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We would like to thank the reviewers for their clear and constructive comments. Each
comment helped to improve the quality of this paper. Please see below our response. The

reviewer comments are in red, with our response immediately below in plain black

font.

In response to Reviewer 1

The values for the priors used in the model are not discussed in detail in this paper. I
know there are many and at least some are discussed in previous work. I view this as im-
portant as some previous papers presenting Bayesian transfer functions have used very
informative priors on the reconstructions, perhaps leading to artificially inflated crossval-
idation performance. This paper should make it clear that this is not case here.

The second last paragraph of Section 3.1 (Page 8) has been updated to include the follow-
ing text:

‘A uniform prior is supplied for unknown PME suggesting all elevations in a given range are
equally likely. For our New Jersey case study we chose a range of 0 to 150 SWLI. This range is
specific to this case study and would need to be updated at different locations.’

Section 3.2 (Page 8) has been added to the manuscript and includes a description of the
priors for the d13C proxy, noting that these are also specific to this case study. The priors
in relation to the P-spline parameters are discussed in Section 3.1.

Figure 2 would be more informative if the SWLI were given, and the observations sorted
by SWLI. I presume the observations are currently sorted by cluster rather than SWLI,
which gives a misleading impression of how noisy the data are. The clusters add little in
anything to the argument.

We have produced an updated version of Figure 2. In the new figure, samples are orga-
nized by SWLI as suggested by the reviewer.
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I suspect the optima presented in Figure 4 are actually WAPLS-2 beta coefficients. It is
misleading to present WAPLS-2 beta coefficients as is they were optima as they include a
correction that accounts for secondary gradients and (mostly) edge effects. The WA op-
tima could be shown.

We would like to thank the reviewer for pointing this out. The values presented are the
coefficients for WA-PLS-1. We have re-run the analysis to obtain the species optima and
tolerances and included them on Figure 2. Figure 4 and Section 5.1.1 have been updated
accordingly. This update does not change the discussion or conclusions of the manuscript.

I dont understand how empirical probability of occurrence is being used when both the
calibration and fossil data are relative abundance data.

The B-TF does not use relative abundance data it uses the raw species counts. We apol-
ogise that this was not made clear and have made edits throughout the manuscript to
address this. The following text has also been added to the end of Section 4.1.1 (Para 2,
Page 11).

‘However, an important difference is that the B-TF uses raw counts of foraminifera as the input,
while the WA-TF model uses relative abundances expressed as percentages.’

Two of the species show an uptick in probability of occurrence in at lowest SWLI which
are ecologically questionable. Could these be an artefact?

We have made a note of the ‘uptick’ in Section 6 (Para 1, Page 23) by adding the follwing
text:

‘However, our results suggest that the flexibility in the B-TF can, in some instances, make it more
susceptible to unusual observations. For example, the Miliammina fusca response curve in the B-
TF shows a slight increase in probability of occurrence above 120 SWLI (Figure 4) because of three
unusual samples located above 130 SWLI in which this species occurs (Figure 2). This distribution
may represent the advantage of a regional-scale training set in capturing natural variability caused
by ecological complexity and/or the influence of secondary environmental variables. Equally these
samples could be an anomalous occurrence (e.g., tests washed in by a storm) that ought to be
screened prior to analysis. Since Kemp et al. (2013a) retained these samples, we also elected to use
them in developing the new B-TF.’

Would it be possible to include information on salinity to further constrain the transfer
function? Or are there insufficient data to do this well?

This is a good suggestion, unfortunately, salinity data wasnt collected and isnt avail-
able for this case study. However, in Section 4.1.1 (Page 12) we have referred readers
to the Kemp et al., 2013 paper that includes a qualitative discussion about salinity and the
foraminifera species specific to this case study.
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In response to Reviewer 2

Specific Comments:

It is important to acknowledge that the authors use a modern analogue test and are work-
ing with the best material available to them.

We have added the following text to the beginning of Section 4.1(Para 1, Page 10) to en-
sure that this is clear.

‘The transfer function approach is under-pinned by surveys that quantify the modern, observable
relationship between foraminifera and tidal elevation. Modern (surface) samples should be col-
lected from depositional environments analogous to those represented in the fossil material under
investigation (Horton and Edwards, 2005).’

S1: Composition of the training set & species response curves.

The modern dataset contains marshes of different ‘types’ reflecting their physiographic
setting and environmental conditions (e.g. salinity). This is expressed as different high
marsh assemblages of foraminifera (Section 4.1.1). Certain taxa are restricted to partic-
ular marshes whilst others are more cosmopolitan. For the cosmopolitan species their
response curves are developed in the presence of different taxa at each site with the result
that they are likely to express different ecological optima and tolerances (ie a modified
realised niche). In other words, the elevation signal produced by an individual taxon may
vary between marsh ‘types’.

This comment is indirectly referring to a long running debate in the sea-level literature
about using local scale vs regional scale training sets since both have advantages and lim-
itations. In this paper we apply the B-TF model to the regional dataset to be consistent
with the original analysis presented in Kemp at al., 2013. We have updated Section 4.1
(Para 2, Page 10) of the manuscript to include the text below and referenced the relevant
Kemp et al, 2013 paper where the regional vs local debate is discussed for this specific
dataset.

‘The twelve sites were selected to span a wide range of physiographic settings including brack-
ish marshes located up to 25 km from the coast with a strong fluvial influence. The sites share a
common climate and oceanographic regime and therefore constitute a regional-scale training set.
The spatial scope of modern training sets has frequently been discussed and it is widely accepted
that regional-scale training sets capture natural variability in the distribution of foraminifera and
provide a large suite of samples from which to draw modern analogs (e.g., Horton and Edwards,
2005). The principal advantage of local-scale training sets is that they produce more precise re-
constructions, but at the expense of offering only a narrow range of modern analogs (e.g., Horton
and Edwards, 2005). Kemp et al. (2013b) described and discussed the effect of using regional- and
local-scale modern training sets to reconstruct RSL in New Jersey and concluded that it was nec-
essary to use the regional data to provide sufficient modern analogs for interpreting assemblages
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of foraminifera preserved in sediment cores. This led Kemp et al. (2013a) to use the regional-scale
training set when they produced Common Era RSL reconstructions from two locations in southern
New Jersey and their analysis showed that the closest modern analogs for core samples were drawn
from 11 of the 12 sites in the modern training set. Since it is not our aim to investigate the relative
utility of localand regional-scale modern training sets we use the same data as Kemp et al. (2013a)
to ensure that the new B-TF can be compared directly with existing results.’

I suspect what we are seeing in several cases is a composite response curve. I think that
Section 5.1.1 needs some revision in light of this, especially when referring to ‘ecological
plausibility’. To assist with this, it would be useful to have a plot that showed the species
distributions against SWLI - perhaps a modification of Figure 2?

We agree with the reviewer and we note that the suggestion to modify Figure 2 was also
made by reviewer 1. Therefore, we have produced an updated version of Figure 2 where
samples are organized by elevation in SWLI units.

As a final note, some of the samples look decidedly odd and, whilst they may not screen
out on statistical grounds (ie count size) could have a distorting effect on the B-TF plots.
For example, the secondary increase in probability of occurrence at the top of the ele-
vation gradient for M. fusca is not ecologically plausible given what we know about its
distribution: this has all the hallmarks of an in-wash signal? One strength of fitting an
underlying response curve (ie WA-TF) is that it is less susceptible to being pulled by this
kind of outlier.

A similar comment was also made by reviewer 1 and so we reiterate some of our thoughts
here. The small uptick in M.fusca occurs because of 3 samples found between 130 and 135
SWLI. The revised Figure 2 shows that these samples are unusual. This comment again in-
directly refers to a debate in the literature concerning the degree to which samples should
be screened. It is left to the judgment of the researcher to decide whether or not to screen
unusual samples or retain them. We recognize that the uptake in the response is an arte-
fact of using the B-TF model. The B-TF does not assign a pre determined response curve
and therefore, as suggested by the reviewer, is more susceptible to these ‘outliers’. How-
ever, we did not remove the unusual samples because they were not removed from the
original analysis presented in Kemp et al., 2013.

Please see the response to Reviewer 1 for how and where we addressed this comment in
the manuscript.

S2: Comparison of the TF performance (Section 5.1.2, Fig. 5, bits of the discussion.)

There appears a large spread in the residuals for the B-TF, but the text says the WA-TF has
a larger average 2sigma uncertainty. Is this correct? Eyeballing the performance graphs
would lead me to prefer the WA-TF.

Yes, this statement is correct. The 2s uncertainty is not referring to the spread of the resid-
uals, rather the uncertainty intervals for each predicted elevation (shown as vertical lines
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on Figure 5). We have updated Section 5.1.2 (Para 1, Page 18) with the following clarifica-
tion:

‘The average of the 2s prediction uncertainties is slightly larger for the WA-TF (28 SWLI) than
for the B-TF (21 SWLI). This suggests that while the WA-TF is more successful than the B-TF at
capturing the true elevation within the prediction uncertainty bounds, part of the reason for this
may be because the intervals are larger. Prediction performance is often penalised for large inter-
vals (e.g., Gneiting and Raftery, 2007).’

There are a couple of large outliers in the B-TF and the clustering around the key high
marsh values (100 SWLI) of the WA-TF seems tighter?

We agree that the WA-TF appears ‘tighter’ around 80-100 SWLI than the B-TF. We suggest
that the WA-TF performs better here because the average SWLI for the modern dataset is
⇠ 90, and, by the very nature of the WA-TF estimates of elevation will be drawn towards
the average SWLI value. We have made a note of this in Section 5.1.2 (Para 2, Page 19).

