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Abstract 22 

Reconstructions of Quaternary climate are often based on the isotopic content of paleo-23 

precipitation preserved in proxy records. While many paleo-precipitation isotope records are 24 

available, few studies have synthesized these dispersed records to explore spatial patterns of 25 

late-glacial precipitation δ18O. Here we present a synthesis of 86 globally-distributed 26 

groundwater (n=59), cave calcite (n=15) and ice core (n=12) isotope records spanning the 27 

late-glacial (defined as ~50,000 to ~20,000 years ago) to the late-Holocene (within the past 28 
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~5,000 years). We show that precipitation δ18O changes from the late-glacial to the 1 

late-Holocene range from −7.1 ‰ (δ18Olate-Holocene > δ18Olate-glacial) to +1.7 ‰ (δ18Olate-glacial > 2 

δ18Olate-Holocene), with the majority (77%) of records having lower late-glacial δ18O than 3 

late-Holocene δ18O values. High-magnitude, negative precipitation δ18O shifts are common at 4 

high latitudes, high altitudes and continental interiors (δ18Olate-Holocene > δ18Olate-glacial by more 5 

than 3 ‰). Conversely, low-magnitude, positive precipitation δ18O shifts are concentrated along 6 

tropical and subtropical coasts (δ18Olate-glacial > δ18Olate-Holocene by less than 2 ‰). Broad, global 7 

patterns of late-glacial to late-Holocene precipitation δ18O shifts suggest that stronger-than-8 

modern isotopic distillation of air masses prevailed during the late-glacial, likely impacted by 9 

larger global temperature differences between the tropics and the poles. Further, to test how 10 

well general circulation models reproduce global precipitation δ18O shifts, we compiled 11 

simulated precipitation δ18O shifts from five isotope enabled general circulation models 12 

simulated under recent and last glacial maximum climate states. Climate simulations generally 13 

show better inter-model and model-measurement agreement in temperate regions than in the 14 

tropics, highlighting a need for further research to better understand how inter-model spread in 15 

convective rainout, seawater δ18O and glacial topography parameterizations impact simulated 16 

precipitation δ18O. Future research on paleo-precipitation δ18O records can use the global maps 17 

of measured and simulated late-glacial precipitation isotope compositions to target and 18 

prioritize field sites. 19 

1 Introduction 20 

Isotopic compositions of late-glacial precipitation can be preserved in groundwaters, cave 21 

calcite, glacial ice, ground ice and lake sediments. These records have been used to better 22 

understand past climate changes for more than a half century (e.g., Münnich, 1957; Thatcher et 23 

al., 1961; Münnich et al., 1967; Pearson and White, 1967; Tamers, 1967; Gat et al., 1969). Each 24 

type of isotopic proxy record is distinguished by its temporal resolution, preservation of one or 25 

both 18O/16O and 2H/1H ratios, and frequency on land surface. For example, groundwater 26 

records contain both 18O/16O and 2H/1H ratios with widespread global occurrence, but have a 27 

coarser temporal resolution than other paleoclimate proxies (Rozanski et al., 1985; Edmunds 28 

and Milne, 2001; Edmunds, 2009; Corcho Alvarado et al., 2011; Jiráková et al., 2011). 29 

Speleothem records, in contrast, have high temporal resolution but usually only report calcite 30 

18O/16O ratios (without fluid inclusion 2H/1H data) and are less common than groundwater 31 

records (e.g., Harmon et al., 1978; 1979). Late-glacial ice core and ground ice records have 32 
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high temporal resolution, can be analysed for 18O/16O and 2H/1H ratios, but are rare on non-1 

polar lands (Dansgaard et al., 1982; Thompson et al., 1989; 1995; 1997; 1998). Lake sediment 2 

records can have a high temporal resolution, can preserve 18O/16O and 2H/1H ratios and are 3 

available for a multitude of globally-distributed locations (e.g., Edwards et al., 1989; Eawag et 4 

al., 1992; Menking et al., 1997; Wolfe et al., 2000; Anderson et al., 2001; Beuning et al., 2002; 5 

Sachse et al., 2004; Morley et al., 2005; Tierney et al., 2008). However, some lake water proxy 6 

isotope records may be impacted by paleo-lake evaporative isotope effects that obscure the 7 

primary meteoric water signal and mask paleo-precipitation isotope compositions (e.g., lake 8 

sediment calcite, diatom silica; Leng and Marshall, 2004). 9 

This study examines speleothem, ice core and groundwater isotope records, focusing primarily 10 

on the groundwater isotope records due to their relative density in the published literature in 11 

comparison to the more limited number of published speleothem and ice core records 12 

(compilations by Pedro et al., 2011; Stenni et al., 2011; Clark et al., 2012; Shah et al., 2013; 13 

Caley et al., 2014a). There exist roughly twice as many groundwater reconstructions of 14 

late-glacial to late-Holocene precipitation δ18O shifts (n=59) as the combined total of 15 

speleothem and ice core records (n=27; where δ18O = (18O/16Osample) / 16 

(18O/16Ostandard mean ocean water – 1)×1000). A recent global synthesis of paired precipitation-17 

groundwater isotopic data demonstrated that modern annual precipitation and modern 18 

groundwater isotope compositions follow systematic relationships with some bias toward 19 

winter and wet-season precipitation (Jasechko et al., 2014). Systematic rainfall-recharge 20 

relationships shown by Jasechko et al. (2014) support our primary assumption in this study that 21 

groundwater isotope compositions closely reflect meteoric water. Because groundwater records 22 

can only identify climate change occurring over thousands of years due to hydrodynamic 23 

dispersion during multi-millennial residence times (e.g., Davison and Airey, 1982; Stute and 24 

Deak, 1989), we limit the focus of this study to meteoric water isotope composition changes 25 

from the latter half of the last glacial time period to the late-Holocene. The latter half of the last 26 

glacial period is defined as ~20,000 to ~50,000 years before present, using the end of the last 27 

glacial maximum as the more recent age limit (~20,000 years before present; Clark et al., 2009) 28 

and the maximum age of groundwater that can be identified by 14C dating as an approximate 29 

upper age limit (i.e., groundwater ages more recent than ~50,000 years old). 30 

For brevity, we refer herein to the time period representing the latter half of the last glacial 31 

period (~20,000 to ~50,000 years before present) as the late-glacial (e.g., δ18Olate-glacial). We 32 
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adopt a definition of the late-Holocene as occurring within the last 5,000 years following 1 

Thompson et al. (2006). Other work proposes the late-Holocene be defined as within the last 2 

4,200 years (Walker et al., 2012), which is consistent with the 5,000 years before present 3 

definition (Thompson et al., 2006) within the practical uncertainty of 14C-based groundwater 4 

ages (± ~103 years). Further, although precipitation isotope compositions have varied over the 5 

late-Holocene, groundwater mixing integrates this variability, prohibiting paleoclimate 6 

interpretation at finer temporal resolutions. 7 

Late-glacial to late-Holocene changes in precipitation isotope compositions provide important 8 

insights into conditions and processes of the past. Perhaps the two best-constrained global-in-9 

scale differences between the late-glacial and the late-Holocene are changes to oceanic and 10 

atmospheric temperatures (MARGO Members, 2009; Shakun and Carlson, 2010; Annan and 11 

