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Abstract 19 

Blanket bog occupies approximately 6% of the area of the UK today. The Holocene expansion of 20 

this hyperoceanic biome has previously been explained as a consequence of Neolithic forest 21 

clearance. However, the present distribution of blanket bog in Great Britain can be predicted 22 

accurately with a simple model (PeatStash) based on summer temperature and moisture index 23 

thresholds, and the same model correctly predicts the highly disjunct distribution of blanket bog 24 

worldwide. This finding suggests that climate, rather than land-use history, controls blanket-bog 25 

distribution in the UK and everywhere else. 26 

We set out to test this hypothesis for blanket bogs in the UK using bioclimate envelope modelling 27 

compared with a database of peat initiation age estimates. We used both pollen-based 28 

reconstructions and climate model simulations of climate changes between the mid-Holocene (6000 29 

yr BP, 6 ka) and modern climate to drive PeatStash and predict areas of blanket bog. We compiled 30 

data on the timing of blanket-bog initiation, based on 228 age determinations at sites where peat 31 

directly overlies mineral soil. The model predicts large areas of northern Britain would have had 32 

blanket bog by 6000 yr BP, and the area suitable for peat growth extended to the south after this 33 

time.  A similar pattern is shown by the basal peat ages and new blanket bog appeared over a larger 34 

area during the late Holocene, the greatest expansion being in Ireland, Wales and southwest 35 

England, as the model predicts. The expansion was driven by a summer cooling of about 2˚C, 36 

shown by both pollen-based reconstructions and climate models. The data show early Holocene 37 

(pre-Neolithic) blanket-bog initiation at over half of the sites in the core areas of Scotland, and 38 

northern England.  39 

The temporal patterns and concurrence of the bioclimate model predictions and initiation data 40 

suggest that climate change provides a parsimonious explanation for the early Holocene distribution 41 

and later expansion of blanket bogs in the UK, and it is not necessary to invoke anthropogenic 42 

activity as a driver of this major landscape change.  43 
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1. Introduction 44 

Blanket bog is a distinctive type of peatland confined to areas with cool and extremely wet climates. 45 

The name derives from the fact that the peat covers sloping ground and hilltops, as well as basins, 46 

thus ‘blanketing’ the landscape. Blanket bogs are widespread in the west and north of the UK 47 

(Great Britain and Northern Ireland) and occupy about 6 % of its land area (Jones et al., 2003). 48 

They are locally important (under various names) in other hyperoceanic regions of the world, 49 

although in total they cover only about 0.1% of the Earth’s land surface (Gallego-Sala and Prentice, 50 

2013). 51 

The global distribution of blanket bogs today is confined to cool, wet climates (Gallego-Sala and 52 

Prentice, 2013). The initiation of blanket bog formation during the Holocene is regionally 53 

asynchronous, and in most regional has been found to coincide with a shift towards cooler, wetter 54 

climates (Zaretskia et al., 2001, Dirksen et al, 2012). However, there has been considerable debate 55 

about the cause of Holocene blanket-bog initiation in the UK. 56 

There is a long-standing hypothesis, first proposed by Moore (1973), that it was a consequence of 57 

land use by Neolithic human populations, and in particular land clearing practices at the time of the 58 

‘elm decline’ (often taken as a stratigraphic marker of Neolithic land use (Parker et al., 2002), as 59 

well as heavy stock grazing that changed the soil hydrological balance enough to initiate the 60 

inception of blanket bogs between about 6000 and 5000 yr BP (Moore, 1975; Moore, 1993; 61 

Merryfield and Moore, 1974; Robinson and Dickson, 1988; Huang, 2002). Evidence of removal of 62 

the shrub and/or tree cover by fire at the onset of blanket bog formation, and pollen analytical 63 

studies suggesting intensive agricultural practices by Neolithic people support this hypothesis 64 

