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Abstract

We present a holistic Bayesian hierarchical model for reconstructing the continuous
and dynamic evolution of relative sea-level (RSL) change with fully quantified uncer-
tainty. The reconstruction is produced from biological (foraminifera) and geochemical
(δ13C) sea-level indicators preserved in dated cores of salt-marsh sediment. Our model5

is comprised of three modules: (1) A Bayesian transfer function for the calibration of
foraminifera into tidal elevation, which is flexible enough to formally accommodate ad-
ditional proxies (in this case bulk-sediment δ13C values), (2) A chronology developed
from an existing Bchron age-depth model, and (3) An existing errors-in-variables in-
tegrated Gaussian process (EIV-IGP) model for estimating rates of sea-level change.10

We illustrate our approach using a case study of Common Era sea-level variability
from New Jersey. USA We develop a new Bayesian transfer function (B-TF), with and
without the δ13C proxy and compare our results to those from a widely-used weighted-
averaging transfer function (WA-TF). The formal incorporation of a second proxy into
the B-TF model results in smaller vertical uncertainties and improved accuracy for re-15

constructed RSL. The vertical uncertainty from the multi-proxy B-TF is ∼ 28 % smaller
on average compared to the WA-TF. When evaluated against historic tide-gauge mea-
surements, the multi-proxy B-TF most accurately reconstructs the RSL changes ob-
served in the instrumental record (MSE=0.003 m2). The holistic model provides a sin-
gle, unifying framework for reconstructing and analysing sea level through time. This20

approach is suitable for reconstructing other paleoenvironmental variables using bio-
logical proxies.

1 Introduction

Paleoenvironmental reconstructions describe Earth’s response to past climate
changes and consequently offer a context for current trends and analogs for antici-25

pated future changes (e.g., Mann et al., 2009). Reasoning by analogy underpins the
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use of biological proxies to reconstruct past environments (e.g., Rymer, 1978; Jackson
and Williams, 2004; Bradley, 2015). The ecological preferences of biological assem-
blages observed in modern environments are used to derive a paleoenvironmental
reconstruction from their counterparts preserved in dated sediment cores under the
assumption that the ecological preferences were unchanged through time (Juggins5

and Birks, 2012). This approach commonly utilizes data consisting of one environmen-
tal variable and counts from multiple proxy species (e.g., Imbrie and Kipp, 1971; Fritz
et al., 1991; Birks, 1995). Numerical techniques known as transfer functions formal-
ize the relationship between biological assemblages and the environmental variable.
This process is termed calibration. To quantify environmental change through time it is10

necessary to combine the paleoenvironmental reconstruction with a chronology of sed-
iment deposition and an appropriate methodology to describe temporal trends. These
three components can be developed and applied independently of one another or as-
similated in a single, holistic framework.

Relative sea-level (RSL) reconstructions can constrain the relationship between tem-15

perature and sea level and reveal the long-term, equilibrium response of ice sheets to
climate forcing (e.g., Dutton et al., 2015). Salt-marsh foraminifera are sea-level proxies,
because species have different ecological preferences for the frequency and duration
of tidal submergence, which is primarily a function of tidal elevation (e.g., Scott and
Medioli, 1978; Horton and Edwards, 2006; Edwards and Wright, 2015). Under con-20

ditions of RSL rise, salt marshes accumulate sediment to maintain an elevation in the
tidal frame. The resulting sedimentary sequence is an archive of past RSL changes that
may be accessed by collecting sediment cores. After extraction, these sediment cores
are sliced into layers (samples), from which foraminifera are counted. The transfer func-
tions commonly used to reconstruct RSL impose a single ecological response to tidal25

elevation on all species of foraminifera (or other biological groups such as diatoms).
Other analyses performed on the same layers can provide a multi-proxy approach to
reconstructing RSL, although this often relies on informal approaches to combine re-
sults from independent proxies (e.g., Kemp et al., 2013a; Gehrels, 2000). For example,
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on organogenic salt marshes on the US Atlantic coast the primary source of organic
carbon is in situ plant material and measurements of bulk sediment δ13C reflect the
dominant plant community (e.g. Kemp et al., 2012). Some sediment layers are dated
using radiocarbon or recognition of pollution markers of known age. Since there are
typically fewer dated layers than total layers, a statistical age-depth model is used to5

estimate the age of undated layers with uncertainty (e.g., Bronk Ramsey, 2008; Haslett
and Parnell, 2008; Blaauw and Christen, 2011). Although Bayesian age-depth models
and methods for estimating rates of sea-level change already exist, Bayesian meth-
ods are yet to be applied in the calibration phase of reconstructing RSL. This prevents
the appropriate propagation of uncertainties, which is the primary advantage of using10

a holistic numerical framework.
We develop a Bayesian transfer function (B-TF) to reconstruct RSL using counts of

foraminifera and measurements of bulk sediment δ13C from salt-marsh sediment. This
model allows each species of foraminifera to have a different ecological response to
tidal elevation and provides a formalized approach to combine multiple proxies and con-15

sequently reduce reconstruction uncertainty. Following the framework of Parnell et al.
(2015) we combine this new calibration module with an existing chronology module
(Bchron), and an existing process module (the Errors-In Variables Integrated Gaussian
Process (EIV-IGP) model of Cahill et al., 2015) to create a holistic Bayesian hierar-
chical model. Through application of the model to a case study of Common Era and20

instrumental RSL change in New Jersey (USA), we compare the utility of the B-TF with
an existing weighted averaging transfer function (WA-TF) approach and demonstrate
the advantage of combining the three parts of a RSL reconstruction in a single and
shared numerical framework rather than treating each as an independent and discrete
step.25

4854

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/11/4851/2015/cpd-11-4851-2015-print.pdf
http://www.clim-past-discuss.net/11/4851/2015/cpd-11-4851-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
11, 4851–4893, 2015

From raw data to
rates of change

N. Cahill et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2 Previous calibration methods

Transfer functions are empirically-derived equations for reconstructing past environ-
mental conditions from the abundance of multiple species. The term refers not to a sin-
gle numerical method, but to a range of regression-based techniques that are classified
into two categories depending on whether the underlying model maps environmental5

variables to species abundances (classical calibration) or vice versa (inverse calibra-
tion). Classical approaches are underpinned by the ecologically-intuitive assumption
that the distribution of species is driven by environmental variables (Birks, 2012). In-
verse approaches gained popularity because of their reduced computational complex-
ity (e.g., Birks, 2010) resulting in quicker processing compared to classical methods.10

Furthermore, inverse methods often demonstrate equal or superior performance when
compared to classical approaches (e.g., Toivonen et al., 2000; ter Braak and Juggins,
1993; Korsman and Birks, 1996). The parameters in transfer functions are estimated
using empirical data (a modern training set) from environments likely to be analogous
to those encountered in core material (e.g., Juggins and Birks, 2012) and are treated15

as fixed and known. Studies seeking to reconstruct RSL from salt-marsh sediment
employ transfer functions developed using a modern training set of paired observa-
tions of tidal elevation and microfossil assemblages (most commonly foraminifera or
diatoms) to reconstruct RSL from their counterparts preserved in sediment cores (e.g.,
Horton et al., 1999; Gehrels, 2000; Edwards and Horton, 2006; Kemp et al., 2013b;20

Barlow et al., 2014). Although the different types of transfer function have advantages
and weaknesses compared to one another, these regression-based techniques share
the limitations of applying a single response form to all species and treating model
parameters as fixed and known. These characteristics can result in misleading or in-
accurate paleoenvironmental reconstructions if the response curve is not appropriate25

for all species (Greig-Smith, 1983) and does not account for the inherent uncertainty in
model parameters that results from ecological noise and the influence of secondary en-
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vironmental variables, which in RSL reconstructions can include salinity and sediment
texture and composition (e.g., Shennan et al., 1996; Zong and Horton, 1999).

