

1 **Endless cold: A seasonal reconstruction of temperature**
2 **and precipitation in the Burgundian Low Countries during**
3 **the fifteenth century based on documentary evidence**

4

5 **C. Camenisch^{1, 2}**

6 [1]{Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern,
7 Switzerland}

8 [2]{Institute of History, Department of Economic, Social and Environmental History (WSU),
9 University of Bern, Länggassstrasse 49, 3012 Bern, Switzerland}

10 Correspondence to: C. Camenisch (chantal.camenisch@hist.unibe.ch)

11

12 **Abstract**

13 This paper applies the methods of historical climatology to present a climate reconstruction
14 for the area of the Burgundian Low Countries during the fifteenth century. The results are
15 based on documentary evidence that has been handled very carefully, especially with regard
16 to the distinction between contemporary and non-contemporary sources. Approximately 3000
17 written records deriving from about 100 different sources were examined and converted into
18 seasonal seven-degree indices for temperature and precipitation. For the Late Middle Ages
19 only a few climate reconstructions exist. There are even fewer reconstructions which include
20 winter and autumn temperature or precipitation at all. This paper therefore constitutes a useful
21 contribution to the understanding of climate and weather conditions in the less well
22 researched but highly interesting fifteenth century. The extremely cold winter temperatures
23 during the 1430s and an extremely cold winter in 1407/08 are striking. Moreover, no other
24 year in this century was as hot and dry as 1473. At the beginning and the end of the 1480s and
25 at the beginning of the 1490s summers were considerably wetter than average.

26

1 **1 Introduction**

2 Emmanuel Le Roy Ladurie, one of the pioneers of historical climatology, stated the necessity
3 for a quantitative, continuous and homogeneous series in order to reconstruct climate on the
4 basis of historical documents for the time prior to instrumental records (Le Roy Ladurie,
5 1972). A true treasure of rich narrative texts, including a variety of weather-related
6 information, can be found in documentary sources produced in the late Middle Ages (1300–
7 1500 AD). This information consists of direct data (descriptions of temperatures and
8 precipitation), and indirect data (climate proxies – phenomena which are related to climate
9 such as freezing of water bodies or plant phenology). Nonetheless, they are far from being
10 continuous or homogeneous. Moreover, they are not quantitative (Pfister et al., 2009).

11 As this paper demonstrates, there are methods that facilitate the transformation of this varied
12 information into a reliable climate reconstruction on the basis of quantitative series. The
13 presented paper aims to give an overview of weather conditions during the fifteenth century in
14 the Burgundian Low Countries and surrounding areas in a seasonal resolution with separately
15 reconstructed temperature and precipitation. Leading questions are as follows: what were the
16 characteristics of these weather conditions? what are the advantages of using documentary
17 data and what are the limits of these sources? Selected examples give a deeper insight into the
18 characteristics of the sources and the applied methods in order to analyse them and convert
19 them into homogeneous temperature and precipitation index series. The climate
20 reconstruction not only provides an overview of the prevailing weather conditions of the
21 whole century but presents detailed results. Since the source density in most cases is high
22 enough, it is possible to detect not only anomalies but also less spectacular weather
23 conditions. This is unusual because most reconstructions based on this type of data focus on
24 extreme weather events. Moreover, many climate reconstructions are limited to temperature.
25 As the inclusion of precipitation in reconstructions is crucial in order to obtain a more
26 complete picture of past climates, this is a substantial gain in knowledge (Pfister, 2014). The
27 inclusion of normal weather conditions apart from extreme events and of precipitation are
28 preconditions for a comparison of climate and weather conditions with human society. Such a
29 comparison is a further aim of historical climatology and will be realised in a future step.

30 The use of documentary evidence for examining past climate has a long tradition. Many
31 catalogues with compilations of weather-related records exist (e.g. Hennig, 1904; Weikinn,
32 1958; Britton, 1937). These catalogues do not contain any critical source assessment and
33 contain mistakes in dating. Reconstructions on the basis of such compilations repeat the

1 dating errors. Some such catalogues cover the area of the Low Countries during the late
2 Middle Ages (e.g. Easton, 1928; Vanderlinden, 1924).

3 In 1987 Pierre Alexandre established a benchmark for the reconstruction of medieval climate
4 using documentary sources. Apart from analysing sources all over continental Europe he
5 defined the necessity of a critical source assessment in order to improve the quality of such
6 examinations. Jan Buisman collected an enormous number of documentary sources
7 concerning the climate of the Low Countries. By 2015 six volumes with Dutch translations of
8 weather-relevant records had appeared, covering the period from 1000 to 1800, and another
9 three volumes are in preparation (Buisman, 1995; Buisman, 1996; Buisman, 1998; Buisman,
10 2000; Buisman, 2006; Buisman, 2015).

11 For the present analysis, documentary information was transformed into climate indices.
12 Early examples of the method were published by Hubert Horace Lamb (Lamb, 1977; Lamb,
13 1982). The climate indices were developed and improved by Christian Pfister and Rudolf
14 Brázdil (Pfister, 1984; Pfister 1999; Brázdil and Kotyza, 1995) and are an approved way to
15 analyse sources (e.g. Alexandre, 1987; Schwarz-Zanetti, 1998; Dobrovolný et al., 2010;
16 Brázdil et al., 2013; Dobrovolny et al., 2014).

17 Aryan van Engelen used Jan Buisman's compilation as a basis for climate indices (Shabalova
18 and van Engelen, 2003; van Engelen et al., 2001). The ambitious goal of this Dutch
19 reconstruction was to provide long series with (almost) no gaps. Aryan van Engelen fulfilled
20 this promise by choosing a nine-degree scale for the temperature indices and a five-degree
21 scale for the precipitation indices. The temperature reconstruction comprises a winter index
22 (NDJFM) and a summer index (MJJAS).

23 The aim of the present paper is different. First of all, indices with a higher resolution were
24 necessary because a comparison with economic development is intended and for that purpose
25 at least seasonal reconstruction is indispensable (Camenisch, 2015; Pfister, 2014).
26 Furthermore, it was mandatory to read the original texts since it is not possible to produce a
27 reliable reconstruction with summarised and translated excerpts of totally diverse sources.
28 The high-quality source compilations of Pierre Alexandre and Jan Buisman were consulted as
29 well. Further important contributions related to medieval climate in the Low Countries were
30 published by Elisabeth Gottschalk and Adriaan de Kraker (e.g. Gottschalk, 1975; de Kraker,
31 2005; de Kraker, 2013). In addition there are useful climate reconstructions focusing on
32 regions in the neighbourhood of the Low Countries such as Germany (Glaser, 2013),
33 Switzerland (Schwarz-Zanetti, 1998) France (Le Roy Ladurie, 2004), Lorraine (Litzenburger,

1 2015) and the British Isles (Kington, 2010) that are based either on similar source types or on
2 similar methods.

3 Section 2 of this paper gives a short overview of the geographical scope of the research. In the
4 subsequent Section 3 the data which form the basis of this reconstruction are presented and
5 discussed. Some source examples complete this section. Section 4 is dedicated to the
6 methods. Section 5 covers reconstructions and Section 6 provides a summary before Section 7
7 concludes.

8

9 **2 Scope**

10 The fifteenth century is part of the Little Ice Age and contains a number of highly interesting
11 weather patterns and phenomena that warrant closer examination (Aberth, 2013; Brooke,
12 2014; Hoffmann, 2014). Moreover, this period is not as well researched as it deserves because
13 Pierre Alexandre's reconstruction ends in 1425 (Alexandre, 1987) and other reconstructions
14 begin only after 1500 (e.g. Pfister, 1999).

15 The methods used in this paper require a sufficient number of data. For this reason the
16 Burgundian Low Countries have been chosen as a geographical frame. During the end of the
17 fourteenth and in the course of the fifteenth century several parts of today's Belgium, the
18 Netherlands, Luxembourg and Northern France fell under the rule or at least into the sphere of
19 influence of a cadet branch of the French royal dynasty (see Fig. 1). This house of Burgundy
20 reigned for almost hundred years over the Burgundian Low Countries before the male line
21 became extinct (Calmette, 1996; Schnerb, 1999). In 1477 when the last of the dukes of
22 Burgundy, Charles the Bold, died, his territory extended from the English Channel in the
23 West to the Ardennes in the East and in the North from the West Friesian Islands to the
24 Duchy of Luxembourg in the South (Blockmans and Prevenier, 1999; Prevenier and
25 Blockmans, 1986).

26 The topography of the inshore area is particularly flat and the land largely lies below sea
27 level. Only in the East do the hills of the Ardennes form a contrast to the otherwise flat
28 topography. Weathering processes triggered by storm surges, ocean waves and currents have
29 formed the shoreline until today (de Voogd, 2003; Reuss, 2006; Buisman, 2011). Large rivers
30 such as the Rhine, Scheldt, Meuse and IJssel cut through the plains before flowing into the
31 North Sea. The area belongs to the most fertile agricultural landscapes of Europe thanks to the
32 soil conditions, cultivation of land and soil improvement. In consequence, a remarkable level

1 of agricultural productivity and the proximity to waterways – the fastest and most efficient
2 transportation routes of the time – created an extraordinarily dense population (Erbe, 1993;
3 Allen, 2000; Prevenier and Blockmans, 1986). The urbanisation level of the Burgundian Low
4 Countries was outstanding. Extraordinarily populous cities were situated in Flanders, Artois,
5 Brabant and Holland (van Bavel, 2010). This prosperous area was famous for its artistic
6 production. Furthermore, a rich historiography and an accurate and elaborate account existed,
7 which form the basis of this research.