(Merryfield and Moore, 1974; Smith and Cloutman, 1988; Robinson and Dickson, 1988; Simmons 65 

and Innes, 1988). A recent investigation of initiation of upland blanket bogs in Ireland also pointed 66 

to land use as a principal cause of paludification (Huang, 2002). However, a number of authors 67 

have suggested the initiation of blanket bogs at specific locations solely as a result of a climatic 68 

shift during the mid Holocene ‘Atlantic’ period in Scotland (Ellis and Tallis, 2000; Charman, 1992; 69 
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Tipping, 2008) the Faroe Islands (Lawson et al., 2007), and Ireland (Mitchell and Conboy, 1993; 70 

Dwyer and Mitchell, 1997). Tipping (2008) suggested that farming communities only settled in the 71 

Scottish Highlands after the landscape had already been covered by blanket bogs. Other authors 72 

have adopted a more complex view in which both climatic shifts and human activities played a role 73 

(Smith, 1970; Keatinge and Dickson, 1979; Tallis, 1991). Soil-forming processes, including 74 

leaching of base cations and consequent acidification and podsolization of soils, were also proposed 75 

to have been influential (Bennett et al., 1992; Charman, 1992; Smith and Green, 1995), giving rise 76 

to the term “pedogenic peats” (Simmons and Innes, 1988).  77 

It is difficult to resolve such arguments about causality on the basis of timing alone. Lack of 78 

coincidence could be due to idiosyncratic local factors while synchroneity could arise by chance or 79 

because both events result from a common underlying cause. Under these circumstances, process-80 

based modelling can offer a way forward. Globally, blanket bogs occur where the mean annual 81 

temperature (MAT) > −1˚C, the mean temperature of the warmest month (MTWA) < 14.5 ˚C and 82 

the ratio of mean annual precipitation to equilibrium evapotranspiration (moisture index, MI) > 2.1 83 

(Gallego-Sala and Prentice, 2013). These limits ensure that the site is outside the permafrost zone 84 

and therefore not subject to cryoturbation, that summer temperatures are not too high for Sphagnum 85 

growth, and that there is sufficient moisture throughout the year to sustain peat growth on sloping 86 

ground. These limits have been used to construct a simple bioclimatic model, PeatStash (Gallego-87 

Sala et al., 2010). In addition to predicting accurately the present-day distribution of blanket bog in 88 

Great Britain, PeatStash correctly predicts the highly disjunct global distribution of blanket bogs 89 

(Gallego-Sala and Prentice, 2013), including its occurrence in places such as Newfoundland and 90 

Kamchatka that have experienced very different land-use histories from the British Isles. This 91 

finding strongly suggests that the present-day distribution, at least, of blanket bogs everywhere is 92 

controlled by climate. If so, it is natural to hypothesize that climate change was responsible for the 93 

Holocene expansion of blanket bogs. 94 
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Here we use PeatStash to simulate the UK distribution of blanket bogs in the mid-Holocene (6000 95 

years ago, 6 ka). We compare these simulations with a new compilation of blanket-bog initiation 96 

dates, in order to explore whether climate change could plausibly account for the expansion of 97 

blanket bogs during the later Holocene. 98 

 99 

2. Methods  100 

We predicted the distribution of blanket bog at 6 ka using PeatStash (Gallego-Sala et al., 2011) with 101 

climate inputs derived from (a) climate model simulations of the 6 ka climate and (b) pollen-based 102 

climate reconstructions. The climate models provide predictions of a mutually consistent set of 103 

meteorological variables; using multiple climate models allows us to encompass the uncertainty 104 

resulting from differences between models. The climate models were run at relatively coarse 105 

resolution (Table 1) and there may be systematic biases that afflict all of the models (Harrison et al., 106 

2013). Pollen-based reconstructions provide an independent source of information. However, their 107 

distribution is not continuous across the whole of the UK and the necessity to interpolate between 108 

reconstructions at individual sites could introduce uncertainty (Bartlein et al., 2011). Nevertheless, 109 

this information provides a useful check of the reliability of the simulated climates at the location of 110 

the sites and an alternative scenario of climate change. We therefore used both the climate-model 111 

ensemble and the pollen-based reconstructions to obtain mid-Holocene climate estimates to drive 112 

PeatStash. We then compared the PeatStash projections with a new compilation of data on the 113 

timing of blanket-bog initiation in the UK. 114 

 115 

2.1 The PeatStash Model 116 

PeatStash simulates the potential distribution of blanket bog (Gallego-Sala et al., 2010) based on 117 

mean annual temperature (MAT), mean temperature of the warmest month (MTWA) and a 118 

moisture index (MI)  calculated from long-term monthly means of temperature, precipitation, and 119 