‘In contrast, the WA-TF performs better at elevations between 80 to 100 SWLI because the distri-
bution of samples in the modern training set is focused at ⇠90 SWLI, and, by the very nature of
the WA-TF, estimates of elevation will be drawn towards this average value.’

It would perhaps also be useful to include as dashed lines the size of the 2sigma uncer-
tainty band on the residual plots: ultimately if estimates are within error, they are fine.

The 2s uncertainties that we refer to are the uncertainties surrounding the individual pre-
dicted elevations. The top panel includes these uncertainty bounds and we state in the
text that for the B-TF 90% of the time the true value is within the prediction interval vs.
92% for the WA-TF.

S3: Variability does not mean accuracy.

Variability does not mean accuracy The paper makes an excellent point regarding the gen-
eral insensitivity of the WA-TF error envelope and the fact that the B-TF has greater ca-
pacity to recognise intervals in which reconstructions are possible with greater (or lesser)
degrees of precision. However, I did not follow the logic of the section in the discussion
which equates the presence of variability in the PME reconstruction as being more accu-
rate, simply because the foram assemblages exhibit variability.

We agree with the reviewer. We have changed our language to suggest that the B-TF is
more sensitive to population changes (i.e. if foraminifera assemblages change then PME
should change.). We have removed accuracy statements from the discussion text.

Similarly, as shown in Fig 7, the B-TF scatters around the instrumental data but shows no
correlation with real rate changes and appears to overestimate variability. The impact of
adding the d13C is actually to dampen the variability back down again.
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We feel that by addressing the previous comment and removing accuracy statements we
have also dealt with this comment i.e. the B-TF is more sensitive to changes but that does
not imply greater accuracy.

S4: The abstract / text refers to the model as reconstructing RSL with fully quantified

uncertainty.

Whilst I understand what the authors are saying here, it is perhaps worth explicitly noting
at some point in the text that there are many sources of uncertainty in the resulting RSL
that are not quantified (e.g. the influence of sediment compaction, tidal range changes,
GIA, altered species-environment response, taphonomic effects etc etc). These uncertain-
ties are inherent to all microfossil-based approaches and so are not particular problems
unique to the material presented here. However, given that the outputs from this kind of
model are likely to be referred to / adopted by scientists outside the‘palaeo world, it may
be useful making this point somewhere in the manuscript

We agree with the reviewer and we have added the following text to Section 5 (Page 15).

‘It should be noted however that other sources of uncertainty that are inherent in RSL reconstruc-
tions (e.g., the influence of sediment compaction or tidal range changes) were not considered or
accounted for.’

S5: Evidence for decadal-multidecadal reconstructions (pg 4879).

This may be overstating things a little. There is actually limited evidence that the TF picks
out changes evident in the instrumental record.

We agree with the reviewer regarding this point. We do not wish to overstate our con-
clusions and have removed some text from this page accordingly. However, based on the
MSE results described in Section 5.2 (Para 2, Page 20) we will retain a statement saying
that the best reconstruction is obtained from the multi proxy B-TF model.

Is there any added significance about the mid-point vs any other point within the error
envelope (ie is a reconstruction more likely to be correct at the mid point or is the ‘true
value equally likely to reside anywhere within the error envelope)? Is this the same for
WA-TF, B-TF and multi-proxy B-TF?

Yes the mid-point has a higher probability density and the true value is not equally likely
to occur everywhere in the ‘error envelope’. The probability density deceases as you move
towards the bounds of the 95% uncertainty region. However, upon reading this comment
we have updated Figure 7 to display the uncertainties as boxes to help illustrate that
the true value can in fact occur with some probability throughout the entire uncertainty
region.
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Technical Comments

T1: Clarification is required regarding layer thickness and the manner in which the var-
ious data are combined within the modelling framework. Are foraminifera assumed to
be surface indicators (1 cm thick)? Is the bulk organic isotope data assumed to represent
the signature of a ?1 cm thick surface layer? Is the organic material used for radiocarbon
dating also assumed to represent the past marsh surface, or is a palaeo- marsh surface cor-
rection applied to deal with the fact that sub-surface plant fragments have been used? If
so, has an uncertainty term(s) been included in this (and if so what)? This latter correction
does influence the uncertainties attached to Bchron and the output from the Chronology
Module.

We use the data as presented by Kemp et al., 2013. Sample layers are 1-cm thick for all
analyses (foraminifera and d13C, modern and fossil). We use the age-depth model without
modification or reinterpretation from the relevant Kemp et al., 2013 publication. Further
discussion can be found there. We have updated the relevant parts of the manuscript to
make this clear.

T2: Clarification is needed regarding how uncertainty associated with floral distributions,
tide levels and d13C is treated within the modeling framework.

Section 3.2 (Page 8) has been added to the manuscript and includes a description of the
priors for the d13C proxy, noting that these are also specific to this case study.

T3: What is the reason for using abundance (ie number of foraminifera) rather than rela-
tive abundances (ie proportion of the total count) in the modelling framework?

The use of count data is necessary for the model we have chosen to use and it offers the
advantage over relative abundance since the resulting multinomial distribution can take
account of the fact that large counts give reduced uncertainty. We have updated Section 3
(Para 1, Page 4).

‘A B-TF model using a penalized spline (P-spline) as a non-parametric model of the multinomial
response of foraminifera counts to tidal elevation. The multinomial distribution can take account
of the fact that large counts give reduced uncertainty...’

T4: Clarification is required regarding how the two cores are combined to produce the
RSL reconstructions (ie how does Fig 3 translate to Figs 6&7?). How is the overlap dealt
with? Are all the data included?

All three modules of the model are applied to both cores separately and then the results
are simply combined. We have added the following text to Section 5 (Page 15) to make
this clear:

‘The Cape May Courthouse and Leeds Point RSL reconstructions were developed separately to one
another and were then merged into a single, regional-scale dataset for analysis...’
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As a more general question, why does the uncertainty envelope expand toward the present?
Surely we know age elevation precisely for core top and this should squeeze errors down?

Assuming that the reviewer is referring to the expanding uncertainty in the EIV-IGP rate
results in Figure 7, this is an edge effect that occurs as a results of using a Gaussian pro-
cess model. The Gaussian process model learns about the present rates based upon what
it knows about past and future sea level observations. Therefore, for the most recent ob-
servations we have less data (i.e., no future data) on which to base our rate estimates,
resulting in an increase in uncertainty. To address this comment we have added the fol-
lowing text to Section 5.2 (Para 1, Page 20).

‘All reconstructions show an expanding uncertainty for the most recent rates. This is an edge effect
that occurs as a results of using a Gaussian process model on the rates. These rates are estimated
based upon their relationship (through an integration step) to the observations. As we approach
the edge of the data, there are fewer constraints from the observations. This means that there are
multiple rate trajectories that are consistent with recent data and so the uncertainty in the rate
process increases.’

Technical Corrections

We did not analyse samples with no modern analogues to insure consistency with the
original Kemp et al. 2013. anaysis. We have made this clear thoughout the manuscript.
We have defined Tc=Tiphotrocha comprimata in the FIgure 3 discription. We have ad-
dressed all other technical corrections and we would like to thank the reviewer for taking
the time to read the paper in enough detail to bring these to our attention.

List of Changes

Locations of Relavant changes as stated in the above response are listed below and high-
lighted in red in the marked-up manuscript version.

• Section 3.1 (Page 8)

• Section 3.2 (Page 8)

• Section 4.1.1 (Para 2, Page 11)

• Section 6 (Para 1, Page 23)

• Section 4.1.1 (Page 12)

• Section 4.1(Para 1, Page 10)

• Section 4.1 (Para 2, Page 10)
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• Section 5.1.2 (Para 1, Page 18)

• Section 5.1.2 (Para 2, Page 19)

• Section 5 (Page 15)

• Section 5.2 (Para 2, Page 20)

• Section 3.2 (Page 8)

• Section 3 (Para 1, Page 4)

• Section 5 (Page 15)

• Section 5.2 (Para 1, Page 20)
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Abstract. We present a Bayesian hierarchical model for reconstructing the continuous and dynamic

evolution of relative sea-level (RSL) change with quantified uncertainty. The reconstruction is pro-

duced from biological (foraminifera) and geochemical (�13C) sea-level indicators preserved in dated

cores of salt-marsh sediment. Our model is comprised of three modules: (1) A new Bayesian transfer

function for the calibration of foraminifera into tidal elevation, which is flexible enough to formally

accommodate additional proxies (bulk-sediment (�13C)); (2) An existing chronology developed us-

ing the Bchron age-depth model, and (3) An existing errors-in-variables integrated Gaussian process

(EIV-IGP) model for estimating rates of sea-level change. Our approach is illustrated using a case

study of Common Era sea-level variability from New Jersey, U.S.A. We develop a new Bayesian

transfer function (B-TF) using foraminifera, with and without the additional (�13C) proxy and com-

pare our results to those from a widely-used weighted-averaging transfer function (WA-TF). The

formal incorporation of a second proxy into the B-TF model results in smaller vertical uncertainties

and improved accuracy for reconstructed RSL. The vertical uncertainty from the multi-proxy B-TF

is ⇠28% smaller on average compared to the WA-TF. When evaluated against historic tide-gauge

measurements, the multi-proxy B-TF most accurately reconstructs the RSL changes observed in the

instrumental record (mean square error = 0.003 m2). The Bayesian hierarchical model provides a sin-

gle, unifying framework for reconstructing and analysing RSL change through time. This approach

is suitable for reconstructing other paleoenvironmental variables (e.g. temperature) using biological

proxies.
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1 Introduction

Paleoenvironmental reconstructions describe Earth’s response to past climate changes and offer a

context for current trends and analogs for anticipated future changes (e.g., Mann et al., 2009). Rea-

soning by analogy underpins the use of biological proxies for paleoenvironmental reconstructions

(e.g., Rymer, 1978; Jackson and Williams, 2004; Bradley, 2015). The ecological preferences of

biological proxies observed in modern environments are used to derive a paleoenvironmental recon-

struction from their counterparts preserved in dated sediment cores under the assumption that their

ecological preferences were unchanged through time (e.g., Juggins and Birks, 2012). This approach

commonly utilizes data consisting of one environmental variable and counts from multiple proxy

species (e.g., Imbrie and Kipp, 1971; Fritz et al., 1991; Birks, 1995). Numerical techniques known

as transfer functions formalize the relationship between biological assemblages and the environ-

mental variable. This step is termed calibration. To quantify environmental change through time it is

necessary to combine the paleoenvironmental reconstruction with a chronology of sediment depo-

sition and an appropriate methodology to describe temporal trends. These three components can be

developed and applied independently of one another or assimilated in a single framework.

