We thank the reviewers for their insightful comments which will improve the
manuscript considerably. Below we answer to their comments, and provide
further information and data how we will consider their suggestions in our
manuscript. The reviewer comments are in black, our answers are in light
blue.

Reviewer #1
General comments

The paper presents the results from four simulations with the LPJ-GUESS
dynamic global vegetation model (DGVM) driven with climate data for the
Tortonian obtained from two AOGCM simulations using 280 and 450 ppm
CO2. The resulting global vegetation distributions are compared with proxy
data from about 170 sites (mostly located in temperate regions), with results
from similar simulation studies, and with additional evidences on Tortonian
vegetation e.g. from fossil mammals or phytoliths. Methodologically, the
authors distinguish between an analysis at global scale (section 4.2) and an
analysis at regional scale (section 4.3). While for the global analysis they
introduce an “agreement index” to compare the site data with simulation data,
the analysis at regional scale is almost completely qualitative. At both scales
the authors conclude that paleo evidence is in better agreement with a lower
CO2 value. By their particular simulation setup, they also conclude that its
mostly the climate effect of CO2 that determines the resulting vegetation
distribution and not the physiological effect of CO2 fertilization.

There are only few studies of Tortonian climate taking advantage of the
knowledge on vegetation-climate interactions encrypted in DGVMs. Insofar,
the study provides a timely contribution to the research on pre-Quaternary
climates. But methodologically the paper could be improved in three aspects:

First, the statistics behind the comparison between fossil data and model
results is not really convincing. Partly this may be because the authors tried to
keep the presentation short, but more fundamentally, important aspects of a
robustness analysis of their statistical approach are missing (details follow
below).

We have actually performed multiple robustness tests for the analysis. Like
the reviewer mentions, most of these were left out of the manuscript because
we wanted to keep the presentation short. We will provide these in the
supplementary material as per requested and answer the more detailed
points below.

Second, the regional analysis (section 4.3) is rather unrelated to the global
analysis (section 4.2), although it would be easy to repeat the statistical
analysis performed globally also regionally. Surely, the data base is quite small
for some continents, but by adding such an analysis one would get a clear
impression why at a regional scale the study must stay qualitative.



We think that the regional analyses and discussion of these are important and
particularly interesting for researchers with a regional focus. We fully agree
that applying the statistics at the regional scale might not be very meaningful,
not only because of the small sample size, but also because we cannot expect a
global vegetation model driven by a global climate model to be very accurate
at the regional scale. Furthermore, for the discussion of regional scale aspects,
we also rely on other independent evidence, such as fossil mammals,
phytoliths and isotopes that indicate open conditions for North America.
These have been outlined in the existing text, and we will modify it further in
the revised version. Therefore, we don’t agree that including these statistics (if
this is what the reviewer suggests) to show that they are not meaningful at
this scale would be helpful. However, if required, we could present them.

Third, in the regional discussion a clear concept is missing for judging
whether the differences seen in PFT distribution, biome distribution, tree
fraction, and grass fraction between the 280 ppm and the 450 ppm simulation
results are large enough to allow an interpretation towards a higher or lower
atmospheric CO2 concentration. Therefore, I do not see that this qualitative
discussion is appropriate to vote for or against a high or low COZ2. Instead, I
would suggest to consider this qualitative regional analysis to be a check for
the consistency of the continental vegetation patterns seen in their
simulations with results from simulations of other groups and with evidences
from aditional fossil data.

We thank the reviewer for raising this point. We agree that we might have
stretched the regional interpretation in the manuscript. We will correct this,
focusing more on evaluation compared to other studies and only mentioning
an indication of lower or higher CO2 concentrations when the pattern is very
clear, such as in North America, where the more open vegetation under low
CO2 clearly corresponds better with the paleobotanical data and other
independent sources of evidence. We will thus focus more on how well our
model produces the regional and continental vegetation patterns during the
Miocene (as compared to paleobotanical evidence and other modelling
studies). We will also add additional proxy evidence to the qualitative
discussion. These include well-known samples from fossil mammals, isotope
data and sedimentary records from Europe and North America. For North
America and Southern Europe we will also use the existing phytolith data.

More detailed comments

1. Visual inspection suggests that the difference in biome distribution between
simulated and reconstructed potential vegetation for today (Figs. S1A and S1B
in the Supplement) is larger then the simulated Tortonian differences
between low and high CO2 (Figs. 1A and 1B). If this were true, the authors
should explain why they can derive the main result of their paper from
simulations that are within the range of model errors. I suggest that the



authors apply a rigorous similarity/dissimilarity statistics to their biome
distributions to quantify the model errors and compare them with the size of
the signal they intend to interprete.

