.3 Composite Plus Scaling (CPS) method

CPS is a common method for reconstructing climate data from climate proxies (Esper et al.,
2005; Hegerl et al., 2007; Mann et al., 2007, and references therein). In this study, the CPS
described in Esper et al. (2005); Hegerl et al. (2007) is employed. The proxy time series are
normalised to zero mean and unit variance and are weighted by their correlation to Niño 3.4,5

before being summed to form a single time series. After normalising this single time series,
running variance is taken to reconstruct ENSO variance, hereafter called “CPS_RV”.

3.3.4 Empirical Orthogonal Function Principal Component (EPC) method

This method, described in detail in Braganza et al. (2009), is based on the ability of Empiri-
cal Orthogonal Functions (EOFs) to extract the leading modes of variability from a dataset10

(Xiao et al., 2014, and references therein). Like the MRV method, the proxy data must have
established connections to ENSO to ensure that the common dominant signal is an ENSO
signal. The leading EOF is then multiplied by the original pseudoproxies, and summed to
produce a principal component (PC) time series that is a reconstruction of the ENSO in-
dex. The sign of the leading EOF is flipped, if necessary, to ensure that the resulting PC15

has a positive correlation with the modelled ENSO. Like the CPS method, the running vari-
ance of this normalised PC time series is calculated to produce a reconstruction of ENSO
variance (hereafter named “EPC_RV”).

3.4 Reconstruction performance

To measure the skill of the reconstructions, each are quantitatively compared to the running20

variance of the ENSO index in the model (calculated in Sect. 2) by calculating Pearson
correlation coefficients and root-mean-squared error (RMSE). Figure 3 shows that each
of these four methods capture the running variance well when the entire dataset is avail-
able (

::::
and with larger proxy networks). Therefore, these methods can be viewed as effec-

tive in performing climate reconstructions of ENSO variance. Using all data, the CPS_RV25

method performs significantly better than the other methods (to a 1% level of the two-
15
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sample Kolmogorov–Smirnov test and Mann–Whitney U test), while the RVM is the worst
performing index.

4 Results

The results of the pseudoproxy experiments are presented in this section. Calibration win-
dows of 31, 61 or 91 years are used to generate the reconstructions, and this window length5

also corresponds to that used for the running correlation. Only grid points with a good

::::::::
absolute

:
correlation to ENSO (> 0.3) within the given calibration window were used as

pseudoproxies. Here we examine the sensitivity of the reconstruction methods to non-
stationarities, and the effect of proxy location on reconstruction skill. As stated previously,
there will be a focus on the reconstructions produced using grid point TS as the pseudo-10

proxies.

4.1 Proxy location effects

ENSO reconstructions are thought to be affected by the locations of the constituent prox-
ies, with many viewing proxies from within the tropical region with higher regard than those
sourced elsewhere. These proxies are closest to the centre-of-action and thus expected to15

be more skilful. Here we examine the impact of tropical Pacific region proxies on recon-
structions by comparing two experiments; RNDglb_ts which selects n pseudoproxies ran-
domly from the global domain (see Supplement Fig. 1

:::
S1 for locations), while RNDntrop_ts

has similar random selection but excluding the tropical region: 10◦ S to 10◦ N, 100 to 300◦ E
(RNDntrop_ts). Note that both experiments do not discriminate between stationary and non-20

stationary locations in this section.
The reconstruction skill, which is represented by the correlation between the pseudoproxy

reconstruction of the Niño 3.4 index from the pseudoproxy grid points
:::::::
running

::::::::
variance

:
and

the model Niño 3.4 index
:::::::
running

::::::::
variance, of both experiments is presented in Fig. 4. Here,

network size n is varied from three to 70 (described in Sect. 3.1) on the x axis of each25

panel, while rows represent the different sized calibration windows and columns the different
16
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reconstruction methods (see Sect. 3.3). Looking at the percentile range (Fig. 4, shading)
of the correlations between experiments reveals that the removal of tropical Pacific proxies
clearly acts to decrease the skill of the resulting reconstructions.

These differences are most easily highlighted by arbitrarily defining skilful reconstructions
by some threshold and calculating what proportion of experiment’s reconstructions can be5

classified as skilful. Here we define skilful reconstructions as those that explain more than
half the variance of the model ENSO variability

::::::::
variance (grey line at∼ 0.7 correlation). The

:::::::::
proportion

:::
of skill metrics for the global RNDglb_ts and non-tropical RNDntrop_ts experiments,

which are respectively plotted in each panel of Fig. 4 as blue and orange lines, can then
be further simplified by focusing on the skill difference between experiments (Fig. 4, black10

line). The skill difference shows clear calibration window length and reconstruction method
differences that will be discussed further in Sect. 4.3, but on average when tropical proxies
are not used in reconstructions, the proportion of skilful reconstructions decreases by 14%.
However, even without the tropical proxies, the RNDntrop_ts experiment still produced quite
high proportions of skilful reconstructions for larger network sizes

:::::
(> 20

:::::::
proxies,

:::
77%

:
). This15

implies that although there is a reduction in skill with extra-tropical proxies, non-tropical
reconstructions still have a high likelihood of producing skilful reconstructions.

4.2 Effect of non-stationarities

Here we examine the effect of non-stationarities on reconstructions of ENSO in order to
understand how they may impact past reconstructions of ENSO variability

::::::::
variance. To this20

end, we compare the results of two experiments; (i) STATntrop_ts, which selects pseudoprox-
ies from the same region as RNDntrop_ts but only includes pseudoproxies that are consid-
ered stationary (see definition in Sect. 3.2), while (ii) NSTATntrop_ts selects from the same
region, but only the non-stationary pseudoproxies. Thus, here we effectively separate the
psuedoproxies of the RNDntrop_ts experiment into stationary and non-stationary subgroups25

and generate reconstructions from each.
Figure 5 has the same panel layout as Fig. 4, with the green and pink representing sta-

tionary (STATntrop_ts) and non-stationary (NSTATntrop_ts) experiments
:::::::::::
respectively. Shading

17
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represents the percentile ranges of the reconstruction skill, thick lines indicate the propor-
tions of skilful reconstructions and the thick black line is the difference between the sta-
tionary (STATntrop_ts) and non-stationary (NSTATntrop_ts) experiments. In