Relative sea-level (RSL) reconstructions can constrain the relationship between temperature and

sea level and reveal the long-term, equilibrium response of ice sheets to climate forcing (e.g., Dutton

et al., 2015). Some the most accurate and precise RSL reconstructions are produced from salt-marsh

foraminifera. Foraminifera are used as sea-level proxies because species have different ecological

preferences for the frequency and duration of tidal submergence, which is primarily a function of

tidal elevation (e.g., Scott and Medioli, 1978; Horton and Edwards, 2006; Edwards and Wright,

2015). Under conditions of RSL rise, salt marshes accumulate sediment to maintain an elevation in

the tidal frame. The resulting sedimentary sequence is an archive of past RSL changes that may be

accessed by collecting sediment cores. After extraction, these sediment cores are sliced into layers

(samples), from which foraminifera are counted. The transfer functions commonly used to recon-

struct RSL impose a single ecological response to tidal elevation on all species of foraminifera (or

other biological groups such as diatoms). Other analyses performed on the same layers can provide

a multi-proxy approach to reconstructing RSL, although this often relies on informal approaches to

combine results from independent proxies (e.g., Kemp et al., 2013a; Gehrels, 2000; Nelson et al.,

2008). For example, on organogenic salt marshes on the U.S. Atlantic coast the primary source of or-

ganic carbon is in-situ plant material and measurements of bulk sediment �13C reflect the dominant

plant community (e.g. Kemp et al., 2012). Since salt-marsh plants are also sea-level proxies the �13C

values can be used to reconstruct RSL. Some sediment layers are dated using radiocarbon or recog-

nition of pollution and vegetation clearance markers of known age. Since there are typically fewer

dated layers than total layers, a statistical age-depth model is used to estimate the age of undated

layers with uncertainty (e.g., Bronk Ramsey, 2008; Haslett and Parnell, 2008; Blaauw and Christen,
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2011). Although Bayesian age-depth models and methods for estimating rates of sea-level change

already exist, Bayesian methods are yet to be applied in the calibration phase of reconstructing RSL,

preventing the appropriate propagation of uncertainties.

We develop a Bayesian transfer function (B-TF) to reconstruct RSL using foraminifera (expressed

as raw counts) and measurements of bulk sediment �13C from salt-marsh sediment. This model

allows each species of foraminifera to have a different ecological response to tidal elevation and

provides a formalized approach to combine multiple proxies and consequently reduce reconstruc-

tion uncertainty. Following the framework of Parnell et al. (2015) we combine this new B-TF with

an existing chronology module (Bchron), and an existing process module (the Errors-In Variables

Integrated Gaussian Process (EIV-IGP) model of Cahill et al., 2015) to create a holistic Bayesian hi-

erarchical model. Through application of the model to a case study of Common Era and instrumental

RSL change in New Jersey (U.S.A), we compare the utility of the B-TF with an existing weighted

averaging transfer function (WA-TF) approach.

2 Previous calibration methods

Transfer functions are empirically-derived equations for reconstructing past environmental condi-

tions from the abundance of multiple species. The term refers not to a single numerical method, but

to a range of regression-based techniques that are classified into two categories depending on whether

the underlying model maps environmental variables to species abundances (classical calibration) or

vice versa (inverse calibration). Classical approaches are underpinned by the ecologically-intuitive

assumption that the distribution of species is driven by environmental variables (e.g., Birks, 2012).

Inverse approaches initially gained popularity because of their reduced computational complexity

(e.g., Birks, 2010) resulting in quicker processing compared to classical methods. Furthermore, in-

verse methods often demonstrate equal or superior performance when compared to classical ap-

proaches (e.g., Toivonen et al., 2000; ter Braak and Juggins, 1993; Korsman and Birks, 1996)). The

parameters in transfer functions are estimated using empirical data (a modern training set) from envi-

ronments likely to be analogous to those encountered in core material (e.g., Juggins and Birks, 2012)

and are treated as fixed and known. Studies seeking to reconstruct RSL from salt-marsh sediment

employ transfer functions developed using a modern training set of paired observations of tidal el-

evation and microfossil assemblages (most commonly foraminifera or diatoms) to reconstruct RSL

from their counterparts preserved in sediment cores (e.g., Horton et al., 1999; Gehrels, 2000; Ed-

wards and Horton, 2006; Kemp et al., 2013b; Barlow et al., 2014). Although the different types of

transfer function have advantages and weaknesses compared to one another, these regression-based

techniques share the limitations of applying a single response form to all species and treating model

parameters as fixed and known. Applying a single response form can result in misleading or inac-
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curate paleoenvironmental reconstructions if the response curve is not appropriate for all species

(Greig-Smith, 1983) and does not account for the inherent uncertainty in model parameters that re-

sults from ecological noise and the influence of secondary environmental variables, which in RSL

reconstructions can include salinity, pH and sediment texture and composition (e.g., Shennan et al.,

1996; Zong and Horton, 1999; Horton et al., 1999).

Bayesian calibration methods are inherently classical and have recently been given growing atten-

tion to produce paleoenvironmental reconstructions using biological proxies (e.g., Toivonen et al.,

2000; Vasko et al., 2000; Haslett et al., 2006; Li et al., 2010; Tingley et al., 2012; Tolwinski-Ward

et al., 2013, 2015; Parnell et al., 2015). Toivonen et al. (2000) and Vasko et al. (2000) developed a

Bayesian model to reconstruct temperature from chironomid counts. Haslett et al. (2006) adopted

elements of the model proposed by Toivonen et al. (2000) in a more complex Bayesian hierarchical

model for reconstructing multivariate climate histories from pollen counts. Li et al. (2010) proposed

a Bayesian hierarchical model to reconstruct temperature from pollen using a multi-proxy approach.

Similarly, Tingley et al. (2012) considered a Bayesian hierarchical space-time model for inferring

climate processes. More recently, Tolwinski-Ward et al. (2013, 2015) and Parnell et al. (2015) ex-

panded on the aforementioned approaches of Haslett et al. (2006) and Tingley et al. (2012) for

reconstructing climate variables. To date, Bayesian methods have not been used for reconstructing

RSL using biological proxies.

3 A Bayesian hierarchical model for reconstructing and analysing former sea levels

We now describe our statistical model, which produces estimates of RSL and associated rates from

raw inputs including foraminifera counts and radiocarbon dates (or dates produced from recognition

of pollution and vegetation clearance markers of known age) from a sediment core. There are two

advances from existing approaches:

1. A B-TF model using a penalized spline (P-spline) as a non-parametric model of the multino-

mial response of foraminifera counts to tidal elevation. The multinomial distribution can take

account of the fact that large counts give reduced uncertainty and the P-spline model allows

for multi-modal and non-Gaussian species response to environmental variables;

2. A full hierarchical model which incorporates the B-TF, a chronology model accounting for

time uncertainty, and a rich stochastic process for quantifying sea level rate changes.

We use the JAGS package (Just Another Gibbs Sampler; Plummer, 2003) to fit the model via Gibbs

sampling.
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We start by outlining our notation:

– y are the observed foraminifera (expressed as raw counts) from the sediment core. yil is the

count of species l in layer i. We denote yi the L-vector of foraminifera counts for each layer i

in the sediment core, where i= 1, . . . ,N layers and l = 1, . . . ,L species;

– r are the observed radiocarbon dates in the sediment core. rk is the k

th radiocarbon date,

k = 1, . . . ,K. Usually K ⌧N . Due to the nature of radiocarbon, these are given in radio-

carbon years rather than calendar years. A known calibration curve is used to transform the

radiocarbon ages into calendar ages as part of the chronology model;

– d are the observed depths in the sediment core. di is the depth associated with layer i;

– e is paleo marsh elevation (PME), which is the tidal elevation at which a layer originally

accumulated. ei is the PME for sediment core layer i;

– s is RSL. s has a deterministic relationship with e and d given some fixed parameters ! so that

s= g!(e,d). Producing s will require correcting PME for sample tidal elevation (a function

of sediment core depth). si is the RSL for sediment core layer i;

– t represents the calendar ages (in years before present (1950); BP) of all layers in the sediment

core. It is unknown and estimated with uncertainty as part of the chronology module from the

radiocarbon dates r (and non radiocarbon dates) and observed depths d. ti represents the age

of sediment core layer i;

– y

m are the observed modern foraminifera counts. ymjl is the abundance of species l in surface

sample j. ymj is an L-vector of modern foraminifera counts for modern sample j with j =

1, . . . ,J modern samples. Tj =
PL

l=1 y
m
jl are the row totals of species counts for calibration

sample j in the matrix of species abundances;

– e

m are the observed modern tidal elevations. emj is the tidal elevation for surface sample j.