8

9 **3 Sources**

10 **3.1 Classification**

11 In order to reconstruct temperature and precipitation several methods based on a variety of
12 data are required. Besides the rich archives of nature consisting of organic proxies such as tree
13 rings or non-organic proxies including ice cores, varves or terrestrial sediments man-made
14 archives exist. Those archives contain documentary data and are the basis of climate
15 reconstructions derived from historical climatology (Brázdil et al., 2005; Pfister, 1999; Pfister
16 et al., 1999). Documentary evidence allows precise dating with a very high resolution.
17 Depending on the type of information, annual, seasonal, monthly or even daily observations
18 exist. Early instrumental measurement did not begin until the seventeenth century and is
19 therefore not available for the Late Middle Ages (Behringer, 2010). Instead, other direct and
20 indirect data provide information on climate. Direct data are descriptive records on weather
21 spells, climatic anomalies or weather-induced disasters. Indirect data or proxy data comprise
22 accounts of both organic and non-organic evidence that allow inferences regarding
23 temperature and precipitation such as plant phenology (e.g. date of blooming or ripening of
24 vines) or ice phenology (e.g. date of freezing or opening of water bodies) (Pfister, 1999;
25 Pfister et al., 1999). The following example contains both direct and indirect data:

26

27 *“Item, en chi temporaile [...] fist si fort yviert et grant galée que la riviere de Mouze tresserat,*
28 *et que de Jemeppe à Liege ons cherioit sus à charois bien chargiés de bleis ou d'autres*
29 *denréées; et durat celle galée plus de X semaines. [...] et chu fut l'an XIIIIC et VIII, le*
30 *XXVIIIIme jour de jenvier.“* (Borgnet, 1861)

31

1 This short text is part of a chronicle written by the Benedictine monk Jean de Stavelot, a
2 contemporary eye witness from Liège. He gives not only an account of heavy frost in the
3 winter of 1407/08 but describes in addition how the Meuse was so firmly frozen between
4 Jemeppe and Liège that chariots loaded with grain and other foods were driven on the ice.
5 This frost lasted for 10 weeks before the ice started to melt on 28 January 1408 (the date is
6 given in the Julian calendar style and in the Gregorian calendar equates to 7 February 1408).
7 Another distinction is made between institutional and individual sources on the one hand and
8 between narrative and administrative sources on the other hand (see Table 1). The first
9 classification takes note of the origination process of the text and the second focuses on the
10 text type and its use (Pfister et al., 2009; Camenisch, 2015). Both have a direct impact on the
11 quality of the sources, as discussed subsequently. Concerning the Late Middle Ages
12 especially, chronicles, memoirs, and journals constitute the individual narrative sources,
13 whereas annals belong also to the group of narrative sources but have an institutional origin.
14 The lines between the two groups are blurred since many texts show characteristics of both
15 types (Geary, 2013). Amongst the administrative sources accounts (written records on
16 bookkeeping) and charters (documents for legal purpose) of different origin need to be
17 mentioned. In this paper the first group was mainly used and charters did not play a major
18 role. Also, administrative sources were generated either in an institutional context such as a
19 monastery, town, and toll station or in a private individual context (Camenisch, 2015).
20 The fifteenth century is rich in narrative texts, mainly chronicles, annals, memoirs and
21 journals. In the Burgundian Low Countries and the neighbouring regions a treasury of such
22 manuscripts has been preserved until today and many of them have been published as edited
23 books. The tradition of writing chronicles originates from antiquity and has survived for
24 centuries in mostly a monastic or at least a clerical context (Rohr, 2007). The language of
25 these texts is normally Medieval Latin (e. g. Balau, 1913; Dussart, 1892). Additionally, in the
26 Late Middle Ages interested laypersons wrote chronicles, some of them on behalf of town
27 authorities or nobles, others for a more private purpose (Schmid, 2009; Schmid, 2012). Those
28 narrative texts were often written in a vernacular language. In the Burgundian Low Countries
29 and the close neighbourhood these languages were Middle Low German (e. g. Lamprecht et
30 al., 1895; Cardauns et al. 1877) , Middle Dutch (e. g. Kuys et al., 1983; De Jonghe, 1840; Fris
31 1904) or Middle French (e. g. Borgnet, 1861; Tutey, 1903) – each with local variations.
32 Usually, chronicles consist of a compilation of older texts followed by a second part
33 composed by the chronicler and covering his life span. This second – contemporary – part is

1 usually richer in information, more detailed and clearly more reliable. Some chroniclers
2 summarise the crucial events year by year, others write their text many years after the events
3 (Lambert, 1993; van Caenegem, 1997). In narrative texts, the authors often describe weather
4 conditions, and especially extreme weather events because they could be a threat to the food
5 supply or they were given a religious meaning (Ingram et al., 1981).
6 The reasons why weather conditions or proxy data are mentioned in administrative sources
7 differ from those in narrative sources. The important source type of accounts is characterised
8 by standardised records of cost and revenue. Either the climate proxies lead to costs or
9 revenues and were listed for that purpose in the accounts or short descriptions of weather
10 conditions appear as justification for extraordinary costs (Wetter and Pfister, 2011; Pribyl et
11 al., 2012). In this paper narrative sources clearly form the main body of the data set and have
12 been primarily analysed. In addition, a number of edited town accounts (such as the
13 stadsrekeningen van Arnhem for the first decades of the fifteenth century, Jappe Alberts,
14 1967; Jappe Alberts, 1969; Jappe Alberts, 1971; Jappe Alberts, 1978; Jappe Alberts, 1985)
15 and further unedited town accounts relying on Jan Buisman's compilations have been
16 included in the data set (Buisman, 1996; Buisman, 1998).

17 **3.2 Critical source assessment**

18 A critical assessment not only for every source but for each record is crucial for the quality of
19 the entire reconstruction because the characteristics and quality of the sources vary and they
20 contain different types of information. Critical source assessment includes information on the
21 author, especially dates of birth and death, the place where he lived and the context of his
22 oeuvre (Alexandre, 1987). This information allows a distinction to be drawn between original
23 text and copies of older manuscripts and is extremely important because of the significantly
24 greater reliability of the records in the original (contemporary) part of the source. The closer
25 the events occurred in relation to the time when the authors wrote their texts on paper or
26 parchment the more reliable they are. The best quality is given in the case of year by year
27 reports. Accounts and journals are usually produced in this way as well as the last part of
28 annals and chronicles. If an event is convincingly proved by contemporary records, additional
29 non-contemporary reports can be taken into account insofar as they confirm the main
30 statement of the contemporary evidence. Since each source has its own dynamics that become
31 clear by reading the text as a whole, it would be a fatal error just to pick the records from
32 older or newer compilations without the critical source assessment and its context.

1 For this paper approximately 3000 records from about 100 sources were evaluated. Two-
2 thirds of them are related to weather conditions whereas the last third focuses on economic
3 impacts caused by these weather conditions. Many of the records contain long descriptions.

4 **3.3 Source density**

5 The density of the sources is not equal throughout the entire century as Fig. 2 shows. Because
6 of the different time span of the sources not all decades have the same source density. In
7 addition there is obviously more evidence in years with outstanding events whereas years
8 with average weather conditions were less documented, if they were described at all. All
9 depends on the quality of the sources covering the year in question and it is consequently the
10 reason why years without enough evidence cannot just be interpreted as average (see Section
11 4).

12 Within the calendar year the distribution of the records is almost equal in terms of winter
13 (27%), spring (25.5%), and summer (29.5%). In 18% of the records only autumn is less
14 documented (Camenisch, 2015).

15 The distribution of the sources also differs with regard to their place of origin, as Fig. 3
16 shows. Most of the used sources have their origin in the Burgundian Low Countries but a
17 number of texts derive from neighbouring areas and were included in the data set because of
18 their excellent quality.

19 **3.4 Dating**

20 Confusion in dating is one of the most serious problems that can arise in a reconstruction. The
21 reasons are closely linked to the fact that different calendar styles were in use during the
22 particular epoch.

23 Before 1582 the Julian calendar style was in use in most European Christian countries. Since
24 it is some minutes longer than the astronomical year, the calendrical beginning of the seasons
25 diverged from the astronomic year. For many centuries the difference was barely observable.
26 During the fifteenth century the deviation of the then nine days was not only perceptible to
27 experts in astronomy but also to every attentive person (Schwarz-Zanetti, 1998; Borst, 2004;
28 Grotewold, 1991). This means that in all the texts date indications deviate from the modern
29 calendar style and need to be converted.

1 Another problem derives from the fact that during the Middle Ages six possible days for the
2 beginning of the calendar year exist: 1 January, 1 March, 25 March, Easter, 1 September, 25
3 December (Grotfend, 1991). The first of September is used rather seldom so one has to take
4 care, especially concerning events occurring between Christmas and Easter. If one chronicle
5 uses the Easter style and another one uses the Christmas style the same events can be written
6 down as two different years. This could result in the misinterpretation that two similar events
7 happened in two subsequent years. A clear analysis of the correct dating of events is
8 indispensable, keeping in mind that the non-contemporary part of a narrative text is a copy of
9 an older text probably with another calendar style. The authors of older weather compilations
10 did not pay enough attention to these problems and even if they were aware of them, they
11 usually did not give sufficient information on how they converted the dates. In this paper
12 much effort was made to avoid such dating errors.

13 A very useful way to cross-check the reliability of the dating of a certain narrative text is to
14 search for records describing solar and lunar eclipses or comet observations. Many authors
15 mention such observations because in medieval times they were seen as precursors to
16 calamities (Rohr, 2013). The descriptions which appear in the narrative sources can be
17 compared with catalogues of celestial events of the past (e.g. Kronk, 1999; Schroeter, 1923).

18 Most of the medieval authors used ecclesiastical feast days in order to give precise dates
19 within a year. Usually, this does not lead to problems. More challenging are descriptions that
20 refer to seasons without more detail. In the past the meaning of the seasons was ambiguous
21 (and still is to a certain degree). Medieval authors meant either astronomical seasons that
22 changed at equinoxes and solstices or they used the name of the season to refer to the duration
23 of typical weather patterns, agricultural work or phenological phenomena prevalent in that
24 season (Pfister, 1988; Ogilvie and Farmer, 1997; Grotfend, 1991).

25

26 **4 Methodology**

27 As argued above, continuous, homogeneous, and quantitative series are required for climate
28 reconstructions. Since several source types with different features and varying quality form
29 the basis of this paper, an adequate method that can cope with these inhomogeneous data is
30 required. Climate indices (so-called Pfister indices, Mauelshagen, 2010) offer a solution that
31 enables the integration of all the source types in one reconstruction. Christian Pfister chose a
32 scale of seven degrees because fewer degrees would not be detailed enough, whereas a more

1 extended scale would in most cases lead to numerous gaps. There are separate indices for
2 temperature and precipitation. Because of the remarkable source density in the late-medieval
3 Burgundian Low Countries a seasonal resolution is adequate. This means the entire climate
4 reconstruction comprises eight different indices. The meteorological year forms the basis of
5 the seasonal subdivision of the indices. Therefore the winter season covers the period from 1
6 December until 28 February, spring the period from 1 March until 31 May, summer from 1
7 June until 31 August and autumn from 1 September until 30 November.

8 Table 2 shows the scale of all the indices. The reconstruction is realised in several steps. At
9 the beginning of the process the sources are sorted into groups related to the seasons to which
10 they refer. Preliminary analysis of the sources shows which kind of descriptions recur and
11 how they can be matched to a seven-degree scale. Fundamental knowledge about the
12 perception and interpretation of natural phenomena is indispensable in order to avoid
13 misinterpretations (Rohr, 2007; Wegmann, 2005).

14 **4.1 Index criteria**

15 Specific criteria for each season and degree are defined and as many years are attributed to the
16 scale as possible by a comparative interpretation of all data (Mauelshagen, 2010; Pfister,
17 1999). Since initial analysis probably causes a rather unequal distribution of the seasons, the
18 criteria need to be refined and the process of source analysis started again. The refined criteria
19 form the basis of the final reconstruction. However, the author's preference for describing
20 extreme events in the sources leads to a certain overrepresentation of those index points in the
21 reconstruction.