We agree that in its original form the manuscript does not present sufficient
analysis of the model uncertainties and signal size. We were reluctant to use
the statistical similarity/dissimilarity metrics to analyse biomes for our main
comparison for reasons that we outline below. However, we now agree with
the reviewer that a statistical comparison can provide useful insights.
Therefore, we have now evaluated our biome simulations with the Kappa
statistic, which is a standard for comparing modelled and a reconstructed
biome distributions (e.g. Hickler et al. 2006) and the results show acceptable
agreement between our present-day simulation and the PNV reconstruction,
in particular if biomes are aggregated to a more general level. However, the
pure numbers should not be over-interpreted for the reasons we outline
below.

The first drawback of comparing Kappa scores for biomes is that Kappa does
not include any “degree of difference” mechanism which can be important
when considering more than two categories. For example, there is a much
smaller conceptual difference between a “tropical grassland” and a “tropical
savanna” than there is between a “tropical grassland” and a “boreal parkland”,
but that difference is treated identically when calculating Cohen’s Kappa. This
can be ameliorated to some extent by aggregating to megabiomes as done by
Pound et al. (2011) (which we will present in a revised manuscript), but is
inevitably present to some extent. A weighting can also be attempted, but this
introduces subjective decisions.

The second argument against comparing potential natural vegetation (PNV)
biome distributions using Kappa is that PNV biome classifications themselves
introduce uncertainty. Potential natural vegetation cannot be measured
directly (it no longer exists due to human influence) and so must be
reconstructed. There is uncertainty in such reconstructions as evidenced by
the differences between PNV biome maps: for example, the horn of Africa is
predominantly covered by “tropical deciduous forest” in Haxeltine and
Prentice (1996), but is dominated by “dense shrublands” in Ramankutty and
Foley (1999). Similarly, the extent of the “tropical deciduous forest” biome in
Southern Africa varies considerably between the two maps. Even the biomes
categories themselves vary between the maps as different authors make
different distinctions. Our experience is that kappa statistics applied to
compare different PNV maps can indicate as bad agreement as the one
between a model and a PNV reconstruction, when biomes are not aggregated
to coarser classes. There are also subjective choices when classifying model
output which introduces uncertainty. For example, how much tree LAI or tree
cover constitutes a forest? How much for a savanna? The choices for these
numbers are not well-motivated and can change the biome boundaries
considerably. Concerning the paleobotanical data, we deliberately did not
derive biomes because classifying fossil sites into biomes introduces large



uncertainty arising from interpreting the fossil record in terms of vegetation
cover.

Quantifying Model Uncertainty using Kappa

To better present model uncertainty we will present the comparison of
reconstructed and modelled potential natural biomes (Fig S1a in the original
manuscript) at 0.5 degree resolution (native resolution of the biome map and
the PGF forcing data). We will aggregate to fewer biomes, similar to the
megabiomes of Pound et al. (2011), simplifying the forest types to two per
climate zone (evergreen and deciduous) and combining some arid biome
types. The biome classification will be presented explicitly in a table as an
appendix. Initial investigations give a Kappa value of 0.44 between data and
model (similar to the agreement of Hickler et al. (2006) and constituting “fair”
agreement by Monserud (1990)). The per-biome scores show that the model
does poorest in the most arid biome types, which are not important for the
main results derived in this paper, and the analysis gives a kappa of around
0.6 for the main forest types. Given the “degree of difference” effect and
sources of uncertainty discussed above, we consider this level of similarity to
be sufficient for our interpretation.

For consistency we will use the same biome classification for the Tortonian
biomes which will simplify the discussion a little. This change will make no
difference to the Agreement Index results as it is purposefully constructed
without involving any biome classification. We will also present the dominant
PFT map for the present day (Figure S1B in the manuscript) at 0.5 degree
resolution.

Quantifying Effect Size using Kappa

The kappa between the biomes from 280ppm and 450ppm Tortonian runs is
0.62. Given that these biome maps are produced with identical methodologies
(they use the same model structure differing only by the effect of CO;
concentration on vegetation and climate, they utilise the same biome
classification and hence have the same subjective choices, and they involve no
data-originating uncertainty), we argue that we do see a sufficiently large
signal for our interpretations.

Furthermore, the Kappa between the Tortonian 280ppm biomes and the PGF
control run biomes is 0.56. Considering again that these maps are produced
with identical methodologies, this indicates that we can distinguish Tortonian
vegetation with 280ppm CO; and present day vegetation (in answer to
reviewer 2’s second point). Comparing the Tortonian 450ppm biomes and the
PGF control run biome gives a Kappa of 0.38. These scores will be included in
the updated manuscript.