Hargreaves, 2013), and changes to seawater δ18O (Emiliani, 1955; Dansgaard and Tauber, 12 

1969; Schrag et al., 1996; 2002). Atmospheric temperatures have increased by a global average 13 

of ~4°C since the last glacial maximum, with greatest warming at the poles and more modest 14 

warming at lower latitudes (Figure 1; Shakun and Carlson, 2010; Annan and Hargreaves, 2013). 15 

Seawater δ18O during the last glacial maximum was 1.0±0.1 ‰ higher than the modern ocean, 16 

as constrained by paleo-ocean water samples collected from pore waters trapped within sea 17 

floor sediments (Schrag et al., 2002). 18 

Previous studies have proposed many different interpretations of past changes to precipitation 19 

isotope compositions. Records of paleo-precipitation δ18O have been used as a proxy for 20 

regional land surface and atmospheric temperature (e.g., Rozanski, 1985; Nikolayev and 21 

Mikhalev, 1995; Johnsen et al., 2001; Grasby and Chen, 2005; Akouvi et al., 2008; Bakari et 22 

al., 2012); however, δ18O-based paleotemperatures can be complicated by past changes to a 23 

variety of other processes controlling precipitation δ18O, including moisture sources, upwind 24 

rainout, transport pathways, moisture recycling and in-cloud processes (Ciais and Jouzel, 1994; 25 

Masson‐Delmotte et al., 2005; Sjostrom and Welker, 2009). Process-based explanations for 26 

observed meteoric water δ18O variations in proxy records include changes to hurricane intensity 27 

(e.g., Plummer et al., 1993), large-scale atmospheric circulation (e.g., Rozanski et al., 1985; 28 

Weyhenmeyer et al., 2000; McDermott et al., 2001; Pausata et al., 2009; Asmerom et al., 2010; 29 

Oster et al., 2015), aridity (e.g., Wagner et al., 2010), monsoon strength (e.g., Denniston et al., 30 

2000; Lachniet et al., 2004; Liu et al., 2007; Pausata et al., 2011a), local seawater δ18O (Wood 31 

et al., 2003; Feng et al., 2014), precipitation seasonality (e.g., Fawcett et al., 1997; Werner et 32 
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al., 2000; Cruz et al., 2005), moisture provenance (e.g., Sjostrom and Welker 2009; Lewis et 1 

al., 2010), storm tracks, climate oscillation modes (e.g., North Atlantic oscillation), moisture 2 

recycling (e.g., Winnick et al., 2013; 2014; Liu et al., 2014a; 2014b) and groundwater flow path 3 

architecture (Purdy et al., 1996; Stewart et al., 2004; Morrissey et al., 2010; Hagedorn, 2015). 4 

While unravelling these mechanisms and delineating the primary and secondary processes can 5 

be rather challenging, the use of climate models in combination with robust and extensive 6 

precipitation isotope data can resolve many of these complexities with meaningful 7 

interpretations and insight. 8 

The objective of this study is to analyse spatial patterns of measured late-glacial to 9 

late-Holocene precipitation δ18O changes from published groundwater, ground ice, glacial ice 10 

and cave calcite records, and to compare these measurements with output from five state-of-11 

the-art isotope-enabled general circulation model simulations of last glacial maximum and pre-12 

industrial or modern climate conditions. Synthesizing paleowater δ18O records provides an 13 

important constraint for isotope-enabled general circulation model simulations of atmospheric 14 

and hydrologic conditions during glacial climate states (Jouzel et al., 2000). We combine a new 15 

global compilation of late-glacial groundwater and ground ice isotope data (n=59) with existing 16 

compilations for speleothems (n=15; Shah et al., 2013) and ice cores (n=12; Pedro et al., 2011; 17 

Stenni et al., 2011; Clark et al., 2012; Caley et al., 2014a). This compilation of late-glacial 18 

groundwater isotope compositions builds from earlier reviews of European and African 19 

paleowater isotope compositions (Rozanski, 1985; Edmunds and Milne, 2001; Darling, 2004; 20 

Edmunds, 2009; Négrel and Petelet-Giraud, 2011; Jiráková et al., 2011). 21 

2 Dataset and Methods 22 

In order to examine spatial patterns of change to meteoric water δ18O values we compiled δ18O, 23 

δ2H, δ13C and 14C data from 1713 groundwater samples collected from 59 aquifer systems 24 

reported in 76 publications (data and primary references presented in the Supplement). δ13C, 25 

3H and 14C data were used to estimate groundwater age (details within Supplement). Changes 26 

to precipitation δ18O values over time were determined by comparing groundwater isotope 27 

compositions of the late-Holocene (δ18Olate-Holocene defined here as less than 5,000 years before 28 

present; Thompson et al., 2006) and the latter half of the last glacial time period (δ18Olate-glacial: 29 

20,000 to ~50,000 years before present). We acknowledge that these two relatively long time 30 

intervals—necessarily long in order to examine groundwater isotope records—integrate 31 

precipitation δ18O variability over the course of each time interval. The late-Holocene time 32 
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interval integrates known precipitation δ18O variability (e.g., Aichner et al., 2015), and the 1 

late-glacial time interval likely incorporates groundwater preceding the last glacial maximum, 2 

potentially during Marine Isotope Stage 3 or even older glacial time periods due to large 3 

uncertainties in 14C-based groundwater ages (Supplement). 4 

Proxy-based meteoric water δ18O changes from the latter half of the last glacial time period to 5 

the late-Holocene are described herein as measured Δ18Olate-glacial, where measured Δ18Olate-glacial 6 

= δ18Olate-glacial − δ18Olate-Holocene. A minimum groundwater age of 20,000 years before present 7 

was used to define the late-glacial to remain consistent with the timing of the last glacial 8 

maximum (~20,000 years before present; Clark et al., 2009). Samples having a deuterium 9 

excess of less than zero (deuterium excess = δ2H − 8×δ18O; Dansgaard, 1964) and falling along 10 

regionally-characteristic evaporation δ2H/δ18O slopes (Gibson et al., 2008) were removed from 11 

the analysis to avoid including groundwater samples impacted by partial evaporation. Further, 12 

studies reporting saltwater intrusion were avoided on the basis of groundwater δ18O and 13 

salinities showing evidence of seawater mixing (e.g., Schiavo et al., 2009; Yechieli et al., 2009; 14 

Hamouda et al., 2011; Han et al., 2011; Wang and Jiao, 2012; Currell et al., 2013). The 59 15 

compiled groundwater measured Δ18Olate-glacial values are unevenly distributed among western 16 

Europe (n=10), eastern Europe and the Middle-East (n=12), Africa (n=17), southeastern Asia 17 