:::
For

:
all calibration

window lengths (rows) and reconstruction methods (columns), the stationary experiment
has greater skill than the non-stationary experiment, although there is reasonable variation5

between reconstruction methods and calibration window lengths (this will be discussed in
later sections). In some cases, non-stationarities can reduce the proportion of skilful recon-
structions by up to 60% (panel b, black line, n > 60), but on average the proportion of skilful
reconstructions is reduced by 30%. Thus, these experiments suggest that extra-tropical
non-stationarities act to reduce reconstruction skill.10

It is interesting to note that when tropical region non-stationarities are included, they
appear to improve reconstruction skill (Supplement Fig. S4

::
S3). The majority of the pseu-

doproxies in the tropical region were found to be highly correlated with ENSO as expected,
and to demonstrate very little variation in their correlations to ENSO (not shown), usually
less than∼ 0.1 correlation. However, as seen in Fig. 2 many of these proxies are still classi-15

fied as non-stationary, which may be due to non-linearities or variations in flavour of ENSO
events. Thus, regardless of whether they are classified as non-stationary or not, the inclu-
sion of these tropical pseudoproxies acts to improve the skill of the ENSO reconstructions.

In regards to why
::::
The

::::
fact

::::
that

::::
we

::::
see

::
a
::::::::

minimal
::::::

effect
:::

of
:
non-stationarities do not

seem to impact the high skill of random pseudoproxy selection of
::
in

::::
the

:::::::::
randomly

::::::::
selected20

:::::::::::
experiments

:::::
(see

:
Sect. 4.1, we find that )

:::::
may

:::
be

::::::::
because

:
the likelihood of selecting non-

stationarities is relatively low. For instance, Fig. 6 shows the proportions of non-stationary
pseudoproxies in the reconstructions for the RNDglb_ts experiment with a 31 year long cal-
ibration window. It varies with different proxy network sizes, but as expected, the smaller
groups have a greater chance of higher proportions of non-stationary proxies. With net-25

works greater than thirty, the most likely proportion is around 14%, while much more con-
sistent than the smaller groups. Even with very small group sizes (n= 3), the chance that
all stations are non-stationary is only 0.3% (red line from Fig. 6). When only using extra-
tropical locations (RNDntrop_ts), the most likely proportion of non-stationary proxies is around
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9%, with an even lower chance of all constituent proxies being non-stationary. There is also
a tendency for more non-stationarities to occur with the use of longer calibration windows
(see Fig. 2a), consequently the proportions of non-stationary proxies increase. For example,
networks greater than thirty proxies can be up to 25% non-stationary when using 91 year
calibration windows (not shown). Regardless of the increases in non-stationarities with the5

use of longer calibration windows, these longer windows still produced more skilful recon-
structions in the random selection experiments than those with shorter windows (RNDglb_ts

and RNDntrop_ts; Fig. 4). Thus, although non-stationarities have the potential to influence the
skill of ENSO reconstructions, this scenario appears unlikely if proxies are selected similar
to a globally random manner.10

However, if pseudoproxies are selected from regions that have non-stationarities
occurring at the same time

::::::::::::
demonstrate

::::::::::::
co-variability

::
in

::::
the

:::::::
running

::::::::::
correlation

:::::::::
between

:::
TS

:::
and

:::::
Niño

::::
3.4

::::
SST

::::::::::
anomalies, reconstruction skill is devastated. To this end, an Empirical Or-

thogonal Function analysis (EOF) was essentially used to “organise” the non-stationarities,
resulting in the experiment

::::
this

::::::::::::
co-variability,

:::
of

:::::
which

::
it
::
is
:::::::::
expected

:::::
that

::::::::::::::::
non-stationarities15

:::
are

::
a

::::::
major

:::::
part.

::::
This

:::
is

:::::
seen

::
in

::::
the

:
PNEOF1

::::::::::
experiment

:::::::
shown in Fig. 7. In this experi-

ment the EOF was carried out on the running correlations between TS and Niño 3.4 SST
anomalies at each grid point. Pseudoproxy networks were then selected only from those
grid points that exhibited a strong relationship with the leading EOF (i.e. the absolute value
of the EOF weighting> 0.1

::::::
> 0.01). The spatial map of this leading EOF is shown in panel e,20

for 31 year window running correlations. The leading EOFs of the longer windows have very
similar spatial patterns, with spatial correlations of 0.86 and 0.84 produced respectively,
when comparing the 61 and 91 year window length EOF1 spatial patterns (not shown). The
leading principal components for each window length are also similar (panel f). The result-
ing PNEOF1 experiment reconstructions display a large loss in skill when compared to the25

stationary pseudoproxies in the reconstructions (STATntrop_ts, dashed lines), with the former
having very little likelihood of producing a skilful reconstruction (Fig. 7a). This highlights
that non-stationarities can significantly affect the skill of reconstructions if there is spatial
coherence in the non-stationarities

:::::
a–d).

::::
The

::::::::::
proportion

:::
of

::::::::::::::
non-stationary

::::
grid

::::::
points

:::::
used
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::
in

:::
the

:::::::::
PNEOF1

:::::::::::::::
reconstructions

::::
was

::::::
small,

::::::::
ranging

:::::
from

::::
9-15%

:
.
:::::::::
However,

:::::
there

:::::
was

:::
still

::
a

::::::::::
substantial

::::
loss

::
of

::::
skill

:::
in

:::::
these

:::::::::::::::
reconstructions

:::::
even

:::::::
though

:::
the

::::::::
majority

::
of

::::
grid

::::::
points

:::::
were

:::::::::
classified

::
as

::::::::::
stationary

:::
by

::::
our

:::::::::
statistical

::::::::::
definition.

::::
This

::::::::
implies

::::
that

::
a

:::::
large

::::
and

:::::::::
coherent

:::::::
change

::
to

::::
the

::::::::::::::
teleconnection

::::::
exists

::
in

:::::
that

::::::
region

:::::
even

::
if
::
it

:::::::::::
considered

::::::
mostly

:::::::::::
statistically

:::::::::
stationary,

:::::
and

::::
that

:::::
was

::::::::
enough

:::
to

::::::::
degrade

::::::::::::::
reconstruction

:::::
skill. Thus, care should be5

taken to avoid the scenario where all constituent pseudoproxies of a reconstruction can
have non-stationarities occurring at the same times

:::::
used

::
in

::
a
::::::::::::::
reconstruction

:::
lie

::
in

::
a

::::::
region

::::::
where

:::::
there

::::
are

::::::
large,

:::::::::
coherent

:::::::::
variations

::
in
::::::::::::::::
teleconnections,

:::::
even

::
if
::::::
these

:::::::::
variations

::::
are

::::::::::
considered

::::::::::
stationary.