In summary, we believe that our vegetation model uncertainties are
reasonable (given the uncertainty in the method of quantification) and our
effect sizes are large enough to support our interpretation. We will include
this information in the revised version of the manuscript by reporting the
kappa values and showing the present day maps at higher resolution. Note
also that we used a DGVM that has been generally benchmarked and used for
climate impact studies in a very large number of studies (see
http://iis4.nateko.lu.se/Ipj-guess/LP]-GUESS_bibliography.pdf for a list of LP]-
GUESS publications)

2. The concept of the “Agreement Index” needs further explanation. I failed to
understand how the “fractions” that characterize PFT status are obtained
from LPJ-GUESS. It is said that they are derived from the LAI (p. 2249, line 19),
but the authors did not explain this relation.

We will include further elaboration of the method in the manuscript. To
answer the reviewer briefly here: the “fraction” (or “relative abundance”) of a
PFT in a gridcell is the LAI of the PFT in the gridcell divided by the total LAl in
the gridcell. The LAI values are the growing season maximum values and they
are averaged over a 30 simulation year period.

3. In view of the various problems with paleo-botanical data, there is indeed
no ideal way to compare them with model results. And surely the Agreement
index (Al) introduced by the authors could be one way to quantify agreement.
Nevertheless, this index is based on a number of arbitrary decisions: (i) the
choice of fractional ranges for the different PFT ’statuses’, (ii) the choice of
numbers for the quantification of the different types of agreement (table 1);
and (iii) the choice of the null hypothesis. To explain the latter a bit more:
Instead of assuming that all possible values for the agreement (values -2 to 2)
have equal probability, one could also assume that all fractional values for the
“data” and the “model” have equal probability which would give a different
random distribution (“null” distribution) of Al values. In my opinion there is
no good argument for either of the choices (i) to (iii). Therefore it is not clear
whether the results based on the particular choices for the Al are robust. The
authors claim to have addressed robustness with respect to (i), but did not
present these results. Robustness with respect to all aspects should be
demonstrated in the paper (or in appendices) by varying the particular
assumptions (i) to (iii).

Yes, we agree with the reviewer that we should have provided more
information about the robustness of the method. As we mentioned above, we
have actually performed some of these, and just left them out due to length
limitations. We will include them in the supplementary material and will also
include some more description in the manuscript main text. We are still
working on point (iii) but can immediately offer answers to points (i) and (ii)



(i) Choice of fractional ranges

As mentioned briefly in the manuscript, a factorial study was carried out with
the following values for the fraction ranges.

Min for trace: 0.025, 0.05, 0.075 (original was 0.05)
Min for sub- dominant: 0.075, 0.15, 0.3 (original was 0.15)
Min for dominant: 0.5, 0.75 (original was 0.5, doesn’t makes sense to

have “dominant PFT” with a fraction less than 0.5)

The results are shown for the 450 ppm run versus the 280ppm in Figure 1.
Our default boundaries are marked with the red star. Overall conclusions:

1) Itis clear that the 280ppm gives better agreement than the 450 ppm in
almost all cases. The exception (big black square) has a huge sub- dominant
range from 0.075 to 0.75 which will include a lot of PFTs, and therefore has
very little differentiating power.

2) The boundaries control the absolute value of the agreement index

much more than they control the difference between the 280/450

runs, which suggests that our result is robust against changes in the
boundaries. We could have chosen different boundaries to get either better
differentiating power or higher values (in terms of absolute numbers) or even
both, but we wanted to check robustness, not tune our method, so we retained
our initial choices.

(ii) Choice of numbers for the quantification of the different types of
agreement

Table 1 shows the Al scores and ranges when different numbers are used to
quantify agreement/disagreement between statuses. In all cases the score is
higher for the 280 ppm run than the 450 ppm run.

4. The arguments for introducing the new Al measure of data-model
agreement (p. 2249, lines 13-17) are not convincing: The authors simply state
a personal preference (“We prefer a metric that..."”) but do not explain why
the other metrics (Salzmann et al. 2008; Pound et al. 2011; Francgois et al.
2011) should be discarded. In fact, it would be good to know whether those
other approaches would reveal similar results when applied to the data used
by the authors. I personally feel, that in particular the method by Francois et
al. (2011) is the most objective because it generally distrusts a comparison of
data diversity with model abundances (in the terminology of the authors, p.
2248 bottom) by comparing only presence/absence. Moreover, if dispite all
warnings such a diversityabundance comparison is attempted (as done by the



authors with their Agreement Index), why not using the classical rank
correlation which is known to be statistically robust?