(n=6), Australia, Oceania and the Malay Archipelago (n=2), South America (n=2), temperate 18 

and subtropical North America (n=8) and the High Arctic (n=2). Half of the compiled 19 

groundwater records are located in the tropics or subtropics (that is, within 35° of the equator; 20 

n=29) and half are located in the extra-tropics (n=30). 21 

Speleothem and ice core isotope proxy records were also compiled. Lacustrine sediment δ18O 22 

records are not considered in this study because these records may preserve meteoric waters 23 

impacted by evaporative isotope effects (Leng and Marshall, 2004). Speleothem and ice core 24 

measured Δ18Olate-glacial values were calculated by subtracting average δ18O values for each of 25 

the two time intervals defined for the groundwater records: the late-Holocene (<5,000 years 26 

before present) and latter half of the last glacial time period (20,000 to 50,000 years before 27 

present). This step effectively lowered the temporal resolution of speleothem and ice core 28 

precipitation isotope records to be consistent with the temporal resolution of the groundwater 29 

records. A correction factor was applied to speleothem δ18O values to account for different 30 

H2O-CaCO3 isotopic fractionation factors during the late-glacial and the late-Holocene because 31 
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of differing land surface temperatures during each time period (details presented within 1 

Supplement). 2 

Simulated Δ18Olate-glacial values were compiled from five isotope-enabled general circulation 3 

models (simulated Δ18Olate-glacial = δ18Olast glacial maximum − δ18Opre-industrial): CAM3iso (e.g., Noone 4 

and Sturm, 2010; Pausata et al., 2011a), ECHAM5-wiso (e.g., Werner et al., 2011), GISSE2-R 5 

(e.g., Schmidt et al., 2014; LeGrande and Schmidt, 2008; 2009), IsoGSM (e.g., Yoshimura et 6 

al., 2003) and LMDZ4 (e.g., Risi et al., 2010a). ECHAM5-wiso and IsoGSM outputs are for 7 

modern climate rather than pre-industrial conditions; however, the difference between the 8 

isotopic composition of pre-industrial and modern climate are expectedly small compared to 9 

late-glacial to late-Holocene δ18O shifts. An offset factor was applied to simulated mean 10 

seawater δ18O in all five models (Table S1) to account for known glacial-interglacial changes 11 

to seawater δ18O (Emiliani, 1955; Dansgaard and Tauber, 1969; Schrag et al., 1996; 2002). 12 

Possible spatial differences in seawater δ18O changes from the last glacial maximum to the pre-13 

industrial time period are not incorporated into simulations with prescribed sea surface 14 

temperatures (CAM3iso, ECHAM5-wiso, IsoGSM, LMDZ4) but are simulated by the coupled 15 

ocean-atmosphere simulation of GISSE2-R (Supplement Table S1). GISSE2-R was submitted 16 

to the CMIP5 archive and participated in PMIP3. LMDZ4 was submitted to the CMIP3 archive. 17 

ECHAM5 and CAM3iso did not participate in CMIP5, while IsoGSM uses different boundary 18 

conditions than proposed for CMIP5 (Yoshimura et al., 2008). The five models span a range of 19 

spatio-temporal resolutions and isotopic/atmospheric parameterizations described in detail in 20 

the above references. A selection of the inter-model similarities and differences are summarized 21 

in Table S1 (Supplement). 22 

For clarity, empirical Δ18Olate-glacial values that are based on measured isotope contents of 23 

groundwater, speleothem, ground ice or ice core records are referred to herein as measured 24 

Δ18Olate-glacial; simulated precipitation isotope compositions obtained from general circulation 25 

model results are referred to as simulated Δ18Olate-glacial. We acknowledge that the general 26 

circulation models explicitly analyse the last glacial maximum and the pre-industrial climate 27 

conditions (i.e., simulated Δ18Olate-glacial = δ18Olast glacial maximum − δ18Opre-industrial), whereas proxy 28 

record reconstructions of Δ18Olate-glacial integrate hydroclimatology over multi-millennial time 29 

scales that are different from the model simulations. 30 
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3 Results and Discussion 1 

3.1 Measured Δ18Olate-glacial values  2 

Measured groundwater (n=59), speleothem (n=15) and ice core (n=12) Δ18Olate-glacial values are 3 

presented in Figure 2 (references presented in the Supplement). Measured Δ18Olate-glacial values 4 

range from −7.1 ‰ (i.e., δ18Olate-glacial < δ18Olate-Holocene) to +1.7 ‰ (i.e., δ18Olate-glacial > 5 

δ18Olate-Holocene). Three-quarters of the compiled records have negative measured Δ18Olate-glacial 6 

values and one-quarter of compiled records have positive measured Δ18Olate-glacial values. Most 7 

groundwater-based late-glacial to late-Holocene shifts fall along δ2H/δ18O slopes of ~8 (Figure 8 

S58), suggesting that most groundwaters record temporal shifts to precipitation isotope contents 9 

rather than to soil evaporation isotope effects (see Evaristo et al., 2015). More than 80% of 10 

records with positive measured Δ18Olate-glacial values are located within 35° of the equator and 11 

within 400 km of the nearest coastline (e.g., Bangladesh Δ18Olate-glacial of +1.5 ‰, less than 300 12 

km from the coast; Figures 2-4). In comparison, negative measured Δ18Olate-glacial values are 13 

found in both coastal regions and farther inland. Negative measured Δ18Olate-glacial values of the 14 

greatest magnitude are located at high latitudes (e.g., northwestern Canada, latitude 64°N: 15 

Δ18Olate-glacial of −5.5 ‰; northern Russia latitude 72°N: −5.4 ‰) and far from coastlines (e.g., 16 

Hungary: −3.7 ‰, ~500 km from Atlantic Ocean; Peru: −6.3 ‰, ~2000 km from Atlantic 17 

Ocean, the modern moisture source to Peru; Garreaud et al., 2009). Greenland and Antarctic 18 

ice cores have negative measured Δ18Olate-glacial values that are of greater magnitude than non-19 

polar measured Δ18Olate-glacial values (Antarctic and Greenland Δ18Olate-glacial values range from 20 

−3.6 ‰ to −7.1 ‰; Figure 3).  21 

Our synthesis shows that measured Δ18Olate-glacial values in the tropics are closer to 0 ‰ (i.e., no 22 

change) than Δ18Olate-glacial values at high latitudes and continental interiors that generally have 23 

high magnitude, negative Δ18Olate-glacial values. High magnitude, negative measured 24 

Δ18Olate-glacial values are most common where present day precipitation δ18O values are at a 25 

minimum (e.g., Bowen and Wilkinson, 2002). This broad spatial pattern is consistent with the 26 

non-linear isotopic distillation of air masses undergoing progressive rainout (i.e., Rayleigh 27 

distillation). Because seawater δ18O values were ~1 ‰ higher-than-modern during the last 28 

glacial maximum (Schrag et al., 1996; 2002), our finding that the majority of measured 29 

Δ18Olate-glacial values are negative suggests that isotopic distillation of air masses was greater 30 

during the late-glacial than under present climate. This finding is consistent with land surface 31 
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temperature reconstructions that show larger glacial-to-modern changes to land temperatures at 1 

high latitude and continental settings (Figure 1; Annan and Hargreaves, 2013). Tropical versus 2 

extratropical patterns of late-glacial/late-Holocene temperature change (Figure 1a) are broadly 3 

similar to measured Δ18Olate-glacial values (Figure 3), where both temperature and isotope shifts 4 

are greater at high latitudes relative to the equator. Therefore, it is possible that the larger 5 

late-glacial to late-Holocene temperature shifts at the poles relative to the equator may have 6 

served to amplify the non-linear, Rayleigh relationship describing the heavy isotope depletion 7 

of air masses undergoing progressive rainout during transport from lower to higher latitudes. 8 