22 Table 3 shows as an example the basic structure of the indices in the first row and the refined
23 criteria for the reconstruction of the winter temperatures in the second row. The criteria
24 include measurable or at least comparable physical and biological proxies (Pfister, 1999).
25 Concerning the winter temperatures this means for instance that in order to set a -3 in the
26 reconstruction, records on the freezing of large water bodies such as the Rhine, Scheldt, and
27 Meuse or even the shores of the North Sea are required. This information does not indicate
28 absolute temperatures since those water bodies freeze after the temperature sinks below a
29 certain threshold and it is not possible to determine the temperatures beneath that threshold
30 (Pfister, 1999; Glaser, 2013). Similar are descriptions of frost damage to trees and winter
31 crops. Only temperatures lower than -30 °C lead to bursting banks or freezing winter rye in
32 the fields (Schubert, 2006).

1 More difficulties arise in reconstructing average or mild winter temperatures. For instance, the
2 appearance of drifting ice is not comparable to today's conditions because of extensive
3 changes in the river beds, the increasing inflow of wastewater or the construction of canals.
4 For milder temperatures the ice phenology cannot be taken into consideration. To a certain
5 extent plant phenology can offer valuable clues, but since there is no regular source of
6 information on the same plants this method also has its limitations.

7 The analysis of winter precipitation before instrumental measurement records is challenging.
8 The reason for this is that in the winter season precipitation often occurs as snowfall. It is
9 extremely difficult to deduce the water content of snowfall only from descriptions. A further
10 peculiarity of the contemporary descriptions is that in many cases the chroniclers do not
11 clearly distinguish between the duration of snowfall and the timespan during which the snow
12 cover did not melt, resulting in misinterpretations. In addition, floods are no clear indicator of
13 the amount of precipitation because several causes exist and some of them, like ice jam and
14 sudden snow melting, are linked to temperature (Wetter et al., 2011; Kiss, 2009). The
15 chroniclers pay less attention to dryness and drought in winter. These problems are the reason
16 why the winter precipitation index is less dense than the winter temperature index.

17 Concerning the climatic conditions during spring time, anomalies and extreme events are
18 again overrepresented in the sources when compared with records of average conditions (see
19 Fig. 5). In order to attribute a season to the index point of -3, it is necessary to have
20 contemporary records of long frost periods or even frozen water bodies that last until
21 springtime. Considerable deviations of plant phenology are also required. Some authors of
22 narrative texts provide recurrent information on the beginning of the growing season, which is
23 very useful for the reconstruction of all the degrees of the index scale.

24 Within the dataset no spring season can be assumed to be extremely wet (index point -3). This
25 is because in many cases only part of the spring season is described. For several years there is
26 information on one wet month but no information on the other two months so these years
27 cannot definitely be allotted an extreme index value.

28 The refined criteria of the summer temperature reconstruction refer mostly to plant
29 phenology. In particular, information on the growing of vines, grains or vegetables appears
30 repeatedly in the texts and is very useful. Considerable deviations in the average phenology of
31 those plants are necessary to obtain an index point of +3, +2, -2 or -3. In order to allocate a
32 summer season to the index points of -1, 0 or +1 descriptions without phenological deviations
33 were sufficient.

1 For the reconstruction of summer precipitation the refined criteria are mostly linked to
2 descriptions of damages that were caused by either dry or wet anomalies. Since a sufficient
3 but not excessive amount of precipitation during summer is crucial for the harvest in the Low
4 Countries, the medieval chroniclers paid much attention to it. This is also the reason why this
5 index is the best documented in terms of the precipitation reconstruction. A certain problem
6 derives from the fact that medieval authors often do not clearly distinguish between heat and
7 drought, and the terms are used synonymously.

8 The autumn reconstruction contains the most extended gaps (see Fig. 7). The sources are
9 silent, especially on the time after the vine harvest and the sowing of winter crops in
10 September and October. This is the reason why information on this season often remains
11 fragmentary and why it is very difficult to determine seasons that can be allocated to the index
12 points +3 and -3. In the autumn reconstruction the precipitation index is denser than the
13 temperature index because the sowing of winter crops was more vulnerable to precipitation
14 than to temperature.

15 Generally, gaps originating from a lack of sources cannot be filled with an average evaluation
16 for several reasons. Usually more than one record indicating the same tendency in the weather
17 conditions is necessary in order to give an index point. If there is contradictory information,
18 the contemporary records are decisive. There are few cases when no contemporary records are
19 available at all or some are plausible individually but contradictory as a whole. In such cases
20 an index point was not set. This procedure leads to a more reliable reconstruction.

21 Since the data are inhomogeneous and no proxy would appear continuously for the whole
22 century, there is no possibility of calibrating them with temperature or precipitation
23 measurement of later times. After 1500, approaches to calibrate and verify indices with
24 temperature and precipitation measurements exist (Dobrovolný et al., 2010; Dobrovolný et
25 al., 2014).

26

27 **5 Reconstruction**

28 The climate reconstruction comprises four indices for each season concerning temperature
29 and four indices concerning precipitation. The number of gaps in the indices varies and
30 depends as well on the source density as on the clear classification of the criteria defined for
31 every index.

1 **5.1 Winter**

2 The temperature index for the winter season is the most complete of the reconstruction (see
3 Fig. 4). Extremely cold (index point -3) and very cold (index point -2) temperatures are very
4 well documented. The descriptions of many of those winters are rich and numerous. The
5 winter of 1407/08 for instance was one of the coldest in the century and the best documented
6 season in the whole dataset. Many chroniclers emphasise that nobody could remember a
7 winter like this. Jean Brandon, a monk at Ten Duinen Abbey on the Flemish coast, described
8 this winter as dry and cold. Such low temperatures and chilly frost did not occur for a hundred
9 years, as the Flemish monk affirms in his text (Kervyn de Lettenhove, 1870):

10
11 “*1407 [...] Hoc anno [...] hyemps sicca et frigida, ita ut gelu asperum esset a principio
12 decembris usque in finem januarii, ut a C annis tantum frigus et tantum gelu non fuerit.*“

13
14 Thanks to the excellent source density, different phases of cold can be identified in the
15 weather conditions of these months. Around the feast of Saint Martin on 11 November 1407
16 (20 November converted into Gregorian calendar style) temperatures sank in widespread
17 areas, as is reported in texts from Liège, Paris, Cologne, Lübeck, Magdeburg and Dortmund
18 (Camenisch, 2015). Another cold front reached the Burgundian Low Countries some days
19 after the beginning of December (Gregorian calendar style – all following data are converted
20 into this style). Several water bodies froze after Christmas, such as the Seine, the Rhine and
21 the Meuse with its tributary stream, the Sambre. The ice cover was thick enough for people to
22 ride horses on it or drive loaded chariots from one river bank to the other (Camenisch, 2015).
23 Further away, Lake Zurich and Lake Constance were also frozen (Brunner, 2004).

24 At the end of January a few days with milder temperatures led to the breakup of the ice covers
25 on the rivers (around 6 January in Paris, for example). The drifting ice jammed the rivers in
26 Paris and Liège, flooding the river banks. According to most chroniclers the frost ended
27 around the beginning of February. The winter crops perished in Flanders because of the frost
28 (and the lack of protective snow cover). In Paris, vineyards and fruit trees were damaged by
29 the same frost. Moreover, people, cattle and birds fell victim to the extremely low
30 temperatures.

31 For more average winters (index points of -1, 0 or +1) fewer sources exist. During the
32 fifteenth century three clusters of very cold and extremely cold winters can be detected. The
33 clusters during the 1420s and during the 1460s are remarkable but that during the 1430s is

1 outstanding. This decade is one of the coldest of the whole millennium if not the coldest
2 (Lamb, 1982). In contrast are the extremely or very mild winters of the first half of the 1470s
3 and the beginning of the 1480s. Less is known about the winter seasons of the middle of the
4 century, especially the 1440s and 1450s because of the lack of contemporary sources.

5 Concerning precipitation the medieval authors remain rather silent in the first years of the
6 century. As a consequence there is a remarkable gap in the reconstruction from 1410 to 1417.
7 In addition, the second half of the 1430s, the last years of the 1440s and the 1450s in general
8 are difficult to assess for the same reasons.

9 Only one extremely dry (1447/48) and a few very dry winter seasons could be identified
10 during the fifteenth century. Three years with extremely wet seasons are known (1414/15,
11 1484/85, 1496/97). Accumulations of very wet and wet winter seasons can be observed in the
12 first decade of the century, at the beginning of the 1420s and 1430s and in the middle of the
13 1480s.

14 **5.2 Spring**

15 A cluster of cold anomalies (index points of -3 and -2) can be detected during the second half
16 of the 1420s, the 1430s and the last two decades of the century, similarly to the winter
17 reconstruction. Warm anomalies prevailed during the 1460s and 1470s. The years 1432, 1443,
18 1446, 1481 and 1492 are reported to be years with extremely low temperatures (index point -
19 3) whereas the spring season of the years 1420 and 1473 stood out for its extremely warm
20 temperatures (index point +3).

21 No spring season has been proved to be extremely wet (index point -3). Also, at the other end
22 of the scale, only the year 1424 was detected as an extremely dry spring season during the
23 fifteenth century. Very wet, wet, average, dry and very dry seasons are spread across the
24 century. Only the 1440s included two very dry spring seasons and in 1427 and 1428 very wet
25 spring seasons occurred.

26 **5.3 Summer**

27 The prevailing weather conditions of the summer seasons are better documented than those of
28 the spring seasons (see Fig. 6). This is owed to the preference of the medieval authors for
29 describing weather conditions during periods when a lot of agricultural work had to be done.
30 As a consequence fewer gaps exist in the two summer indices. Nonetheless, there is a lack of
31 information at the beginning of the century and during the 1450s. Apart from that, shorter

1 gaps are spread across the whole century. In 1406, 1428 and 1468 the weather conditions
2 were extremely cold whereas extremely warm summer seasons (index point -3) are reported
3 in the years 1466, 1471, 1473 and 1491. The year 1473 stands out by virtue of extremely high
4 temperatures, possibly topped only by the year 1540 (Wetter et al., 2014). A cluster of warm
5 anomalies at the beginning of the 1470s and clusters of cold anomalies during the 1480s and
6 at the beginning of the subsequent decade are also remarkable.

7 Extremely dry years (index point -3) were 1422, 1424, 1442, 1473 and 1492. Extremely wet
8 seasons (index point +3) were the summers in 1406, 1423, 1428, 1455, 1480 and 1491.
9 Obviously there were extremes on both sides of the scale during the 1420s. A cluster of dry
10 anomalies is documented during the 1450s, this rather unknown decade.

11 **5.4 Autumn**

12 The indices for autumn temperatures and precipitation are the least dense in the climate
13 reconstruction. Fewer seasons are allocated to both ends of the scale because in many cases
14 there is only information on part of the season. Consequently, 1468 is the only autumn season
15 with index point -3 in the temperature reconstruction whereas at the other end of the scale the
16 year 1487 fulfilled the criteria for the index point +3. During the 1480s there was an
17 accumulation of cold and very cold autumn seasons.

18 Extremely dry (index point -3) autumn seasons occurred in the years 1442 and 1473. The
19 years 1405, 1423, 1468, 1483 and 1491 can be awarded index point +3. Towards the end of
20 the century wet and very wet autumn seasons prevailed. However, in both indices there are
21 many gaps during the 1430s, 1450s and 1460s.