We thank the reviewer for pointing this out and agree we should be more
exact in our reasons for developing the Al rather than using the other
methods. We include a more detailed discussion of the reasoning for not using
existing methods or classical statistics below and will include these reasons in
arevised draft of the manuscript. We will also provide additional statistical
analyses to prove the robustness of our results.

We have calculated both Pearson’s product moment correlation coefficients
and Spearman’s rank correlation coefficients for the 280ppm and 450 ppm
scenarios per PFT and for the entire dataset and present them here in Fig 2. As
mentioned in the original text, these do not prove to be particularly
illuminating. The per-PFT coefficients do not show a consistent trend
favouring a particular CO; scenario. Furthermore, the Spearman’s rank for the
full dataset is virtually identical for both CO; scenarios, but the Pearson’s
coefficient indicates better correlation for the 280 ppm COz scenario than for
450 ppm CO2 (0.53 vs. 0.42). This could be interpreted as weak evidence that
the 280 ppm CO2 scenario agrees better with the paleo-botanical data. We will
include these additional analyses in the manuscript, and as indeed not all
applied statistics clearly favor the low CO2 scenario, we will emphasize the
uncertainties more. Note that we already formulated the title quite carefully,
as: “Climate-vegetation modelling and fossil plant data suggest low
atmospheric CO2 in the late Miocene.” The wording “suggest” should indicate
that we cannot be sure, as often the case in paleoclimate research. However,
one should keep in mind that our qualitative regional discussion (where
supported by sufficient data) also tends to favor the low CO2 scenario.

Regarding the other comparison methods: Salzmann et al. (2008) present a
map of the inconsistency between model and data. Whilst a visual comparison
is useful, we wanted to add a quantitative method to discriminate between the
two CO2 concentrations. The later study of Pound et al. (2011) uses Cohen’s
Kappa to determine biome agreement, both the 27 ‘native’ biomes from
BIOME4 and a 7 “megabiome” classification. This does offer a single statistic
which could be used for hypothesis testing. However, (as discussed
extensively in point 1.) there are drawbacks with using Kappa to compare
biome classifications and with biome classifications themselves. So whilst
comparisons of biomes are clearly useful visual aids and can be a useful cross-
check (see our response to point 1), we decided to use only information on
PFT fractions for our main analysis and therewith minimize subjective choices
and classifications.

As the reviewer points out, the work of Francois et al. (2011) offers a method
for determining agreement between paleobotanical data and simulated
vegetation which percentage agreement per PFT based on presence/absence.
These per-PFT scores could conceivably be combined to produce overall
agreement scores, taking care that PFTs which are mostly absent from the
fossil record do not unduly affect the final result. However, our study is



different in nature to that of Francois et al. The study of Francois et al. was a
regional study with a relatively high degree of taxonomic precision (ie. a more
detailed PFT set), whereas our study is global with appropriately coarser
taxonomic resolution (ie. a relatively simpler global PFT set). By means of
example, there are 8 purely temperate PFTs in the CARAIB version used in
Francois et al. 2011 compared to only 2 in the default LP]-GUESS
configuration and 4 in the configuration used in our study. Thus by exploiting
a high degree of taxonomic precision, presence/absence data were used
effectively in the regional study of Francois et al. In our global study, each PFT
spans a much larger geographical extent and there are fewer PFTs at each site
for which to make presence/absence comparison. Thus we expect the
effective differentiating power of such presence/absence to be lesser. So
rather than using detailed taxonomic resolution and presence/absence
information, we sought to exploit the abundance/diversity fractions which we
believe has useful information and so is worth attempting despite our
previous warnings. For this reason we developed the Agreement Index and
introduced statuses beyond presence/absence.

The Agreement Index also allows easy assignment of a zero-weighting when
PFTs are absent from a site in both the fossil record and model (contribution
in this case is zero). It also allows an (admittedly subjective) method to tackle
the “degree of difference” effect which causes problems for Kappa analyses
which involve more than two classifications with differing conceptual degrees
of similarity, as mentioned in point 1. This is done by assigning the value -2 for
very strong disagreement and the value +2 for correctly matching dominant
PFTs, as this must necessarily include at least 50% of the PFT and defines
predominant biome functioning. A similar effect could be achieved by
weighting the Kappa scores depending on the degree of difference, but this
would also require subjective choices. The subjective choices involved in this
method are motivated in an obvious and transparent way and can be (and
were) tested relatively easily (see point 3).