Bayesian calibration methods are inherently classical and have recently been given
growing attention to produce paleoenvironmental reconstructions using biological prox-
ies (e.g., Toivonen et al., 2000; Vasko et al., 2000; Haslett et al., 2006; Li et al., 2010;5

Tingley et al., 2012; Tolwinski-Ward et al., 2013, 2015; Parnell et al., 2015). Toivonen
et al. (2000) and Vasko et al. (2000) developed a Bayesian model to reconstruct tem-
perature from chironomid counts. Haslett et al. (2006) adopted elements of the model
proposed by Toivonen et al. (2000) in a more complex Bayesian hierarchical model
for reconstructing multivariate climate histories from pollen counts. Li et al. (2010) pro-10

posed a Bayesian hierarchical model to reconstruct temperature using a multi-proxy
approach. Similarly, Tingley et al. (2012) considered a Bayesian hierarchical space-
time model for inferring climate processes. More recently, Tolwinski-Ward et al. (2013,
2015) and Parnell et al. (2015) expanded on the aforementioned approaches of Haslett
et al. (2006) and Tingley et al. (2012) for reconstructing climate variables. To date,15

Bayesian methods have not been used for reconstructing RSL using biological proxies.

3 A Bayesian hierarchical model for reconstructing and analysing former sea
levels

We now describe our statistical model, which produces estimates of RSL and associ-
ated rates from raw inputs including foraminifera counts and radiocarbon dates from20

a sediment core. We add two major novelties to existing approaches:

1. a B-TF model using a penalized spline (P-spline) as a non-parametric model of
the multinomial response of foraminifera to tidal elevation. This model allows for
multi-modal and non-Gaussian species response to environmental variables;
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2. a full hierarchical model which incorporates the B-TF, a chronology model ac-
counting for time uncertainty, and a rich stochastic process for quantifying sea
level rate changes.

We use the JAGS package (Just Another Gibbs Sampler; Plummer, 2003) to fit the
model via Gibbs sampling.5

We start by outlining our notation:

– y are the observed foraminifera abundances from the sediment core. yi l is the
abundance of species l in layer i . We denote yi the L vector of foraminifera counts
for each layer i in the sediment core, where i = 1, . . .,N layers and l = 1, . . .,L
species;10

– r are the observed radiocarbon dates in the sediment core. rk is the kth radiocar-
bon date, k = 1, . . .,K . Usually K � N. Due to the nature of radiocarbon, these
are given in radiocarbon years rather than calendar years. A known calibration
curve is used to transform the radiocarbon ages into calendar ages as part of the
chronology model (Sect. 3.2);15

– d are the observed depths in the sediment core. di is the depth associated with
layer i ;

– e is paleo marsh elevation (PME), which is the tidal elevation at which a layer
originally accumulated. ei is the PME for sediment core layer i ;

– s is RSL. s has a deterministic relationship with e and d given some fixed param-20

eters ω so that s = gω(e,d ). Producing s will require correcting PME for sample
tidal elevation (a function of sediment core depth). ω includes values for the the
sample tidal elevation (E) so that si = Ei − PMEi . si is the RSL for sediment core
layer i ;

– t represents the calendar ages (in years before present (1950); BP) of all layers25

in the sediment core. It is unknown and estimated with uncertainty as part of
4857
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the chronology module from the radiocarbon dates r and observed depths d . ti
represents the age of sediment core layer i ;

– ym are the observed modern foraminifera counts. ymjl is the abundance of species
l in surface sample j . ymj is an L vector of modern foraminifera counts for mod-

ern sample j with j = 1, . . .,J modern samples. Tj =
∑L
l=1y

m
jl are the row totals of5

species counts for calibration sample j in the matrix of species abundances;

– em are the observed modern tidal elevations. emj is the tidal elevation for surface
sample j . Together ym and em are used to calibrate the relationship between
foraminifera abundance and tidal elevation;

– z is the sediment core δ13C where zi is the δ13C for layer i . We include this as10

a secondary proxy though it is an optional part of the model and can be removed
if unavailable in other sediment cores;

– θ are a set of parameters governing the relationship between foraminifera counts
and tidal elevation;

– ψ are a set of parameters governing the sedimentation process (i.e. linking age15

and depth);

– φ are a set of parameters governing the RSL process, including its smoothness
and variability;

– α are a set of parameters governing the relationship between δ13C and tidal ele-
vation.20

Using the notation above we create a Bayesian hierarchical model to produce a pos-
terior distribution of our parameters given data:

p(s,e,t,θ,ψ ,φ,α|ym,em,y ,r ,d ,ω,z) ∝
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p(y |e,θ)p(z|e,α)︸ ︷︷ ︸
Fossil Data Model

× p(ym|em,θ)︸ ︷︷ ︸
Modern Calibration Model

× p(r |t,ψ ,d )︸ ︷︷ ︸
14C Calibration

× p(t|d ,ψ)︸ ︷︷ ︸
Chronology Model

×p(s|e,d ,t,φ,ω)︸ ︷︷ ︸
Sea level Model

× p(θ)︸︷︷︸
Modern Calibration Prior

× p(ψ)︸ ︷︷ ︸
Chronology Prior

× p(φ)︸ ︷︷ ︸
Sea Level Prior

× p(α)︸︷︷︸
δ13C Prior

Before describing the components of the model that we use, we note that this is an
extremely complex and computationally demanding model to fit, being of very high di-
mension with rich stochastic processes being required for many of the sub-models. We5

follow Parnell et al. (2015) in making some simplifying assumptions. We first assume
that the calibration parameters θ can be learnt solely from the modern calibration data
ym and em. Thus the sediment core data contains no further information about this
relationship. This is a common assumption in many palaeoclimate studies (see e.g.
Haslett et al., 2006; Tolwinski-Ward, 2015). Second we assume that the model can10

be modularised into three parts: the aforementioned calibration, chronology and pro-
cess modules. This is a conservative assumption and follows from the restriction on
the calibration parameters.