22

23 **6 Prevailing weather conditions of the fifteenth century**

24 The first decade of the fifteenth century was characterised by rather average temperatures
25 with the exception of the extremely cold winter seasons in 1399/1400 and 1407/08 and the
26 extremely cold summer of 1406. Also, with regard to precipitation, most years are within the
27 average, apart from autumn 1405 and summer 1406, which were extremely wet, the very wet
28 spring in 1404, summer in 1408 and winter in 1408/09 and the very dry seasons in winter
29 1403/04, autumn 1404 and spring 1409. There is not much information available for the
30 subsequent decade concerning temperatures and most known seasons were average. However,

1 in 1412 and 1413 there were very warm temperatures in the summer season and in 1416/17
2 the winter temperatures were reported as very cold. Regarding precipitation, the period from
3 autumn 1414 to spring 1415 needs to be mentioned for its above-average wet seasons. The
4 winter season of 1414/15 was also extremely wet.

5 A considerable number of very cold and one extremely cold (1422/23) winter seasons can be
6 identified in the 1420s. Very cold spring temperatures are reported for 1421 and 1427, as well
7 as a very cold summer in 1428. In 1420 there was an extremely warm summer whereas very
8 warm and mild temperatures occurred in winter 1420/21 and summer 1422 and 1424.

9 The 1430s were an outstanding decade during the fifteenth century. The major part of the
10 winter seasons was extremely cold or at least very cold and a considerable number of spring
11 seasons had the same characteristics. This remarkable temperature cluster together with other
12 cold periods in the fifteenth century is responsible for the chosen title ‘endless cold’. Horace
13 Hubert Lamb suggested with regard to the winter temperatures that the 1430s and the 1690s
14 constitute the coldest episodes of the last millennium (Lamb, 1982). The most recent research
15 even associates this decade with an early phase of the Spörer Minimum (Camenisch et al.,
16 2014). There is less information about summer temperatures because they were not as
17 remarkable as the winter and spring temperatures. However, in 1432 there was a very warm
18 summer and in 1436 and 1438 the summer temperatures were very cold. In the same decade a
19 number of above-average wet seasons occurred such as winter 1430/31, winter 1434/35,
20 summer 1432 and summer 1438.

21 During the 1440s, there were three extremely cold seasons in winter 1442/43, in the
22 subsequent spring 1443, in spring 1446 and in addition one very cold season in autumn 1444.
23 Only in summer 1442 were temperatures very warm. The decade was characterised by rather
24 dry weather conditions in the Burgundian Low Countries, especially in 1442, 1447 and 1448.
25 There are fewer sources available which describe the 1450s. However, there is a remarkable
26 cluster of above-average wet summer seasons from 1453 until 1456. There is more
27 information on the subsequent decade. Winter 1461/62 was extremely cold and very dry; in
28 1465 there was a second extremely cold winter. In the following year temperatures in summer
29 were extremely warm and it was very dry until autumn. Moreover, in 1468 occurred an
30 extremely cold and wet summer followed by an autumn with the same weather conditions.

31 The 1470s are a decade with warm anomalies in the summer season. Weather conditions were
32 predominantly dry and warm in the years from 1471 to 1473 and again in 1479. At the very

beginning of the decade there was an extremely cold winter followed by a very cold spring. Also from winter 1476/77 to spring 1477 and in winter 1477/78 below-average temperatures prevailed. During the last two years of the decade, there was again a tendency to warm spells. At the beginning and at the end of the 1480s remarkable cold and wet weather conditions need to be mentioned. In particular the period from summer 1480 to summer 1481 was outstanding because of an above-average amount of precipitation and considerably low temperatures. In contrast, the winter of 1483 experienced extremely mild temperatures. The below-average temperatures of 1488 returned again in 1491 when almost the whole year was characterised by extremely cold weather conditions. With regard to precipitation the wet anomalies in summer 1491 and winter 1496/97 need to be mentioned as well as the drought in summer 1492.

7 Discussion

Comparison of the indices presented herein with a number of other reconstructions was made. The winter (NDJFM) and summer (MJJAS) temperature indices by Aryan van Engelen and Jan Buisman (Shabalova and van Engelen, 2003; van Engelen et al., 2001) for the Netherlands are based on documentary evidence and are the closest reconstruction regarding methods (nine-degree indices) and geographical coverage. Nonetheless, there are differences because the winter (DJF) and summer (JJA) temperature indices presented in this paper and the van Engelen indices do not cover exactly the same months and the van Engelen indices have considerably fewer gaps, especially in summer. However, the Pearson correlation coefficients are remarkably high. In relation to the winter temperatures a coefficient of -0.893 (N=81; Sig. < 0.01, the van Engelen indices equate to the winter indices presented here) and as regards the summer temperatures a coefficient of 0.783 (N=50; Sig. < 0.01) shows the close relation between the two reconstructions. The relation between the van Engelen summer temperature index and the presented summer precipitation index (Corr. 0.792; N=60; Sig. < 0.01), spring temperature index (Corr. 0.465; N=46; Sig. < 0.01), and spring precipitation index (Corr. 0.585; N=31; Sig. < 0.01) is also remarkably close.

Laurent Litzenburger (2015) has recently presented a further climate reconstruction from Metz (Lorraine, France) based on documentary data and containing seasonal temperature and precipitation indices. A comparison of the two reconstructions shows remarkable similarities. The summer temperatures (Corr. 0.844; N=40; Sig. < 0.01) and autumn precipitation (Corr. 0.708; N=31; Sig. < 0.01) are very close. Also rather similar are winter temperatures (Corr.

1 0.658; N=70; Sig. < 0.01), spring temperatures (Corr. 0.671; N=41; Sig. < 0.01) and
2 precipitation (Corr. 0.609; N=27; Sig. < 0.01) as well as summer precipitation (Corr. 0.641;
3 N=48; Sig. < 0.01), though N is rather low in some parts of the analyses. The comparison of
4 the annual temperature (obtained by summing the seasonal indices as Christian Pfister and
5 Rudolf Brázdil (1999) suggest) and precipitation series show even higher correlations (see
6 Figure 8). The most obvious difference occurs during the 1450s when the indices presented
7 here are much closer to the average than Litzenburger's. This is because the former indices
8 have many gaps in this decade, producing a rather average and misleading result regarding the
9 summed indices for the whole year.

10 Comparison with the indices presented by Rüdiger Glaser and Dirk Riemann (2009) shows
11 weaker correlations. The closest relations exist between the summer temperature indices
12 (Corr. 0.494; N=50; Sig. < 0.01), the spring temperature indices (Corr. 0.415; N=47; Sig. <
13 0.01) and the winter temperature indices (Corr. 0.393; N=82; Sig. < 0.01). The reason for this
14 is probably the greater distance between the two researched areas and the different scales of
15 the indices because Glaser applies a three-degree scale for the fifteenth century.

16 Furthermore, the indices presented here were compared with the grape harvest dates and
17 spring-summer reconstruction for Burgundy presented by Chuine and colleagues (2004).
18 Also, in this case the results show a strong relation between Chuine et al.'s data and the
19 indices presented here. The grape harvest dates are sensitive to spring and summer
20 temperatures. The highest Pearson correlation coefficients were obtained in comparison with
21 these indices (spring temperatures: Corr. 0.521; N=47; Sig. < 0.01 and summer temperatures:
22 Corr. 0.637; N=50; Sig. < 0.01). Obviously, the summer precipitation index is also rather
23 similar (Corr. 0.548; N=60; Sig. < 0.01). In addition, a certain relation, albeit with a weaker
24 level of significance, is established between the grape harvest dates and the spring
25 precipitation (Corr. 0.435; N=32; Sig. < 0.05) and the autumn precipitation (Corr. 0.348;
26 N=39; Sig. < 0.05). The results of the comparison with Chuine et al.'s data are very important
27 as these data were obtained from completely independent methods and sources. The
28 Litzenburger, van Engelen and Glaser indices were also produced independently but the
29 applied method and a number of sources are very similar to the indices presented here.

30 Comparison between the indices and the reconstruction by Büntgen et al. (2011) shows only
31 weak similarities. The considerable distance between the two researched areas and the
32 completely different methods are probably the reason for this.

1

2 **8 Conclusion**

3 This paper gives an overview of seasonal temperature and precipitation during the fifteenth
4 century. The reconstruction contains eight climate indices (separate indices on temperature
5 and precipitation for every season) based on documentary evidence. The main body of the
6 data set consists of narrative sources such as chronicles, annals, memoirs or journals and
7 administrative sources such as accounts. These sources have an individual or institutional
8 background. The sources contain either direct data or indirect data (proxy data that can be
9 converted into climate indices). The basis of the indices is a seven-degree scale starting with -
10 3 for extremely cold or extremely dry conditions and going up to +3 for extremely warm or
11 extremely wet conditions. A catalogue of criteria was defined for every index point in order to
12 evaluate as many seasons as possible. The indices for winter temperatures, summer
13 temperatures and summer precipitation are the most complete. During the fifteenth century a
14 number of outstanding weather patterns can be detected. Therefore, more attention should be
15 paid to the climate of this century, as before. Most remarkable are a cluster of extremely cold
16 winter temperatures during the 1430s – which was the reason for the first part of the title – as
17 well as an extremely cold winter in 1407/08. This cluster of cold winters has been
18 underestimated in recent research. A number of dry and hot spells occurred; amongst them the
19 year 1473 was unique because of the extent and duration of the heat and the lack of
20 precipitation. Extremely wet weather conditions especially in summer were prevalent at the
21 beginning and the end of the 1480s and at the beginning of the 1490s. Comparison with Dutch
22 and French reconstructions shows very satisfactory results.

23 The climate indices in Appendix A will provide the basis for further research with regard to
24 climate impacts on human society.