We will modify the text in the manuscript to explain the above arguments in
more detail.

5. With Fig. 2 the authors want to demonstrate that their results differ from
the null hypothesis of random agreement. And indeed, the Al values for the
280 ppm and the 450 ppm simulation are well off their “null model”. But they
did not demonstrate that the difference between the Al values obtained from
their two simulations with different COZ2 is significant. If naively one would
add the spread of the null model to the Al values from the two simulations,
they would be statistically indistinguishable. Therefore the authors must plot
into Fig. 2 also the full distribution of their results for the two experiments to
allow judgement of signifance concerning their difference - maybe the
authors added those Z-scores exactly for that purpose, but it’s nor how they
were computed. But plotting the individual distributions would in any case be
more informative.



We agree that we could have provided more information on the difference
between the Al values from different models. It also appears that the text
which explains the distribution in Fig 2 is unclear and we will remedy this. To
clarify here, each of the 25,000 frequency counts in Fig. 2 is the mean Al score
from matching all 167 fossil sites to 167 random gridcells (not of the Al per
site or per PFT). Thus there is no meaningful “full distribution” to plot on Fig.
2 for the two experiments because each experiment only yields a single
frequency count of the type plotted in Fig 2 (ie. the mean of all the 167 fossil
sites compared to simulated vegetation). It may be that the “full distribution”
to which the reviewer is referring is the ‘per site’ or ‘per PFT’ Al values (or
‘per site per PFT’ Al values) but that quantifies a different variability from that
in Fig 2. The variability in Al between sites is not inconsiderable (see Figure 1
in the original manuscript for an idea of the variability between sites) but we
don’t believe this sheds any light on the issue of distinguishing the mean Al
values of the two CO; scenarios. Similar arguments apply for the distribution
of Al per PFT.

In the first instance, the distribution in Figure 2. aims to show the mean value
of chance agreement. This seems to be clear enough (although we will test
other means of assessing chance agreement as discussed in point 3.(iii)). One
can then look at the Al values for each Tortonian scenario and conclude that
both scenarios do indeed offer better agreement than chance. In the second
instance, the standard deviation of the same distribution aims to quantify the
natural variability in chance agreement and so how much better the Tortonian
scenarios are than random chance, and how much better one scenario is than
the other. The traditional p-value interpretation would be the probability of
getting a random combination of gridcells giving better agreement than the
Tortonian scenario. These are p < 10-8 and p < 10-13 for the 450 ppm scenario
and the 280 ppm scenario respectively. We can conclude, reassuringly but not
surprisingly, that both our reconstructions are very much better than chance.
Furthermore, the 280 ppm scenario is clearly better than the 450 ppm but
differences in such very small p-values are not helpful, so instead we report
the difference in units of standard deviation (Z scores), in this case 1.7. We
believe this difference sufficiently supports our conclusion that the 280 ppm
run agrees better with the fossil record than the 450 ppm run.

We realise that this logic relies on the assumption that matching random
model gridcells to the fossil record gives an adequate representation of chance
agreement. We chose this method because it will give ecologically consistent
PFT compositions (no unrealistic combinations of boreal and tropical PFTs for
example) and so is a more stringent test than some random numbers (which
could give such unrealistic combinations). As mentioned above, we will
examine other methods of estimating random agreement and discuss them in
the revised manuscript.

Minor comments



p. 2246, line 25: The authors note that they transfered the soil parameters of
the AOGCM to LP]-GUESS. This provokes the general question to what extent
the water cycles in the AOGCM and LPJ-GUESS are consistent, and whether
inconsistencies in evapotranspiration fluxes might affect the results for the
vegetation distribution.

To clarify, the soil parameters transferred from the AOGCM to LPJ-GUESS
refer to static soil parameters (for example texture), not state variables such
as soil water content. This means that each model, ECHAM5/MPIOM and LP]J-
GUESS, has a fully independent hydrological cycle with different process
representations, but with the latter model being driven (in terms of input
precipitation and temperature) by the former. The hydrological cycle of LP]J-
GUESS is therefore still fully internally consistent. The different
representations in each model could be termed an “inconsistency” but is an
inevitable consequence of the method of forcing a vegetation model with
climate model output (the “asymmetric, iterative offline coupling” we mention
on page 2247, line 5) and is commonly done for such studies (eg. Francois et
al. 2011; Pound et al. 2011). We do not feel it appropriate to compare in detail
the hydrological cycles of ECHAMS5 and LPJ-GUESS here, but would like to
point out that hydrological cycle of LP]-GUESS (as implemented in the related
model LPJ-DGVM) has been benchmarked in Gerten et al. 2004.