Further, the late-glacial was characterized by: (i) lower-than-modern atmospheric temperatures 9 

with larger coastal-inland gradients, and (ii) lower-than-modern eustatic sea level leading to 10 

longer overland atmospheric transport distances. Each of these late-glacial/late-Holocene 11 

changes favours stronger-than-modern isotopic distillation of air masses transported inland 12 

from the coast during the late-glacial (Dansgaard, 1964; Rozanski et al., 1993; Winnick et al., 13 

2014), potentially contributing to the broad, global observation that most (77%) δ18Olate-Holocene 14 

values exceed δ18Olate-glacial values on continents. 15 

Pairings of groundwater and speleothem records are available within ~500 km of one another 16 

in the southwestern USA, central China and Israel. Southwestern USA speleothem and 17 

groundwater records ~400 km apart show similar Δ18Olate-glacial values, with San Juan Basin 18 

groundwaters having a measured Δ18Olate-glacial value of −2.5±1.0 ‰ (Phillips et al., 1986) and 19 

speleothems ~400 km to the south having measured Δ18Olate-glacial values of −3.0±1.2 and 20 

−3.4±0.4 (Asmerom et al., 2010; Wagner et al., 2010). Central China speleothem and 21 

groundwater records ~200 km apart overlap within uncertainty margins (i.e., Δ18Olate-glacial 22 

values of −1.1±1.7 ‰ and +0.3±2.1 ‰; Cai et al., 2010). Israeli speleothem and groundwater 23 

records ~100 km apart have different measured Δ18Olate-glacial values. Two Israeli groundwater 24 

Δ18Olate-glacial records were compiled; the coastal Israeli aquifer has a Δ18Olate-glacial value of 25 

+0.3±0.4 ‰ (Yechieli et al., 2009), whereas groundwater of the Dead Sea Rift Valley has a 26 

Δ18Olate-glacial value of −1.8±0.6 ‰ (Burg et al., 2013). Speleothem records have Δ18Olate-glacial 27 

values close to +1 ‰ (Frumkin et al., 1999; Bar-Matthews et al., 2003). In northern Turkey, 28 

speleothem and groundwater separated by ~150 km have measured Δ18Olate-glacial values that 29 

differ by ~3 ‰ (speleothem Δ18Olate-glacial −5.7±0.4 ‰ versus groundwater Δ18Olate-glacial of 30 

−2.8±1.0 ‰; Fleitmann et al., 2009; Arslan et al., 2013; 2015). While the locations of the 31 

groundwater and speleothem records differ, the compiled data suggests that groundwater and 32 
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speleothem Δ18Olate-glacial values may capture different Δ18Olate-glacial values under similar climate 1 

conditions. 2 

A number of potential processes could bias the preservation of precipitation isotope 3 

composition in ice core, speleothem or groundwater archives (Wang et al., 2001, Thompson et 4 

al., 2006; Edmunds, 2009). For example, groundwater and speleothem archives preserve only 5 

the isotope record of precipitation that traverses the vadose zone. Recent global analyses of 6 

paired precipitation-groundwater isotope compositions show that winter (extratropics) and wet 7 

season (tropics) precipitation contributes disproportionately to recharge (Jasechko et al., 2014), 8 

meaning that paleoclimate records may be more sensitive to changes to winter and wet seasons 9 

than summer or dry season (Vogel et al., 1963; Simpson et al., 1972; Grabczak et al., 1984; 10 

Harrington et al., 2002; Jones et al., 2002; Darling, 2004; Partin et al., 2012). Similarly, 11 

groundwater isotope records are unlikely to represent constant and continuous recharge fluxes 12 

during the late-Holocene or the late-glacial (McIntosh et al., 2012). Modern groundwater 13 

recharge fluxes are highest in humid climates (Wada et al., 2010). Groundwater δ18O records 14 

only represent precipitation that recharges aquifers, meaning that groundwater-based 15 

Δ18Olate-glacial values could be biased to subintervals (e.g., interstadials, pluvial periods) within 16 

the late-Holocene and late-glacial intervals when recharge fluxes were at local maxima. 17 

Speleothem records may be further complicated by processes impacting the timing of calcite 18 

precipitation. Recent modelling suggests that calcite precipitation in caves located outside of 19 

the tropics is greatest during the cool season and reduced during summer months due to changes 20 

in ventilation, meaning that higher latitude speleothems record oxygen isotope compositions 21 

biased to cool season climate change (James et al., 2015). Other recent work suggests that 22 

speleothem δ18O data may be impacted by disequilibrium isotope effects (Asrat et al., 2008; 23 

Daëron et al., 2011; Kluge and Affek, 2012; Kluge et al., 2013) or by partial evaporation of drip 24 

waters resulting in 18O-enrichment (e.g., Cuthbert et al., 2014a) and greater fractionation due 25 

to evaporative cooling (Cuthbert et al., 2014b), potentially obscuring the preservation of 26 

primary precipitation isotope contents in the speleothem record. Compiled ice core records may 27 

have be influenced by post-depositional exchanges of ice with atmospheric vapour (Steen-28 

Larsen et al., 2014). The impact of atmospheric vapour exchanges on ice core isotope records 29 

remains poorly understood. Potential biases in the preservation of precipitation δ18O differ 30 

among groundwater, glacial ice, and speleothem records, meaning that co-located records of 31 

differing record-type may preserve different Δ18Olate-glacial values under similar climate 32 

conditions. Finally, all proxy records may be impacted by past changes in the seasonality of 33 
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precipitation, which can substantially impact annual precipitation δ18O values (e.g., Werner et 1 

al., 2000). 2 

We cannot rule out the possibility that changes in seasonal biases of proxy record preservation 3 

occurred between the late-glacial and the late-Holocene and have impacted measured 4 

Δ18Olate-glacial values. Further, the chronologies of groundwaters and ice core records have 5 

uncertainties on the order of thousands of years, meaning that the time intervals used to 6 

calculate measured Δ18Olate-glacial values may be inaccurate. However, the plateauing of isotope 7 

content observed in most regional aquifers for 0-5,000 years before present and for >20,000 8 

years before present supports our interpreting these data as records of late-glacial to 9 

late-Holocene isotopic shifts (see figures in the Supplement). Notwithstanding potential δ18O 10 

preservation biases and chronology uncertainties, the global data synthesized here show 11 

patterns consistent with the enhanced distillation of advected air masses originating as 12 

(sub)tropical ocean evaporate and undergoing progressive, poleward rainout under cooler-than-13 

modern late-glacial temperatures. 14 

3.2 Simulated Δ18Olate-glacial values 15 

Simulated precipitation Δ18Olate-glacial values from five general circulation models are presented 16 

in Figure 5. At least four of the five models agree on the sign of simulated Δ18Olate-glacial values—17 

that is values consistently above or consistently below zero—for 68.8 % of grid cells covering 18 

Earth’s surface (68.7 % of over-ocean areas and 68.9 % of over land areas; multi-model 19 

calculation completed using 3 of 4 models as a threshold at high-latitudes where IsoGSM data 20 

was unavailable). Simulated Δ18Olate-glacial values are consistently negative over the North 21 