Following these assumptions we obtain the three modules:

p(t,ψ |r ,d ) ∝ p(r |d ,t,ψ)p(t|d ,ψ)p(ψ) (chronology module)15

p(θ|ym,em) ∝ p(ym|em,θ)p(θ) (calibration module)

p(s,e,t,θ,ψ ,φ,α|ym,em,y ,r ,d ,ω,z) ∝ p(y |e,θ)p(θ|ym,em)p(t,ψ |r ,d )p(s|e,ω,d ,t,φ)

p(φ)p(z|e,α)p(α) (process module)

We note that if there is no additional δ13C proxy information then z and α (and hence
the last two terms on the RHS of the process module) are removed from the equation.20

3.1 The calibration module: multinomial P-splines (B-TF)

In this module we aim to estimate the parameters θ that govern the relationship be-
tween foraminifera and tidal elevation by using the model as specified in the previous
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section. The probability density function (pdf) p(ymj |e
m
j ,θ) used as the likelihood here

provides the data-generating mechanism from which foraminifera abundances can be
simulated given tidal elevation. The likelihood we use for the modern model is:

ymj1,ymj2, . . .,ymjL|Tj ,pj1,pj2, . . .,pjL ∼ Multinomial (pj1,pj2, . . .,pjL,Tj ), (1)

where pj =
{
pj1,pj2, . . .,pjL

}
is the vector containing the probability of finding species5

l at the tidal elevation associated with sample j .
The probability vectors pj are estimated from a latent response λj l (i.e. the response

of species l for sample j ) which is a function of tidal elevation emj . λl is a J vector
including the latent response of species l for all samples j . The relationship between
probability of foraminifera species occurrence and tidal elevation is expected to be non-10

linear so we model these using P-splines (De Boor, 1978; Dierckx, 1993) via a softmax
transformation. The softmax transformation is given as:

pj l =
exp(λj l )∑L
l=1 exp(λj l )

(2)

λl are given P-spline prior distributions. P-splines are created from B-spline basis
functions penalised to produce a smooth curve. The B-spline basis functions are con-15

structed from piecewise polynomial functions that are differentiable to a given degree q,
here cubic. The component cubic B-spline basis functions look like individual Gaussian
curves, however, they will be non-zero only over the range of q+2 knots; this has nu-
merous computational advantages. We refer to the B-spline matrix as B. The columns
of B are the tidal elevations em, transformed by the appropriate basis function. The20

M-vector of weights for species l is denoted βl . The resulting relationship is:

λl = Bβl +εl (3)

B is a J ×M matrix of basis functions where M is the number of knots, and J is the
number of modern samples. To obtain the penalised smooth behaviour for λl we apply
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a prior such that the first differences of βl are normally distributed with mean 0 and
precision τβ. The parameter τβ controls how close the weights are related to each
other and will therefore control smoothness.

An error term, εl ∼ N(0,νl ), is added to the mean for λl here to ensure that we do not
encounter problems with over-dispersion by under or over-estimating the variance in5

the observed data. We do not assume a constant variance; to account for the changing
variation in the data the precision parameters νl are also estimated using P-splines.
This allows the variance to adapt given the data and will allow it to increase/decrease
where necessary.

ν l = exp(Bγl ) (4)10

Similarly to Eq. (3), the basis functions are penalised by parameters γl , an M-vector
of weights, for species I , to produce ν l and we apply a prior such that the first dif-
ferences of γl are normally distributed with mean 0 and precision τγ. Therefore, the
calibration model has parameters θ =

{
βl ,γl ,τγ,τβ; l = 1, . . .,L

}
, which can be fitted in

a single Bayesian model for all species simultaneously.15

The B-TF produces posterior estimates for the multinomial probability vector p for
each modern sample. For each species of foraminifera, we compare the probability
of species occurrence (at each modern observed tidal elevation) estimated from the
B-TF, with the empirical probability of foraminifera species occurrence estimated from
the observed data. The model vs. empirical probability comparison provides evidence20

to support the validity of the model, indicating if the model is capable of capturing the
within-species variability of occurrence probabilities across changing tidal-elevations.
Once run, the B-TF can produce predictions of elevation for each layer in the sediment
core from this relationship.

We evaluate the performance of the B-TF via 10-fold cross validation on the modern25

data, where the data are divided up into 10 randomly drawn equal size sections (known
as folds) which are removed in turn. We create predictions for the left out sections re-
peatedly until every observation has an out-of-sample prediction value. To allow direct
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and meaningful comparison between models we also cross validated the WA-TF using
the same approach on the same randomly drawn folds. We showcase the output of this
exercise for our case study in Sect. 5.1.2.

3.2 The chronology module: Bchron

The chronology module is concerned with estimating the ages t of the foraminifera in5

the sediment core. These ages will necessarily be uncertain, since the radiocarbon
dates r are observed with uncertainty which, when transformed into calendar years,
provide highly non-Gaussian probability distributions. An interpolation step is then re-
quired to obtain estimated ages at all depths, which adds further uncertainty. A useful
constraint is that age must increase with depth (older sediments lie deeper in the core,10

known as superposition) so a monotonic stochastic process is used. Bchron (Haslett
and Parnell, 2008) assumes that the integrated sedimentation rate (i.e. the accumu-
lation of sediment over a fixed period of time) arises as the realisation of a Com-
pound Poisson-Gamma (CPG) process. Bchron calibrates the radiocarbon (and non-
radiocarbon) dates, estimates the parameters of the CPG (here ψ) and identifies out-15

liers. Other age-depth models are available (see Parnell et al., 2011 for a review), but
Bchron was designed specifically for use in palaeoenvironmental reconstructions.

Once Bchron has been run, we obtain a joint posterior distribution of ages for every
layer in the sediment core, which we denote as p(t|r ,d ,ψ). Each individual chronology
sample from Bchron satisfies the law of superposition. However, we approximate the20

age of each layer in the posterior, i.e. p(ti |r ,d ,ψ) as a normal distribution, so that
ti |r ,d ,ψ∼̂N(µti ,σ

2
ti

). This may seem like a severe relaxation, since the ages of layers
may now overlap, but we find this has minimal effect on the resulting sea level curves
since the ages are further updated during the process module. Further simulations
justifying this assumption have been carried out using chronological models in late25

Holocene sea level reconstructions from saltmarsh sediments (Parnell and Gehrels,
2015).
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3.3 The process module: errors-in-variables integrated Gaussian process
(EIV-IGP)

Our final step is to take the output from the previous two modules, namely estimates
of the posterior PME ei for each sediment core layer from the calibration module, and
estimates of the age of each layer ti from the chronology module. In cases where5

the secondary δ13C proxy is available, the posterior estimated for ei will include the
likelihood p(z|e,α). This is a normal likelihood zi ∼ N(µi ,τz) where the precision τz is
constant and µi will correspond to the dominant δ13C value at ei . δ

13C reflect dominant
plant communities on a marsh and the observed modern boundries between communi-
ties can correspond to a tidal datum (TD). As a result δ13C measured in bulk sediment10

can be related to tidal elevation as follows;

µi =


µ1, if ei ≤ TD

µ2, if ei ≥ TD

µ3, otherwise

where, µi ’s are given informative uniform priors with upper and lower limits correspond-
ing to the maximum and minimum δ13C values represented in a given elevational
range. The prior information required here is location specific. The details needed for15

priors related to our case study are presented in Sect. 4.2.2.
We can transform ei into RSL si via the relationship si = gω(ei ,di ). We thus have

a set of bivariate probability distributions for each layer consisting of pairs (ti ,si ) which
represent the raw layer-by-layer estimates of RSL and age. To use these in the EIV-IGP
framework of Cahill et al. (2015), we approximate each bivariate probability distribution20

as bivariate Gaussian. The model makes use of two well known statistical approaches.
Firstly, the EIV approach (Dey et al., 2000) accounts for measurement error in the ex-
planatory variable, here time. The EIV approach is necessary when dealing with proxy
reconstructions that include temporal uncertainty from dating the sediment core. Sec-
ondly, the Gaussian process approach (Rasmussen and Williams, 2006) is useful for25
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nonlinear regression problems and is a practical approach to modelling time series
data. A Gaussian process is fully specified by a mean function (set to zero) and a co-
variance function that relates the observations to one another.