 6 

fractional sunshine hours. The definition of MI follows UNEP (United Nations Environment 120 

Programme, 1992):  121 

            (1) 122 

where P is the mean annual precipitation (mm) and PET is the mean annual potential 123 

evapotranspiration (mm). We substitute equilibrium evapotranspiration (Eq), calculated from 124 

monthly net radiation and temperature, for PET in equation (1). Eq is given by λEq = [s/(s + γ)]Rn 125 

where λ is the latent heat of vaporization of water, s is the slope of the Clausius-Clapeyron 126 

relationship, γ is the psychrometer constant and Rn is net radiation, calculated from latitude, season 127 

and fractional sunshine hours. The use of Eq instead of PET affects only the absolute magnitude of 128 

MI, because PET as computed by the Priestley-Taylor equation is directly proportional to Eq. 129 

PeatStash requires MI > 2.1, MAT > −1˚C and MTWA < 14.5 ˚C to determine the presence of 130 

blanket bog. 131 

The model predicts the distribution of blanket bog in Great Britain with reasonably high accuracy 132 

(Figure 1; Gallego-Sala et al., 2010). Detailed comparison for Northern Ireland was not possible 133 

because of the lack of accurate high-resolution data on blanket-bog distribution. However, 134 

comparisons with published maps suggest that the broadscale patterns are also captured there 135 

(Gallego-Sala and Prentice, 2013). 136 

2.2 Simulated climate data 137 

We used output from ten climate models (Table 1) that had performed Mid-Holocene (6 ka) and 138 

pre-industrial (PI) simulations as part of the Coupled Modelling Intercomparison Project (CMIP5). 139 

The 6 ka simulations were driven by appropriate changes in insolation and greenhouse gas 140 

concentrations (Taylor et al., 2011),  Anomalies (6 ka minus PI) of precipitation, temperature and 141 

fractional sunshine hours were bi-linearly interpolated from the original model grid to a common 142 

0.5˚ grid. These anomalies were then added to a baseline modern climate, derived from the CRU 143 

€ 

MI = P /PET
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CL2.0 long-term mean climatology (temperature, precipitation, fractional sunshine hours) for the 144 

period 1931-1960 (New et al., 2000).  145 

2.3 Pollen-based climate reconstruction  146 

We used reconstructions of MAT, MTWA, mean annual precipitation (MAP) and α (the ratio of 147 

actual to equilibrium evapotranspiration, calculated as in (Cramer and Prentice, 1988) from the 148 

Bartlein et al. (2011) data set. Bartlein et al. (2011) provided a harmonized compilation of pollen-149 

based climate reconstructions, where individual site-based reconstructions were aggregated to 150 

provide estimates of mean conditions (with their uncertainties) on a 2˚ x 2˚ grid.  Anomalies of each 151 

climate variable were interpolated from the original resolution grid to the 10 x 10 km grid of the 152 

UKCIP_02 baseline climatology (http://www.cru.uea.ac.uk). We do not account for reconstruction 153 

uncertainties in this application because they are smaller than the differences between the climate-154 

model scenarios. 155 

PeatStash was run using MAT and MTWA as direct inputs, while MI was calculated from MAP 156 

and α. Assessed over a period of years, α can be related to MI using the Budyko hydrological 157 

relationship, which can be expressed as follows (Wang et al., 2012; Zhang et al., 2004): 158 

α = 1 + m − (1 + mw)1/w.         (2) 159 

where m = MI and w is a parameter. To estimate anomalies of MI (Δm) from anomalies of α (Δα), 160 

we set w = 3 (Zhang et al., 2004), take the derivative of equation (2) and apply the approximation 161 