Atlantic Ocean and the Fennoscandian and Laurentide ice sheets and consistently positive over 22 

most of the tropical oceans, whereas poorer agreement is found over tropical land surfaces. The 23 

negative simulated Δ18Olate-glacial values over the northern hemisphere ice sheets and North 24 

Atlantic are likely driven by the difference in ice sheet topography and sea ice cover, between 25 

the late-glacial and pre-industrial climate. The late-glacial to late-Holocene change in ice sheet 26 

topography and sea ice cover impacted surface temperatures, which were more than ~20°C 27 

cooler over most of present-day Canada during the last glacial maximum (Figure 1). Cooler 28 

temperatures in conjunction with ice sheet topography (>3000 m elevations; e.g., Peltier, 1994) 29 

enhanced Rayleigh distillation for air masses transecting Northern Hemisphere ice sheets, as 30 



 

 12 

Formatted: Header

evidenced by systematically low measured and simulated 18Olate-glacial values in these regions 1 

(Figures 2, 3 and 5). 2 

A comparison of simulated Δ18Olate-glacial values over tropical Africa, South America and 3 

Oceania shows inter-model disagreement (Figure 5). Different tropical simulated Δ18Olate-glacial 4 

values among the models reflect the different isotopic parameterizations, inter-model spread in 5 

simulated precipitation rates, and seawater δ18O specifications used in each model 6 

(Supplement). Inter-model spread in simulated Δ18Olate-glacial values in some regions highlights 7 

the importance of this global synthesis of measured Δ18Olate-glacial values as a constraint for 8 

isotope enabled climate simulations. Another potential source for the model disagreement is 9 

introduced by the different ice-sheet topography used in each model. CAM3Iso, IsoGSM and 10 

LMDZ4 used Ice 5G (Peltier 1994) as advised for PMIP2 (Braconnot et al., 2007), whereas the 11 

GISSE2 replaces Ice 5G Laurentide ice with that of Licciardi et al. (1999) and ECHAM5-wiso 12 

uses ice topography from PMIP3 (Braconnot et al., 2007; 2012; PMIP3 follows ice sheet 13 

topography blended from multiple ice sheet reconstructions: Argus and Peltier, 2010; Toscano 14 

et al., 2011). Ice sheet topography is an important driver of simulated temperature, precipitation 15 

and atmospheric circulation during the last glacial maximum (e.g., Justino et al., 2005; Pausata 16 

et al., 2011b, Ullman et al., 2014). Therefore, it is likely that inter-model differences in paleo-17 

ice sheet topographies impacts atmospheric circulation and thus high latitude simulated 18 

Δ18Olate-glacial values reported in this study (Figure 5). 19 

Differences in the specification of initial seawater δ18O may also lead to inter-model differences 20 

in simulated Δ18Olate-glacial values. Seawater δ18O is set to be globally-homogenous in CAM3Iso, 21 

IsoGSM and LMDZ4, and heterogeneous in ECHAM5-wiso (using modern gridded seawater 22 

δ18O heterogeneity of LeGrande and Schmidt, 2006) and GISSE2-R (coupled atmosphere-23 

ocean model; seawater δ18O is calculated by the ocean model). Including surface ocean δ18O 24 

heterogeneities in model simulations impacts land precipitation δ18O by up to ~1.5 ‰ relative 25 

to simulations with homogenous seawater δ18O (LeGrande and Schmidt, 2006). However, 26 

different seawater δ18O specifications cannot account for all inter-model differences in 27 

simulated Δ18Olate-glacial values. 28 

The models also show deficiencies in simulating measured Δ18Olate-glacial values in the tropics, 29 

particularly over tropical Africa. This finding could, in part, relate to the high sensitivity of 30 

precipitation δ18O to convective parameterizations (Lee et al., 2009, Field et al 2014), although 31 

future research is required to test this. Another reason may be that the measured Δ18Olate-glacial 32 
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integrates the hydroclimatological signal over multi-millennial time scales, whereas the 1 

simulated Δ18Olate-glacial values explicitly explore last glacial maximum and pre-2 

industrial/present-day climate conditions. The smeared temporal resolution of groundwater-3 

based measured Δ18Olate-glacial values due to storage and mixing in the aquifer precludes an ideal 4 

comparison of measured versus simulated Δ18Olate-glacial values. Further, as previously discussed 5 

in section 3.1, the measured Δ18Olate-glacial values are susceptible to a number of potential biases 6 

that may obscure the magnitude and direction of late-glacial to late-Holocene precipitation δ18O 7 

changes. Notwithstanding, models correctly simulate the sign of measured Δ18Olate-glacial values 8 

(i.e., positive or negative) in the extratropics more frequently than in the tropics. Better 9 

agreement in the sign of simulated versus measured Δ18Olate-glacial values in the extra-tropics 10 

compared to the tropics is likely linked to the substantial changes to extra-tropical ice-sheet 11 

topography and sea-ice cover between the two climate states in northern North America and 12 

Europe. Substantial changes to northern hemisphere ice volumes between the late-glacial and 13 

the late-Holocene likely enhanced upwind distillation of air masses leading to high-magnitude, 14 

negative Δ18Olate-glacial values that are well captured by the climate simulations. However, 15 

simulated Δ18Olate-glacial values over Antarctica and Greenland show large inter-model spread, 16 

suggesting that model-based interpretations of polar ice core records may vary widely among 17 

different atmospheric models. 18 

3.3 Regional measured and simulated Δ18Olate-glacial values 19 

3.3.1 Australia and Oceania 20 

Measured Δ18Olate-glacial values from Australia and Oceania fall between −1 ‰ and +1 ‰ (Figure 21 

2). Australian climate during the last glacial time period was more arid (Nanson et al., 1992), 22 

dustier (Chen et al., 1993) and cooler (Miller et al., 1997) than present day. Simulated 23 

Δ18Olate-glacial values across Australia are variable among the five models. Measured Δ18Olate-glacial 24 

values across Oceania have been attributed to temporal changes in the strength of monsoons 25 

and convective rains (Aggarwal et al., 2004; Partin et al., 2007; Williams et al., 2010) 26 

potentially impacted by late-glacial to late-Holocene shifts in the position of the intertropical 27 

convergence zone (Lewis et al., 2010; 2011). 28 
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3.3.2 Southeast Asia 1 

Measured Δ18Olate-glacial values from southeastern Asia range from −2.3 ‰ to +1.7 ‰. The 2 

highest regional measured Δ18Olate-glacial values are found in Bangladesh (measured Δ18Olate-glacial 3 

of +1.5±1.3 ‰; Aggarwal et al., 2000) and in central and southeastern China (measured 4 

Δ18Olate-glacial of +0.3 ‰ to +1.7 ‰; Wang et al., 2001; Yuan et al., 2004; Dykoski et al., 2005; 5 

Cai et al., 2010; Yang et al., 2010). General circulation models have positive simulated 6 

Δ18Olate-glacial values near to the Chinese coasts, but are more variable across western and 7 

northern China (Figure 5). Chinese speleothem records show near-zero or positive measured 8 