25

26

27 **Appendix A: Climate indices**

year	winter		spring		summer		autumn	
	temp.	prec.	temp.	prec.	temp.	prec.	temp.	prec.
1400	-3	1						
1401	-1	1						

year	winter		spring		summer		autumn	
	temp.	prec.	temp.	prec.	temp.	prec.	temp.	prec.
1402	1	1	1	-1				
1403								
1404	1	-2	-2	2	1	-1	1	-2
1405	-1					1		3
1406	0	1	0		-3	3		1
1407	1	1			1	-1	1	-1
1408	-3	1	1		0	2	1	-1
1409	2	2	0	-2		-1		
1410								
1411								
1412		1			2	-2		
1413					2	-1		-2
1414						-2		2
1415	1	3		2	0			
1416						1		
1417	-2				1	-2		
1418	-1		0	0	1			
1419					-1	0	-1	1
1420	-2	1	3		1	-1		
1421	2	1	-2				0	
1422	-1	1	0		2	-3		1
1423	-3		1			3	1	3
1424	-2			-3	2	-3		1
1425	2	1						
1426	-2							
1427	-2		-2	2	0	0	-1	
1428	0		-1	2	-3	3		
1429	0							2
1430	1	1	-2		1			

year	winter		spring		summer		autumn	
	temp.	prec.	temp.	prec.	temp.	prec.	temp.	prec.
1431	0	2					-1	-1
1432	-3	1	-3	1	2	2	-1	
1433	-3	0	-2					
1434	-2		0	-1				
1435	-3	2	-2		0			
1436	0	1			-2	1		
1437	-3		-1					1
1438	-2				-2	2		
1439	1	2				0	-1	-1
1440							1	
1441	0							
1442	-1			-2	2	-3		-3
1443	-3	1	-3		1	0		1
1444	0		-1	-1			-2	1
1445	0		-1			2		
1446			-3	1			-1	
1447	-1			-2	1	-2	1	-1
1448	0	-3						
1449								
1450	1	-1					-2	
1451	0				-1	1	1	
1452	0	1						
1453	0				-1	2		
1454	0			1		2		
1455						3		
1456						2		
1457	-1	1						1
1458	-3	1		-1		-2		-2
1459	0			1		-1		

year	winter		spring		summer		autumn	
	temp.	prec.	temp.	prec.	temp.	prec.	temp.	prec.
1460	-2		-2					
1461						-2		
1462	-3	-2	-1	-1				
1463	-1							
1464					1	-2		
1465	-3				-1	0	-2	1
1466	-1		1	0	3	-2	1	-2
1467	0	2	-1	2	0	2		2
1468	0	0			-3	2	-3	3
1469	1	1	2					
1470	-3		-2			2		
1471	2		2		3	-2		-1
1472	1	-1			2			
1473	1	1	3	-1	3	-3	2	-3
1474	2							
1475	0	1	1	-1		1		1
1476	-2		-2	1	1			1
1477	-2					1	-1	
1478	2				1			
1479			2	0	2	-2		
1480			-1		-2	3		2
1481	-3		-3	1	-2	2	1	-1
1482	0		0	0				
1483	3	-1	0			1		3
1484	0	1	-1		-1	1	-2	
1485	1	3	0		-2	2	-1	2
1486	0	2					0	0
1487	0						3	
1488	0		-2	1	-2		-2	

year	winter		spring		summer		autumn	
	temp.	prec.	temp.	prec.	temp.	prec.	temp.	prec.
1489			0	-1	-1	2		2
1490	2	1	1	-1	2	-1		
1491	-3		-3		-3	3	-1	3
1492	-2			-1	2	-3		1
1493	0	0	-2		0	0		2
1494	0					1	0	
1495	1	1	0		0		1	
1496	-2		-2	2	1			
1497	1	3			-1	1	2	1
1498	-1		2	-2	2	-2	1	0
1499	-1					1		

1

2 Acknowledgements

3 Acknowledgements are due to the Swiss National Foundation, the Historical Institute of the
 4 University of Bern and the Oeschger Centre for Climatic Change Research for funding
 5 support. Heli Huhtamaa, Oliver Wetter, and Christian Pfister (University of Bern) are thanked
 6 for their advice. Many thanks to Marco Zanoli for providing the map of the Burgundian Low
 7 Countries and to Laurent Litzenburger for figure 8.

8

1 **References**

2 Aberth, J.: *An environmental history of the Middle Ages. The crucible of nature*, Routledge,
3 London, 2013.

4 Alexandre, P.: *Le climat en Europe au Moyen Âge. Contribution à l'histoire des variations*
5 *climatiques de 1000 à 1425, d'après les sources narratives de l'Europe occidentale*,
6 *Recherches d'histoire et de sciences sociales*, 24, Éditions de l'École des Hautes Études en
7 *Sciences Sociales*, Paris, 1987.

8 Allen, R. C.: *Economic structure and agricultural productivity in Europe. 1300-1800*, Eur.
9 *Rev. Econ. Hist.*, 3, 1–25, doi: 10.1017/S1361491600000125, 2000.

10 Balau, S. (ed.): *Jean de Stavelot, Chronique latine, Chroniques Liégeoises*, 1, *Collection de*
11 *chroniques belges inédites et de documents inédits relatifs à l'histoire de la Belgique* 40,
12 Brussels, 67–143, 1913 (in Latin).

13 Behringer, W.: *A cultural history of climate*, Polity Press, Cambridge, 2010.

14 Blockmans, W. P. and Prevenier, W.: *The promised lands. The Low Countries under*
15 *Burgundian rule 1369-1530*, University of Pennsylvania Press, Philadelphia, 1999.

16 Borgnet, A. (ed.): *Chroniques de Jean de Stavelot*, *Collection de Chroniques Belges*, 1,
17 Hayez, Brussels, 1861 (in French).

18 Borst, A.: *Computus. Zeit und Zahl in der Geschichte Europas*, 3rd edition, Wagenbach,
19 Berlin, 2004.

20 Brázdil, R. and Kotyza, O.: *History of weather and climate in the Czech Lands*, Vol. 1: *Period*
21 *1000-1500*, Zürcher Geographische Schriften, 62, Geographisches Institut ETH, Zurich, 1995.

22 Brázdil, R., Kotyza, O., Dobrovolný, P., Řezníčková, L., and Valášek, H.: *Climate of the*
23 *sixteenth century in the Czech Lands*, Masaryk University, Brno, 2013.

24 Brázdil, R., Pfister, C., Wanner, H., von Storch, H., and Luterbacher, J.: *Historical*
25 *climatology in Europe – The state of the art*, *Climatic Change*, 70, 363–430, doi:
26 10.1007/s10584-005-5924-1, 2005.

27 Britton, C. E.: *A meteorological chronology to A.D. 1450*, Great Britain Meteorological
28 Office, *Geophysical Memoirs*, 70, His Majesty's Stationery Office, London, 1937.

1 Brooke, J. L.: Climate change and the course of global history. A rough journey, Cambridge
2 University Press, New York, 2014.

3 Brunner, K.: Die Seegfrörnen des Bodensees. Eine Dokumentation in Bilddarstellungen,
4 Schriften des Vereins für Geschichte des Bodensees und seiner Umgebung, 122, 71–84, 2004.

5 Buisman, J.: Duizend jaar weer, wind en water in de Lage Landen, 1 (1000-1300), ed. by van
6 Engelen, A. F. V., Van Wijnen, Franeker, 1995.

7 Buisman, J.: Duizend jaar weer, wind en water in de Lage Landen, 2 (1300-1450), ed. by van
8 Engelen, A. F. V., Van Wijnen, Franeker, Netherlands, 1996.

9 Buisman, J.: Duizend jaar weer, wind en water in de Lage Landen, 3 (1450-1575), ed. by van
10 Engelen, A. F. V., Van Wijnen, Franeker, Netherlands, 1998.

11 Buisman, J.: Duizend jaar weer, wind en water in de Lage Landen, 4 (1575-1675), ed. by van
12 Engelen, A. F. V., Van Wijnen, Franeker, Netherlands, 2000.

13 Buisman, J.: Duizend jaar weer, wind en water in de Lage Landen, 5 (1675-1750), ed. by van
14 Engelen, A. F. V., Van Wijnen, Franeker, Netherlands, 2006.

15 Buisman, J.: Extreem weer! Een canon van weergaloze winters & zinderende zomers, hagel &
16 hozzen, stormen & watersnoden, Van Wijnen, Franeker, Netherlands, 2011.

17 Buisman, J.: Duizend jaar weer, wind en water in de Lage Landen, 5 (1750-1800), ed. by van
18 Engelen, A. F. V., Van Wijnen, Franeker, Netherlands, 2015 (in Dutch).

19 Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J. O.,
20 Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J., and Esper, J.: 2500 years of
21 European climate variability and human susceptibility, Science, 331, 578–583, doi:
22 10.1126/science.1197175, 2011.

23 van Caenegem, R. C.: Introduction aux sources de l'histoire médiéval. Typologie, histoire de
24 l'érudition médiévale, grandes collections, sciences auxiliaires, bibliographie, Brepols,
25 Turnhout, Belgium, 1997.

26 Calmette, J.: Die grossen Herzöge von Burgund, Diederichs, München, 1996 (Original:
27 Grands ducs de Bourgogne, Albin Michel, Paris, 1949).

1 Camenisch, C.: Endlose Kälte. Witterungsverlauf und Getreidepreise in den burgundischen
2 Niederlanden im 15. Jahrhundert, Wirtschafts-, Sozial- und Umweltgeschichte, 5, Schwabe,
3 Basel, 2015 (in German).

4 Camenisch, C., Keller, K. and Salvisberg, M.: The Coldest Decade of the Millennium? The
5 Spörer Minimum, the Climate during the 1430s, and its Economic, Social and Cultural
6 Impact, 04.12.2014 – 05.12.2014 Bern, in: H-Soz-Kult, 11.07.2014,
7 <http://www.hsozkult.de/event/id/termine-25424> (08 June 2015).

8 Cardauns, H.; Hegel, K.; Schröder, K. G. T. and Birlinger, A. (ed.): Chronica van der hilliger
9 stat von Coellen bis 1499, zweite Hälfte, Die Chroniken der niederrheinischen Städte. Cöln, 3,
10 Die Chroniken der Deutschen Städte, 14, S. Hirzel, Leipzig, 1877 (in German).

11 Chuine, I., P. Yiou, N. Viovy, B. Seguin, V. Daux, and E. Le Roy Ladurie, Grape ripening as
12 a past climate indicator, *Nature*, 432, 289–290, doi:10.1038/432289a, 2004.

13 De Jonghe, J. A. (ed.): Cronijcke van den Lande ende Graefscepe van Vlaenderen van de
14 jaeren 405 tot 1492, 4, Hebbelynck, Rotterdam, 1840 (in Dutch).

15 De Kraker, A. M. J.: Reconstruction of storm frequency in the North Sea Area of the
16 Preindustrial Period, 1400-1625 and the connection with reconstructed time series of
17 temperatures, *History of Meteorology*, 2, 51–69, 2005.

18 De Kraker, A. M. J.: Storminess in the Low Countries, 1390–1725, *Environment and History*,
19 19, 149–171, doi: 10.3197/096734013X13642082568570, 2013.

20 De Voogd, C.: *Histoire des Pays-Bas. Des origines à nos jours*, Fayard, Paris, 2003.

21 Dobrovolný, P., Moberg, A., Brázdil, R. Pfister, C., Glaser, R., Wilson, R., van Engelen, A.,
22 Limanówka, D., Kiss, A., Haličková, M., Macková, J., Riemann, D., Luterbacher, J., and
23 Böhm, R.: Monthly, seasonal and annual temperature reconstructions for Central Europe
24 derived from documentary evidence and instrumental records since AD 1500, *Climatic
Change*, 101, 69–107, doi: 10.1007/s10584-009-9724-x, 2010.

26 Dobrovolný, P., Brázdil, R., Trnka, M., Kotyza, O., and Valášek, H.: Precipitation
27 reconstruction for the Czech Lands, AD 1501-2010, *Int. J. Climatol.*, 35, 1–14, doi:
28 10.1002/joc.3957, 2014.

29 Dussart, H. (ed.): *Fragments inédits de Romboudt de Doppere. Chronique brugeoise de 1491
30 à 1498*, De Plancke, Bruges, 1892 (in Latin).