4.3 Pseudoproxy network size and length10

As shown
:::::::::
discussed

:
previously, the ENSO reconstruction skill is sensitive to the pseudo-

proxy network size and window length. This is clearly seen in Fig. 8, which displays the re-
construction skill of three different previously presented experiments (RNDglb_ts, RNDntrop_ts,
and NSTATntrop_ts) . In each panel the three colours indicate which calibration window
length is used; 31 (blue)

::
as

:::::
three

:::::::::
different

:::::::
colours

:::::
(see

:::::::::
legend).

:::::
Each

::::::
panel

:::::::
shows

::::
the15

::::::::::
proportions

:::
of

::::::
skilful

:::::::::::::::
reconstructions

::::::
(thick

:::::
lines)

::::
for

::::::::
different

::::::::::::::
reconstruction

::::::::
methods

::::
(as

:::::
titled), 61 (green) , or 91 (red)years, while the hatching is the percentile range, and the thick
lines are the proportion of skilful reconstructions

:::
and

::::::::
different

:::::::::::
calibration

::::::::
window

:::::::
lengths

::::
(see

:::::
inset

::::::::
legend). What is clear in all panels, is that the reconstruction skill generally im-

proves with increasing network size for all experiments, that is regardless of reconstruction20

method and calibration window length. This is also true when all pseudoproxies in a net-
work are non-stationary (NSTATntrop_ts experiment), however,

::::::::
although the reconstruction

skill generally improves at a slower rate (Fig. 8i, j, l
:
,
::::
red

:::::
lines). This implies that larger

pseudoproxy networks are less affected by non-stationarities, but this is also dependent
on the calibration window length (discussed below) and the reconstruction method (dis-25

cussed in Sect. 4.4). In general, smaller pseudoproxy networks (< 5) produce very low
proportions of skilful reconstructions (10–40), while those with larger networks the majority
of reconstructions become skilful. In fact, when pseudoproxies are randomly selected

20
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(RNDglb_ts and RNDntrop_ts), using a minimum of 20 proxies gives a fairly good chance
(> 77

::::::::::
reasonable

::::::::
chance

:::
(77% chance on average) that the resulting reconstruction will be

skilful (Fig. 8a–c, e–g).
The calibration window length also has an impact on reconstruction skill and sensitivity

to non-stationarities (Fig. 9). For example, using small calibration windows (31 to 91 years)5

compared to the total number of model years available (499 years) leads to a relative de-
crease in skill, as indicated by the black 499 year reconstruction being higher in skill than
the reconstructions using smaller windows. This decrease of skill would be

::
is

::::::::::
potentially

due to some information loss in the relative datasets, and not necessarily due to non-
stationarities. However, this reduction in skill at the median (thick line) is quite small (∼ 0.110

correlation) even at the smallest networks sizes and in the worst performing reconstruc-
tion method. Thus, although there is a reduction in skill due to loss of information with
smaller calibration window lengths, this is relatively small compared to the possible im-
pacts of non-stationarities (see previous section). Figure 8 also shows that larger windows
tend to improve skill, with the larger window lengths consistently having higher proportions15

of skilful reconstructions in the random selection experiments (RNDglb_ts and RNDntrop_ts).
Larger windows also appear to generally improve reconstructions in the NSTATntrop_ts ex-
periment. However, for random proxy selection, longer calibration windows still lead to
increases in reconstruction skill, as long as the proxy network is not entirely non-stationary
(like in the NSTATntrop_ts experiment). This increase in skill is not as great as removing20

non-stationarities from the reconstructions (Fig. 5) or changing the reconstruction method
(following section).

4.4 Reconstruction method comparison

All reconstruction methods create skilful reconstructions given sufficiently large calibra-
tion windows and proxy network sizes in the random selection experiments RNDglb_ts25

and RNDntrop_ts (see Figs. 8 and 9). It is noted that the
:::
The

:
CPS_RV method performs

well
::::::
almost

:::
as

::::
well

:::
as

::::
the

:::::
MRV, although mainly with longer calibration windows and for

the random selection experiments (RNDglb_ts and RNDntrop_ts, Fig. 8). However, there is
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a clear distinction in the skill from the MRV method reconstructions compared to the other
methods tested when considering the impact of non-stationarities and neglecting tropical
pseudoproxies. For instance, when tropical pseudoproxies are not used in experiments,
the MRV reconstructions are only marginally affected (Fig. 4c, g and k) implying that the
method is not as dependent as other methods on the highly correlated tropical region. This5

is expected, as the EPC_RV and CPS_RV involve weighting regimes that would favour the
highly correlated tropical pseudoproxies (see Sect. 3.3, and references therein). The MRV
method has the highest proportion of skilful reconstructions at the lowest network sizes in
all other experiments (Fig. 8

:
c), with the clearest differences seen in the NSTATntrop_ts ex-

periment (Figs. 5 and 8i–l), while the percentile range of the MRV method also tends to be10

the smallest. Both of which, indicate that the MRV method has the lowest sensitivity to non-
stationarities. Further to this, in spite of the MRV method being negatively affected in the
PNEOF1 experiment (Fig. 7, thick lines), and displaying some sensitivity to calibration win-
dow length (red line outperforms others

::::
91yr

::::::::
windows

::::::::
perform

::::::
better

::::
than

:::::::
shorter

:::::::::
windows),

it produces the highest proportion of skilful reconstructions and is thus still the most robust15

against non-stationarities.
It is worth noting that although the MRV method shows the most consistently high corre-

lations to ENSO , this high skill is not necessarily reflected in the RMSE (root-mean-square
error). The RMSE of the MRV method is still the most consistent however

:::
and

:::::::::
appears

::
to

::
be

::::
the

:::::
least

:::::::::
sensitive

:::
to

::::::::::
calibration

::::::::
window

:::::::
position

:
(smallest percentile ranges, Supple-20

ment Fig. 5), but shows somewhat greater error than the other methods in this experiment
(RNDntrop_ts). MRV in the non-stationary experiment (NSTATntrop_ts, Supplement

:::
S5),

::
it
::::
has

:::
the

:::::::
highest

:::::::
RMSE

:::::::::::::::::
(root-mean-square

::::::
error).

