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Abstract

This work proposes a daily high-resolution probabilistic reconstruction of precipitation and
temperature fields in France over the 1871–2012 period built on the NOAA Twentieth Cen-
tury global extended atmospheric reanalysis (20CR). The objective is to fill in the spatial
and temporal data gaps in surface observations in order to improve our knowledge on the5

local-scale climate variability from the late nineteenth century onwards.
The SANDHY (Stepwise ANalogue Downscaling method for HYdrology) statistical down-

scaling method, initially developed for quantitative precipitation forecast, is used here to
bridge the scale gap between large-scale 20CR predictors and local-scale predictands
from the Safran high-resolution near-surface reanalysis, available from 1958 onwards only.10

SANDHY provides a daily ensemble of 125 analogues dates over the 1871–2012 period
for 608 climatically homogeneous zones paving France. Large precipitation biases in in-
termediary seasons are shown to occur in regions with high seasonal asymmetry like
the Mediterranean. Moreover, winter and summer temperatures are respectively over- and
under-estimated over the whole of France.15

Two analogue subselection methods are therefore developed with the aim of keeping un-
changed the structure of the SANDHY method while reducing those seasonal biases. The
calendar selection keeps the analogues closest to the target calendar day. The stepwise
selection applies two new analogy steps based on similarity of the Sea Surface Tempera-
ture (SST) and the large-scale Two-metre Temperature (T2m). Comparisons to the Safran20

reanalysis over 1959–2007 and to homogenized series over the whole twentieth century
show that biases in the interannual cycle of precipitation and temperature are reduced with
both methods. The stepwise subselection moreover leads to a large improvement of inter-
annual correlation and reduction of errors in seasonal temperature time series. When the
calendar subselection is an easily applicable method suitable in a quantitative precipitation25

forecast context, the stepwise subselection method allows for potential season shifts and
SST trends and is therefore better suited for climate reconstructions and climate change
studies.
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The probabilistic downscaling of 20CR over the period 1871–2012 with the SANDHY
probabilistic downscaling method combined with the stepwise subselection thus constitutes
a perfect framework for assessing the recent observed meteorological events but also fu-
ture events projected by climate change impact studies and putting them in a historical
perspective.5

1 Introduction

Studying the influence of different modes of climate variability on hydrometeorological
events like droughts and low flows require numerous, long and reliable series to derive ro-
bust relationships with predictive capacity (see, e.g. Giuntoli et al., 2013; Boé and Habets,
2014). However, even in a data-rich country like France, few local observations covering10

the entire twentieth century are currently available in databases, as shown by Fig. 1. Less
than one precipitation station per 600 km2 was available on average between 1871 and
1930. The number of temperature observations shows an increase after 1950 only. The
data sparseness before 1950 does not only come from the low number of meteorological
observations but also from their poor spatial coverage in spite of recent data rescue efforts15

(Moisselin and Jourdain, 2007). The recent release of global reanalyses extending back-
wards to the late nineteenth century provides some exciting opportunities to overcome the
limitations of such an observation sparseness and to increase our understanding of local-
scale climate variability. Global reanalyses, providing atmospheric data at coarse spatial
and fine temporal resolutions, can be used to reconstruct local climate. A downscaling step20

is however required to bridge the gap from the reanalysis scale to the scale relevant for
catchment hydrology for example. This can be done using statistical methods that estab-
lish a relationship between large-scale predictors from the global reanalyses and observed
local-scale predictands, and the present work indeed follows this path.