Δα ≈ Δm (∂α/∂m), where: 162 

∂α/∂m = 1 − [m/(1 + mw)1/w]w-1.        (3) 163 

 164 

2.4 PeatStash 6 ka simulations 165 

We ran PeatStash using output from each of the ten climate models. Given model-dependent 166 

differences in the simulated climates (Harrison et al., 2013), the ensemble of simulations is used to 167 
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provide an estimate of the probability that suitable climates for blanket bog existed by 6 ka in 168 

specific regions based on the consistency between the ten projections. PeatStash simulations were 169 

also driven by pollen-based climate reconstructions of climate anomalies, which were superimposed 170 

on the higher-resolution UKCIP grid. 171 

We present the results of the 6 ka PeatStash simulations as anomalies from present. Wherever 172 

blanket bog is simulated for 6 ka, we predict that climate conditions were suitable for early 173 

initiation. Where blanket bog is simulated for PI but not for 6 ka, we predict that blanket bog 174 

initiation occurred after 6 ka. Where blanket bog is simulated for 6 ka but not for PI, we predict that 175 

conditions became unsuitable for blanket bog growth after 6 ka. 176 

 177 

2.5 Basal Age Dataset  178 

We assembled basal radiocarbon dates from blanket bogs throughout Great Britain and northern 179 

Ireland. We adopted a stringent exclusion criterion, accepting only sites where blanket-bog 180 

formation commenced directly over mineral parent material and not as a change from a 181 

minerotrophic peatland (i.e. we have only included ombrogenous peatlands). We recorded the 182 

different topographic positions (saddle, bottom of the valley, slope, top) and altitudes of each site, 183 

whenever possible. The dataset includes 64 records of pollen-analytically determined dates of peat 184 

initiation based on regional correlation of dated pollen-stratigraphic events. The remaining 164 185 

records have either been directly dated from basal peat deposits, or there were sufficient 186 

radiocarbon dates to develop an age-depth model allowing the basal age to be well constrained. The 187 

extrapolated dates may provide more accurate estimates of basal ages than radiocarbon assays of 188 

basal peats, which often yield young ages because of contamination by mobile humic acids and root 189 

penetration (Smith and Cloutman, 1988; Charman, 1992). Any errors associated with the age 190 

modelling are expected to be considerably less than the 1000-year windows used in mapping 191 

peatland changes in our analyses. A total of 228 basal age estimates (see Supplementary 192 

Information) were assembled but the full data complement was not available for all of these.  193 
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There is a difference between peat initiation and peat spread, and the latter cannot strictly be 194 

inferred from a single sampled point. There is local variability in peat initiation depending on 195 

topographic position, slope gradient, and altitude (Charman, 1992) and so a single sampled site may 196 

not capture the oldest peat initiation date. Blanket bog does not necessarily grow by uniform spread 197 

of peat but probably coalesces from different foci (Tipping, 1994). Furthermore, we are reliant on 198 

published and unpublished data collected for a variety of reasons that may have biased sampling 199 

towards deeper or shallower locations. Despite these known limitations in using basal dates to infer 200 

initiation, these effects will be similar for all regions and our data set is sufficiently large and 201 

regionally comprehensive to provide information on the patterns of peat initiation in different 202 

regions. 203 

 204 

3. Results and Discussion  205 

The climate-model simulations consistently show summers warmer than today’s over most of 206 

northern Europe. Mean annual precipitation (MAP) was slightly reduced in northern Britain and 207 

slightly increased in southern Britain compared to today. Conditions suitable for blanket bog are 208 

predicted at 6 ka across much of Scotland and northern England (Figure 2a), but warmer than 209 

present summers restricted blanket-bog distribution in southwest Scotland, Northern Ireland and 210 

Wales. Southwest England was almost entirely unsuitable for blanket-bog formation at 6 ka, at least 211 

at the spatial resolution of the model grid, but became more suitable for blanket-bog development 212 

after the mid-Holocene.  213 

The suitability of different regions for blanket bog is examined in more detail using the high-214 

resolution PeatStash simulations driven by quantitative palaeoclimate reconstructions. The pollen-215 

based reconstructions (Bartlein et al., 2011) confirm that the climate over the British Isles was 216 

slightly wetter at 6 ka than today (Figure 3), with considerably warmer (approximately 2˚C) 217 

summers. As a result of the warmer summers, the bioclimatic envelope suitable for blanket bog was 218 