::
It
::
is

::::
well

:::::::
known

:::
that

:::
all

::::::::::::::
reconstruction

::::::::
methods

:::::
result

::
in

::
a
::::
loss

::
in
:::::::
ENSO

:::::::::
variance,

::::
and

::::
this

::
is

::::::
clearly

:::::::
shown

::
in

::::
Fig.

::::
10.

::
In Fig. S6; PNEOF1,

not shown) have similar RMSE values to other methods, likely due to the other methods25

gaining additional errors due to increased non-stationarities. Upon further inspection it is
clear that the higher correlations of the MRV method are offset by the resulting running
variance time series being much more damped than those of the other methods, which
explains the high RMSE error. This can be seen in Supplement Fig. S7, where the variance
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is taken of the reconstructions instead of the correlations like in previous analyses. The
MRV results clearly show much lower variance than all the other methods

:::::::
10a–d,

:::
we

::::
can

:::
see

::::
that

:::
all

:::::::::::::::
reconstructions

:::::::::::::
underestimate

::::
the

::::::
model

:::::
Niño

:::
3.4

::::::::
running

::::::::
variance

::::::
(black

:::::
line).

:::::::::
However,

:::
this

::::::
figure

::::
also

:::::::
shows

::::
that

:::
this

:::::::::
variance

::::
loss

::
is

::::::::::::
exaggerated

::::
with

::::
the

:::::
MRV

:::::::
method

(panels c, gand k), particularly at larger pseudoproxy network sizes, whilst the variance5

of other methods remain relatively high with increasing network size. Due to the nature of
the other methods ),

::::
and

::::
this

::
is

::::
also

::::::
seen

::
in

::::::::::::
Supplement

::::
Fig.

:::
S6,

:::::::::::
particularly

:::
at

:::
the

::::::
larger

:::::::
network

::::::
sizes.

::
It
:::

is
::::
this

::::::::
variance

:::::
loss

::::
that

::::::
leads

:::
to

:::
the

:::::
high

:::::::
RMSE

:::
of

:::
the

::::::
MRV

::::::::
method.

:::::
Other

:::::::::
methods

:::
do

:::
not

::::::
suffer

:::
as

::::::
much

:::::
from

:::
this

:::::::::
variance

::::
loss

:::
as

:
they are normalised after

the reconstruction but prior to the calculation of the running variance (see Sect. 3.3), while10

the MRV is not.
:::
As

::::
the

:::::
MRV

:::::::
utilises

::::::::
running

:::::::::
variances

:::::
from

::::
the

::::::::::
beginning,

::
it

:::::::
unable

::
to

:::
be

::::::::::
normalised. Thus, while the MRV reproduces ENSO variance with the highest

::::::::::
correlation

skill, the MRV method may require
::::::::
requires re-scaling to better match the magnitude of the

variance changes.
Given that the RVM and MRV methods are only different in order of operations (see15

Sect. 3.3)their large differences in reconstruction skill suggest that using the median, rather
than weighting the individual source time series, plays little role in the robustness of the
MRV method. As McGregor et al. (2013) identified, taking running variances first, which
are positive definite (see Sect. 3.3), means that the MRV method is not susceptible to
signal cancellation like the other methods including the RVM. Thus, we suggest that the20

MRV method is robust against non-stationarities because they act much like dating errors
and lead to signal cancellation.This is supported by Fig. ??, where a few examples of
reconstructions are plotted alongside the standard deviation of their source pseudoproxies’
running correlation to model ENSO (see McGregor et al., 2013) .These plots suggest that
when

::
In

:::::
order

:::
to

::::::::::::
compensate

:::
for

::::
the

::::::::
variance

:::::
loss

::
of

::::::
each

::::::::::::::
reconstruction

:::::
(Fig.

::::::::
10.a–d),25

:::
we

:::::::
rescale

:::::
each

:::::::::
method’s

:::::::::
resulting

::::::::
running

::::::::
variance

:::::
time

::::::
series

:::::
(Fig.

::::::::
10.e–h).

::::::::::
Rescaling

:::
the

::::::::
running

:::::::::
variance

:::::
time

:::::::
series

:::::
was

:::::::
carried

::::
out

::::::
using

::::
the

:::::::::
average

:::::::::::
(calculated

:::::
over

:::::
1000

:::::::::::::::
reconstructions)

:::::::::::
regression

::::::::
between

::::
the

:::::::::::::::
reconstructions

::::
and

:::
the

:::::::::
modelled

:::::
Niño

::::
3.4

:::::::
running

:::::::::
variance

::::::
within

::::
the

:::::::::::
calibration

::::::::
window.

:::::::
When

:::
the

::::::
MRV

:::::::
(panel

:::::
10.c)

:::
is

:::::::
scaled
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::
to

:::::
form

::::
the

::::::
SMRV

:::::::
(panel

::::::
10.g),

:
there is a lot of variability in the correlations between

the source pseudoproxies and ENSO, the reconstruction variance tends to be low (and
vice-versa), which can be seen in the red highlighted areas. This supports the idea that
non-stationarities act to cancel the running

:::::
jump

::
in

::::::::::::::
reconstruction

:
variance signal much

like a dating error. Further to this ,
::::
(grey

::::::::::
shading),

:::::
such

:::::
that

:
the regressions of these5

individual time series also show the MRV’s difference to other methods, with a much
smaller regression slope −0.79 for MRV, compared to −2.28, −1.99 and −2.32 for the
RVM, CPSSUBSCRIPTNBRV and EPCSUBSCRIPTNBRV methods, respectively (out of
the statistically significant reconstructions). Thus, there is evidence that

:::::::::
modelled

:::::
Niño

:::
3.4

:::::
index

:::::::
running

:::::::::
variance

::
is

::::
now

::::::::::::::
encompassed

::
by

::::
the

::::
grey

:::::::::
shading.

::::::
Using

:::
this

:::::::
simple

:::::::
scaling10

::::::::::
technique,

:::
we

::::
see

::
a

:::::
large

:::::::::
reduction

:::
in

:::
the

:::::::
RMSE

:::::
(see

::::::::::::
Supplement

::::
Fig.

::::
S7)

:
-
:::
up

:::
to

:
a
::::

0.1

:::::::::
reduction

::
in

:::
the

::::::::
median

::::::::::::
(Supplement

::::
Fig.

::::
S7,

::::
cyan

::::::
lines)

::::
and

:::
no

::::::::
changes

::
in

::::
the

::::::::::
correlation

::::
(not

::::::::
shown).