Statistical downscaling methods have been widely used in France in various contexts,25

like quantitative precipitation forecast (see, e.g., Ben Daoud et al., 2011; Marty et al., 2012)
or climate change impact studies (see, e.g., Timbal et al., 2003; Boé and Terray, 2008;
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Quintana-Seguí et al., 2011). Applications in reconstruction contexts were until recently
limited by the availability of large-scale predictors from global reanalyses that covered only
the second part of the twentieth century. As a consequence, existing studies for earlier peri-
ods generally focused on a specific event using rescued predictor observations. Yiou et al.
(2014) for example reconstructed meteorological variables over the North Atlantic region5

during the Laki volcanic eruption in 1783 based on a specific gridded dataset (Kington,
1988). Auffray et al. (2011) reconstructed hydrometeorological conditions having led to the
1859 flood of the Isere river (French Alps) based on purposely rescued pressure data. The
release of the two extended global reanalyses – the Twentieth Century Reanalysis (20CR,
Compo et al., 2011) and the European Reanalysis of the Twentieth Century (ERA-20C Poli10

et al., 2013) – spanning the entire twentieth century (respectively since 1871 and 1900)
opens new ways to derive continuous time series of local weather thanks to downscaling
methods. The 20CR reanalysis has already been downscaled for specific regions, as the
south-eastern US by DiNapoli and Misra (2012) and Misra et al. (2013) using dynamical
downscaling, the North East of Spain by Turco et al. (2014) using statistical downscaling,15

or the Durance river basin by Kuentz et al. (2013, 2015) using probabilistic statistical down-
scaling. It has also been recently used for downscaling wave climate over locations in the
North-Eastern Atlantic (Camus et al., 2014) or station wind speed in Spain (Kirchner-Bossi
et al., 2013). Few studies have been performed at a country scale, with the exception of
Minvielle et al. (2015) who used a deterministic statistical downscaling approach optimised20

over France as a whole.
This paper proposes a daily high-resolution downscaling of the 20CR reanalysis to recon-

struct precipitation and temperature gridded series since 1871 over France. Compared to
previous downscaling studies, this experiment has three main combined specificities: (1) the
20CR reanalysis is downscaled for the whole of mainland France and Corsica; (2) it is per-25

formed with SANDHY (Stepwise ANalogue Downscaling method for HYdrology, Ben Daoud
et al., 2011, 2016; Radanovics et al., 2013), a statistical downscaling method locally opti-
mized over 608 zones paving France to take into account regional climate features; (3)
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the downscaling method provides 25-member ensemble reconstructed fields to reflect the
uncertainty in the downscaling step.

The first objective of this paper is to present refinement steps through post-processing
methods of the standard SANDHY method that were required in this context of historical
reconstruction. Indeed, SANDHY has been mainly used in contexts of quantitative precipi-5

tation forecasting (Ben Daoud et al., 2011, 2016) and reanalysis of recent past precipitation
(Radanovics et al., 2013). This is moreover the first time that this method is tested for down-
scaling temperature. The second objective is to test the quality of reconstructed ensemble
fields with respect to different datasets including long homogenized series. The last objec-
tive is to illustrate some characteristics of the probabilistic reconstructed datasets through10

examples in both the temporal and spatial aspects.
The paper is structured as follows. Section 2 introduces the different reanalysis and ob-

servation datasets used during all the steps of the study. Section 3 describes the downscal-
ing method SANDHY, the two alternative post-processing methods developed here as well
as the performance scores used to assess the quality of the reconstruction. Section 4 com-15

pares reconstructed precipitation and temperature fields to different datasets, over a recent
period as well as across the twentieth century. Examples of these reconstructions are then
provided in Sect. 5 and results are finally discussed in Sect. 6.

2 Data

This section presents the large-scale datasets providing the large-scale atmospheric and20

oceanic data as well as the local-scale datasets providing the local-scale meteorological
data used in this study.