14 % smaller at 6 ka (Figure 2b). Larger areas of western Scotland, Ireland and Wales have become 219 



 10 

suitable for blanket bog since 6 ka. Southwest England acquired three separate centres of predicted 220 

peat growth, corresponding to Dartmoor, Exmoor and Bodmin Moor, as a direct consequence of 221 

late Holocene cooling. 222 

These simulations are consistent with observations of regional timing in the formation of blanket 223 

bogs (Figure 4a). Analysis of basal dates on blanket bogs shows a gradual increase in blanket-bog 224 

formation throughout the early Holocene and a broad peak in initiation dates between 8000 and 225 

4000 BP during the mid-Holocene. There is a decline in the number of ages after 3-4000 BP. 226 

Regional patterns suggest that initiation occurred earliest in the north and most of the dates between 227 

10000 and 7000 BP are from sites in Scotland and northern England (Figure 4a). Sites in Wales also 228 

have some early ages, but with a major increase in initiation dates after 8000 BP continuing 229 

throughout the rest of the Holocene. Sites in Ireland and southwest England are generally later to 230 

develop and have a peak at 3000 BP, later than the other regions. The initiation dates show that 231 

large areas of northern Britain were climatically suitable for blanket-bog formation before 6 ka, and 232 

remain so now. The regional differences in timing of initiation indicate a gradual increase in the 233 

area with suitable climate after 6 ka, especially in Wales, Ireland and southwest England. 234 

There are some discrepancies between the simulated and observed patterns of blanket-bog growth. 235 

Most of the exceptions are occurrences of initiation dates > 6 ka in areas such as Dartmoor that are 236 

only predicted to become suitable for peat growth after 6 ka. This may be an issue of resolution; 237 

some blanket bogs may have developed in localities with suitable microclimates that are smaller 238 

than our model can resolve, given the resolution of the climate inputs. It is also possible that this 239 

reflects a sampling bias. Older locations tend to be over-sampled because deep peat deposits are 240 

generally favoured in order to generate longer palaeorecords (Fyfe and Woodbridge, 2012). These 241 

may not have been laterally extensive or typical of the wider landscape.  242 

We model a slight contraction in the area of suitable climate for blanket bog since 6 ka in eastern 243 

Britain (Figure 2). If this model result is correct, there should be areas of eastern Britain supporting 244 

relict blanket bog with no active peat formation. Although peat initiation occurred in these areas 245 
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between 4 and 2 ka (Figure 4a), post-6 ka accumulation rates are low (Simmons and Innes, 1988) 246 

suggesting that conditions indeed became less favourable for peat growth. Peat growth may 247 

continue for some time on an established peat bog due to local edaphic and hydrological conditions, 248 

despite climate being unsuitable for peat initiation. The existence of relict peats is not susceptible to 249 

testing using only initiation dates and this prediction would need to be explicitly tested by field 250 

sampling for cessation or slowing of peat growth. 251 

Our analysis of basal peat ages shows that blanket bogs have been developing in some regions of 252 

the British Isles from the early Holocene onwards.  The fact that blanket bogs developed later in the 253 

west and south of the country can be explained simply by the fact that regions with warmer and/or 254 

drier climates (Figure 3) were less suitable for peat formation during the early Holocene. Blanket 255 

bogs only developed in these areas as climate became cooler and wetter. Blanket-bog formation 256 

accelerated in the mid- to late Holocene, but this occurred later than the ‘elm decline’ event in many 257 

locations and proceeded continuously, which makes it unlikely that it was causally linked to human 258 

activities. The simulations (Figure 2) indicate that a large part of the British Isles was suitable for 259 

blanket-bog formation before the main period of human impact.  260 

Climatic control of blanket-bog formation in the UK is consistent with evidence from other parts of 261 

the world that blanket-bog initiation occurred in response to climate change and that their current 262 

distribution is strongly controlled by climatic conditions. It raises an important issue about the fate 263 

of this unique ecosystem under future climate change. Our work supports previous analyses that 264 

suggest they will require careful management given that their continued growth may be threatened 265 

by large-scale shifts in climate in some regions of the UK (Clark et al., 2010; House et al., 2010; 266 