We use an integrated Gaussian process approach (Holsclaw et al., 2013; Cahill et al.,
2015). A Gaussian process prior is placed on the rates of sea-level change and the5

mean of the distribution assumed for the observed data is derived from the integral
of the rate process. This integrated approach is useful when there is interest in the
rate process as the analysis allows for estimates of instantaneous rates of sea-level
change. Furthermore the current sea level estimate is derived as the integral of all the
previous sea level rates that have occurred, matching the physical behaviour of sea10

level evolution over time. By embedding the integrated Gaussian process (IGP) model
in an errors-in-variables (EIV) framework (which takes account of time uncertainty), we
can estimate rates with quantified uncertainty. We use the same priors for the parame-
ters φ as described in Cahill et al. (2015) where technical details of the IGP-EIV model
can be found.15

4 Case study: New Jersey RSL

On the Atlantic coast of southern New Jersey (Fig. 1), salt marshes form in quiet-
water, depositional settings and display a zonation of plants into distinct vertical zones
corresponding to ecologically important tide levels. Elevations below mean tide level
(MTL) are not vegetated and the inorganic sediment is comprised of silt and fine sand20

with shell material. Low salt-marsh environments between MTL and mean high water
(MHW) are vegetated by Spartina alterniflora (tall form), which is a C4 plant. Sediment
in this zone is organic grey silt and clay. High salt-marsh environments exist between
MHW and highest astronomical tide (HAT). This zone is typically a wide, flat meadow
vegetated by Spartina patens and Distichlis spicata (C4 species). The sediment de-25

posited in this zone is brown peat with abundant plant remains. The transition between
high salt marsh and the freshwater upland is vegetated by C3 plants such as Phrag-
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mites australis, Iva fructescens, Schoeneplectus americanus, and Typha augusitfolia.
This community exists at tidal elevations above mean higher high water (MHHW), in-
cluding freshwater environments above the reach of tidal influence, and occurs with
black, amorphous, organic sediment.

4.1 Modern training set5

At twelve salt marshes in southern New Jersey Kemp et al. (2013a) established tran-
sects across the prevailing environmental gradient from lower to higher tidal elevations
(Figure 1). The twelve sites were selected to span a wide range of physiographic set-
tings including brackish marshes located up to 25 km from the coast with a strong
fluvial influence. The sites share a common climate and oceanographic regime and10

therefore constitute a regional-scale training set. At stations along each transect a sur-
face sediment sample was collected to describe the assemblage of foraminifera (count
sizes ranged from 8 to 307 dead individuals). The tidal elevation of each sample was
measured in the field.

Since the great diurnal tidal range (MLLW to MHHW) varies among sites in the study15

region it is necessary to express tidal elevation as a standardized water level index
(SWLI; e.g. Horton et al., 1999), where a value of 0 corresponds to MLLW and 100 is
MHHW. At NOAA tide gauges in New Jersey, measured HAT occurs at SWLI values of
127 in Atlantic City and 123 at Cape May.

4.1.1 Modern counts of foraminifera20

The modern dataset comprised of 172 paired observations of 18 foraminiferal species
(including many zeros) and tidal elevation. The highest occurrence of foraminifera in
the modern dataset is 141.5 SWLI. Higher samples were devoid of foraminifera and
interpreted as being from a freshwater environment above marine influence. This mod-
ern training set demonstrates that foraminifera (like plants) form distinct assemblages25

that correspond to elevation in the tidal frame (e.g., Scott and Medioli, 1978), but with
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a secondary influence of salinity (e.g., de Rijk, 1995). Throughout southern New Jersey,
low-marsh environments are occupied by Miliammina fusca and Ammobaculties spp.
(groups D and E in Fig. 2). High salt-marsh environments are characterized by a num-
ber of foraminiferal assemblages including groups dominated by Trochammina inflata,
Arenoparella mexicana, and Tiphotrocha comprimata. High salt marshes at sites with5

strong fluvial influence and correspondingly low (brackish) salinity are occupied by Am-
moastuta inepta (group G in Fig. 2). At some sites elevations above MHHW are char-
acterized by a group of foraminifera in which Haplophragmoides manilaensis is the
dominant species (group A in Fig. 2). The pattern (uniform low marsh and diverse high
marsh) and composition of these assemblages is similar to those identified elsewhere10

on the US Atlantic coast (e.g., Murray, 1991; Gehrels, 1994; Kemp et al., 2009a; Wright
et al., 2011; Edwards et al., 2004). This modern training set, was previously used to
develop a WA-TF (Kemp et al., 2013a), and is also used to develop our B-TF.

4.1.2 Modern bulk-sediment δ13C measurements

In the mid-Atlantic and northeastern US the low salt-marsh and high salt-marsh zones15

are dominated by C4 species such as Spartina alterniflora, Spartina patens, and Dis-
tichlis spicata, while the transitional marsh and surrounding upland zones are domi-
nated by C3 species. In New Jersey the boundary between C3 and C4 plant commu-
nities corresponds to MHHW and δ13C measured in bulk sediment can be used to
reconstruct RSL by determining if a sample formed above or below the MHHW tidal20

datum.
Based on the modern dataset of bulk sediment δ13C from three sites in southern

New Jersey (Fig. 1) and presence or absence of foraminifera, Kemp et al. (2013a) rec-
ognized three types of sediment that were likely to be encountered in cores of organic
coastal sediment.25

1. Samples with δ13C values more depleted than −22.0 ‰ and with foraminifera
present formed at tidal elevations from 100-150 SWLI. The lower limit of this range
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corresponds to MHHW and the upper limit is conservatively set to extend slightly
beyond the observed highest occurrence of foraminfera (141.5 SWLI) in the mod-
ern dataset.

2. Samples with δ13C values less depleted than −18.9 ‰ formed at tidal elevations
from 0-100 SWLI since C4 plants are dominant below MHHW. This interpretation5

is the same if foraminifera are present or absent.

3. Samples with intermediate δ13C values between −18.9 and −22.0 ‰ provide no
additional information and if foraminifera are present these samples are inter-
preted as having formed at 0–150 SWLI (MLLW to slightly above the highest
observed occurrence of foraminifera).10

4.2 Proxy data

Cores of salt-marsh sediment were recovered from two sites in southern New Jersey
(Cape May Courthouse and Leeds Point; Fig. 1) and sliced into 1 cm thick samples.
Three types of data were generated for each sediment core and were originally pre-
sented by Kemp et al. (2013b).15

4.2.1 Fossil counts of foraminifera

In the Cape May Courthouse core Jadammina macrescens and Trochammina inflata
were the dominant species from 1.72 to 1.29 m (Fig. 3a, upper panel). Foraminifera
were absent at 1.25 to 1.12 m. Between 1.10 and 0.33 m Jadammina macrescens
was the dominant species, while samples in the interval from 0.31 to 0.05 m included20

Trochammina inflata, Tiphotrocha comprimata, and Jadammina macrescens. Two sam-
ples near the top of the core (0.03 and 0.05 m) included 17 and 21 % Miliammina fusca
respectively. Counts of foraminifera in this core ranged from 16 to 194 per sample with
an average of 98. In the lower part of the Leeds Point core (3.95 to 2.85 m) Jadammina
macrescens was the most common species and occurred with Tiphotrocha compri-25
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mata and Trochammina inflata (Fig. 3a, lower panel). Within this section there were
unusual occurrences of Miliammina petila (24–60 % at 3.13 to 3.30 m) and Miliammina
fusca (> 20 % from 2.82 to 2.95 m). From 2.82 to 1.85 m Trochammina inflata was the
dominant species. The uppermost section of the Leeds Point core (1.73 to 1.20 m) was
comprised of a near mono-specific assemblage of Jadammina macrescens. Counts of5

foraminifera in this core ranged from 4 to 127 per sample with an average of 70. For
both cores the preserved assemblages of foraminifera were compared to the composi-
tion of modern samples in the training set. If core samples exceeded the 20th percentile
of dissimilarity measured using the Bray–Curtis metric among all possible pairings of
modern samples then the core sample was deemed to lack a suitable modern analogue10

and was excluded from further analysis by Kemp et al. (2013b). We did not reconstruct
PME for these samples because they may lack ecological plausibility (e.g., Jackson and
Williams, 2004). On Fig. 3 these samples are lacking PME reconstructions (panels b,
c, and e).