p. 2247, lines 18-28: The authors describe a number of modifications they
introduced to LPJ-GUESS, but not why these modifications were necessary for
their study. For the modified bioclimatic limits they claim improvements for
present day biome distribution (lines 18-20) but do not demonstrate the
improvements. It is only claimed (p. 2248, lines 11-12) that the modern
biomes are reproduced “reasonable well”. For such a claim one needs a
measure, but this is not provided. Moreover, the main issue of the study
depends on the model’s reaction to changing climate and CO2. Therefore,
some comments why the authors trust the model’s response to such changes
would be helpful.

With regard to the bioclimatic limits, the main effect was to remove treeless
areas in South China, Argentina and Florida (see Smith et al. 2014, Figure 2(C)
for the model version which does not include nitrogen limitation). This was an
artifact whereby in these areas it was too warm for temperate trees to
establish, but too cold for tropical trees, which resulted in treeless belts. In
other words, there was a mistake in the model, which we corrected, with the
main result that the model correctly simulates forests in south-eastern Asia.
The other changes to bioclimactic limits were made for consistency with Sitch
et al. (2003) and make very little difference. The introduction of Temperate
Needleaved Evergreen (TeNE) trees, and the splitting of shade-Intolerant
boreal/temperate Broadleaved Summergreen trees (IBS) into Temperate
shade-Intolerant Broadleaved Summergreen trees (TelBS) and Boreal shade-
Intolerant Broadleaved Summergreen (BIBS) was intended to better compare
the model results to the fossil record and because we believe that, with these
changes, functional characterisitcs of the global vegetation are represented
more appropriately. However, we will describe the reasoning for these



changes in more detail.With regards to the model’s ability to capture present
day biomes, we refer to our answer to point 1 which includes a Kappa
measure and higher resolution maps for a more detailed visual comparison.
We will also mention in the text that the biomes produced by LPJ-GUESS
without our modifications can be seen in Smith et al. (2014) (their Figure
2(C)) and we will discuss our improvements relative to that. Furthermore, we
will also include text to mention that LPJ-GUESS (and the closely related LPJ-
DGVM model) has been benchmarked against various observations including,
for example, NPP (e.g. Zaehle et al,, 2005; Hickler et al., 2006), modelled PNV
(Hickler et al. 2006; Smith et al. 2014), stand-scale and continental-scale
evapotranspiration (AET) and runoff (Gerten et al., 2004), vegetation greening
trends in high northern latitudes (Lucht et al., 2002) and the African Sahel
(Hickler et al., 2005), stand-scale leaf area index (LAI) and gross primary
productivity (GPP; Arneth et al., 2007), forest stand structure and
development (Smith et al., 2001, 2014; Hickler et al., 2004), global net
ecosystem exchange (NEE) variability (Ahlstrom et al. 2012, 2015) and CO2
fertilisation experiments (e.g. Hickler et al. 2008; Zaehle et al. 2014; Medlyn et
al. 2015). Many of these benchmarks are constantly repeated by the LP]J-
GUESS consortium (of which Hickler is a member, unpublished). Regarding
the CO2 response, the model without nitrogen limitation most likely
overestimates CO2 fertilisation (see e.g. Hickler et al. 2015), which implies
that our conclusion that the climate forcing is more important than the
physiological CO2 effects for distinguishing the low and high CO2 scenario for
the late Miocene is robust, which we will discuss in the manuscript.

p. 2251, lines 10-11: Here the authors announce a table in the supplement
relating fossil plant taxa and PFTs. But such a table is missing. Please add that
table since a large part of the study is based on this classification. Instead
there is an un-numbered table in the supplement listing the study sites.

We were referring to the LPJ-GUESS PFTs listed in Table S1. However we will
add a table relating fossil plant taxa to the PFTs.

p. 2252, line 16 and Figs. 1a an d 1b: It would be good to refer to Appendix B
for references to the biome classification. Even better in my opinion would be
to serve the readers by providing a table with the rules for the biome
classification.

Yes, this will be done.

p. 2255, line 7: What are the “two reasons”? I cannot identify them in the
following text.

The two reasons are increased seasonality in Central Europe, and increased
openness in the Iberian Peninsula and in modern Turkey. However, we agree
that this should be rephrased and will be reworded in the revised version of
the manuscript.



Table 1: I guess the row headers should be shifted.

Thank you for pointing this out, we will ensure this is correct in the final
proofs.