Together ym and e

m are used to calibrate the relationship between foraminifera abundance

and tidal elevation;

– z is the sediment core �13C where zi is the �13C for layer i. We include this as a secondary

proxy though it is an optional part of the model and can be removed if unavailable in other

sediment cores;

– ✓ and ↵ are a set of parameters governing the relationship between foraminifera (expressed as

raw counts) and tidal elevation and �13C and tidal elevation respectively;

–  are a set of parameters governing the sedimentation process (i.e. linking age and depth);

– � are a set of parameters governing the RSL process, including its smoothness and variability;
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Using the notation above we create a Bayesian hierarchical model to produce a posterior distribu-

tion of our parameters given data:

p(s,e, t,✓, ,�,↵|ym, e

m
,y,r,d,!, z)/

p(y|e,✓)p(z|e,↵)| {z }
Fossil Data Model

⇥ p(y

m|em,✓)| {z }
Modern Calibration Model

⇥ p(r|t, ,d)| {z }
14C Calibration

⇥ p(t|d, )| {z }
Chronology Model

⇥p(s|e,d, t,�,!)| {z }
Sea level Model

⇥ p(✓)|{z}
Modern Calibration Prior

⇥ p( )|{z}
Chronology Prior

⇥ p(�)|{z}
Sea Level Prior

⇥ p(↵)|{z}
�13C Prior

Before describing the components of the model that we use, we note that this is an extremely com-

plex and computationally demanding model to fit, being of very high dimension with rich stochastic

processes being required for many of the sub-models. We follow Parnell et al. (2015) in making some

simplifying assumptions. First, we assume that the calibration parameters ✓ can be learnt solely from

the modern calibration data y

m and e

m. Thus, the sediment core data contains no further informa-

tion about this relationship. This is a common assumption in many palaeoclimate studies (see e.g.

Haslett et al., 2006; Tolwinski-Ward, 2015). Second, we assume that the model can be modularised

into three parts: the aforementioned calibration, chronology and process modules. This is a conser-

vative assumption and follows from the restriction on the calibration parameters.

Following these assumptions, we obtain the three modules:

p(✓|ym, e

m
)/ p(y

m|em,✓)p(✓) (calibration module)

p(t, |r,d)/ p(r|d,t, )p(t|d, )p( ) (chronology module)

p(s,e, t,✓, ,�,↵|ym, e

m
,y,r,d,!, z)/ p(y|e,✓)p(✓|ym, e

m
)p(t, |r,d)p(s|e,!,d, t,�)p(�)p(z|e,↵)p(↵)

(process module)

We note that if there is no additional �13C proxy information then z and ↵ and hence the last two

terms on the RHS of the process module are removed from the equation.

3.1 The calibration module: multinomial P-splines (B-TF)

In this module we aim to estimate the parameters ✓ that govern the relationship between foraminifera

and tidal elevation by using the model as specified in the Section 3. The probability density func-

tion p(y

m
j |emj ,✓) used as the likelihood here provides the data-generating mechanism from which

foraminifera abundances can be simulated given tidal elevation. The likelihood we use for the mod-

ern model is:

y

m
j1,y

m
j2, ...y

m
jL|Tj ,pj1,pj2, ....pjL ⇠Multinomial(pj1,pj2, ....pjL,Tj), (1)

where pj = {pj1,pj2, ....pjL} is the vector containing the probability of finding species l at the tidal

elevation associated with sample j.
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The probability vectors pj are estimated from a latent response �jl (i.e. the response of species l

for sample j) which is a function of tidal elevation e

m
j . �l is a J-vector including the latent response of

species l for all samples j. The relationship between probability of foraminifera species occurrence

and tidal elevation is expected to be non-linear so we model these using P-splines (De Boor, 1978;

Dierckx, 1993) via a softmax transformation. The softmax transformation is given as:

pjl =
exp(�jl)PL
l=1 exp(�jl)

(2)

�l are given P -spline prior distributions. P-splines are created from B-spline basis functions pe-

nalised to produce a smooth curve. The B-spline basis functions are constructed from piecewise

polynomial functions that are differentiable to a given degree q, here cubic. The component cubic

B-spline basis functions look like individual Gaussian curves, however, they will be non-zero only

over the range of q+2 knots; this has numerous computational advantages. We refer to the B-spline

matrix as B. The columns of B are the tidal elevations e

m, transformed by the appropriate basis

function. The resulting relationship is:

�l =B�l + ✏l (3)

B is a J ⇥M matrix of basis functions where M is the number of knots, and J is the number of

modern samples. To obtain the penalised smooth behaviour for �l we apply a prior such that the first

differences of �l are normally distributed with mean 0 and precision ⌧� . The parameter ⌧� controls

how close the weights are related to each other and will therefore control smoothness.

An error term, ✏l ⇠N(0,⌫l), is added to the mean for �l here to ensure that we do not encounter

problems with over-dispersion by under or over-estimating the variance in the observed data. We

do not assume a constant variance; to account for the changing variation in the data the precision

parameters ⌫l are also estimated using P-splines, i.e., ⌫l = exp(B�l). This allows the variance to

adapt given the data and will allow it to increase/decrease where necessary. Similarly to Equation 3

, the basis functions are penalised by parameters �l to produce ⌫l and we apply a prior such that the

first differences of �l are normally distributed with mean 0 and precision ⌧� . Therefore, the calibra-

tion model has parameters ✓ = {�l,�l,⌧� ,⌧� ; l = 1, . . . ,L}, which can be fitted in a single Bayesian

model for all species simultaneously.

The B-TF produces posterior estimates for the multinomial probability vector p for each mod-

ern sample. For each species of foraminifera, we compare the probability of species occurrence (at

each modern observed tidal elevation) estimated from the B-TF, with the empirical probability of

foraminifera species occurrence estimated from the observed data. The model vs. empirical proba-

bility comparison provides evidence to support the validity of the model. The comparison indicates

if the model is capable of capturing the within-species variability of occurrence probabilities across
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changing tidal-elevations. Once run, the B-TF can produce estimates of PME for each layer in the

sediment core from this relationship. A uniform prior is supplied for unknown PME suggesting all

elevations in a given range are equally likely. For our New Jersey case study we chose a range of

0 to 150 SWLI. This range is specific to this case study and would need to be updated at different

locations.

We evaluate the performance of the B-TF via 10-fold cross validation on the modern data, where

the data are divided up into 10 randomly drawn equal size sections (known as folds) which are

removed in turn. We create predictions for the removed sections repeatedly until every observation

has an out-of-sample prediction value. To allow direct and meaningful comparison between models,

we also cross validated the WA-TF using the same approach on the same randomly drawn folds.

3.2 The inclusion of �13C

In cases where the secondary �13C proxy is available, the posterior estimated for ei will include the

likelihood p(z|e,↵). This is a normal likelihood zi ⇠N(µi,⌧z) where the precision ⌧z is constant

and µi will correspond to the dominant �13C value at ei. �13C reflect dominant plant communities

on a marsh and the observed modern boundaries between communities can correspond to a tidal

datum (TD). As a result �13C measured in bulk sediment can be related to tidal elevation as follows;

µi =

8
>>>><

>>>>:

µ1, if ei  TD

µ2, if ei � TD

µ3, otherwise

where, µi’s are given informative uniform priors with upper and lower limits corresponding to

the maximum and minimum �

13C values represented in a given elevational range. The prior in-

formation required here is location specific. For example, for the New Jersey case study sites the

TD is MHHW. At these sites �13C can range anywhere from -28‰ to -22‰ at elevations above

MHHW and anwhere from -18.9‰ to -12‰ at elevations below MHHW. Therefore, the prior

for µ1 ⇠ U(�28,�22) and µ2 ⇠ U(�18.9,�12). In cases where �13C values fall in the range -

21.9‰ to -19‰ they can’t provide information about elevation in relation to MHHW, thus µ3 ⇠
U(�21.9,�19).

3.3 The chronology module: Bchron

The chronology module is concerned with estimating the ages t of the foraminifera in the sediment

core. These ages will necessarily be uncertain, since the radiocarbon dates r (and non-radiocarbon

dates) are observed with uncertainty. An interpolation step is then required to obtain estimated ages
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at all depths, which adds further uncertainty. A useful constraint is that age must increase with depth

(the law of superposition; Nicolaus, 1669) so a monotonic stochastic process is used. Bchron (Haslett

and Parnell, 2008) assumes that the integrated sedimentation rate (i.e., the accumulation of sediment

over a fixed period of time) arises as the realisation of a Compound Poisson-Gamma (CPG) process.

Bchron calibrates the radiocarbon (and non-radiocarbon) dates, estimates the parameters of the CPG

(here  ) and identifies outliers. Other age-depth models are available (see Parnell et al. 2011 for a

review), but Bchron was designed specifically for use in palaeoenvironmental reconstructions.

Once Bchron has been run, we obtain a joint posterior distribution of ages for every layer in the

sediment core, which we denote as p(t|r,d, ). Each individual chronology sample from Bchron

satisfies the law of superposition. However, we approximate the age of each layer in the posterior,

i.e., p(ti|r,d, ) as a normal distribution, so that ti|r,d, ⇠̂N(µti ,�
2
ti). This may seem like a severe

relaxation, since the ages of layers may now overlap, but we find this has minimal effect on the

resulting RSL reconstructions since the ages are further updated during the process module. Fur-

ther simulations justifying this assumption have been carried out using chronological models in late

Holocene sea level reconstructions from saltmarsh sediments (Parnell and Gehrels, 2015).