2.1 NOAA Twentieth Century Reanalysis

Version 2 of 20CR (Compo et al., 2011) from the National Oceanic and Atmospheric Admin-
istration (NOAA) is used here as the source for atmospheric predictors in the downscaling25

step. Outputs from this global atmospheric reanalysis are available at 2.0◦ spatial resolu-
5
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tion and 6 hourly temporal resolution from the 1 January 1871 to present. This reanalysis
is the first global reanalysis spanning the entire twentieth century and only using the six-
hourly sea level pressure (SLP) from the International Surface Pressure Databank (ISPD
v2.2.4, Compo et al., 2010) for the assimilation step and the monthly sea surface tempera-
ture (SST) and sea-ice concentration fields from the Hadley Centre Global Sea Ice and Sea5

Surface Temperature (HadISST, Rayner et al., 2003) as boundary conditions. The feasibility
of such a reanalysis has been demonstrated by Compo et al. (2006) and this choice has
been done to avoid non-climatic bias due to the assimilation of observations from different
systems. Outputs are available as either the original 56-member ensemble derived from the
Ensemble Kalman Filter assimilation process or as the single ensemble mean. In this study,10

only the latter was used, as in all other downscaling applications to date. This will be further
discussed in Sect. 6.

6-hourly predictor variables from 20CR used by the SANDHY statistical downscaling
method are the temperature at 925 and 600 hPa, the geopotential height at 1000 and
500 hPa, the vertical velocity at 850 hPa, the precipitable water content and the relative15

humidity at 850 hPa. The large-scale two-metre temperature (T2m) is also used as an ad-
ditional predictor in the stepwise post-processing method described in Sect. 3.3.

2.2 NOAA Extended Reanalysis Sea Surface Temperature

The second large-scale dataset considered in this study is the NOAA Extended Reanalysis
Sea Surface Temperature version 3b (ERSST, Smith and Reynolds, 2003; Smith et al.,20

2008). This reanalysis is a global monthly sea surface temperature reanalysis, available
at a 2.0◦ spatial resolution since the 1 January 1854. This reanalysis is derived from the
Comprehensive Ocean–Atmosphere Dataset release 2 (COADS, Woodruff et al., 1998)
with missing data filled in by statistical methods. Like 20CR, this version does not use
satellite data to avoid homogeneity biases.25

ERSST provides the SST predictor used in the stepwise selection (see Sect. 3.3).
A spline interpolation of the monthly means is considered to derive time series at the daily
time step required by the downscaling method.

6



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

2.3 Safran

Safran French near-surface reanalysis data are used as predictands in the downscaling
step. Safran is a meteorological reanalysis available at a 8 km spatial resolution and at
the hourly temporal resolution from the 1 August 1958 to present (Vidal et al., 2010a). This
dataset has been computed using the Safran analysis system (Quintana-Seguí et al., 2008)5

which performs an optimal interpolation between all available surface observations in the
Météo-France database and first-guess from the ERA-40 reanalysis (Uppala et al., 2005) for
each of the 608 climatically homogeneous zones mapped in Fig. 2. A temporal interpolation
step followed by a spatial interpolation step using a 8 km resolution orography are applied
to obtain hourly data on a regular grid over France.10

Vidal et al. (2010a) performed a detailed validation of the gridded Safran dataset with
both dependent and independent data. They showed that the errors on precipitation are
low and constant over the 1958–2008 period. Errors on temperature are decreasing with
the increasing number of available surface observations.

Daily precipitation is the predictand used in the SANDHY downscaling method. In this15

application and for the first time, temperature values from the analogue days are also con-
sidered for reconstructing downscaled temperature.

2.4 Surface observations

Raw meteorological surface observations are used here only for qualitative and limited com-
parison to reconstructed fields in Sect. 5.2. Long homogenized series are here favoured for20

quantitatively assessing the long-term quality and temporal homogeneity of meteorological
reconstructions. Indeed, surface observations are generally affected by inhomogeneities
due to their environment modifications over time. The French homogenized series (Mois-
selin et al., 2002; Moisselin and Schneider, 2002) have been derived using a statistical
procedure detecting breaks and outliers (Caussinus and Mestre, 2004). Such series have25

been widely used for example for regional climate change detection (see e.g. Spagnoli
et al., 2002; Ribes et al., 2010). The 323 monthly precipitation series and 65 monthly time

7
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series of minimum and maximum temperature spanning the whole twentieth century have
been retained here. Monthly mean temperature time series have been obtained by averag-
ing minimum and maximum temperature as done by Moisselin et al. (2002). Their locations
are shown in Fig. 3. Note that no homogenized series are available in Corsica.