4.2.2 Fossil bulk-sediment δ13C measurements15

In the Cape May Courthouse core all samples were less depleted than −18.9 ‰ and
were interpreted as having formed below MHHW in a salt marsh dominated by C4
plants (Fig. 3d, upper panel). In the lowermost part of the Leeds Point core (below
3.35 m) the presence of foraminifera and bulk-sediment δ13C values more depleted
than −22.0 ‰ indicate that the sediment accumulated above MHHW in an environment20

dominated by C3 plants, but below the highest occurrence of foraminifera (Fig. 3d, lower
panel). Between 3.31 and 2.86 m bulk-sediment δ13C values were variable and inter-
preted to record the transition from highest salt marsh to high salt-marsh environments.
Above 2.86 m, all samples were less depleted than −18.9 ‰ and were interpreted as
having formed below MHHW in a salt marsh dominated by C4 plants.25
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4.2.3 Age-depth profile estimated by Bchron

Age-depth models for the Cape May Courthouse and Leeds Point cores were previ-
ously developed using Bchron (Kemp et al., 2013a) and are used here in the chronol-
ogy module without modification (Fig. 3f). The Cape May Courthouse core was dated
by recognition of pollution markers, the appearance of Ambrosia pollen as a land clear-5

ance marker, and radiocarbon dating of in situ and identifiable plant macrofossils.
These data were combined into a single age-depth model that estimated the age of
every 1 cm thick sediment sample in the core with an average uncertainty of ∼ 30 years
for the period since ∼ 700 CE (Fig. 3f, upper panel). Anthropogenic modification of the
Leeds Point site limited dating and RSL reconstruction to the interval from ∼ 500 BC10

to ∼ 1750 CE. The core was dated using only radiocarbon measurements performed
on in situ and identifiable plant macrofossils. These data were combined into a single
age-depth model that estimated the age of every 1 cm thick sediment sample in the
core with an average uncertainty of ∼ 50 years (Fig. 3f, lower panel).

4.3 Instrumental data15

A tide gauge is an instrument that automatically measures the sea surface height with
reference to a control point on the land many times during a day. These measurements
are averaged to obtain annual values to minimize the effects of weather and tidal vari-
ability. In New Jersey tide-gauge data are available since 1911 CE when the Atlantic
City tide gauge was installed. The Sandy Hook, Cape May, and Lewes (Delaware) tide20

gauges began measurements in 1932 CE, 1966 CE, and 1919 CE respectively. A sin-
gle regional record was compiled by averaging annual data from these four local tide
gauges. RSL is zero between 2000–2010 CE to be roughly equivalent to the age of
a surface sample in the core (by definition RSL=0 m when the core was collected). The
resulting record minimizes spatial variability and the influence of decadal-scale RSL25

variability (Douglas, 1991). A linear regression of the averaged record shows that RSL
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rose at an average rate of 4.03 mmyr−1 between 1911 CE and 2012 CE (Kemp et al.,
2013a).

5 Results

We reconstruct PME using the original WA-TF of Kemp et al. (2012, 2013a) and our
new B-TF. We developed a third reconstruction by incorporating downcore δ13C values5

with our B-TF to inform the posterior distribution for PME (see Sect. 3: process mod-
ule). These results are combined with the existing Bchron age-depth model for each
sediment core to reconstruct RSL. The resulting reconstructions are analysed using
the EIV-IGP model to capture the continuous and dynamic evolution of RSL change
while taking account of uncertainty in both sea level and age reconstructions. Our goal10

is honest assessment of uncertainty rather than reduced uncertainty.

5.1 The Bayesian transfer function

5.1.1 Species-response curves

The B-TF estimated a response curve (mean with a 95 % credible interval) for each
species of foraminifera (expressed as raw counts) to tidal elevation (expressed as15

SWLI) from the modern training set of 172 samples (Fig. 4). The response curves
are estimated from a multinomial distribution (in which species compositions are con-
sidered as a whole) parameterized by a probability vector p, which is the probability of
a species being present at a given tidal elevation. The multinomial model (described
in detail in Sect. 3.1) utilises the combined species information from these observed20

responses to provide estimates for PME. The species prediction intervals (dashed red
lines in Fig. 4) will aid in providing uncertainty for the PME estimates.

Broadly, we identify two forms of species-response curve in southern New Jer-
sey. First, a skewed, unimodal form describes the distribution of Haplophragmoides
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manilaenis with a maximum probability of occurrence of ∼ 0.2 at 123 SWLI compared
to a WA-TF species optimum that was also 123 SWLI. Jadammia macrescens and
Trochammina inflata also have a skewed, unimodal form with the highest probabil-
ity of occurrences found in high salt-marsh environments at 124 SWLI (p ≈ 0.3) and
110 SWLI (p ≈ 0.4) respectively. The species optima for these species were situated at5

lower elevations by the WA-TF (99 SWLI and 100 SWLI respectively). Both Ammoba-
culities spp. (highest probability of occurrence of ∼ 0.3 at 22 SWLI) and Miliammina
fusca (highest probability of occurrence ∼ 0.5 at 31 SWLI) have skewed unimodal dis-
tributions with maximum probability of occurrence in low salt-marsh environments. The
WA-TF estimated species optima of −19 and 49.33 SWLI respectively for these two10

species. Ammoastuta inepta also has a skewed, unimodal form (maximum probabil-
ity of occurrence of ∼ 0.2 at 140 SWLI). This species generally has a low probability
of being present because its distribution in southern New Jersey is restricted to sites
with brackish salinity such as those located up river in Great Egg Harbor (Fig. 1). Rel-
atively few samples from these environments are included in the modern training set15

and therefore in the dataset as a whole it is a rare, but ecologically-important, species.
Second, a unimodal Gaussian-like form describes the distributions of Arenoparrella
mexicana (maximum probability of occurrence of ∼ 0.07 between 60 and 70 SWLI) and
Tiphotrocha comprimata (maximum probability of occurrence of ∼ 0.3 at 78 SWLI). In
this case the WA-TF indicated species optima of 80 and 90 SWLI respectively for these20

two species. These results suggest that the number and type of ecological response
curve prescribed to all species in the WA-TF model (and other transfer functions)
might be inappropriate for accurately describing the relationship between salt-marsh
foraminifera and tidal elevation.