Supplement Fig. S2: This figure should in my opinion be shifted to the main
part of the study, because it shows that in certain regions (e.g. the Iberian
peininsula) the proxy-data are not informative about the value of atmospheric
CO2.

Yes, this is a good idea and we will do so.
Reviewer #2

This paper presents a reconstruction of late Miocene vegetation using a
dynamic vegetation model driven by the climatic outputs of climate model
runs for two different partial pressures of CO2 in the atmosphere, 280 and
450 ppmv. These partial pressures reflect the range of atmospheric CO2
pressures that have been reconstructed from proxy data for the late Miocene.
The authors compare the vegetation reconstructed with palaeovegetation
data available for this time period. They also compare in detail their results
with late Miocene vegetation model reconstructions published in the
literature. For the comparison with the data, they build an agreement index
(AI) which is an interesting and relatively novel aspect of their work. Since the
Al is significantly higher for the low CO2 (280 ppmv) case, they conclude that
climate and vegetation modeling suggest low CO2 in the late Miocene and so
would favour the lower values in the range exhibited by the proxies.

The paper is generally well written, scientifically sound and with some clearly
novel aspects with respect to previous work on the subject. I am thus in favour
of its publication in Climate of the Past. I just have a few comments or
suggestions that the authors might want to address.

(1) Section 3.4 : your comparison at the PFT level and associated statistics is
presented as a new method for model-data comparison. However, as
mentioned by the authors, Francois et al. (2011) have also performed a
similar comparison at the PFT level, and contrary to what is said here, they
also used the PFT diversity from the data (see for instance their table 7 and
the comparison with model NPPs in their figure 6), although only presence-
absence is used in their kappa calculation. What is the advantage of your Al
index compared to the more traditional kappa method ? Kappa can also be
averaged over sites or over PFTs. The statistical study on kappa presented
here for Al (which is really interesting and the most novel contribution of this
paper) is also possible for kappa. You just define more classes (abundance
classes) that may also be involved in the kappa method, but actually have not
been involved because of the large uncertainties on model PFT abundances.
Models are certainly more robust in evaluating presence/absence than



abundance. Morever, as mentioned in your section 3.4, it is not obvious that
PFT diversity from the data can directly be compared to model abundances.
Even presence/absence in the data may be uncertain due to the PFT
assignment scheme in the data (see again Francois et al., 2011). This may also
critically depend on the number of PFTs in the classification used. This might
be discussed somewhat more, because the associated uncertainty might have
some impacts on the conclusions reached.

We thank the reviewer for his insightful and positive comments. We apologise
for mis-representing the work in Francois et al. (2011), we meant to state that
PFT diversity was not used to provide a quantitative measure of agreement,
and will amend the text accordingly.

Our reasons for not using Kappa and for using abundance data beyond
presence/absence are detailed in our answer to reviewer 1’s comment 1. We
would also argue that the coarser taxonomic resolution of our global PFT
gives sufficient robustness in terms of presence/absence and abundance to
use abundance fractions. Furthermore, we agree that whilst it could be
possible to use Kappa on model abundances classes (neatly avoiding the
uncertainties of biome classification whilst still utilising abundance/diversity
data); such a method would still suffer from the “degree of difference
problem” where a mismatch between the absent category and trace category
would be treated as severely as a mismatch between absent and dominant
categories. It also offers no obvious way to remove or zero-weight the
contribution from PFTs which are absent in both the data and model ata
given site. We will discuss these points in the revised text.

(2) Section 4.1, figure 2 : it might be interesting to add on figure 2 the Al that
would be obtained with present-day (control run) model vegetation (when
comparing to palaeodata). Is it significantly different from the Al for the 450
and 280 ppmv late Miocene configurations ? If it is close to the 280 ppmv late
Miocene case, it might mean that your model is not fine enough to
discriminate between the present-day vegetation and the late Miocene one.

As described in our answer to reviewer 1’s point 1, we will provide statistics
to quantify the differences in modelled vegetation between today and the
Tortonian. The Kappa between the present day control run and the Tortonian
280 ppm run is 0.56 and the Kappa between the present day control run and
the Tortonian 450 ppm run is 0.38. Given that identical methodologies were
used to derived these biomes (ie. using the same model), we argue that we our
model is indeed fine enough to discriminate. However, we don’t think that
presenting the Al for the present-day vegetation is meaningful for addressing
the research questions addressed here.