::
In

:::::
fact,

::
it
::
is
::::::::::::

noteworthy
::::
that

:::
on

::::::::
average

::::
the

:::::::
scaled

::::::
MRV

::::
has

::::
the

::::::::
smallest

::::::
RMSE

:::::::::::
(significant

::
to

:
the MRV method is less prone to variance losses when there is high

variability amongst the source proxies, and hence it is less susceptible to signal cancellation15

in proxies
::
99%

::::
level

:::
via

::
a

::::
two

:::::::
sample

:
t
:::::
test)

::
of

:::
all

:::::::::::::
reconstruction

:::::::::
methods.

4.5 Precipitation pseudoproxies

Although not the focus on
::
of

:
this paper, precipitation was also examined for all ex-

periments. Precipitation based reconstructions showed more variation in skill than TS
and required larger network sizes for the same skill (see Supplement Fig. S2), but20

otherwise had similar tendencies as temperature outlined above. However, there was
one key difference in precipitation – NSTATglb_pr (Supplement Fig. S3

:::
red

:::::
lines) pro-

duced less skilful reconstructions than RNDglb_pr (Supplement Fig. S2)
::::
grey

::::::
lines)

:::
as

:::
we

::::::
would

:::::::
expect. This is likely due to the absence of a large spatially coherent re-

gion of correlations in the tropical Pacific Ocean (see
::::::::
compare

::::::::
tropical

::::::
areas

:::
in

:
Sup-25

plement Fig. S1e). Generally, there is also greater variability in skill across calibration
windows than in temperature (

::::
S1b

::::
and

::::::::::::
Supplement Fig. 4, blue shading), leading to wider

shaded areas in the EPCSUBSCRIPTNBRV and
:::::
S1e).

:::::
The

:
CPS_RV methods, but not
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much change for the MRV and RVM methods. In the precipitation RNDglb_pr experiment
(Supplement Fig. S2), the CPSSUBSCRIPTNBRV method is generally unskilful, with the
worst 5of reconstructions (blue shading) displaying correlations below zero with network
sizes below 10 proxies

:::::::
method

::::
also

:::::::::
generally

::::::::::::
outperforms

::::
the

::::::
other

:::::::::
methods,

:::::::
except

:::
for

:::
the

::::::::::::::
non-stationary

:::::::::::
experiment

::::::::::::
NSTATglb_pr,::::::

where
::::

the
:::::
MRV

:::::::::
appears

::
to

:::
be

:::::::::
superior

::
to

:::
all5

::::::::
methods. The RVM method appears to perform

::::::
slightly

:
better with precipitation than tem-

perature in panels d, and h, with not much difference in panel l
::::::::::::
(Supplement

::::
Fig.

::::
S2,

::::::
mainly

::
at

::::::
longer

:::::::::::
calibration

:::::::::
windows), which is consistent with the findings of McGregor et al.

(2013).

5 Discussion10

Non-stationary relationships between the modelled Niño 3.4 index and regional tempera-
ture and precipitation were detected in the GFDL CM2.1 model. Our results demonstrate
that non-stationarities between ENSO and regional climates can occur in many regions
around the globe, which extends previous work of Gallant et al. (2013), who found signif-
icant non-stationary areas in the Australasian region in both modelling and observations.15

Like in Gallant et al. (2013), our work shows non-stationarities exist in climate models glob-
ally on time scales longer than approximately 30 years, demonstrating their occurrence at
low frequencies. This is in contrast to van Oldenborgh and Burgers (2005) and Sterl et al.
(2007), who examined non-stationarities at higher frequencies and found no detectable ev-
idence for them in the observations using running correlation windows of around 20 years.20

The fact that these non-stationarities are found in a pre-industrial control simulation shows
that this low frequency variability can arise from unforced, internal climate variability, adding
further evidence that this low frequency variability is an inherent part of the climate system.

Identifying what causes the occurrence of non-stationarities in ENSO teleconnections is
not within the scope of this study. However, Wittenberg (2009) showed substantial changes25

to the behaviour of ENSO on similar time scales to those identified here in a 2000 year simu-
lation using the GFDL CM2.1. Wittenberg (2009) discussed that such changes to ENSO be-
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haviour could conceivably alter the teleconnections between ENSO and local climate . We
note that although we use the same model as in the Wittenberg (2009) study, the results are
unlikely to be a product of the model configurationgiven that Gallant et al. (2013) identified
non-stationarities in three different GCMs

::::
and

::::
that

::::::
these

::::::::
changes

:::::
may

:::
not

:::
be

::::::::::::
represented

::
in

:::
the

:::::::::
historical

::::::::
record.

::::::::::::::::::::::::::::
Gallant et al. (2013) identified

:::::::::::::::::
non-stationarities

::
in

::::::
three

::::::::
different5

::::::
GCMs.

:::
It

::
is

::::::
noted

:::::
that

:::::
while

::::::::::
numerous

::::::::
models

:::::::
display

::::::::::::::::::
non-stationarities,

:::::
their

::::::::
regional

:::::::::
existence

::::
may

:::::
vary

::::::::::
depending

:::
on

::::
the

::::::
model

:::::
used

::::::::::::::::::::
(Coats et al., 2013) .

::::
We

:::
do

:::
not

:::::::
expect

:::
our

::::::::::
evaluation

::
of

::::::::
various

::::::::
different

::::::::::::::
reconstruction

::::::::
methods

:::::::::::::
performance

::
in

:::
the

::::::::::
presence

::
of

::::::::::::::::
non-stationarities

::
to

:::
be

::::::::
affected

:::
by

::::::
model

:::::::::::::
configuration,

::::::::
however

:::
we

:::::::
intend

::
to

::::::::
examine

::::
this

::
in

::::::
future

::::::::
research.10

In this study, the pseudoproxy approach in the virtual reality of the GFDL CM2.1 pre-
industrial control simulations avoids the problems of non-climate related noise that is inher-
ent to real-world paleoclimate proxies, allowing us to focus on the sensitivity of reconstruc-
tions to the occurrence of non-stationarities alone. However, in reality non-climate related
sources of noise in paleoclimate proxies will confound, and likely degrade, reconstruction15

skill to a greater extent than examined here. Thus, our finding that a network size of > 20
will minimise the effects non-stationarities on reconstruction skill is likely an underestimate
of minimum network size for a real-world reconstruction. The compounding effects of noise
and non-stationarities on the reconstruction method and hence, a reconstruction, should be
the focus of future research efforts in this area.20