5.1.2 Cross validation of the modern data25

Performance of the new B-TF and existing WA-TF was judged using 10-fold cross
validation (Fig. 5). The uncertainty bounds (±2σ) for elevations predicted by the B-
TF contained the true elevation 90 % of the time compared to 92 % for the WA-TF. The
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average 2σ uncertainties are larger in the WA-TF (28 SWLI) than in the B-TF (21 SWLI).
The pattern of residuals in the WA-TF displayed a structure in which the elevation of
low salt-marsh samples is over predicted (negative residuals) and the elevation of high
salt-marsh samples is under predicted (positive residuals). For example, the WA-TF
showed an average residual of −16.6 between ∼ 10 and ∼ 70 SWLI and an average5

residual of 22.5 between ∼ 120 and ∼ 140 SWLI. This structure is absent in the B-
TF suggesting that this model is better suited to reconstructing values close to the
extremes of the sampled elevational gradient.

5.1.3 PME reconstructions

We reconstructed PME in the Cape May Courthouse and Leeds Point sediment cores10

using the WA-TF and B-TF models. At Cape May Courthouse, the B-TF estimated an
average PME close to MHHW (SWLI=100) of 96.2 SWLI, with a standard deviation
14.1 SWLI (Fig. 3c, upper panel). The WA-TF also estimated an average PME close to
MHHW of 96.7 SWLI, with a standard deviation of 4.1 SWLI (Fig. 3b, upper panel). The
2σ uncertainties for the B-TF reconstructions ranged from 15.1 to 45.7 and are more15

variable than those from the WA-TF (28.1 to 29.0 SWLI).
At Leeds Point, the B-TF estimated an average PME close to MHHW of 92.8 SWLI,

with a standard deviation 12.8 SWLI (Fig. 3c, lower panel). The WA-TF estimated PME
close to MHHW for all samples except for the 3.00–2.80 m interval where Miliammina
fusca was present and PME reconstructions were correspondingly lower (Fig. 3b,20

lower panel). The 2σ uncertainties for the B-TF reconstructions ranged from 11.5 to
59.8 SWLI and were more variable than those from the WA-TF (28.0 to 28.5 SWLI).

Comparison of the two models shows that the B-TF typically reconstructed PME
with greater variability among samples than the WA-TF model. Similarly, reconstruction
uncertainties were more variable for the B-TF model than the WA-TF model. Within25

their uncertainties the PME reconstructions for the B-TF and WA-TF overlap for all
samples in both sediment cores.
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5.1.4 Multi-proxy reconstruction of PME

Measurements of δ13C in bulk-organic sediment are useful sea-level proxies because
they readily distinguish between sediment that accumulated above MHHW in an envi-
ronment dominated by C3 plants and sediment that accumulated below MHHW in an
environment dominated by C4 plants. This additional paleoenvironmental information5

was combined with the B-TF to generate a multi-proxy reconstruction of PME. The in-
clusion of the δ13C did not treat MHHW as a hard bound for PME, rather, if a sample
is dominated by C3 plants then the probability of PME being above MHHW increases.
Likewise if a sample is dominated by C4 plants the probability of PME being below
MHHW water increases.10

For Cape May Courthouse using the downcore δ13C values as a secondary proxy in
the B-TF estimated an average PME of 87.5 SWLI (a reduction of 9 SWLI compared to
the original B-TF). The 2σ uncertainties estimated for the PME reconstructions were
reduced by 32 % on average and up to ∼ 60 % for some samples (Fig. 3e, upper panel).
For the Leeds Point core, the inclusion of the secondary δ13C proxy resulted in an15

estimated average PME of 86.1 SWLI (a reduction of 7 SWLI compared to the original
B-TF). The 2σ uncertainties decreased by ∼ 25 % on average (Fig. 3e, lower panel).
However, for samples where δ13C values and the presence of foraminifera indicate
deposition in the transitional marsh (above MHHW, but below the highest occurrence
of foraminifera) the uncertainty was reduced by an average of ∼ 50 % and up to ∼20

70 % for some samples because the constraint on PME changed from 0-150 SWLI
to 100-150 SWLI. These results demonstrate that incorporating a second line of proxy
evidence in the B-TF framework is an efficient and formalized way to reduce uncertainty
in RSL reconstructions in some sedimentary environments.

5.2 Comparison among reconstructions25

We applied the EIV-IGP model to the RSL reconstructions produced from the WA-TF,
B-TF and multi-proxy B-TF to describe RSL trends along the coast of southern New
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Jersey since ∼ 500 BCE (Fig. 6). The WA-TF and B-TF models show ∼ 3.9 m of RSL
rise compared to ∼ 4.1 m of RSL rise for the multi-proxy B-TF model. The multi-proxy
B-TF reconstructed lower RSL at the beginning of the record (∼ −4.2 m) compared to
the B-TF and the WA-TF (∼ −3.8 m) because of the additional constraint placed on the
lowermost section of the Leeds Point core by δ13C values that indicate deposition at5

100–150 SWLI.
All of the reconstructions show three phases of RSL behavior (Fig. 6). The period

from ∼ 500 BCE to ∼ 500 CE is a characterized by a continuous increase in the rate
of RSL rise. The second stage shows a decline in rates of RSL rise from ∼ 500 CE
to ∼ 1400 CE. After 1400 CE there is a continuous acceleration in the rate of RSL rise10

until reaching historic rates, which are unprecedented for at least 2500 years.
However, there are some differences among the three reconstructions. For exam-

ple, the B-TF shows the highest modern rate of rise at 4.1 mmyr−1 (95 % C.I. 3.27–
4.92 mmyr−1) in 2000 CE compared to 3.16 mmyr−1 (95 % C.I. 2.68-3.65 mmyr−1) and
3.11 mmyr−1 (95 % C.I. 2.45-3.77 mmyr−1) for the multi-proxy B-TF and the WA-TF re-15

spectively. The B-TF consistently estimated RSL lower than the multi-proxy B-TF and
the WA-TF between ∼ 1400 to ∼ 1700, resulting in the observed difference in the rates
into the 21st century. When compared to the observed tide-gauge data for the last
∼ 100 years from New Jersey (Fig. 7), the quality of the estimated RSL mid-point re-
constructions can be assessed using mean squared error (MSE). For the multi-proxy20

B-TF the MSE was estimated at 0.003 m2 compared to 0.014 m2 for the B-TF and the
WA-TF, indicating that the multi-proxy B-TF mid-points provide better estimates for RSL
in comparison to the B-TF and the WA-TF.

6 Discussion

The B-TF provides an alternative to the (non-Bayesian) regression-based transfer func-25

tions commonly used for reconstructing RSL (e.g., Horton et al., 1999; Gehrels, 2000;
Barlow et al., 2014) and in conjunction with the previously developed chronology and

4874

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/11/4851/2015/cpd-11-4851-2015-print.pdf
http://www.clim-past-discuss.net/11/4851/2015/cpd-11-4851-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
11, 4851–4893, 2015

From raw data to
rates of change

N. Cahill et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

process modules enables RSL to be reconstructed in an entirely Bayesian framework.
A key difference between the B-TF and existing transfer functions (e.g. the WA-TF)
is the modeled relationship between species of foraminifera and tidal elevation. The
number and type of species-response curves estimated by the B-TF model stands in
contrast to the WA-TF that assumes a unimodal Gaussian form for all species. The5

optima and tolerance estimated for each species by the WA-TF shows overlap with
the B-TF species-response curves, particularly those that have a Gaussian form such
as Tiphotrocha comprimata. However, this form is only appropriate for two of the eight
dominant species in the southern New Jersey training set. The flexible species-specific
response provided by the B-TF is more appropriate given that models based on the10

assumption of a single response do not adequately explain the ecological behavior of
the dominant species in New Jersey, or other salt marsh foraminiferal assemblages
(e.g., Edwards and Horton, 2006), or species from other biological groups used in RSL
reconstructions such as diatoms (e.g., Zong and Horton, 1999; Gehrels, 2000). This
variability in species response to a single environmental variable arises from ecolog-15

ical complexity and the influence of secondary environmental variables (e.g., Murray,
1991). Therefore, we propose that the additional flexibility of the B-TF will produce more
accurate PME (and consequently RSL) reconstructions than existing transfer functions
such as the WA-TF.