3.4 The process module: errors-in-variables integrated Gaussian process (EIV-IGP)

Our final step is to transform PME, ei into RSL, si via the relationship si = g!(ei,di). We then

have a set of bivariate probability distributions for each layer consisting of pairs (ti, si) which rep-

resent the raw layer-by-layer estimates of RSL and age. To use these in the EIV-IGP framework

of Cahill et al. (2015), we approximate each bivariate probability distribution as bivariate Gaussian.

The model makes use of two well known statistical approaches. Firstly, the EIV approach (Dey et al.,

2000) accounts for measurement error in the explanatory variable, here time. The EIV approach is

necessary when dealing with proxy reconstructions that include temporal uncertainty from dating

the sediment core. Secondly, the Gaussian process approach (Rasmussen, 2006) is useful for non-

linear regression problems and is a practical approach to modelling time series data. A Gaussian

process is fully specified by a mean function (set to zero) and a covariance function that relates the

observations to one another.

We use an integrated Gaussian process approach (Holsclaw et al., 2013; Cahill et al., 2015). A

Gaussian process prior is placed on the rates of sea-level change and the mean of the distribution

assumed for the observed data is derived from the integral of the rate process. This integrated ap-

proach is useful when there is interest in the rate process as the analysis allows for estimates of

instantaneous rates of RSL change. Furthermore, the current RSL estimate is derived as the integral

of all the previous RSL rates that have occurred, matching the physical behaviour of sea-level evolu-

tion over time. By embedding the integrated Gaussian process (IGP) model in an errors-in-variables
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(EIV) framework (which takes account of time uncertainty), we can estimate rates with quantified

uncertainty. We use the same priors for the parameters � as described in Cahill et al. (2015).

4 Case study: New Jersey RSL

On the Atlantic coast of southern New Jersey (Figure 1), salt marshes form in quiet-water, depo-

sitional settings and display a zonation of plants into distinct vertical zones corresponding to eco-

logically important tide levels. Elevations below mean tide level (MTL) are not vegetated and the

inorganic sediment is comprised of silt and fine sand, often with shell material. Low salt-marsh en-

vironments between MTL and mean high water (MHW) are vegetated by Spartina alterniflora (tall

form), which is a C4 plant. Sediment in this zone is organic grey silt and clay. High salt-marsh

environments exist between MHW and highest astronomical tide (HAT). This zone is typically

a wide, flat meadow vegetated by Spartina patens and Distichlis spicata (C4 species). The sedi-

ment deposited in this zone is brown peat with abundant plant remains. The transition between high

salt marsh and the freshwater upland is vegetated by C3 plants such as Phragmites australis, Iva

fructescens, Schoeneplectus americanus, and Typha augusitfolia. This community exists at tidal ele-

vations above mean higher high water (MHHW), including freshwater environments above the reach

of tidal influence, and occurs with black, amorphous, organic sediment.

4.1 Modern training set

The transfer function approach is under-pinned by surveys that quantify the modern, observable re-

lationship between foraminifera and tidal elevation. Modern (surface) samples should be collected

from depositional environments analogous to those represented in the fossil material under investi-

gation (Horton and Edwards, 2005). At individual sites sampling should span the full range of tidal

elevations from shallow sub-tidal settings through to supra-tidal zones. Kemp et al. (2013a) com-

piled a modern training set from twelve salt marshes in southern New Jersey (Figure 1). At stations

along each transect, surface (0-1 cm) sediment samples were collected to count foraminifera. The

tidal elevation of each sample was measured in the field. Since the great diurnal tidal range (MLLW

to MHHW) varies among sites in the study region tidal elevation is expressed as a standardized water

level index (SWLI; e.g. Horton et al., 1999), where a value of 0 corresponds to MLLW and 100 is

MHHW. This modern training set was used here without modification from Kemp et al., 2013a.

The twelve sites were selected to span a wide range of physiographic settings including brackish

marshes located up to 25 km from the coast with a strong fluvial influence. The sites share a com-

mon climate and oceanographic regime and therefore constitute a regional-scale training set. The

spatial scope of modern training sets has frequently been discussed and it is widely accepted that

regional-scale training sets capture natural variability in the distribution of foraminifera and provide
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a large suite of samples from which to draw modern analogs (e.g., Horton and Edwards, 2005). The

principal advantage of local-scale training sets is that they produce more precise reconstructions,

but at the expense of offering only a narrow range of modern analogs (e.g., Horton and Edwards,

2005). Kemp et al. (2013b) described and discussed the effect of using regional- and local-scale

modern training sets to reconstruct RSL in New Jersey and concluded that it was necessary to use

the regional data to provide sufficient modern analogs for interpreting assemblages of foraminifera

preserved in sediment cores. This led Kemp et al. (2013a) to use the regional-scale training set when

they produced Common Era RSL reconstructions from two locations in southern New Jersey and

their analysis showed that the closest modern analogs for core samples were drawn from 11 of the

12 sites in the modern training set. Since it is not our aim to investigate the relative utility of local-

and regional-scale modern training sets we use the same data as Kemp et al. (2013a) to ensure that

the new B-TF can be compared directly with existing results. However, an important difference is

that the B-TF uses raw counts of foraminifera as the input, while the WA-TF model uses relative

abundances expressed as percentages.
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Figure 1. Location of study sites in southern New Jersey, USA. The distribution of modern foraminifera was

described at 12 different salt marshes including five in Great Egg Harbor (not located with symbols in the

figure). Bulk surface sediment �13C values were measured at three sites and cores for sea-level reconstruction

(filled circles) were collected at Leeds Point and at Cape May Courthouse.

4.1.1 Modern counts of foraminifera

The modern dataset comprised 172 paired observations of 18 foraminiferal species (including many

zeros) and tidal elevation. The foraminifera count sizes ranged from 8 to 307 dead individuals.
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The highest occurrence of foraminifera in the modern dataset is at 141.5 SWLI. Higher samples

were devoid of foraminifera and interpreted as being located above marine influence. This modern

training set demonstrates that foraminifera (like plants) form distinct assemblages that correspond to

elevation in the tidal frame (e.g., Scott and Medioli, 1978), but with a secondary influence of salinity

(e.g., de Rijk, 1995). Kemp et al., 2013b provide a qualitative discussion on the influences of salinity

on the foraminifera species specific to our case study. Throughout southern New Jersey, low-marsh

environments are occupied by Miliammina fusca and Ammobaculties spp. (Figure 2). High salt-

marsh environments are characterized by a number of foraminiferal assemblages including groups

dominated by Trochammina inflata , Arenoparella mexicana , and Tiphotrocha comprimata. High

salt marshes at sites with strong fluvial influence and correspondingly low (brackish) salinity are

occupied by Ammoastuta inepta (Figure 2). At some sites elevations above MHHW are characterized

by a group of foraminifera in which Haplophragmoides manilaensis is the dominant species. The

pattern (uniform low marsh and diverse high marsh) and composition of these assemblages is similar

to those identified elsewhere on the U.S. Atlantic coast (e.g., Murray, 1991; Gehrels, 1994; Kemp

et al., 2009a; Wright et al., 2011; Edwards et al., 2004).

4.1.2 Modern bulk-sediment �13C measurements

In the mid-Atlantic and northeastern U.S.A the low salt-marsh and high salt-marsh zones are domi-

nated by C4 species such as Spartina alterniflora, Spartina patens, and Distichlis spicata, while the

transitional marsh and surrounding upland zones are dominated by C3 species. In New Jersey the

boundary between C3 and C4 plant communities corresponds to MHHW and �13C measured in bulk

sediment can be used to reconstruct RSL by determining if a sample formed above or below the

MHHW tidal datum. Based on a dataset of surface (0-1 cm) bulk sediment �13C from three sites in

southern New Jersey (Figure 1) and presence or absence of foraminifera, Kemp et al. (2013a) recog-

nized three types of sediment that were likely to be encountered in cores of organic coastal sediment

and to ensure comparability we use their interpretation here without modification.

1. Samples with �13C values more depleted than -22.0‰ and with foraminifera present formed at

tidal elevations from 100-150 SWLI. The lower limit of this range corresponds to MHHW and

the upper limit is conservatively set to extend slightly beyond the observed highest occurrence

of foraminfera (141.5 SWLI) in the modern dataset.

2. Samples with �13C values less depleted than -18.9‰ formed at tidal elevations from 0-100

SWLI since C4 plants are dominant below MHHW. This interpretation is the same if foraminifera

are present or absent.

3. Samples with intermediate �13C values between -18.9‰ and -22.0‰ provide no additional

information and if foraminifera are present these samples are interpreted as having formed at

0-150 SWLI (MLLW to slightly above the highest observed occurrence of foraminifera).

12



Figure 2. Dataset of modern foraminifera described from a total of 172 surface sediment samples from 12

different sites. The data are presented as relative abundances. Only the abundance of the eight most common

species are shown. Modified from Kemp et al. (2013a). Pink dashed lines and shading indicate the species

optima and tolerances estimated by the WA-TF. Tidal datums are indicated by blue dashed lines.

4.2 Proxy data

Cores of salt-marsh sediment were recovered from two sites in southern New Jersey (Cape May

Courthouse and Leeds Point; Figure 1) and sliced into 1-cm thick samples. Three types of data were

generated for each sediment core that we use as originally presented by Kemp et al. (2013a).