1 Easton, C.: Les hivers dans l'Europe occidentale. Étude statistique et historique sur leur
2 température, Discussion des observations thermométriques 1852-1916 et 1757-1851, tableaux
3 comparatifs, classification des hivers 1205-1916, notices historiques sur les hivers
4 remarquables, bibliographie, E. J. Brill, Leiden, 1928.

5 Erbe, M.: Belgien, Niederlande, Luxemburg. Geschichte des niederländischen Raumes,
6 Kohlhammer, Stuttgart, 1993.

7 Fris, V. (ed.): Dagboek van Ghent van 1447 tot 1470 met een vervolg van 1477 tot 1515, 2,
8 Maatschappij der Vlaamsche Bibliophilen, 4. Serie, 12, C. Annoot-Braeckman, Gent, 1904 (in
9 Dutch).

10 Geary, P.: Chronicles, annals, and other forms of memoria, in: Chronicon. Medieval narrative
11 sources. A chronological guide with introductory essays, ed. by Bak, J. M. and Jurković, I.,
12 Brepols essays in European culture, 5, Brepols, Turnhout, Belgium, 13–23, 2013.

13 Glaser, R.: Klimgeschichte Mitteleuropas. 1200 Jahre Wetter, Klima, Katastrophen: Mit
14 Prognosen für das 21. Jahrhundert, 3rd edition, Primus, Darmstadt, 2013.

15 Glaser, R. and Riemann, D.: A thousand-year record of temperature variations for Germany
16 and Central Europe based on documentary data, Journal of Quaternary Science, 24, 5, 437–
17 449, doi: 10.1002/jqs.1302, 2009

18 Gottschalk, M. K. E.: Stormvloeden en rivieroverstromingen in Nederland – Storm surges and
19 river floods in the Netherlands, 2 (De periode 1400-1600 – the periode 1400-1600), Van
20 Gorcum, Assen, Netherlands, 1975.

21 Grotefend, H.: Taschenbuch der Zeitrechnung des deutschen Mittelalters und der Neuzeit, 13th
22 edition, Hahnsche Buchhandlung, Hannover, 1991.

23 Hennig, R.: Katalog bemerkenswerter Witterungereignisse von den ältesten Zeiten bis zum
24 Jahre 1800, Abhandlungen des Königlichen Preussischen Meteorologischen Instituts, 2, 4, A,
25 Asher & Co., Berlin, 1904.

26 Hoffmann, R. C.: An environmental history of Medieval Europe, Cambridge Medieval
27 Textbooks, Cambridge University Press, Cambridge, 2014.

28 Ingram, M. J., Underhill, D. J., and Farmer, G.: The use of documentary sources for the study
29 of past climates, in: Climate and history. Studies in past climates and their impact on man, ed.

1 by Wigley, T. M. L., Ingram, M. J., and Farmer, G., Cambridge University Press, Cambridge,
2 180–213, 1981.

3 Jappe Alberts, W. (ed.): *De Stadsrekeningen van Arnhem, 1 (1353-1377)*, J. B. Wolters,
4 Groningen, 1967 (in Dutch).

5 Jappe Alberts, W. (ed.): *De Stadsrekeningen van Arnhem, 2 (1377-1401)*, Wolters-Noordhoff,
6 Groningen, 1969 (in Dutch).

7 Jappe Alberts, W. (ed.): *De Stadsrekeningen van Arnhem, 3 (1402-1420)*, Wolters-Noordhoff,
8 Groningen, 1967 (in Dutch).

9 Jappe Alberts, W. (ed.): *De Stadsrekeningen van Arnhem, 4 (1420-1427)*, Wolters-Noordhoff,
10 Groningen, 1967 (in Dutch).

11 Jappe Alberts, W. (ed.): *De Stadsrekeningen van Arnhem, 5 (1428-1432)*, Gemeentearchief
12 Arnhem, Arnhem, 1967 (in Dutch). Kervyn de Lettenhove, J. M. B. C. (ed.): *Chronique de
13 Jean Brandon avec les additions d'Adrien de But*, in: *Chroniques des religieux des Dunes*,
14 Jean Brandon – Gilles de Roye – Adrien de But, *Chroniques relatives à l'histoire de la
15 Belgique sous la domination des ducs de Bourgogne, 1*, Hayez, Brussels, 1–166, 1870.

16 Kington, J.: *Climate and weather*, The New Naturalist Library, 115, Collins, HarperCollins,
17 London, 2010.

18 Kiss, A.: Floods and weather in 1342 and 1343 in the Carpathian Basin, *Journal of
19 Environmental Geography*, 2, 37–47, 2009.

20 Kronk, G.: *A catalog of comets, 1 (Ancient-1799)*, Cambridge University Press, Cambridge,
21 1999.

22 Kuys, J.; de Leeuw, L.; Paquay, V. and van Schaïk, R. (ed.): *De Tielse kroniek. Een
23 geschiedenis van de Lage Landen van de Volksverhuizingen tot het midden van de vijftiende
24 eeuw, met een vervolg over de jaren 1552-1566*, Uitgeverij Verloren, Amsterdam, 1983 (in
25 Dutch).

26 Lamb, H. H.: *Climate. Present, past and future, 2 (Climatic history and the future)*, Methuen
27 & Co. Ltd, London, 1977.

28 Lamb, H. H.: *Climate, history and the Modern world*, Methuen & Co. Ltd, London, 1982.

1 Lambert, V.: *Chronicles of Flanders 1200-1500*. Chronicles written independently from
2 «Flandria Generosa», *Verhandelingen der Maatschappij voor Geschiedenis en*
3 *Oudenheidkunde*, 19, *Maatschappij voor Geschiedenis en Oudheidkunde te Gent*, Gent, 1993.

4 Lamprecht, K.; Franck, J.; Nörrenberg, C.; Ulrich, A.; Jostes, F. and Ilgen, T. (ed.): *Die*
5 *Duisburger Chronik des Johann Wassenberch von 1474-1517*, *Die Chroniken der*
6 *westfälischen und niederrheinischen Städte*. Soest und Duisburg, 3, *Die Chroniken der*
7 *Deutschen Städte*, 20, S. Hirzel, Leipzig, 177–261, 1895 (in German).

8 Le Roy Ladurie, E.: *Times of feast, times of famine. A history of climate since the Year 1000*,
9 Allen & Unwin, London, 1972 (Original: *Histoire du climat depuis l'an mil*, Flammarion,
10 Paris, 1967).

11 Le Roy Ladurie, E.: *Canicules et glaciers (XIII^e-XVIII^e siècles)*, *Histoire humaine et*
12 *comparée du climat*, 1, Fayard, Paris, 2004.

13 Litzenburger, L.: *Une ville face au climat : Metz à la fin du Moyen Âge. 1400-1530*, PUN –
14 Editions Universitaires de Lorraine, Nancy, 2015 (in French).

15 Mauelshagen, F.: *Klimgeschichte der Neuzeit. 1500-1900*, Wissenschaftliche
16 Buchgesellschaft, Darmstadt, 2010.

17 Ogilvie, A. and Farmer, G.: Documenting the Medieval climate, in: *Climates of the British*
18 *Isles. Present, past, future*, ed. by Hulme, M. and Barrow, E., Routledge, London, New York,
19 112–133, 1997.

20 Pfister, C.: *Das Klima der Schweiz von 1525-1860 und seine Bedeutung in der Geschichte*
21 *von Bevölkerung und Landwirtschaft*, Vol. 1: *Klimgeschichte der Schweiz, 1525-1860*,
22 *Academica helvetica*, 6, Haupt, Bern, 1984.

23 Pfister, C.: *Une rétrospective météorologique de l'Europe. Un système de reconstitution de*
24 *l'évolution du temps et du climat en Europe depuis le Moyen Âge central*, *Histoire & Mesure*,
25 3, 3, 313–358, 1988.

26 Pfister, C.: *Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen*, Paul
27 Haupt, Bern, 1999.

28 Pfister, C.: *Balancing between reconstructing past climate and human dimension of*
29 *destructive weather. The crux and challenge of historical climatology*, in: *An environmental*

1 history of the Early Modern Period. Experiments and perspectives, ed. by Knoll, M. and
2 Reith, R., LIT Verlag, Vienna, 5–10, 2014.

3 Pfister, C. and Brázdil, R.: Climatic variability in sixteenth-century Europe and its social
4 dimension. A synthesis, *Climatic Change*, 43, 5–53, doi: 10.1023/A:1005585931899, 1999.

5 Pfister, C., Brázdil, R., Glaser, R., Barriendos, M., Camuffo, D., Deutsch, M., Dobrovolný, P.,
6 Enzi, S., Guidoboni, E., Kotyza, O., Militzer, S., Racz, L., and Rodrigo, F. S.: Documentary
7 evidence on climate in the sixteenth century Europe, *Climatic Change*, 43, 55–110, doi:
8 10.1007/978-94-015-9259-8_3, 1999.

9 Pfister, C., Luterbacher, J., Wanner, H., Wheeler, D., Brázdil, R., Ge, Q., Hao, Z., Moberg,
10 A., Grab, S., and del Prieto, M.: Documentary Evidence as Climate Proxie. Proxy-specific
11 white paper produced from the PAGES/CLIVAR workshop, Trieste, June 2008, in: PAGES
12 (Past Global Changes), Bern 2009. www.hist.unibe.ch/content/e267/e325/e8321/19_Pfister-al-Documentary-White_Paper_09_ger.pdf (08 June 2014).

14 Prevenier, W. and Blockmans, W. P.: *The Burgundian Netherlands*, Cambridge University
15 Press, Cambridge, 1986.

16 Pribyl, K., Cornes, R. C., and Pfister, C.: Reconstructing medieval April-July mean
17 temperatures in East Anglia, 1256–1431, *Climatic Change*, 113, 393–412, doi:
18 10.1007/s10584-011-0327-y, 2012.

19 Reuss, M.: Introduction to the special issue on water, management, communities, and
20 environment, *Jaarboek voor Ecologische Geschiedenis*, 10, 1–7, 2005/06.

21 Rohr, C.: *Extreme Naturereignisse im Ostalpenraum. Naturerfahrung im Spätmittelalter und*
22 *am Beginn der Neuzeit*, *Umwelthistorische Forschungen*, 4, Böhlau, Köln, 2007.

23 Rohr, C.: Macht der Sterne, Allmacht Gottes oder Laune der Natur? Astrologische
24 Expertendiskurse über Krisen und Naturrisiken im späten Mittelalter und am Beginn der
25 Neuzeit, in: *Krisengeschichte(n). „Krise“ als Leitbegriff und Erzählmuster in*
26 *kulturwissenschaftlicher Perspektive*, ed. by Meyer, C., Patzel-Mattern, K., Schenk, G. J.,
27 *Vierteljahrschrift für Sozial- und Wirtschaftsgeschichte*, Beihefte, 210, Stuttgart, 361–385,
28 2013.

29 Schmid, R.: *Geschichte im Dienst der Stadt. Amtliche Historie und Politik im Spätmittelalter*,
30 *Chronos*, Zürich, 2009.