Gallego-Sala et al., 2010) and worldwide (Gallego-Sala and Prentice, 2013).  267 

Taken together, these lines of evidence indicate that the history of blanket-bog growth in the British 268 

Isles can be explained as a threshold response to a changing climate. In an area with a rich human 269 

history, such as the British Isles, almost all Holocene palaeoecological records show signs of human 270 
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impact at various stages. However, our analyses suggest that no human intervention was required to 271 

initiate blanket-bog formation in the British Isles.  272 
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Figure and Table Captions 433 

 434 

Figure 1. The area of blanket peat predicted by the bioclimatic envelope model (BCEM) PeatStash 435 

using a baseline climate period (UKCIP02: 1961-90) overlain on the mapped 5 km gridded data of 436 

observed blanket peat presence (Ordnance Survey/EDINA, 2009).  437 

 438 

 439 

 440 
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 441 

Figure 2. PeatStash simulations of blanket peat extent at 6 ka using a) simulated palaeoclimate and 442 

b) pollen-based reconstructions of palaeoclimate. 443 

 444 

 445 

 446 

Figure 3. Average climate anomalies at 6 ka from pollen-based reconstruction:  a) moisture index, 447 

b) mean annual temperature (MAT), and c) temperature of the warmest month (MTWA).  448 
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 449 

Figure 4. Assembled basal calibrated radiocarbon dates from blanket bogs over the British Isles: a) 450 

regional graphs of initiation dates through time binned every 500 years; b) map of individual 451 

initiation dates; and c) map of initiation dates summarised per region. 452 

 453 

 454 

 455 

 456 
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Table 1. Summary information on the climate models used in this analysis. 457 

Model name Type Model components 
Atmospheric 
Resolution (no of 
gridcells: lat, lon) 

Reference  

 

CCSM4 OA CAM4/POP2/CLM4/CICE4/CPL7 192, 288 (Gent et al., 2011) 

CNRM-CM5 OA ARPEGE-Climat V5.2.1, 
TL127L31/NEMO3.3.v10.6.6P/ORCA1degL42)/ 
GELATOV5.30/TRIPv1/SURFEXv5.1.c/OASIS 3 

128, 256 (Voldoire et al., 2013) 

CSIRO-Mk3-6-0 OA AGCMv7.3.5/GFDL MOM 2.2 96, 192 Rotstayn et al. (2010) 

MPI-ESM-P OA ECHAM6/MPIOM 96, 192 Giorgetta et al. (2013) 

MRI-CGCM3 OA GSMUV/MRI.COM3/ HALv0.31  160, 320 Yukimoto et al. (2011) 

BCC-CSM1-1 OAC BCC_AVIM1.0/MOM4/ SIS 64, 128 Wu et al. (2013) 

IPSL-CM5A-LR OAC LMDZ4_v5/ORCA2(NEMOV2_3)/ LIM2(NEMOV2_3) 
/PISCES/ORCHIDEEE 

96, 96 Dufresne et al. (2013) 

MIROC-ESM OAC MIROC-AGCM (2010)/COCO3.4/SPRINTARS 
5.00/NPZD/SEIB-DGVM 

64, 128 Watanabe et al. (2011) 

HadGEM2-CC OAC HadGAM2/HadGOM2/TRIFFID/diat-HadOCC 145, 192 Collins et al. (2011) 

HadGEM2-ES OAC HadGAM2/HadGOM2/MOSES2/TRIFFID/UKCA/diat-
HadOCC 

145, 192 Collins et al. (2011) 

  458 
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Table 2: Region by region break down of percentage of a) cores with basal dates younger than 6ka 459 

b) sites with basal dates exclusively younger than 6ka c) % gridcells that PeatStash predicts to have 460 

initiated after 6ka when run with the pollen-based climate reconstructions.  461 

Region 
% cores with 

basal date <6ka 

%sites with basal date 

exclusively <6ka 

% gridcells with 

basal date <6ka 

N Scotland 54 35 24 

C Scotland 18 20 31 

S Scotland 17 33 41 

N England 28 32 38 

Wales 20 48 64 

N Ireland 93 93 42 

SW England 73 38 95 

All 44 43 48 

 462 