4.2.1 Fossil counts of foraminifera

In the Cape May Courthouse core Jadammina macrescens and Trochammina inflata were the domi-

nant species from 1.72 m to 1.29 m (Figure 3A, upper panel). Foraminifera were absent at 1.25 m to

1.12 m. Between 1.10 m and 0.33 m Jadammina macrescens was the dominant species, while sam-

ples in the interval from 0.31 m to 0.05 m included Trochammina inflata, Tiphotrocha comprimata,

and Jadammina macrescens. Two samples near the top of the core with total counts of 194 (at 0.03

m) and 174 (at 0.05 m) included 34 and 37 Miliammina fusca respectively. Counts of foraminifera

throughout the core ranged from 16 to 194 per sample with an average of 98. In the lower part of
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the Leeds Point core (2.85 m to 3.95 m), Jadammina macrescens was the most common species and

occurred with Tiphotrocha comprimata and Trochammina inflata (Figure 3A, lower panel). Within

this section, at ⇠3.00 m there was an unusual occurrence of 24 Miliammina petila (out of a total of

101) and from 2.82 to 2.95 m 30% of the counted individuals were Miliammina fusca. From 2.82

m to 1.85 m Trochammina inflata was the dominant species. The uppermost section of the Leeds

Point core (1.73 m to 1.20 m) was comprised of a near mono-specific assemblage of Jadammina

macrescens. Counts of foraminifera in this core ranged from 4 to 127 per sample with an average of

70.

The assemblages of foraminifera preserved in each core were compared to those in the modern

training set. If the dissimilarity between a core sample and its closest modern analog (measured using

the Bray-Curtis metric) exceeded the 20th percentile of dissimilarity among all possible pairings

of modern samples then the core sample was deemed to lack a suitable modern analogue and was

excluded from further analysis by Kemp et al. (2013a). We did not reconstruct PME for these samples

because they may lack ecological plausibility (e.g., Jackson and Williams, 2004). On Figure 3, these

samples therefore lack a PME reconstruction (panels B, C, and E).

4.2.2 Fossil bulk-sediment �13C measurements

In the Cape May Courthouse core all samples were less depleted than -18.9‰ and were interpreted

as having formed below MHHW in a salt marsh dominated by C4 plants (Figure 3D, upper panel).

In the lowermost part of the Leeds Point core (below 3.35 m) the presence of foraminifera and bulk

sediment �13C values more depleted than -22.0‰ indicate that the sediment accumulated above

MHHW in an environment dominated by C3 plants, but below the highest occurrence of foraminifera

(Figure 3D, lower panel). Between 3.31 m and 2.86 m bulk-sediment �13C values were variable and

interpreted to record the transition from highest salt marsh to high salt-marsh environments. Above

2.86 m, all samples were less depleted than -18.9‰ and were interpreted as having formed below

MHHW in a salt marsh dominated by C4 plants.

4.2.3 Age-depth profile estimated by Bchron

Age-depth models for the Cape May Courthouse and Leeds Point cores were previously developed

by Kemp et al., 2013a using Bchron and are used here in the chronology module without modifi-

cation (Figure 3F). The Cape May Courthouse core was dated by recognition of pollution markers,

the appearance of Ambrosia pollen as a land clearance marker, and radiocarbon dating of in situ

and identifiable plant macrofossils. These data were combined into a single age-depth model that

estimated the age of every 1-cm thick sediment sample in the core with an average uncertainty of

⇠30 years for the period since ⇠700 CE (Figure 3F, upper panel). Anthropogenic modification of

the Leeds Point site limited dating and RSL reconstruction to the interval from ⇠500 BC to ⇠1750
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CE. The core was dated using only radiocarbon measurements performed on in situ and identifiable

plant macrofossils. These data were combined into a single age-depth model that estimated the age

of every 1-cm thick sediment sample in the core with an average uncertainty of ⇠50 years (Figure

3F, lower panel).

4.3 Instrumental data

A tide gauge is an instrument that automatically measures the sea surface height with reference to

a control point on the land many times during a day. These measurements are averaged to obtain

annual values to minimize the effects of weather and tidal variability. In New Jersey (Figure 1), tide-

gauge data are available since 1911 CE when the Atlantic City tide gauge was installed. The Sandy

Hook, Cape May, and Lewes (Delaware) tide gauges began measurements in 1932 CE, 1966 CE,

and 1919 CE respectively. A single regional record was compiled by averaging annual data from

these four local tide gauges. RSL is zero between 2000-2010 CE to be roughly equivalent to the age

of a surface sample in the core (by definition RSL=0 m when the core was collected). The resulting

record minimizes spatial variability and the influence of decadal-scale RSL variability (Douglas,

1991).

5 Results

The Cape May Courthouse and Leeds Point RSL reconstructions were developed separately to one

another and were then merged into a single, regional-scale dataset for analysis using the EIV-IGP

model to capture the continuous and dynamic evolution of RSL change while taking account of the

quantified uncertainty in both sea level and age reconstructions. It should be noted however that

other sources of uncertainty that are inherent in RSL reconstructions (e.g., the influence of sediment

compaction or tidal range changes) were not considered or accounted for.

5.1 The Bayesian Transfer Function

5.1.1 Species-response curves

The B-TF estimated a response curve (mean with a 95% credible interval) for each species of

foraminifera (expressed as raw counts) to tidal elevation (expressed as SWLI) from the modern

training set of 172 samples (Figure 4). The response curves are estimated from a multinomial dis-

tribution (in which species compositions are considered as a whole) parameterized by a probability

vector p, which is the probability of a species being present at a given tidal elevation. The multino-

mial model (described in detail in Section 3.1) utilizes the combined species information from these

observed responses to estimate PME. The species prediction intervals (dashed red lines in Figure 4)

will aid in providing uncertainty for the PME estimates.

15



0

20

40

60

80

100

120

140

160

180

D
ep

th
 in

 C
or

e (
cm

)

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

J. macrescens Tc T. inflata
Weighted-Averaging
Transfer Function

Bayesian
Transfer Function δ13C

Bayesian Transfer 
Function (δ13C multi proxy) Chronology

Bchron
(mean with 95% CI)

Bchron
(mean with 95% CI)

20 40 60 80

Abundance (%) ‰, PDB
Year (CE)

CMC-8

LP-10

Foraminifera absent

20 40 60 20 40 60 80

20 40 60 80 20 40 60 20 40 60 80

M
H

H
W

10060 140 10060 140 10060 140-26 -22 -18 -14

-26 -22 -18 -14
SWLI

10060 14020
SWLI

10060 14020
SWLI

10060 14020 0

50
0

10
00

15
00

10
00

12
00

14
00

16
00

18
00

20
00

C3

C4

A B D F

0-100
0-150
100-150

0-100
0-150
100-150

Estimated
SWLI

M
H

H
W

C E

M
H

H
W

M
H

H
W

M
H

H
W

M
H

H
W

Estimated
SWLI

Figure 3. The abundance of the the three most common species (Tc= Tiphotrocha comprimata) of foraminifera

found in cores from Cape May Courthouse (CMC-8) and Leeds Point (LP-10) are represented by the horizontal

gray bars (A). Paleo marsh elevation, in standardised water level index (SWLI) units, was reconstructed using

the weighted average transfer function (B), the Bayesian transfer function (C) and the multi-proxy Bayesian

transfer function (E). Mid points of the reconstruction are shown as white circles with the bars representing

±2� uncertainty. Vertical dashed lines show the elevation of the mean higher high water (MHHW) tidal datum.

Stable carbon isotope concentrations (�13C) for bulk sediment are parts per thousand (‰) relative to the Vienna

Pee Dee Belemnite (VPDB) standard (D). Bchron provided the chronology for both cores (F). Note that some

samples with counts of foraminifera lack a corresponding PME reconstruction because they lack a suitable

modern analog using the criteria applied by Kemp et al. (2013).
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Figure 4. The response of foraminifera species to elevation estimated from the modern training set of raw

counts using the Bayesian transfer function. The blue circles represent the probabilities of species occurrence

as determined from the count data (empirical probabilities). The response probabilities of occurrence estimated

by the Bayesian transfer function model are shown in with a mean (heavy red line), a credible interval for

the mean (light red line), and a prediction interval (blue line). The green vertical lines and shading represent

the species optima and tolerances determined from the weighted average transfer function. Tidal datums are

indicated by vertical dashed black lines.

Broadly, we identify two forms of species-response curve in southern New Jersey. First, a skewed,

unimodal form describes the distribution of Haplophragmoides manilaenis with a maximum prob-

ability of occurrence of ⇠0.2 at 123 SWLI compared to a WA-TF species optimum of 99 SWLI.

Jadammia macrescens and Trochammina inflata also have a skewed, unimodal form with the high-

est probability of occurrences found in high salt-marsh environments at 124 SWLI (p ⇠0.3) and 110

SWLI (p ⇠0.4) respectively. The optima for these species were situated at lower elevations by the

WA-TF (92 SWLI for both species). Both Ammobaculities spp. (highest probability of occurrence of

⇠0.3 at 22 SWLI) and Miliammina fusca (highest probability of occurrence ⇠0.5 at 31 SWLI) have

skewed unimodal distributions with maximum probability of occurrence in low salt-marsh environ-

ments. The WA-TF estimated species optima of 58 and 78 SWLI respectively for these two species.

Ammoastuta inepta also has a skewed, unimodal form (maximum probability of occurrence of ⇠0.2

at 140 SWLI). This species generally has a low probability of being present because its distribution

in southern New Jersey is restricted to sites with brackish salinity such as those located up river in

Great Egg Harbor (Figure 1). Relatively few samples from these environments are included in the

modern training set and therefore in the dataset as a whole it is a rare, but ecologically-important,

species. Second, a unimodal Gaussian-like form describes the distributions of Arenoparrella mex-
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icana (maximum probability of occurrence of ⇠0.07 between 60 and 70 SWLI) and Tiphotrocha

comprimata (maximum probability of occurrence of ⇠0.3 at 78 SWLI). For these species the WA-

TF indicated optima of 86 and 89 SWLI respectively.

5.1.2 Cross validation of the modern data

Performance of the new B-TF and existing WA-TF was judged using 10-fold cross validation (Figure

5). The uncertainty bounds (± 2�; shown as vertical lines on Figure 5) for predicted elevations

contained the true elevation for 90% of samples using the B-TF, compared to 92% for the WA-TF.