The implication of the flexibility of the B-TF is illustrated in the cross validation re-20

sults. The WA-TF appeared to suffer from “edge effects” (i.e., a tendency for the model
to bias PME predictions towards the mean of the training data), a common artifact of
using weighted average based methods (ter Braak and Juggins, 1993; Birks, 1995).
Our B-TF does not suffer from this prediction bias and outperformed the WA-TF in the
upper and lower extremes of tidal elevation. The consequences of such an improve-25

ment are significant where true PMEs lie close to the ends of the sampled environmen-
tal gradient. For example, on subduction zone coastlines such as the Pacific Northwest
coast of North America (e.g., Nelson et al., 1996, cyclical tectonic activity contributes to
reconstructed RSL trends. During a slow (100s to 1000s of years) inter-seismic phase,
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accumulation of strain results in uplift of the coast (RSL fall). Conversely, the strain is
released during an instantaneous co-seismic phase in which the coastline subsides
(RSL rise). These processes cause significant and very rapid shifts in depositional
environment that can span the full elevational range of coastal environments from sub-
tidal settings to supra-tidal, freshwater uplands. In contrast, the sediment sequences5

targeted for reconstructing Common Era RSL on passive margins (e.g. New Jersey)
are commonly comprised of unbroken sequences of high salt-marsh peat that are less
susceptible to these edge effects.

Further motivation for the development of a Bayesian model for RSL reconstruction
lies in the quantification of reconstruction uncertainty. Non-Bayesian transfer function10

methods (e.g. the WA-TF model) assume that model parameters are fixed and known.
Therefore, they do not incorporate uncertainty into the estimation of the PME recon-
struction itself, rather, the uncertainty is produced separately either before or after PME
was estimated. This uncertainty is the root mean square error from two sources (S1
and S2; Birks et al., 1990; Juggins and Birks, 2012). The S1 contribution is sample-15

specific and is the standard deviation of bootstrapped PME reconstructions. The S2
contribution is the difference between observed and predicted tidal elevations estab-
lished by cross validation of the modern training set (Fig. 5). The uncertainties for
PME reconstructed by the WA-TF model show very little variability among samples
(2σ ranges from 28.0 to 29.0). This pattern arises because the contribution from the20

sample-specific (S1) uncertainty is very small compared to the model uncertainty (S2)
which is common to all samples. As a result the PME reconstructions for all sediment
core samples have very similar uncertainties despite biological variability in species
composition.

Alternatively, Bayesian methods explicitly model the uncertainty associated with in-25

dividual reconstructions. Uncertainty for PME (and other unknown parameters) is in-
cluded in the probability model through prior distributions. Assuming distributions for
unknown parameters (in contrast to non-Bayesian approaches that use point esti-
mates) allows the parameter uncertainty from the calibration step to be formally propa-

4876

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/11/4851/2015/cpd-11-4851-2015-print.pdf
http://www.clim-past-discuss.net/11/4851/2015/cpd-11-4851-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
11, 4851–4893, 2015

From raw data to
rates of change

N. Cahill et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

gated into the reconstruction step. Therefore, estimates of PME produced by the B-TF
take fuller account of the uncertainties related to the model and its parameters than
non-Bayesian counterparts. The uncertainties estimated by the B-TF (excluding a sec-
ondary proxy) show more pronounced variability among core samples (2σ uncertain-
ties range between 15.1 to 45.7). This variability arises from the observed response5

distribution of each species to tidal elevation (estimated from the modern data; Fig. 4).
For each individual species there is variability in both the uncertainty of the mean re-
sponse curves and in the prediction intervals (i.e. uncertainty is greater in some parts
of the elevational gradient than at others).

The variability of reconstructed PME from the B-TF is a more accurate reflection10

of the observed trends in downcore foraminiferal populations and is therefore a more
ecologically plausible reconstruction than the WA-TF model. In the New Jersey case
study in both cores the dominant groups of foraminifera are characteristic of a high salt-
marsh environment. Engelhart and Horton (2012) concluded that samples identified as
being of high salt marsh origin formed between MHW (SWLI values of 93 at Cape15

May and 90 at Leeds Point) and HAT (SWLI values of 123 at Cape May and 127 at
Leeds Point). But there is a pronounced lack of variability reconstructed PME using
the WA-TF model (average of ∼ 95 SWLI with a standard deviation of 5.5). This lack
of variability in reconstructed PME is at odds with the observed downcore variability
in species assemblages. For example, the key, high salt-marsh species Jadammina20

macrescens and Trochammina inflata vary in relative abundance from 0 % (absent) to
100 % and approximately 80 %, respectively (Fig. 3). In contrast, PME reconstructions
from the B-TF are also estimated at an average of ∼ 95 SWLI, but with a larger standard
deviation of 13.1.

The majority of quantitative RSL reconstructions employ a single proxy (e.g., Kemp25

et al., 2011). A number of other proxies are available to support RSL reconstructions
primarily produced from salt-marsh foraminifera. Additional biological proxies could in-
clude different groups of organisms with a relationship to tidal elevation such as di-
atoms (e.g., Zong and Horton, 1999; Shennan et al., 1994) or thecomebians (e.g.,
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Charman et al., 2010; Roe et al., 2002). These organisms can be incorporated as
presence/absence data or as species counts from a modern training set of paired ob-
servations of species abundance and tidal elevation. A number of lithological proxies
(e.g., Nelson, 2015) are also available which can be qualitative (such as field and lab-
based descriptions of sediment as high marsh or low marsh) or quantitative (such as5

measurements of organic content; e.g., Plater et al., 2015) and may provide thresholds
in a similar fashion to sediment geochemistry in New Jersey. Although secondary prox-
ies are often available to provide additional and independent constraints, a barrier to
their use is the lack of an accessible and formal framework for combining multiple prox-
ies with appropriate consideration of uncertainty. A strength of our B-TF is its ability to10

accommodate these secondary proxy sources. In the example from New Jersey we pri-
marily used a biological proxy (assemblages of foraminifera), but amended the model
to include information from a geochemical proxy (bulk sediment δ13C). On average this
approach reduced the uncertainty for PME reconstructions by ∼ 28 %. The reduction
in uncertainty consequently provides constraints on this history of RSL change and15

more precise estimates of rates of RSL change through time. This is highlighted in
the reconstruction of sea level between ∼ 500 BCE and 500 CE where the multi-proxy
B-TF shows rates of rise for this period reach a maximum of ∼ 1.9 mmyr−1 which is
greater than the rates produced by the B-TF and the WA-TF (∼ 1.5 and 1.6 mmyr−1

respectively). Uncertainty for these rate estimates was reduced by 25 % for the multi-20

proxy B-TF compared to the WA-TF and the B-TF. These results highlight the specific
utility of bulk sediment δ13C measurements as a sea-level indicator along the Atlantic
coast of North America and the general utility of employing a multi-proxy approach to
reconstructing RSL where the goal is to produce reconstructions with the best possible
precision.25