All reconstruction methods examined generate skilful reconstructions when utilising glob-
ally random source proxy selection, given sufficiently large calibration windows and proxy
network sizes. Therefore, the results presented here highlight a case for considering the
influence of non-stationarities on real-world reconstructions , and their underlying methods,
which generally employ small proxy networks. The influence of the choice of method on25

the reconstruction and its sensitivity to non-stationarities was stark.
::::
The

::::::::::::::::
non-stationarities

:::
and

::::::::::::::
reconstruction

::::::::
method

:::::::
usually

::::
had

::
a

:::::::
greater

:::::::::
influence

:::
on

::::::::::::::
reconstruction

::::
skill

:::::
than

:::
the

:::::::::
calibration

::::::::
window

:::::::
length. In the best-case scenario (i.e. long calibration window and large

proxy network), the CPS_RV method had the greatest skill. In less-than-ideal conditions
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(e.g. small calibration windows or proxy networks), the MRV method clearly excelled, and
even managed to produce a high proportion of skilful reconstructions given only pseudo-
proxies considered non-stationary (Fig. 5). However, note that the performance of these
methods is likely to depend on the variable being reconstructed

::
the

:::::::::
unscaled

::::::
MRV

:::::::
method

:::::::
showed

:::::
poor

:::::::
RMSE

::::::::::::::
performance,

::::::::
meaning

:::::
that

::
it
::::
can

:::::
only

:::
be

::::::
used

:::
to

::::::::
provide

::::::
useful5

::::::::::
information

:::
on

::::
the

:::::::
relative

:::::::::
changes

::
in

:::::::
ENSO

::::::::
variance. We also note that the large differ-

ence between the MRV and RVM experiments (Figs. 3 and 9) is contradictory to the results
in Fig. 4 of McGregor et al. (2013). However, these differences were due to the 10 year low-
pass filter used in McGregor et al. (2013), whereas in this study, the data was unfiltered.
Consequently, the RVM was found to be sensitive to the low-pass filtering while the MRV10

was insensitive (results not shown).
For reconstructions of large-scale phenomena like ENSO, multi-proxy

:::::
larger

::::::
more

:::::::
globally

:::::::
diverse

:
networks will produce more informative reconstructions because the larger

networks contain more information, including spatial information, compared to single site

:::::::::
compared

:::
to

::::::
those

:::::::
derived

:::::
from

::::::::
smaller

:::::::
regions

:::
or

::::::
single

:::::
sites

:
(Mann, 2002; Lee et al.,15

2008; von Storch et al., 2009; McGregor et al., 2013). The experiments conducted here
support this hypothesis, as the proportions of skilful reconstructions increase

::
as

::::
the

:::::::
number

:::
of

:::::::
source

::::::::
proxies

:::::::::
increase

:
for almost all reconstruction methods and calibra-

tion window lengths (Figs. 8 and 5). Our work further shows that large , multi-proxy
networks also reduce errors relating to non-stationarity of teleconnections, which fur-20

ther supports their employment (Fig. 5). However, this skill improvement is affected by
the degree of non-stationarity

::::
and

::::::::::::::
teleconnection

::::::::::::
co-variability

:
present in the reconstruc-

tions, with non-stationary proxy networks (NSTATntrop_ts, Fig. 8i–l
:
,
::::
red

:::::
lines) and “or-

ganised” non-stationarities
::::::::::::::
teleconnection

::::::::::::
co-variability

:
(PNEOF1, Fig. 7a–d) reducing

the degree of improvement in skill with increasing network size. Thus, where increas-25

ing network size would usually improve the reconstruction, non-stationarities
:::
and

:::::::
spatial

::::::::::
coherence

::
in

::::::::::
variations

::
in

::::::::::::::
teleconnection

:::::::::
strength can substantially temper this improve-

ment. In extreme cases, where proxies are selected from areas with spatially coherent
non-stationarities

:::::::::
co-varying

:::::::
areas (PNEOF1, Fig. 7), reconstruction skill may show no
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improvement with larger proxy networks. This further stresses the importance of ensur-
ing that all constituent proxies utilised in a reconstruction are not affected by the same
non-stationarities

:::::::::
co-varying

::::::::::::::::
teleconnections. This is more likely achieved in spatially di-

verse, large multi-proxy networks.
The results of this study further emphasise the need for more paleoclimate proxies to be5

available for multi-proxy climate reconstructions. Given the skilful reconstructions in ENSO
variance that can be produced by neglecting pseudoproxies from the centre of action ,
as shown here, the utilisation of data solely from the eastern equatorial Pacific appears
unnecessary. In fact, these results utilising globally random proxy selection support the de-
velopment of paleoclimate proxies from a wide range of global locations. Furthermore, de-10

veloping an understanding of the teleconnections and their underlying mechanisms around
the globe will assist with selection of paleoclimate proxy locations that are unlikely to be
affected by the same non-stationarity

:::::::::::::
teleconnection

:::::::::::::
co-variability.

6 Conclusions

We have demonstrated that non-stationarities in ENSO teleconnected proxies can signifi-15

cantly reduce reconstruction skill, and that this is dependent on proxy location, multi-proxy
network size, and reconstruction method. These results assume that the model data is
a realistic representation of the

::::::
make

:::
the

:::::::
implicit

:::::::::::
assumption

::::
that

:::
the

:::::::::
modelled

::::::::::::
co-variability

::
of

:::
the

:::::::::::::::::
non-stationarities

::::
and relative proportions of non-stationary areas to stationary areas

, which have
:::
are

:::::::::
realistic,

::::::
which

::::
has not been explicitly tested here. Ultimately, our results20

show that non-stationarities are unlikely to significantly affect reconstruction skill for larger,
globally selected, multi-proxy networks (> 20 proxies).

::::::::::::::::
Non-stationarities

::::
will

:::::::::::
deteriorate

::::::::::::::
reconstructions

::
if
::::
the

::::::
entire

::::::::
network

::::::::
exhibits

:::::::::::::::::
non-stationarities,

::::
but

::::
this

::
is

::::::
highly

::::::::
unlikely

::::::
(< 0.3%

:
)
:::
for

:::::
large

:::::::::
networks

::::::
(> 20

::::::::
proxies),

::::::
which

:::::
can

:::
be

::::::::::
considered

::::::::
globally

:::::::::::
distributed.