1 Schmid, R.: Town chronicles, Encyclopedia of the Medieval chronicle, ed. by Dunphy, G.,
2 Brill, Leiden, vol. 2, 1432–1438, 2012.

3 Schnerb, B.: L’État bourguignon 1363-1477, Perrin, Paris, 1999.

4 Schroeter, J. F. W.: Sonnenfinsternisse von 600 bis 1800 n. Chr. Spezieller Kanon der
5 zentralen Sonnen- und Mondfinsternisse, welche innerhalb des Zeitraumes von 600 bis 1800
6 n. Chr. in Europa sichtbar waren, Jacob Dybwad, Oslo (Kristiania), 1923.

7 Schubert, E.: Essen und Trinken im Mittelalter, Primus, Darmstadt, 2006.

8 Schwarz-Zanetti, G.: Grundzüge der Klima- und Umweltgeschichte des Hoch- und
9 Spätmittelalters in Mitteleuropa, Ph.D. thesis, University of Zurich, Zurich, 1998.

10 Shabalova, M. V. and van Engelen, A. F. V.: Evaluation of a reconstruction of winter and
11 summer temperatures in the Low Countries, AD 764-1998, Climatic Change, 58, 219–242,
12 doi: 10.1023/A:1023474032539, 2003.

13 Van Bavel, B.: Manors and markets. Economy and society in the Low Countries 500-1600.
14 Oxford University Press, Oxford, 2010.

15 Vanderlinden, É.: Chronique des événements météorologiques en Belgique jusqu’en 1834,
16 L’Académie Royale de Belgique, Deuxième série, 6, Maurice Lamertin, Brussels, 1924.

17 Van Engelen, A. F. V., Buisman, J., and IJnsen, F.: A millennium of weather, winds and
18 water in the Low Countries, in: History and climate: Memories of the future?, ed. by Jones, P.
19 D., Ogilvie, A. E. J., Davies, T. D. and Briffa, K. R., Kluwer Academic, New York, 2001,
20 doi: 10.1007/978-1-4757-3365-5_6, 101–123.

21 Weikinn, C.: Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahr
22 1850, Hydrographie 1: Zeitwende-1500, Quellensammlung zur Hydrographie und
23 Meteorologie, 1, Borntraeger, Berlin, 1958.

24 Wegmann, M.: Naturwahrnehmung im Mittelalter im Spiegel der lateinischen Historiographie
25 des 12. und 13. Jahrhunderts, Lateinische Sprache und Literatur des Mittelalters, 40, Peter
26 Lang, Bern, 2005.

27 Wetter, O., Pfister, C., Weingartner, R., Luterbacher, J., Reist, T., and Trösch, J.: The largest
28 floods in the high Rhine Basin since 1268 assessed from documentary and instrumental
29 evidence, Hydrolog. Sci. J., 56/5, 733–758, doi: 10.1080/02626667.2011.583613, 2011.

1 Wetter, O. and Pfister, C.: Spring-summer temperatures reconstructed for northern
2 Switzerland and southwestern Germany from winter rye harvest dates, 1454-1970, *Clim.*
3 *Past.*, 7, 1307–1326, doi:10.5194/cp-7-1307-2011, 2011.

4 Wetter, O., Pfister, C., Werner, J. P., Zorita, E., Wagner, S., Seneviratne, S. I., Herget, J.
5 Grünwald, U., Luterbacher, J., Alcoforado, M.-J., Barriendos, M., Bieber, U., Brázil, R.,
6 Burmeister, K. H., Camenisch, C., Contino, A., Dobrovolný, P., Glaser, R., Himmelsbach, I.,
7 Kiss, A., Kotyza, O., Labbé, T., Limanówka, D., Litzenburger, L., Nordli, Pribyl, K., Retsö,
8 D., Riemann, D., Rohr, C., Siegfried, W., Söderberg, J., and Spring, J.-L.: The year-long
9 unprecedented European heat and drought of 1540 – a worst case, *Climatic Change*, 125,
10 349–363, doi: 10.1007/s10584-014-1184-2, 2014.

11

1 Table 1. Classification of documentary sources (Pfister et al., 2009; Camenisch, 2015)

	Institutional sources	Individual sources
Narrative sources	-Annals	-Chronicles -Memoirs -Journals -Letters -Weather diaries - Travel reports
Administrative sources	-Monastic accounts -Town accounts -Toll accounts -Charters	-Accounts of private households

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

10

1 Table 2. Scale of the climate indices (Pfister, 1999).

Temperature indices	Index point	Precipitation indices
Extremely warm	3	Extremely wet
Very warm	2	Very wet
Warm	1	Wet
Normal	0	Normal
Cold	-1	Dry
Very cold	-2	Very dry
Extremely cold	-3	Extremely dry