A practical and intuitive means to illustrate the improved performance of the B-TF
over the WA-TF model is to compare RSL reconstructions with long-term measure-
ments made by nearby tide gauges (Kemp et al., 2009b, 2013b; Gehrels, 2000; Bar-
low et al., 2014; Long et al., 2014; Leorri et al., 2008). We compare the reconstruc-
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tion provided by the WA-TF, B-TF and multi-proxy B-TF with regional tide-gauge mea-
surements from New Jersey (Fig. 7). The tide-gauges measured about 30 cm of RSL
change over the period 1911 to 2012 CE. Considering the 1σ errors in the reconstruc-
tions are of the order ±10 cm it is unsurprising that the uncertainty bounds of recon-
structions capture the tide gauge observations. However, the RSL mid-points recon-5

structed by the multi-proxy B-TF are notably better at capturing the variability observed
in the tide-gauge data. This suggests that the variability in the PME estimates produced
from B-TF is relevant (the model is picking up a signal (as opposed to noise) due to
downcore changes in foraminifera assemblages) and the estimates are improved by the
addition of a secondary proxy. The improved fit between the instrumental records and10

the proxy reconstruction using the multi-proxy B-TF model indicates that it is possible
to reconstruct decadal to multi-decadal RSL trends using salt-marsh sediment in New
Jersey and similar regions. This is a noticeable advantage over existing approaches
such as the WA-TF that reconstruct multi-decadal to centennial scale trends because
in the absence of reconstructed PME variability, the resulting RSL reconstructions are15

primarily driven by the age-depth model.

7 Conclusions

To accurately reconstruct the continuous and dynamic evolution of sea-level change,
we developed a Bayesian hierarchical model comprised of three formally intercon-
nected modules. (1) A B-TF for the calibration of foraminifera into tidal elevation, which20

is flexible enough to formally accommodate additional proxies (bulk-sediment δ13C).
(2) An existing chronology developed from a Bchron age-depth model. (3) An exist-
ing EIV-IGP model for estimating rates of sea-level change. Previous reconstructions
treated these three components as independent and employed existing approaches
that were developed in a variety of numerical frameworks.25

Our new B-TF provides an alternative to existing transfer functions. We illustrate
the improved performance of our approach by applying the B-TF and a WA-TF model
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to a dataset of common Era salt-marsh foraminifera from southern New Jersey, USA
The relationship between species of salt marsh foraminifera and tidal elevation was
described using a regional-scale modern training set (n = 172) comprised of paired
observations of species abundance and elevation. Results from the B-TF show that
six of the eight most dominant foraminifera do not conform to the unimodal, Gaussian5

response curve prescribed by the WA-TF and other existing transfer functions.
We propose that the B-TF produces more accurate RSL reconstructions with a more

complete evaluation of uncertainty and greater ecological plausibility than the WA-TF
model. We applied the transfer functions to cores of salt-marsh sediment that were
recovered from two sites in southern New Jersey. The flexible approach utilized in10

the B-TF results in more variability in reconstructed PME and associated uncertainty
among samples than the WA-TF model. This variability is consistent with observed
changes in foraminiferal population in core samples.

The B-TF allows results from additional, independent sea-level proxies to be formally
incorporated alongside the primary biological proxy to produce a multi-proxy recon-15

struction. In New Jersey, we used bulk sediment δ13C values to determine if a core
sample formed above or below the MHHW tidal datum. The addition of a second proxy
reduced reconstruction uncertainty by an average of 28 % and up to ∼ 70 % for some
samples.

We assess the ability of the multi-proxy B-TF, B-TF and the WA-TF to reconstruct20

RSL through comparison with observed tide-gauge data from New Jersey. Results
showed that the 2σ uncertainty bounds for all reconstructions capture the observa-
tions from the tide gauge. However, the multi-proxy B-TF provides improved estimates
(MSE=0.003 m2) for the reconstructed RSL mid points compared to the B-TF and
the WA-TF (MSE=0.014 m2), indicating that the multi-proxy B-TF has the potential to25

capture the decadal-scale variability seen in the tide gauge data.
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Figure 1. Location of study sites in southern New Jersey, USA. The distribution of modern
foraminifera was described at 12 different salt marshes including five in Great Egg Harbor (not
located with symbols in the figure). Bulk surface sediment δ13C values were measured at three
sites and cores for sea-level reconstruction (filled circles) were collected at Leeds Point and at
Cape May Courthouse.
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Figure 2. Dataset of modern foraminifera described from a total of 172 surface sediment sam-
ples from 12 different sites. The samples were grouped using partioning around medoids. Only
the abundance of the eight most common species are shown. Modified from Kemp et al. (2013).
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Figure 3. The abundance of the the three most common species (Tc=Tiphotrocha compri-
mata) of foraminifera found in cores from Cape May Courthouse (CMC-8) and Leeds Point
(LP-10) are represeted by the horizontal gray bars (a). Paleo marsh elevation, in standardised
water level index (SWLI) units, was reconstructed using the weighted average transfer func-
tion (b), the Bayesian transfer function (c) and the multi-proxy Bayesian transfer function (e).
Mid points of the reconstruction are shown as white circles with the bars representing ±2σ
uncertainty. Vertical dashed lines show the elevation of the mean higher high water (MHHW)
tidal datum. Stable carbon isotope concentrations (δ13C) for bulk sediment are parts per thou-
sand (‰) relative to the Vienna Pee Dee Belemnite (VPDB) standard (d). Bchron provided the
chronology for both cores (f). Note that some samples with counts of foraminifera lack a cor-
responding PME reconstruction because they lack a suitable modern analog using the criteria
applied by Kemp et al. (2013).
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Figure 4. The response of foraminifera species to elevation estimated from the modern train-
ing set using the Bayesian transfer function. The blue circles represent the probabilites of
species occurance as determined from the raw count data (empirical probabilities). The re-
sponse probabilites of occurance estimated by the Bayesian transfer function model are shown
in red with a mean (heavy line), a credible interval for the mean (light line), and a prediction
interval (dashed line). The green vertical lines represent the species optimum determined from
the weighted average transfer function.
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Figure 5. Cross validation of the modern training set for the weighted average transfer function
(red) and the Bayesian transfer function (blue). Upper panels are elevations in standardised
water level index (SWLI) units, with lines representing ±2σ uncertainty for prediction. Lower
panels show the (observed-predicted) residuals.
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Figure 6. The EIV-IGP model results for reconstructions produced using the B-TF, the WA-TF
and the multi-proxy Bayesian transfer function. The upper panel shows individual data points
(represented by rectangular boxes that illustrate the 95 % confidence region) and include age
and relative sea-level uncertainties. The middle panels show the posterior fit of the errors-in-
variables integrated Gaussian process model to the relative sea-level reconstructions. Solid line
represents the mean fit with the 68 and 95 % credible intervals (C.I.) denoted by shading. The
lower panels are the rates of relative sea-level (RSL) change. Shading denotes 68 and 95 %
credible intervals (C.I.) for the posterior mean of the rate process. The average rate for each
phase of the reconstruction is given (in mmyr−1) with a 95 % credible interval.
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Figure 7. Comparison of the weighted average transfer function (a), the Bayesian transfer
function (b) and the multi-proxy Bayesian transfer function (c) relative sea-level reconstruction
with tide gauge data observed in the New Jersey region. The lines represent ±1σ uncertainty
for the reconstruction.
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