(3) Section 4.3.1 : the characteristics of Miocene vegetation in Europe is
indeed as discussed here the widespread presence of temperate deciduous
trees, with some temperate evergreens in the south. Evergreens are however



different from present-day Mediterranean (drought-tolerant) evergreen trees,
since data show the presence (not dominance) of temperate evergreen
perhumid trees. This is a very important climatic constraint from the point of
view of the data, while your model does not separate between drought-
tolerant and perhumid temperate evergreen trees. The impact of this
simplification on the results should be discussed, or at least it should be
mentioned. Also, your figure S2 indicates that the SI index strongly varies
from one site to the next. This is an important result that shows that there are
still some features that are not well captured by the model (or possibly it
might be a problem in the interpretation of the data). It would be interesting
to discuss figure S2 in the main text.

Yes, we agree with the reviewer on both these points and will address them in
a revised manuscript, with more emphasis on the shortcomings of the model
in this regard. For Europe, it would indeed have been better to discriminate
sclerophyllous (drought-adapted) evergreens, as in a regional version of LP]J-
GUESS (Hickler et al. 2012) or a global version with hydraulic architecture
(Hickler et al. 2006), but this type is not included in the current global
standard version of LPJ-GUESS.

(4) Section 5 (Summary and conclusions): In view of the large uncertainties on
climate models (including other boundary conditions than CO2), vegetation
models and PFT classification, [ am not sure that models can really provide a
strong constraint on palaeo-COZ2. It is interesting to learn that you model is
more consistent with low CO2 in the late Miocene, but this is a very indirect
constraint. [ would suggest that you reformulate the last sentence of your
conclusion to make the statement less direct (there are uncertainties and it
may be model-dependent, so we may need to study the same problem with
other climate/vegetation models).

We fully agree with the reviewer that there are still large uncertainties in
climate models, the applied vegetation model and the applied analyses. We
have been aware of these uncertainties, but apparently some of the
formulations indicated too much certainty. Thus, we will reformulate the last
sentence of the conclusions and other key sentences throughout the
manuscript. We nevertheless believe that our indirect evaluation of two
plausible CO2 concentrations for the Tortonian and other aspects of the
manuscript (e.g. state-of-art climate modelling and DGVM applied to simulate
Tortonian vegetation, novel approach for comparison with paleobotanical
data, separating direct climatic and physiological CO2 forcing) represent an
interesting contribution to the science on Tortonian climate and ecosystem
dynamics.

(5) Some small typos:

P 2254, line 10: ‘possibly because’ P 2262, line 25: ‘Fig 1a and b’does not
correspond to the present-day biome map, it should be figure S1 P 2263, line
7: ‘It " also shows a band P 2263, line 12: ‘particularly shrubs’

Thanks for pointing these out, we will correct them.
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Al 280 ppm | Al 450 ppm Max Min
Standard -0.67 -0.96 4.7 | -11.5
Absent-Absent = 1 (default = 0) 4.43 4.06 10.5 -11.5
Dominant-Dominant = 1 (default =2) -0.91 -1.13 4.2 -11.5
Both of the above 4.19 3.9 10 | -11.5
Minor disagreement = -1, disagreement = -2, -4.9 -5.23 4.7 | -21.5

major disagreement = -3 (default = 0,-1,-2)

Table 1. Overall Agreement Index (Al) scores for the 280 ppm and 450 ppm

Tortonian runs, as well as the minimum and maximum values calculated with
different scores assigned for levels of agreement.
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absent < 0.025, trace < 0.15, subdominant < 0.75
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e absent < 0.05, trace < 0.075, subdominant < 0.5
@ absent < 0.05, trace < 0.075, subdominant < 0.75
absent < 0.05, trace < 0.15, subdominant < 0.5
absent < 0.05, trace < 0.15, subdominant < 0.75
* absent < 0.05, trace < 0.3, subdominant < 0.5
® absent < 0.05, trace < 0.3, subdominant < 0.75
A absent < 0.075, trace < 0.075, subdominant < 0.5
A absent < 0.075, trace < 0.075, subdominant < 0.75
absent < 0.075, trace < 0.15, subdominant < 0.5
absent < 0.075, trace < 0.15, subdominant < 0.75
4 absent < 0.075, trace < 0.3, subdominant < 0.5
A absent < 0.075, trace < 0.3, subdominant < 0.75
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Figure 1. Agreement Index (AI) values for the 280 ppm and 450 ppm runs for
different fractional boundaries of the Al statuses.
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Figure 2. Pearson’s product moment correlation coefficient and Spearman’s
rank correlation coefficients between the paleobotanical data diversity
fractions and the simulated LAI fractions for the 280 ppm and 450 ppm CO;
Tortonian scenarios.