2

3

4

5

6

7

8

9

10

11

12

13

14

15

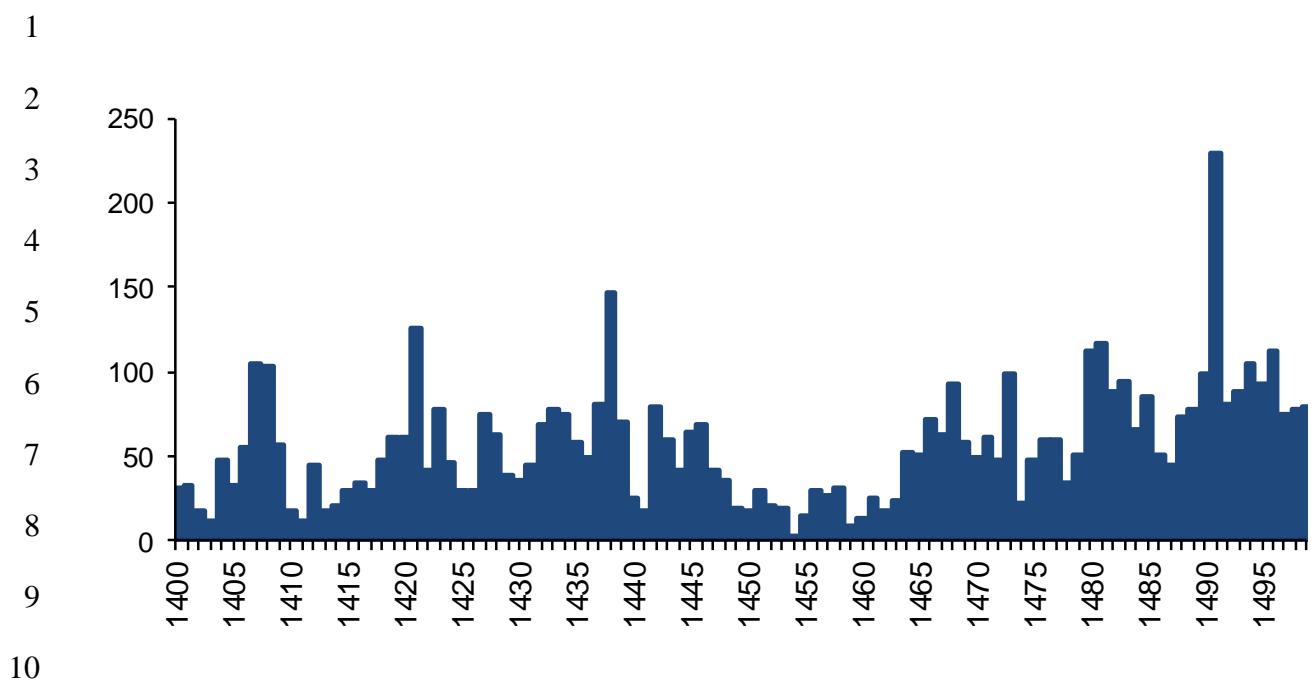
16

17

18

19

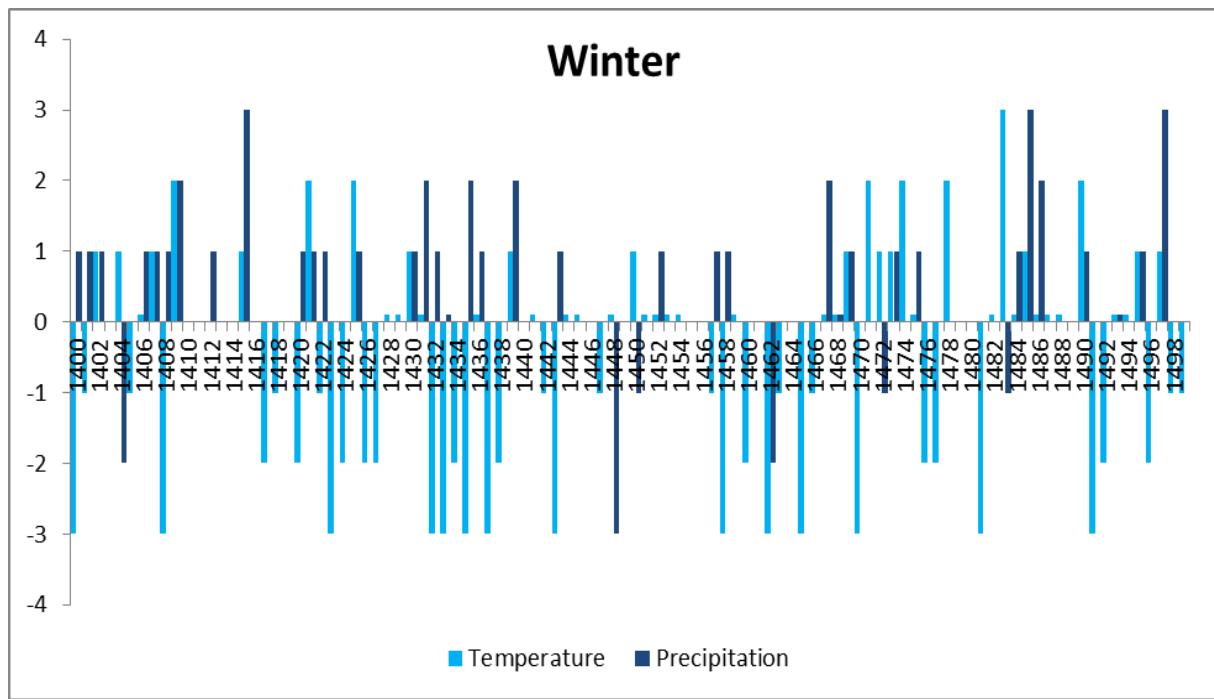
20


21

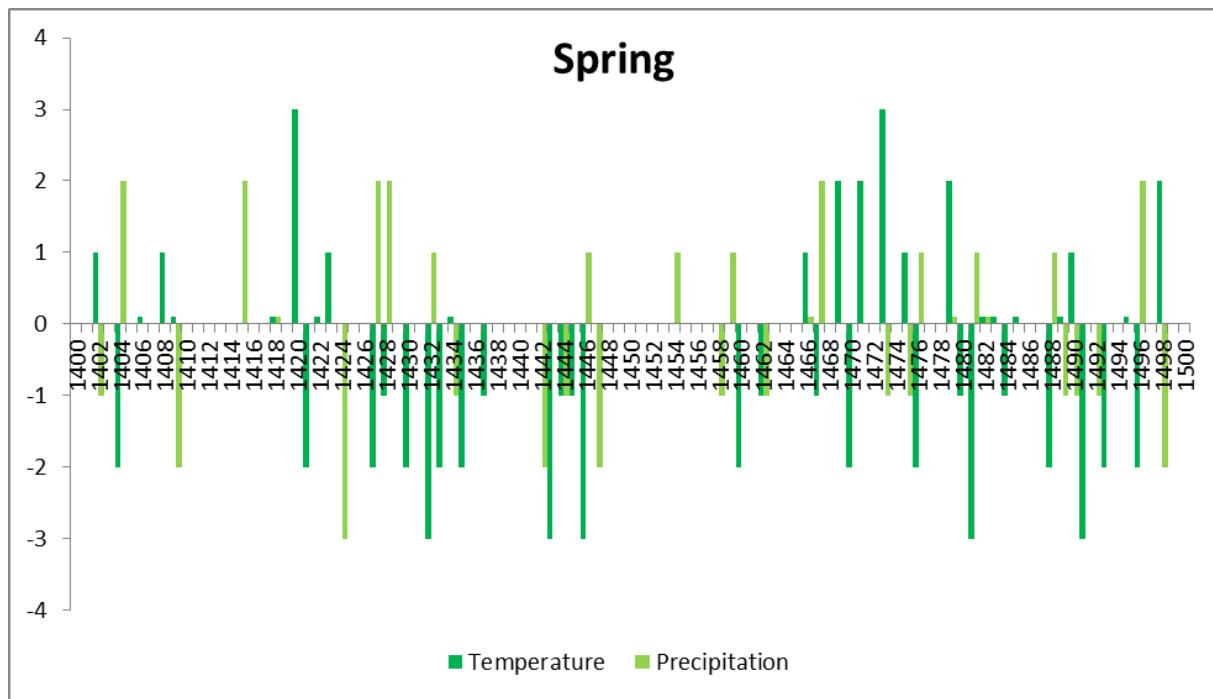
22

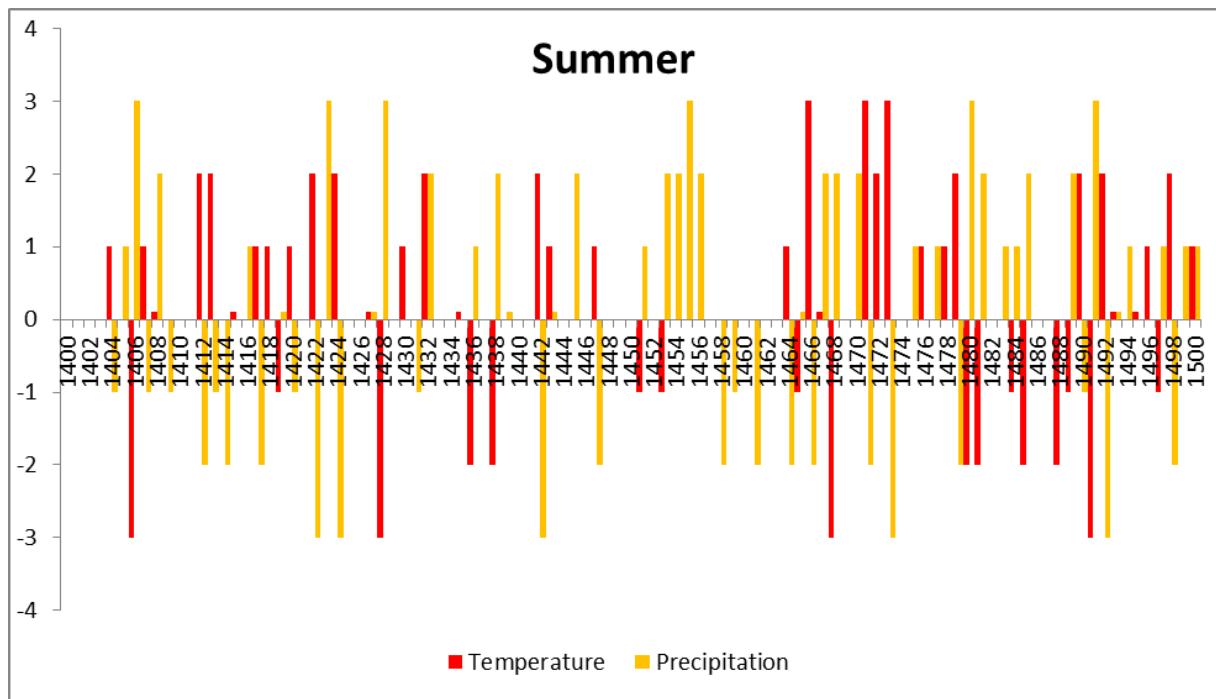
1 Table 3. Refined scale of the winter temperature index (Camenisch, 2015).

Index point	Description	Criteria
3	Extremely mild	no frost or extremely few frost periods mentioned considerable phenological anomalies winter described as extremely mild
2	Very mild	almost no frost periods mentioned remarkable phenological anomalies winter described as mild
1	Mild	more rain than snow little frost mentioned
0	Normal	few frost sporadic days with drifting ice
-1	Cold	repeated periods with drifting ice repeated frost periods
-2	Very cold	small rivers or brooks frozen frost mentioned over a period of about one month plants damaged by frost
-3	Extremely cold	large rivers and lakes frozen and passable frost mentioned over a period of about two months rye or trees damaged by frost
2		
3		
4		



11 Figure 2. Annual distribution of the sources (Camenisch, 2015).


12


13

1
2
3 Figure 4. Winter indices.
4
5
6
7
8
9
10
11
12
13
14
15
16

3 Figure 6. Summer indices.

4
5
6
7
8
9
10
11
12
13
14

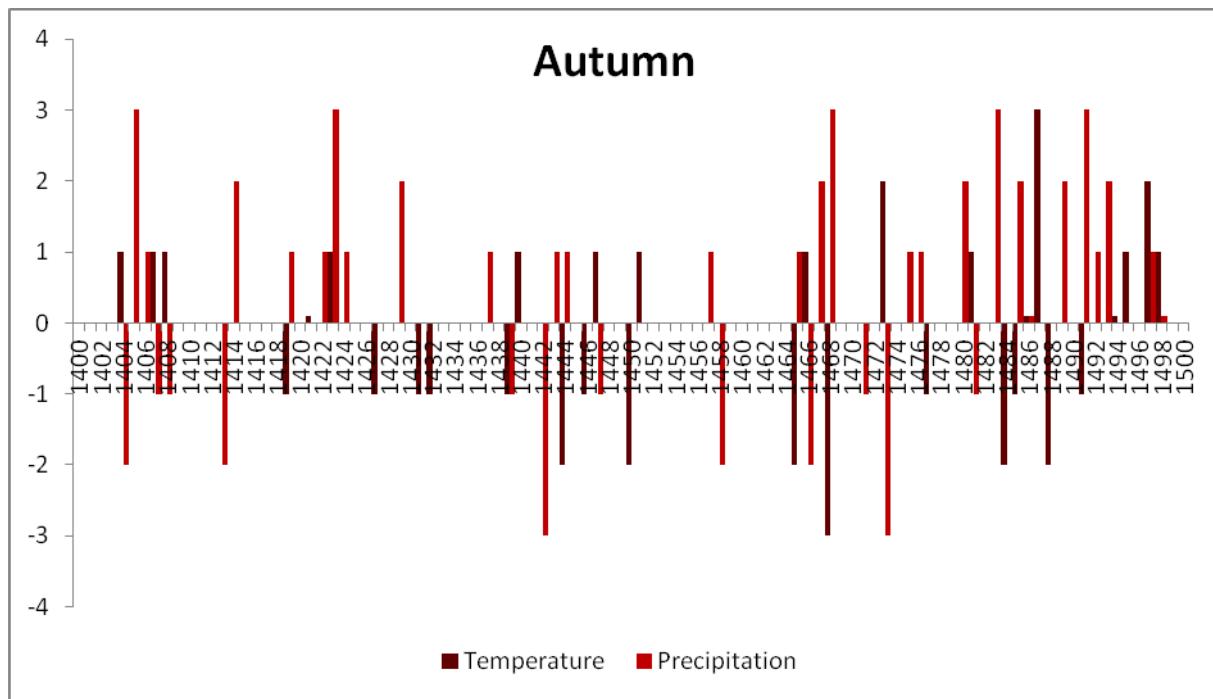
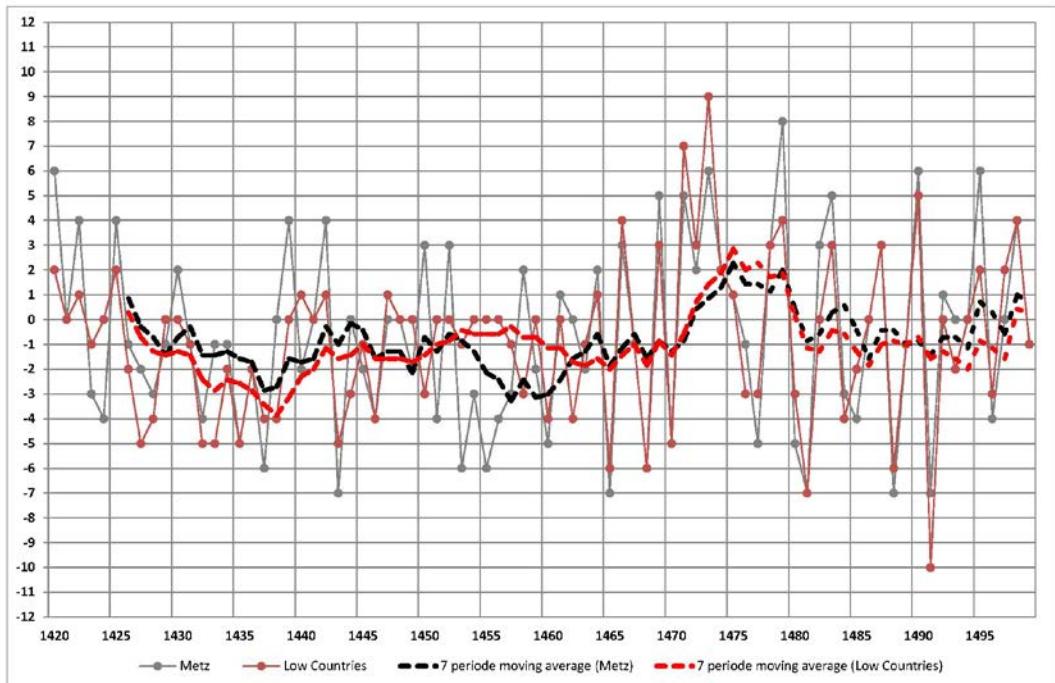



Figure 7. Autumn indices.

1
2 Figure 8. Comparison between temperature indices from Metz (Litzenburger, 2015) and the
3 Low Countries (Camenisch, 2015).

4