Δ18Olate-glacial values interpreted to reflect the reduced strength of the East Asian (Wang et al., 9 

2001; Dykoski et al., 2005; Cosford et al., 2008) or Indian monsoons (Pausata et al., 2011a). 10 

Further research suggests that Chinese speleothem δ18O variations reflect changes to regional 11 

moisture sources and the intensity or provenance of atmospheric transport pathways (LeGrande 12 

and Schmidt, 2009; Dayem et al., 2010; Lewis et al., 2010; Maher and Thompson, 2012; Caley 13 

et al., 2014b; Tan, 2014). 14 

North China Plain groundwaters have high-magnitude, negative Δ18Olate-glacial values (measured 15 

Δ18Olate-glacial of −2.3±0.6 ‰; ZongyuChen et al., 2003) compared to coastal, more southerly 16 

counterparts. Combining the negative measured Δ18Olate-glacial in northern China (ZongyuChen 17 

et al., 2003; Ma et al., 2008; Currell et al., 2012; Li et al., in press) with the positive measured 18 

Δ18Olate-glacial values in central and southeastern China (Wang et al., 2001; Yuan et al., 2004; 19 

Dykoski et al., 2005; Cai et al., 2010; Yang et al., 2010) reveals a south-to-north decrease from 20 

positive (south) to negative (north) measured Δ18Olate-glacial values (Figures 2 and 6). Previous 21 

studies of modern precipitation have identified increasing precipitation δ18O values from the 22 

coast to inland China during the wet season, sharply contrasting spatial patterns expected from 23 

Rayleigh distillation (Aragúas-Aragúas et al., 1998). A more recent work suggests that low wet-24 

season precipitation δ18O values over southern China are controlled by the deflection of 25 

westerlies around the Tibetan Plateau, whereas precipitation δ18O values over northern China 26 

are controlled by local-scale rainfall and below-cloud raindrop evaporation (Lee et al., 2012). 27 

Therefore, measured Δ18Olate-glacial values from southern China may reflect changes to 28 

atmospheric circulation at broader spatial scales, whereas measured Δ18Olate-glacial values from 29 

northern China may indicate changes to more localized atmospheric conditions impacting 30 

processes such as raindrop evaporation in addition to meso- and synoptic-scale circulation 31 

changes. 32 
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3.3.3 Africa 1 

Measured Δ18Olate-glacial values from Africa range from −2.9 ‰ to +0.1 ‰ (Figures 2 and 6). 16 2 

of 17 measured Δ18Olate-glacial values from Africa are negative. Near-zero measured Δ18Olate-glacial 3 

values are generally found near to coasts (e.g., Senegal Δ18Olate-glacial of +0.1±0.8 ‰; Madioune 4 

et al., 2014), whereas higher magnitude, negative measured Δ18Olate-glacial values in Africa are 5 

found farther inland (e.g., Niger Δ18Olate-glacial values of −2.3±2.0 ‰ and −2.9±0.9 ‰: ~800 km 6 

from the Atlantic coast). General circulation model Δ18Olate-glacial values show poor agreement 7 

with measured Δ18Olate-glacial over tropical Africa compared to model-measured comparisons for 8 

Europe and North America (Figure 5), with positive simulated Δ18Olate-glacial values predicted 9 

over large parts of Africa where negative Δ18Olate-glacial values are measured. Figure 5 shows that 10 

Africa has the largest inter-model and model-measurement disagreements in the sign of 11 

Δ18Olate-glacial values of the continents. 12 

Northern African hydrological processes are influenced by interlinked controls such as 13 

meridional shifts in the position of the intertropical convergence zone (Arbuszewski et al., 14 

2013) and the strength of Atlantic meridional overturning circulation (Mulitza et al., 2008). 15 

Paleowater chemistry indicates that northern Africa was at least 2°C cooler than today 16 

(Guendouz et al., 1998) and that westerly moisture transport was stronger than the present 17 

during the late-glacial (Sultan et al., 1997; Abouelmagd et al., 2012). 18 

Tropical Africa was 2°C to 4°C cooler and more arid than present day at the last glacial 19 

maximum (Powers et al., 2005; Tierney et al., 2008). Early- and late-Holocene rainfall and 20 

isotope compositions were highly variable across Africa (Tierney et al., 2008; Schefuß et al., 21 

2011; Tierney et al., 2013; Otto-Bliesner et al., 2014). Tropical African rainfall originates from 22 

both Indian and Atlantic sources, with Atlantic-sourced moisture travelling across the Congo 23 

rainforest (Levin et al., 2009). Lower-than-modern continental moisture recycling during the 24 

late-glacial may partially explain negative measured Δ18Olate-glacial values across some regions 25 

of inland tropical Africa (e.g., Risi et al., 2013). Negative measured Δ18Olate-glacial values in 26 

tropical Africa could also be interpreted to reflect higher-than-modern upwind rainout during 27 

the late-glacial (see Risi et al., 2008; 2010b; Lee et al., 2009; Scholl et al., 2009; Lekshmy et 28 

al., 2014; Samuels-Crow et al., 2014); however, this explanation necessitates stronger-than-29 

modern convection during the late-glacial, an explanation that would contradict the established 30 

cooler-than-modern land surface temperatures. Therefore, changes to atmospheric transport 31 
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distances and vapour origins are more likely responsible for negative measured Δ18Olate-glacial 1 

values across tropical Africa (Lewis et al., 2010). 2 

3.3.4 Europe and the Mediterranean 3 

Measured Δ18Olate-glacial values across Europe, the Middle-East and the eastern Mediterranean 4 

range from −5.7 ‰ to +1.3 ‰. 80% of measured Δ18Olate-glacial values across these regions are 5 

negative. All five general circulation models agree on negative simulated Δ18Olate-glacial values 6 

across Europe, consistent with the negative measured Δ18Olate-glacial values across the majority 7 

of Europe. Measured Δ18Olate-glacial values are generally higher in western Europe (0.0 ‰ to 8 

−1.0 ‰ in Portugal, the United Kingdom and France) than in eastern Europe (−1.0 ‰ to −5.7 ‰ 9 

in Poland, Hungary and Turkey; Stute and Deak, 1989; Le Gal La Salle et al., 1995; Darling et 10 

al., 1997; Barbecot et al., 2000; Zuber et al., 2004; Galego Fernandes and Carreira, 2008; Celle-11 

Jeanton et al., 2009; Varsányi et al., 2011; Samborska et al., 2012; Arslan et al., 2013). This 12 

spatial pattern of Δ18Olate-glacial values is consistent with enhanced isotopic distillation of 13 

westerlies during the late-glacial due to cooler-than-modern final condensation temperatures. 14 

High magnitude, negative measured Δ18Olate-glacial values are located in Turkey and Georgia 15 

south and east of the Black Sea (−2.8±1.0 to −5.7±0.4 ‰; Fleitmann et al., 2009; Arslan et al., 16 

2013; Melikadze et al., 2014). Westerly air mass trajectories distal to the Fennoscandian ice 17 

sheet topography may not have changed considerably since the late-glacial over western and 18 

central Europe (Rozanski, 1985; Loosli et al., 2001). Therefore, higher, near-zero measured 19 