3 Methods5

This section first presents the SANDHY downscaling method and the two post-processing
methods developed. Synthetic diagrams in Appendix A summarise the different method-
ological steps described in this section as well as their sequence. The performance scores
used in the following study are then presented.

3.1 SANDHY10

The SANDHY method (Ben Daoud et al., 2011) follows an analogue approach based on
the idea introduced by Lorenz (1969) that similar atmospheric situations lead to similar local
effects. The analogue approach uses two concurrent datasets over an archive period, from
a large-scale reanalysis and a local-scale meteorological dataset. The large-scale reanaly-
sis should also be available over the period to reconstruct, called target period. Large-scale15

predictors (like atmospheric circulation patterns) from any date in the target period are com-
pared to those of the archive period and dates with the most similar predictors are chosen
as analogues. Local-scale variables (or predictands) like precipitation or temperature from
the analogue dates are taken as plausible values for the target date. Numerous applica-
tions of the analogue method with different parametrisations have been developed over the20

last decades, notably in France (see, e.g., Dayon et al., 2015; Chardon et al., 2014; Yiou
et al., 2014). Most of them use a unique analogy distance computed from one or several
predictors to find the most relevant analogues, on the contrary to SANDHY that uses a step-
wise approach where analogues subsets are sequentially refined with respect to different
predictors.25

8
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The SANDHY method is described by four analogy levels optimised by Ben Daoud et al.
(2011, 2016) on the Seine and Saône basins and summarised in Table 1. The predictand
considered is daily precipitation, as the initial aim of this method was quantitative precip-
itation forecast. The first step is a selection of N analogue days on temperature at 925
and 600 hPa with the exclusion of a four-day window around the target date. N is taken5

as 100× the number of years in the archive period. The second step is a selection on
geopotential height at 500 and 1000 hPa with 170 analogues days retained. The third step
selects 70 analogues thanks to an analogy on vertical velocity at 850 hPa and the final step
selects 25 analogues on humidity, considered as the product of the precipitable water con-
tent and the relative humidity at 850 hPa. Predictors were extracted from ERA-40 and the10

precipitation predictand from Safran. The similarity criterion used for the analogy levels on
temperature, vertical velocity and humidity is the Euclidean distance, with equal weights
when different pressure levels are used. The analogy on geopotential height is measured
through the similarity between fields shape with the Teweles and Wobus (1954) criterion.
The synthetic diagram in Fig. A1 summarises the different steps described above.15

The spatial domain for a predictor where the analogy is looked for (spatial extent and
position) should be defined and potentially optimized for each of the 608 climatically ho-
mogeneous zones shown in Fig. 2, considered as individual target locations, following
Radanovics et al. (2013). The predictor domain for the first, third and fourth analogy lev-
els is chosen as the closest large-scale grid point to each zone. Radanovics et al. (2013)20

moreover optimized the geopotential predictor domains with an algorithm of growing rect-
angular domains, leading to the selection of 5 near-optimum domains for each zone in
France. The performance criterion for the optimization was the Continuous Ranked proba-
bility Score (CRPS Brown, 1974; Matheson and Winkler, 1976), widely used for probabilistic
verification forecast. Domains found from neighbouring zones were also considered if they25

provide a better performance. The different downscaling steps are therefore applied 5 times
using a different predictor domain at each run, thus providing 125 analogue days for each
target date and each climatically homogeneous zone in France.