The average of the 2� prediction uncertainties is slightly larger for the WA-TF (28 SWLI) than

for the B-TF (21 SWLI). This suggests that while the WA-TF is more successful than the B-TF at

capturing the true elevation within the prediction uncertainty bounds, part of the reason for this may

be because the intervals are larger. Prediction performance is often penalised for large intervals (e.g.,

Gneiting and Raftery, 2007).
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Figure 5. Cross validation of the modern training set for the weighted average transfer function (red) and the

Bayesian transfer function (blue). Upper panels are elevations in standardised water level index (SWLI) units,

with lines representing ±2� uncertainty for prediction. Lower panels show the (observed-predicted) residuals.

The pattern of residuals in the WA-TF displayed a structure in which the elevation of low salt-

marsh samples is over predicted (negative residuals) and the elevation of high salt-marsh samples is
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under predicted (positive residuals; Figure 5). For example, the WA-TF showed an average residual

of -16.6 between ⇠10 and ⇠70 SWLI and an average residual of 22.5 between ⇠120 and ⇠140

SWLI. This structure is absent in the B-TF, suggesting that it is better suited to reconstructing values

close to the extremes of the sampled elevational gradient than the WA-TF. In contrast, the WA-TF

performs better at elevations between 80 to 100 SWLI because the distribution of samples in the

modern training set is focused at ⇠90 SWLI, and, by the very nature of the WA-TF estimates of

elevation will be drawn towards this average value.

5.1.3 PME reconstructions

We reconstructed PME in the Cape May Courthouse and Leeds Point cores using the WA-TF and

B-TF models. At Cape May Courthouse, the B-TF estimated an average PME close to MHHW

(SWLI=100) of 96.2 SWLI, with a standard deviation 14.1 SWLI (Figure 3C, upper panel). The

WA-TF also estimated an average PME close to MHHW of 96.7 SWLI, with a standard deviation

of 4.1 SWLI (Figure 3B, upper panel). The 2� uncertainties for the B-TF reconstructions ranged

from 15.1 to 45.7 and are more variable than those from the WA-TF (28.1 to 29.0 SWLI). At Leeds

Point, the B-TF estimated an average PME close to MHHW of 92.8 SWLI, with a standard deviation

12.8 SWLI (Figure 3C, lower panel). The WA-TF estimated PME close to MHHW for all samples

except for the 3.00-2.80 m interval where Miliammina fusca was present and PME reconstructions

were correspondingly lower (Figure 3B, lower panel). The 2� uncertainties for the B-TF reconstruc-

tions ranged from 11.5 to 59.8 SWLI and were more variable than those from the WA-TF (28.0

to 28.5 SWLI). Comparison of the two models shows that the B-TF typically reconstructed PME

with greater variability among samples than the WA-TF model. Within their uncertainties the PME

reconstructions for the B-TF and WA-TF overlap for all samples in both sediment cores.

5.1.4 Multi-proxy reconstruction of PME

On salt-marshes in the mid-Atlantic and northeast coast of the U.S.A. measurements of �13C in bulk-

organic sediment are useful sea-level proxies because they readily distinguish between sediment that

accumulated above MHHW in an environment dominated by C3 plants and sediment that accumu-

lated below MHHW in an environment dominated by C4 plants. This additional paleoenvironmental

information was combined with the B-TF to generate a multiproxy reconstruction of PME. The in-

clusion of the �13C proxy did not treat MHHW as a hard bound for PME, rather, if a sample is

dominated by C3 plants then the probability of PME being above MHHW increases. Likewise, if a

sample is dominated by C4 plants then the probability of PME being below MHHW increases.

For Cape May Courthouse using the downcore �13C values as a secondary proxy in the B-TF

estimated an average PME of 87.5 SWLI (a reduction of 9 SWLI compared to the original B-TF).

The 2� PME uncertainties were reduced by 32% on average and by up to ⇠60% for some samples
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(Figure 3E, upper panel). For the Leeds Point core, the inclusion of the secondary �13C proxy re-

sulted in an average PME reconstruction of 86.1 SWLI (a reduction of 7 SWLI compared to the

original B-TF). The 2� PME uncertainties decreased by ⇠25% on average (Figure 3E, lower panel).

However, for samples where �13C values and the presence of foraminifera indicate deposition in the

transitional marsh (above MHHW, but below the highest occurrence of foraminifera) the uncertainty

was reduced by an average of ⇠50% and by up to ⇠70% for some samples because the constraint

on PME changed from 0-150 SWLI to 100-150 SWLI. These results demonstrate that incorporating

a second line of proxy evidence in the B-TF framework is an efficient and formalized way to reduce

uncertainty in RSL reconstructions in some (but not all) sedimentary environments.

5.2 Comparison among reconstructions

We applied the EIV-IGP model to the RSL reconstructions produced from the WA-TF, B-TF and

multi-proxy B-TF to describe RSL trends along the coast of southern New Jersey since ⇠500 BCE

(Figure 6). The WA-TF and B-TF models show ⇠3.9 m of RSL rise compared to ⇠4.1 m of RSL rise

for the multi-proxy B-TF model. The multi-proxy B-TF reconstructed lower RSL at the beginning

of the record compared to the B-TF and the WA-TF, because of the additional constraint placed on

the lowermost section of the Leeds Point core by �13C values that indicate deposition at 100-150

SWLI. All of the reconstructions show three phases of RSL behavior (Figure 6). The period from

⇠500 BCE to ⇠500 CE is a characterized by a continuous increase in the rate of RSL rise. The

second stage (⇠500 CE to ⇠1400 CE) shows a decline in rates of RSL rise. After 1400 CE there is a

continuous acceleration in the rate of RSL rise until reaching historic rates, which are unprecedented

for at least 2500 years. All reconstructions show an expanding uncertainty for the most recent rates.

This is an edge effect that occurs as a results of using a Gaussian process model on the rates. These

rates are estimated based upon their relationship (through an integration step) to the observations.

As we approach the edge of the data, there are fewer constraints from the observations. This means

that there are multiple rate trajectories that are consistent with recent data and so the uncertainty in

the rate process increases.

There are some differences among the three reconstructions. For example, the B-TF shows the

highest modern rate of rise at 4.1 mm/yr (95% C.I. 3.27-4.92 mm/yr) in 2000 CE compared to 3.16

mm/yr (95% C.I. 2.68-3.65 mm/yr) and 3.11 mm/yr (95% C.I. 2.45-3.77 mm/yr) for the multi-proxy

B-TF and the WA-TF respectively. The B-TF consistently estimated RSL lower than the multi-proxy

B-TF and the WA-TF between ⇠1400 to ⇠1700, resulting in the observed difference in the rates into

the 21st century. When compared to the observed tide-gauge data for the last ⇠100 years from New

Jersey (Figure 7), the quality of the estimated RSL mid-point reconstructions can be assessed using

mean squared error (MSE). For the multi-proxy B-TF the MSE was 0.003 m2, compared to 0.014
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m2 for the B-TF and the WA-TF, indicating that the multi-proxy B-TF mid-points provide better

estimates for RSL in comparison to the B-TF and the WA-TF.

Figure 6. The EIV-IGP model results for reconstructions produced using the B-TF, the WA-TF and the multi-

proxy Bayesian transfer function. The upper panel shows individual data points (represented by rectangular

boxes that illustrate the 95% confidence region) and include age and relative sea-level uncertainties. The middle

panels show the posterior fit of the errors-in-variables integrated Gaussian process model to the relative sea-level

reconstructions. Solid line represents the mean fit with the 68% and 95% confidence intervals (C.I.) denoted

by shading. The lower panels are the rates of relative sea-level (RSL) change. Shading denotes 68% and 95%

confidence intervals (C.I.) for the posterior mean of the rate process. The average rate for each phase of the

reconstruction is given (in mm/yr) with a 95% confidence interval.

6 Discussion

The B-TF provides an alternative to the (non-Bayesian) regression-based transfer functions com-

monly used for reconstructing RSL (e.g., Horton et al., 1999; Gehrels, 2000; Barlow et al., 2014)

and in conjunction with the previously developed chronology and process modules enables RSL to

be reconstructed in an entirely Bayesian framework. A key difference between the B-TF and existing

transfer functions (e.g. the WA-TF) is the modeled relationship between species of foraminifera and

tidal elevation. The number and type of species-response curves estimated by the B-TF model stands
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Figure 7. Comparison of the weighted average transfer function (A), the Bayesian transfer function (B) and the

multi-proxy Bayesian transfer function (C) relative sea-level reconstruction with tide gauge data observed in

the New Jersey region. The boxes represent ±1� uncertainty region for the reconstruction.

in contrast to the WA-TF, which assumes a unimodal Gaussian form for all species. The optima and

tolerance estimated for each species by the WA-TF show overlap with the B-TF species-response

curves, particularly those that have a Gaussian form such as Tiphotrocha comprimata. However, this

form is only appropriate for two of the eight dominant species in the southern New Jersey training

set. The flexible, species-specific response curves provided by the B-TF are more appropriate given

that models based on the assumption of a single response do not adequately explain the ecological

behavior of the dominant species in New Jersey, other assemblages of salt-marsh foraminifera (e.g.,

Edwards and Horton, 2006), or species from other biological groups used in RSL reconstructions

such as diatoms (e.g., Zong and Horton, 1999; Gehrels, 2000). However, our results suggest that the
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flexibility in the B-TF can, in some instances, make it more susceptible to unusual observations. For

example, the Miliammina fusca response curve in the B-TF shows a slight increase in probability

of occurrence above ⇠120 SWLI (Figure 4), because of three unusual samples located above 130

SWLI in which this species occurs (Figure 2). This distribution may represent the advantage of a

regional-scale training set in capturing natural variability caused by ecological complexity and/or

the influence of secondary environmental variables. Equally these samples could be an anomalous

occurrence (e.g., tests washed in by a storm) that ought to be screened prior to analysis. Since Kemp

et al. (2013a) retained these samples, we also elected to use them in developing the new B-TF.