Δ18Olate-glacial values in western Europe and lower, negative measured Δ18Olate-glacial values in 20 

eastern Europe indicate enhanced distillation of advected air masses during the late-glacial 21 

relative to the late-Holocene. 22 

Changes to freeze-thaw conditions of the ground surface between the latter half of the last 23 

glacial time period and the modern climates may have impacted the seasonality of the fraction 24 

of precipitation recharging aquifers and thus Δ18Olate-glacial (Darling, 2004; Darling, 2011; 25 

Jasechko et al., 2014). Geomorphic evidence suggests permafrost covered portions of Hungary 26 

at the last glacial maximum, suggesting that land temperatures may have been up to 15°C cooler 27 

than present day (Fábián et al., 2014), a larger late-glacial to late-Holocene temperature shift 28 

than earlier, noble gas based reconstructions (5-7°C; Deák et al., 1987). European pollen 29 

records indicate that northern Europe was tundra-like and that southern Europe was semi-arid 30 

during the last glacial maximum (Harrison and Prentice, 2003; Clark et al., 2012). The European 31 
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late-glacial to late-Holocene transition from semi-arid deserts to temperate forests could have 1 

lowered Δ18Olate-glacial values as groundwater recharge ratios transitioned from more extreme 2 

winter-biased (e.g., semi-arid lands during the late-glacial) to less extreme winter-biased 3 

groundwater recharge ratios (e.g., forests during late-Holocene; Jasechko et al., 2014). 4 

3.3.5 South America 5 

Measured Δ18Olate-glacial values across South America range from −6.3 ‰ to +0.6 ‰ (Figures 2 6 

and 6). The highest-magnitude, negative measured Δ18Olate-glacial values are found in Andean ice 7 

cores (Δ18Olate-glacial of −4.6±1.0 and −6.3±1.3; Thompson et al., 1995; 1998). Here the 8 

importance of upstream convection upon modern Andean precipitation δ18O has been 9 

highlighted at inter-annual (Hoffmann et al., 2003; Vuille and Werner, 2005), seasonal (Vimeux 10 

et al., 2005, Samuels-Crow et al., 2014) and daily time scales (Vimeux et al., 2011). It is 11 

therefore possible that upstream convection controls past changes to Andean precipitation 12 

isotope compositions recorded in ice cores. 13 

The measured groundwater Δ18Olate-glacial value located in eastern Brazil is −2.7±1.3 ‰ (Salati 14 

et al., 1974). Eastern Brazil was 5°C cooler than today during the latter half of the last glacial 15 

period (Stute et al., 1995b). Four of the five general circulation models simulate positive 16 

Δ18Olate-glacial values across eastern Brazil (Figure 5), highlighting a difference between 17 

simulated and measured Δ18Olate-glacial values in parts of the tropics. The negative measured 18 

Δ18Olate-glacial value in eastern Brazil has been previously interpreted to reflect higher-than-19 

modern precipitation during the last glacial time period (Salati et al., 1974). Lewis et al. (2010) 20 

show that localized rainfall governs precipitation δ18O in eastern Brazil. Modern precipitation 21 

δ18O values are lowest in eastern Brazil when precipitation rates are at a maximum. Extending 22 

Lewis et al.’s interpretation linking local precipitation amount to precipitation δ18O would 23 

suggest that the negative measured Δ18Olate-glacial value found in eastern Brazil may indeed 24 

record wetter-than-modern conditions during the late-glacial as proposed by Salati et al. (1974). 25 

Further, disagreement between measured and simulated Δ18Olate-glacial in eastern Brazil 26 

highlights the need to critically evaluate climate model performance in regions where the 27 

precipitation amount is closely correlated with precipitation 18O. 28 

3.3.6 North America 29 

Measured Δ18Olate-glacial from North American proxy records range from −5.5 ‰ to +1.0 ‰. 30 

Canadian records of groundwater recharge that took place beneath the Laurentide ice sheet are 31 
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not included in this synthesis (“subglacial recharge;” Grasby and Chen, 2005; Ferguson et al., 1 

2007; McIntosh et al., 2012; Ferguson and Jasechko, in press2015). These records were 2 

excluded because the subglacial meltwaters that recharged aquifers likely reflect precipitation 3 

that fell elsewhere on the paleo-ice sheet, potentially complicating the comparison of 4 

groundwater isotope compositions for the late-Holocene and last glacial time period. 5 

Measured Δ18Olate-glacial values along the USA east coast show the highest, positive values in 6 

Georgia (latitude: 32°N; measured Δ18Olate-glacial of +1.0 ‰; Clark et al., 1997), decreasing 7 

northward to near-zero measured Δ18Olate-glacial values in coastal Maryland (latitude 39°N; 8 

measured Δ18Olate-glacial of −0.1±0.4 ‰; Aeschbach-Hertig et al., 2002). Decreasing Δ18Olate-glacial 9 

values with increasing latitude along the USA east coast may be explained in part by the isotopic 10 

distillation of air masses advected northward from the subtropics under cooler-than-modern 11 

final atmospheric condensation temperatures. Indeed, paleoclimate records indicate that 12 

Maryland was more arid and as much as 9-12°C cooler during the late-glacial relative to the 13 

late-Holocene (Purdy et al., 1996; Aeschbach-Hertig et al., 2002; Plummer et al., 2012). In 14 

addition to temperature change, late-glacial precipitation isotope compositions along eastern 15 

USA coastline were likely impacted by the lower-than-modern late-glacial sea levels, which 16 

changed overland atmospheric transport distances between the late-glacial and late-Holocene 17 

(Clark et al., 1997; Aeschbach-Hertig et al., 2002; Tharammal et al., 2012). 18 

Measured Δ18Olate-glacial values in the central and southwestern USA have the highest magnitude, 19 

negative measured Δ18Olate-glacial values of temperate North America, ranging from −1.0 ‰ to 20 

−3.4 ‰. Central and southwestern USA measured Δ18Olate-glacial values contrast the positive 21 

measured Δ18Olate-glacial values found along the eastern USA coast at similar latitudes. 22 

Consistently negative Δ18Olate-glacial values in central and southwest USA suggest that advected 23 

moisture to the region underwent greater upstream air mass distillation during the late-glacial 24 

than under modern climate. Pollen, vadose zone and groundwater records show that late-glacial 25 

southwestern USA was ~4°C cooler, had greater groundwater recharge fluxes, and had more 26 

widespread forests than present day (Stute et al., 1992; 1995a; Scanlon et al., 2003; Williams, 27 

2003). Negative measured Δ18Olate-glacial values found in the southwest USA have been ascribed 28 

to lower-than-modern summer precipitation (New Mexico, Phillips et al., 1986), latitudinal 29 

shifts in the positions of the polar jet stream and the intertropical convergence zone (New 30 

Mexico, Asmerom et al., 2010) and changes to over-ocean humidity, temperature or moisture 31 

sources (Idaho, Schlegel et al., 2009). Wagner et al. (2010) interpret decreases to southwestern 32 
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precipitation δ18O to reflect cooler and more-humid conditions. Extending this interpretation to 1 

negative measured Δ18Olate-glacial values found across the southwestern USA values supports 2 

earlier conclusions that the region was cooler and more humid than today during the late-glacial, 3 

possibly linked to changes in air mass trajectories and moisture sources (Asmerom et al., 2010; 4 