However, the results suggest caution when developing reconstructions using single site25

proxies or multiple proxies from the same teleconnected region, as there is a reasonable
chance this would lead to an unskilful reconstruction if there are no other sources of informa-
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tion. Thus, using multiple teleconnected regions minimises any effects of non-stationarities
for all methods tested.

Reconstruction methods that allow for signal cancellation when combining proxies (i.e.
those that operate on the raw time series data

:::::::::
(weighting

::::
the

::::::
proxy

:::::
time

::::::
series

:::::::
directly)

are most sensitive to non-stationarities (RVM, EPC_RV and CPS_RV methods), while the5

method utilising the running variance time series (MRV method) is the most robust against
non-stationarities. However, these were the only methods tested, and there are many
various reconstruction methods in the literature (Jones et al., 2009; Wilson et al., 2010)
that should be tested in future research. Neglecting proxies from ENSO’s center-of-action
still allows for skilful reconstructions to be made, but their inclusion reduces the chance of10

producing particularly poor reconstructions even if non-stationarities are present.
With the short instrumental record, detecting the presence of non-stationarities in

teleconnections may be difficult. However, we have shown using a fully coupled GCM that
for larger multi-proxy networks selected over broad areas, non-stationary teleconnections
are unlikely to affect reconstruction skill. Non-stationarities will deteriorate reconstructions15

if the entire network exhibits non-stationarities, but this is highly unlikely (< 0.3) for large
networks (> 20 proxies), which can be considered globally distributed. As such, we advise
caution when using small multi-proxy networks and where the proxies are located within
very few teleconnected regions. Although not examined in this paper, our results suggest
that teleconnected single-proxy reconstructions would be much more prone to loss of20

reconstruction skill in the presence of non-stationarities when compared to multi-proxy
reconstructions. Thus, we do not advocate their use for reconstructing large-scale climatic
processes. Further research would involve examining the organisation of non-stationarities

:::
and

:::::::::::
co-varying

:::::::::::::::
teleconnections

:
in more detail, exploring the use of running variance on

proxy time series as pre-processing, or evaluating how robust other reconstruction meth-25

ods are against non-stationary teleconnections.

The Supplement related to this article is available online at
doi:10.5194/cpd-0-1-2015-supplement.
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Figure 1. (a) The percentiles of correlations found in 31 year segments between the model (see
Sect. 2) surface temperature (TS) at each grid point and the model calculated Nino 3.4 index (y axis),
plotted against the corresponding correlations for the whole 499 years of data (x axis). The lines are
the 1st, 5th, 50th, 95th, and 99th percentiles, with the lowest lines indicating the lowest percentiles
(i.e. the bottom line is the 1st percentile). (b) The shading is the correlation between of the entire
499 years of TS at each grid point and the model calculated Nino 3.4 indexcorrelation coefficients,
both calculated from the GFDL CM2.1 data, also described in Sect. 2. The black contour lines
are the correlation coefficients (spacing of 0.2) of observed surface land-sea temperatures to its
corresponding Nino 3.4. Soild lines are positive values, while dashed lines are negative. These
observations were calculated using the last 50 years of annual mean GISTEMP_ersst observational
data (GISTEMP-Team, 2015). Dataset is described by Hansen et al. (2010).
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Figure 2. Panels (a), (c) and (e) show the number of non-stationary years
:::::::
windows

:::::::::
(coloured

:::::::
shading)

:
for each grid point over the entire dataset for 31, 61 and 91 year windows, respectively. The

yellow to red values are defined as non-stationary according to Sect. 3, and have
:::
This

:::::::
shading

::::
has

been adjusted for the slightly different lengths of data available for the different calibration window
length. The number of non-stationary grid points (using 499 years of data) for any window is shown in
bottom right corner of each panel as N . Panels (b), (d) and (f) shows the percentiles of correlations
between global TS and Nino 3.4 in 31, 61 and 91 year windows respectively (y axis), verses the cor-
responding correlations for the whole 499 years of data (x axis). This plot is very similar to Fig. 1a,
but with the underlying coloured shading representing the y axis positions of non-stationary years

:::::::
windows

:
in the plot (according to definition of non-stationarity, see Sect. 3). A deeper red indicates

a higher density of points, as many points can occupy the same correlation values.
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Figure 3. The 5th (lower dashed), 50th (thick) and 95th (upper dotted and dashed) percentiles
of correlation coefficients calculated between the pseudo-reconstructions

:
of

:
running variance and

ENSO running variance (y axis) plotted against the proxy network size (x axis). The percentiles
are calculated across the 1000 iterations of randomly selected groups of source proxies. These
reconstructions are from the first series of experiments which involve using the entire 499 years of
data, for more information see Sect. 3.
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Figure 4. A comparison of reconstruction skill of the global RNDglb_ts (blue) and the non-tropical
RNDntrop_ts (yellow) experiments. Correlation coefficients are calculated between the reconstruction’s

::::::::::::
reconstructed running variance and ENSO running variance (y axis), plotted against the proxy net-
work size (x axis). The coloured regions show the range of these coefficients, from the 5th to the
95th percentile, with overlapping regions shown by the yellow-green colouring. The thick blue and
orange lines show the proportion of skilful reconstructions for the RNDglb_ts and RNDntrop_ts experi-
ments respectively. Skilful reconstructions are defined as explaining greater than 50% of explained
variance (grey line). The black line is the difference in skill between the RNDglb_ts (blue line) and
RNDntrop_ts (orange line) experiments. Each row corresponds to different calibration window lengths,
titled on the y axis. Each column represents different reconstruction methods, titled at the top of the
columns.