The implication of the flexibility of the B-TF is illustrated in the cross validation results. The

WA-TF displayed edge effects (a tendency to bias PME predictions towards the mean of the training

data), which is a common artifact of using weighted average based methods (e.g., ter Braak and Jug-

gins, 1993; Birks, 1995). Our B-TF does not suffer from this prediction bias and outperformed the

WA-TF in the upper and lower extremes of tidal elevation. The consequences of such an improve-

ment are significant where true PMEs lie close to the ends of the sampled environmental gradient.

For example, on subduction zone coastlines such as the Pacific Northwest coast of North America,

cyclical tectonic activity contributes to reconstructed RSL trends (e.g., Nelson et al., 1996. During a

slow (100s to 1000s of years) inter-seismic phase, accumulation of strain results in uplift of the coast

(RSL fall). Conversely, the strain is released during an instantaneous co-seismic phase in which the

coastline subsides (RSL rise). These processes cause significant and very rapid shifts in depositional

environment that can span the full elevational range of coastal environments from sub-tidal settings

to supra-tidal, freshwater uplands. In these settings, samples that are analogous to those at the ends

of the sampled environmental gradient are frequently encountered in core material. In contrast, the

sediment sequences targeted for reconstructing Common Era RSL on passive margins (e.g., New

Jersey) are commonly comprised of unbroken sequences of high salt-marsh peat that are less sus-

ceptible to edge effects.

Further motivation for the development of the B-TF lies in the quantification of PME uncertainty.

Non-Bayesian transfer function methods (e.g. the WA-TF model) assume that model parameters are

fixed and known. Therefore, they do not incorporate uncertainty into the estimation of the PME

reconstruction itself, rather, the uncertainty is produced separately either before or after PME was

estimated. This uncertainty is the root mean square error from two sources (S1 and S2; Birks et al.,

1990; Juggins and Birks, 2012). The S1 contribution is sample-specific and is the standard deviation

of bootstrapped PME reconstructions. The S2 contribution is the difference between observed and

predicted tidal elevations established by cross validation of the modern training set (Figure 5). The

PME uncertainties reconstructed by the WA-TF model show very little variability among samples

(2� ranges from 28.0 to 29.0 SWLI). This pattern arises because the contribution from the sample-
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specific (S1) uncertainty is very small compared to the model uncertainty (S2) which is common to

all samples. As a result, the PME reconstructions for all core samples have very similar uncertainties

despite biological variability in species composition.

Alternatively, Bayesian methods explicitly model the uncertainty associated with individual re-

constructions. Uncertainty for PME (and other unknown parameters) is included in the probability

model through prior distributions. Assuming distributions for unknown parameters (in contrast to

non-Bayesian approaches that use point estimates) allows the parameter uncertainty from the cal-

ibration step to be formally propagated into the reconstruction step. Therefore, estimates of PME

produced by the B-TF take fuller account of the uncertainties related to the model and its parameters

than non-Bayesian approaches. Consequently, the uncertainties estimated by the B-TF (excluding

a secondary proxy) show more pronounced variability among core samples (2� uncertainties range

between 15.1 to 45.7 SWLI) than the WA-TF model. This variability arises from the observed re-

sponse distribution of each species to tidal elevation (estimated from the modern data; Figure 4). For

each individual species there is variability in both the uncertainty of the mean response curves and

in the prediction intervals (i.e. uncertainty is greater in some parts of the elevational gradient than at

others).

The variability of reconstructed PME from the B-TF may reflect a more ecologically plausible

reconstruction than the WA-TF model. For example, the key, high salt-marsh species Jadammina

macrescens and Trochammina inflata vary in relative abundance from 0% (absent) to 100% and

approximately 80%, respectively (Figure 3). Despite this variability there was a pronounced lack

of variability reconstructed PME using the WA-TF model (average of ⇠95 SWLI with a standard

deviation of 5.5). In contrast, PME reconstructions from the B-TF are also estimated at an average

of ⇠95 SWLI, but with a larger standard deviation of 13.1. Intuitively the higher degree of PME

variability reconstructed by the B-TF model is a better reflection of the species composition changes

observed in the two sediment cores than the near stationary PME values reconstructed by the WA-TF.

The majority of quantitative RSL reconstructions employ a single proxy (e.g., Kemp et al., 2011).

A number of other proxies are available to support RSL reconstructions primarily produced from

salt-marsh foraminifera. Additional biological proxies could include different groups of organisms

with a relationship to tidal elevation such as diatoms (e.g., Zong and Horton, 1999; Shennan et al.,

1994) or testate amoebae (e.g., Charman et al., 2010; Roe et al., 2002). These organisms can be

incorporated as presence/absence data or as species counts from a modern training set of paired

observations of species abundance and tidal elevation. A number of lithological proxies (e.g., Nel-

son, 2015) are also available which can be qualitative (such as field and lab-based descriptions of

sediment as high marsh or low marsh) or quantitative (such as measurements of organic content;
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e.g., Plater et al., 2015) and may provide thresholds in a similar fashion to sediment geochemistry in

New Jersey. Although secondary proxies are often available to provide additional and independent

constraints, a barrier to their use is the lack of an accessible and formal framework for combining

multiple proxies with appropriate consideration of uncertainty. A strength of our B-TF is its ability to

accommodate these secondary proxy sources. In the example from New Jersey we primarily used a

biological proxy (assemblages of foraminifera), but amended the model to include information from

a geochemical proxy (bulk sediment �13C). On average this approach reduced the uncertainty for

PME reconstructions by ⇠28%. The reduction in uncertainty consequently provides more precise

estimates of RSL and the rate of RSL change through time. This is highlighted in the reconstruction

of sea level between ⇠500 BCE and 500 CE where the uncertainty for rate estimates was reduced

by 25% for the multi-proxy B-TF compared to the WA-TF and the B-TF. These results highlight

the specific utility of bulk sediment �13C measurements as a sea-level indicator along the mid and

northeast Atlantic coast the U.S.A. and the general utility of employing a multi-proxy approach to

reconstructing RSL where the goal is to produce reconstructions with the best possible precision. A

practical and intuitive means to illustrate the improved performance of the multi-proxy B-TF over

the WA-TF model is to compare RSL reconstructions with long-term measurements made by nearby

tide gauges (e.g., Kemp et al., 2009b, 2013b; Barlow et al., 2014; Long et al., 2014; Leorri et al.,

2008). We compare the reconstruction provided by the WA-TF, B-TF and multi-proxy BTF with

regional tide-gauge measurements from New Jersey (Figure 7). The tide-gauges measured about

30 cm of RSL change over the period 1911 to 2012 CE. For each transfer function method, the

tide-gauge observations fall within the 95% reconstruction uncertainty bounds, with the multi-proxy

B-TF providing notably improved mid-point estimates as indicated by the calculated MSEs.

7 Conclusions

To accurately reconstruct the continuous and dynamic evolution of relative sea-level change, we de-

veloped a Bayesian hierarchical model comprised of three formally interconnected modules. (1) A

B-TF for the calibration of foraminifera into tidal elevation, which is flexible enough to formally

accommodate additional proxies such as bulk sediment �13C. (2) An existing chronology developed

from a Bchron age-depth model. (3) An existing EIV-IGP model for estimating rates of sea-level

change. Previous reconstructions treated these three components as independent and employed ex-

isting approaches that were developed in a variety of numerical frameworks.

Our new B-TF provides an alternative to existing transfer functions. The relationship between

species of salt marsh foraminifera and tidal elevation was described using a regional-scale modern

training set (n = 172) comprised of paired observations of species abundance and elevation, from 12

salt-marshes in southern New Jersey, U.S.A. Results from the B-TF show that six of the eight most
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dominant foraminifera do not conform to the unimodal, Gaussian response curve prescribed by the

WA-TF and other existing transfer functions.

We applied the transfer functions to cores of salt-marsh sediment that were recovered from two

sites in southern New Jersey. The flexible approach utilized in the B-TF results in more variabil-

ity in reconstructed PME and associated uncertainty among samples than the WA-TF model. This

variability is consistent with observed changes in foraminiferal population in core samples and we

propose that the B-TF produces a more complete evaluation of uncertainty than the WA-TF model.

The B-TF allows results from additional, independent sea-level proxies to be formally incorpo-

rated alongside the primary biological proxy to produce a multi-proxy reconstruction. In New Jersey,

we used bulk sediment �13C values to determine if a core sample formed above or below the MHHW

tidal datum. The addition of a second proxy reduced reconstruction uncertainty by an average of 28%

and up to ⇠70% for samples that formed in some salt-marsh sub environments (the transition from

high salt marsh to upland specifically).

We assessed the ability of the multi-proxy B-TF, B-TF and the WA-TF to reconstruct RSL through

comparison with observed tide-gauge data from New Jersey. Results showed that the 2� uncertainty

bounds for all reconstructions capture the observations from the tide gauge. However, the multi-

proxy B-TF provides improved estimates (MSE = 0.003 m2) for the reconstructed RSL mid points

compared to the B-TF and the WA-TF (MSE = 0.014 m2). This practical test suggests that the multi-

proxy B-TF is the best approach for generating accurate and precise RSL reconstructions using

salt-marsh sediment on the mid- and northeast Atlantic coast of the U.S.A.
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