Wagner et al., 2010). Simulated Δ18Olate-glacial values across North America closely match spatial 5 

patterns of measured Δ18Olate-glacial synthesized in this study. Strong, multi-model agreement 6 

with measured Δ18Olate-glacial patterns supports continued application of isotope enabled general 7 

circulation models when interpreting North American precipitation isotope proxy records. 8 

4 Conclusions 9 

While changes to the isotope content of precipitation between the last glacial time period and 10 

more recent times has been widely documented, few studies have synthesized these dispersed 11 

data to explore the global patterns of δ18O change driven by past shifts to regional climate. In 12 

this study we compile groundwater, speleothem, ice core and ground ice records of δ18O shifts 13 

between the late-glacial (20 to ~50 thousand years ago) and the late-Holocene (within the past 14 

5,000 years). Late-glacial to late-Holocene δ18O shifts range from −7.1 ‰ (i.e., δ18Olate-glacial < 15 

δ18Olate-Holocene) to +1.7 (i.e., δ18Olate-glacial > δ18Olate-Holocene). Aquifers with positive measured 16 

Δ18Olate-glacial values (23% of records) are most common along the subtropical coasts. The 17 

majority (77%) of measured Δ18Olate-glacial values are negative, with the highest magnitude 18 

differences between δ18Olate-glacial and δ18Olate-Holocene observed at high latitudes and far from 19 

coasts. This spatial pattern suggests that isotopic distillation of advected air masses was greater 20 

during the late-glacial than under present climate, likely due to the non-linear nature of Rayleigh 21 

distillation, accentuated by larger glacial-interglacial atmospheric temperature changes at the 22 

poles relative to lower latitudes. Regionally-divergent precipitation δ18O responses to the ~4°C 23 

of global warming occurring between the late-glacial and the late-Holocene suggest that 24 

continued monitoring of modern precipitation isotope contents may prove a useful for detecting 25 

hydrologic changes due to ongoing, human-induced climate change. Future paleo-precipitation 26 

proxy record δ18O research can use these new global maps of Δ18Olate-glacial records to target and 27 

prioritize field sites. In the near term, a global compilation of large lake sediment isotope 28 

records that accounts for paleo-evaporative isotope effects could enhance spatial coverage of 29 

interglacial-glacial δ18O shifts. 30 

General circulation models agree on the sign and magnitude of terrestrial precipitation 31 

Δ18Olate-glacial values better in the extra-tropics than in the tropics. Differences in simulated 32 
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precipitation isotope composition changes amongst the models might be linked to different 1 

parameterizations of seawater δ18O, glacial topography and convective rainfall, however, these 2 

hypotheses require further testing. Future model research should focus on quantifying the 3 

relative roles of inter-model spread in the simulated climate versus the isotopic response to 4 

climate change on resulting simulated precipitation δ18O. This would provide guidelines to 5 

interpret model-data isotopic differences and to identify what aspects climate models have 6 

greatest difficulties capturing. 7 
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Figure 1. The change in surface air temperatures from the last glacial maximum to the 2 

preindustrial era (gridded data from Annan and Hargreaves, 2013). (a) Percentile ranges of 3 

temperature changes since the last glacial maximum for 10 degree latitudinal bands. Blue 4 

shading marks the 25th-75th percentile range; thin horizontal lines mark the 10th-90th percentile 5 

range. The grey band shows the globally-averaged estimate of temperature change since the 6 

last glacial maximum of −4.0±0.8 °C. (b) Gridded surface air temperature anomaly from the 7 

last glacial maximum to the preindustrial era (data from Annan and Hargreaves, 2013).8 
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Figure 2. Meteoric water δ18O change from the late-glacial (20,000 to ~50,000 years ago) to the 2 

late-Holocene (within past ~5,000 years; average Δ18Olate-glacial values shown, where 3 

Δ18Olate-glacial = δ18Olate-glacial − δ18Olate-Holocene). The low temporal resolution of groundwater 4 

records means that δ18O variations within each time period are smoothed and likely represent 5 

unequal temporal weighting. References for measured meteoric water δ18O changes for ice 6 

cores, groundwater and cave calcite are presented in the Supplement. 7 
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Figure 3. Latitudinal variations of Δ18Olate-glacial values of groundwater (circles, each circle is 2 

one aquifer), ice cores (diamonds) and cave calcite (i.e., triangles; where Δ18Olate-glacial = 3 

δ18Olate-glacial − δ18Olate-Holocene). Dashed lines mark 10° zonal mean simulated Δ18Olate-glacial values 4 

from five different general circulation models: CAM3iso, ECHAM5-wiso, GISSE2-R, IsoGSM 5 

and LMDZ4 (Yoshimura et al., 2003; Legrande and Schmidt, 2008; 2009; Risi et al., 2010a; 6 

Noone and Sturm, 2010; Pausata et al., 2011a; Werner et al., 2011). 7 
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Figure 4. Measured Δ18Olate-glacial value variability with distance to the nearest coast 2 

(Δ18Olate-glacial = δ18Olate-glacial − δ18Olate-Holocene). Tropical and subtropical locations are shown in 3 

deep blue (<35° absolute latitude), extra-tropical sites are shown in light grey (>35° absolute 4 

latitude). The shape of each point corresponds to groundwater and ground ice (circles) or cave 5 

calcite (i.e., speleothems; triangles). Error bars mark one standard deviation from the mean. 6 

7 



 

 45 

Formatted: Header

 1 

Figure 5. Simulated precipitation δ18O differences between the last glacial maximum and pre-2 

industrial time periods (i.e., δ18Olast glacial maximum – δ18Opre-industrial) from five general circulation 3 

models: CAM3iso, ECHAM5-wiso, GISSE2-R, IsoGSM and LMDZ4 (Yoshimura et al., 2003; 4 

Legrande and Schmidt, 2008; 2009; Risi et al., 2010a; Noone and Sturm, 2010; Pausata et al., 5 

2011a; Werner et al., 2011). Circles (groundwater), triangles (speleothems) and diamonds (ice 6 

cores) show measured Δ18Olate-glacial values from paleoclimate proxy records (Figure 1, original 7 

data presented in Tables S2–S5). The panel entitled “Composite” shows the multi-model 8 

ensemble median simulated Δ18Olate-glacial value where at least four of the five models agree on 9 

the sign of simulated Δ18Olate-glacial values (i.e., positive or negative; all five model simulations 10 

of δ18Olast glacial maximum – δ18Opre-industrial were used to calculate multi-model median shown in 11 

“Composite”). 12 
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Figure 6. Regional proxy record Δ18Olate-glacial values for (a) southeastern Asia, (b) Africa, (c) 2 

Europe, and (d) the contiguous United States of America (where Δ18Olate-glacial = δ18Olate-glacial − 3 

δ18Olate-Holocene). The multi-model ensemble median simulated Δ18Olate-glacial value is shown as a 4 

grid (0.5 degree smoothing). Groundwater records are represented by circles, speleothems by 5 

triangles, and ice cores by diamonds, labels show measured Δ18Olate-glacial values for each 6 

individual record. 7 
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