39



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Figure 5. A comparison of reconstruction skill of the “stationary” STATntrop_ts (green) and non-
stationary NSTATntrop (pink) experiments. Correlation coefficients are calculated between the
reconstruction’s

:::::::::::
reconstructed

:
running variance and ENSO running variance (y axis), plotted against

the proxy network size (x axis). The coloured regions show the range, from the 5th to the 95th per-
centile, with overlapping regions shown by the brownish colouring. The thick green and red lines
show the proportion of skilful reconstructions for the STATntrop and NSTATntrop experiments respec-
tively. Skilful reconstructions are defined as explaining greater than 50% of explained variance (grey
line). The black line is the difference in skill between the STATntrop (green line) and NSTATntrop (red
line) experiments. Each row corresponds to different calibration window lengths, titled on the y axis.
Each column represents different reconstruction methods, titled at the top of the columns.
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Figure 6. This plot shows the percentage of TS based reconstructions (y axis) with certain propor-
tions of non-stationary proxies (x axis) for the RNDglb_ts experiment. Each of the ten 31 year calibra-
tion windows has been included in these calculations, so that the proportions of non-stationarities
for 10 000 reconstructions are shown (50% being 5000 reconstructions). Different lines are for dif-
ferent proxy network sizes (see inset legend), and this determines what values of proportion can
be takenas

:
,
:::::
hence

:
larger groups have a wider range of possible non-stationarity proportions than

smaller groups. The coloured circles of any proportions with 0% of reconstructions have not been
shown.
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Figure 7. (a–d) The reconstructions from the PNEOF1 (solid) and STATntrop_ts (dashed) experiments
using different reconstruction methods. The proportion of skilful reconstructions (out of the 10 000)
is shown for calibration windows of 31 (blue), 61 (green) and 91 years length (red), plotted against
proxy network size (x axis). Skilful is defined as the reconstruction explaining greater than 50%
of the variance of the model ENSO reconstruction. (e) The spatial map of the leading Empirical
Orthogonal Function (EOF) of running correlations calculated between TS at each grid point and
ENSO (with a window length of 31 years). The spatial structure of this EOF is quantitatively similar
to the first EOF with running correlation window lengths of 61 (spatial r = 0.86), and 91 (spatial
r = 0.84) years. (f) The leading principal components of the leading EOF with running correlation
window lengths of 31 (blue), 61 (green) and 91 (red) years. The year values correspond to the centre
of the windows. (g) The variance explained by the first 10 EOFs, for the three different window sizes
(see inset legend).

42



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

0 20 40 60
0

0.2

0.4

0.6

0.8

1
a)

S
ki

lfu
l P

ro
po

rt
io

n

Network Size

EPC_RV

0 20 40 60
0

0.2

0.4

0.6

0.8

1
b)

S
ki

lfu
l P

ro
po

rt
io

n

CPS_RV

Network Size

0 20 40 60
0

0.2

0.4

0.6

0.8

1
c)

S
ki

lfu
l P

ro
po

rt
io

n

Network Size

MRV

 

 

RND
glb_ts

RND
ntrop_ts

NSTAT
ntrop_ts

0 20 40 60
0

0.2

0.4

0.6

0.8

1
d)

S
ki

lfu
l P

ro
po

rt
io

n

Network Size

RVM

 

 

Proportion (31yr) Proportion (61yr) Proportion (91yr)

43



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Figure 8. Reconstruction skill for different experiments (each row
::
as

:::::::::
indicated

:::
by

:::::
colour) and re-

construction methods (each column
::::
panel) using different calibration window lengths . Correlation

coefficients are calculated between the reconstruction’s running variance and ENSO running
variance (y axis), plotted against the proxy network size (x axis). This is done for calibration windows
of 31 (blue hatching), 61 (green hatching) and 91length (red hatching

:::
see

::::
inset

:::::::
legend). The hatching

shows the range from the 5th percentile to the 95th percentile of the correlation coefficients. The
thick blue, green, and red lines show the proportion of skilful reconstructions for the three calibration
windows

:::
with

::::::
skilful being 31, 61 and 91length respectively. Skilful reconstructions are defined as

explaining greater than 50% of
::
the

:
explained variance (grey line)

::
of

:::
the

:::::
Niño

:::
3.4

:::::::
running

:::::::
variance.
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Figure 9. A comparison of all the RNDglb_ts reconstructions using 499 years of data (black) and when
using limited calibration windows of 31 (blue), 61 (green), and 91 years (red). The 5th (dashed),
50th (solid line) and 95th (dot-dashed) percentiles of correlation coefficients are shown for each of
the window lengths and for reconstructions using the 499 years of data. Correlation coefficients are
calculated between the reconstruction’s

::::::::::::
reconstructed running variance and ENSO running variance

(y axis), plotted against the proxy network size (x axis). Panels (a–d) show the comparison for the
four reconstruction methods discussed in Sect. 3.3.
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Figure 10. Panels (a), (c), and (e) show Nino
:::
The

:::::::::::::
reconstructed

:::::
Niño

:
3.4

::::::
running

:
variance

reconstructions
:::::
range

::
of

:::::::
various

:::::::::
methods

:
(green

::::
grey

::::::::
shading) plotted alongside the standard

deviations of
::::
with the running correlations (30window) of its constituent proxies to model Nino

::::
Niño

3.4 (blue)
::::::
running

:::::::::
variance.

::::
The

:::
first

::::
row

::
of

::::::
panels

::::
are

:::
the

::::::::
unscaled

:::::::::::::
reconstruction

::::::::
methods,

:::::
while

:::
the

::::::
second

::::
row

::::
has

::::
been

:::::::
scaled

:::
with

::
a
:::::
linear

::::::::::
regression.

::::::::::::::
Reconstruction

:::::::
methods

::::
are

::::::::
indicated

::
in

:::
the

:::
title

::::::
above

:::
the

::::::
panel,

::::
and

:::
the

::::::
scaled

:::::::
variants

:::
are

:::::::
named

:::::::::
beginning

::::
with

::
an

:::
‘S’. The year of the

reconstruction is shown on the x axis of these panels. One
:::::::
Running

:::::::::
variances

:::
are

:::::::::
calculated

:::::
using

::
30

::::
year

:::::::
moving

:::::::::
windows.

:::::
Some

:
example of each reconstruction method is shown

:::::::::::::
reconstructions

(indicated in the title)
::
red,

::::::
yellow and the correlation between the blue and green lines)

:
are shownin

the bottom right corner of each panel. The red circles suggest when there is a clear negative
correlation between the time series, discussed in Sect. 5. Panels (b), (d) and (f) show

::::
with the

::::::
colours

:
corresponding scatterplots

::
to

:
a
:::::::
specific

::::::::
network of

:::::::::::::
pseudoproxies.

:::::
These

::::::::::::::
reconstructions

:::
are

::::
from

:
the two time series in panels (a), (d), and (e) respectively, such that the standard deviation

lies on the x axis
::::::::::
RNDglb_ts ::::::::::

experiment, and the Nino 3.4 variance reconstruction is on the y axis.
A least-squares-fit line is provided with each scatterplot (blue line)

:
a
:::
91

::::
year

:::::::::
calibration

:::::::
window.
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