9
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3.2 Application of SANDHY for reconstruction

In this work, 20CR variables are used as predictors whereas Safran precipitation is kept
as predictand. The predictor domains per climatically homogeneous zones have been here
re-optimised over the same 20 year period as in Radanovics et al. (2013) – 1 August 1982
to 31 July 2002 – but with 20CR predictors in order to use the same reanalysis in all steps5

of the downscaling method. The target period considered is the whole period spanned by
20CR data, i.e. 1 January 1871 to 31 December 2012. Following Minvielle et al. (2015),
the archive period has been chosen as the 50 year period running from 1 August 1958 to
31 July 2008 in order to maximise the pool of analogue situations. This specific period
has previously been the target of several climatological assessments (see e.g. Vidal et al.,10

2010a, b). Reconstructions are expressed as an ensemble of 125 equally plausible gridded
precipitation and temperature series over the whole 1871–2012 period, combining analogue
days independently from one zone to another and from one day to the next. This set-up will
be further discussed in Sect. 6.4.

Previous applications, including optimisation, used ERA-40 variables as predictors. Tests15

preliminary to this work showed that the overall performance of SANDHY outputs in terms
of CRPS are lower (around 0.05 mm/day on average) when using 20CR variables as pre-
dictors. These tests also showed that the precipitation for intermediary seasons in areas
with a high seasonal asymmetry – e.g., Mediterranean areas including the Cévennes zone
highlighted in blue in Fig. 2 – is not well simulated, with a over-estimation of precipitation20

in spring and an under-estimation of precipitation in autumn. It is important to note that
these biases also occur using predictors from ERA-40. Moreover, winter and summer tem-
peratures are respectively over- and under-estimated. This last result was not unexpected
since SANDHY predictors were chosen for their strong relation to precipitation, and not
temperature.25

Post-processing approaches were therefore explored with the aim of keeping unchanged
the structure of the SANDHY method while reducing those seasonal biases. Two analogue

10
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subselection methods were thus developed: for each target date, a specific number of ana-
logue dates are retained among the 125 available ones.

3.3 Subselection methods

Subselection methods described below attempt to retain a number of analogues called N2
out of the initial 125 ones. When two successive subselection levels are used, the number5

of analogues are called N1 (N1≤125) then N2, with N2≤N1. The synthetic diagram in
Fig. A2 summarises the different steps described below.

3.3.1 First predictor domain selection

The first method considered is the benchmark method against which the actual subselection
methods described in the subsections below are tested. Radanovics et al. (2013) demon-10

strated that the 5 predictor domains optimized locally lead to very similar performances and
can be considered as near-optimal. This benchmark subselection thus consists in retain-
ing only the 25 analogue dates derived from the optimal predictor domain per zone. In the
following, this method is called first domain selection.

3.3.2 Calendar selection15

The second method considered is a calendar selection that keeps the N2 analogues closest
to the target calendar day. N2 has been optimised to 25, based on the France-averaged skill
score in root-mean square error (RMSE) over precipitation and temperature monthly time
series, with respect to the benchmark first domain selection (see Appendix C). This calen-
dar approach had been initially included in the precursors of the SANDHY method where20

the search for analogue dates were restricted within a four-month window around the target
date (Obled et al., 2002; Bontron and Obled, 2005). Ben Daoud et al. (2011) subsequently
replaced this preliminary calendar step by a selection on large-scale temperature in order
not to rule out potentially relevant analogue situations from one intermediary season to an-

11
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other and actually achieve better overall performances in terms of CRPS. In the following,
this method is called calendar selection.

3.3.3 Stepwise selection

The third method follows the stepwise approach at the heart of SANDHY by adding two
analogy levels, a first one on SST and a second one on the T2m. The SST and the T2m5

have been chosen because of their influence on both local precipitation or temperature.
The influence of the SST on continental precipitation has been studied for years, and ac-

cording to Gimeno et al. (2010), 10% of water evaporated from the oceans is transported
to continents where it precipitates. To give some examples, Wilby (2001) used the North
Atlantic ocean temperature as predictor in a downscaling method to reconstruct precipita-10

tion in the UK. Colman and Davey (1999) used the preceding winter North Atlantic ocean
temperature to predict summer temperature, rainfall and pressure in Europe. van der Ent
and Savenije (2013) identified the sources of continental precipitation and showed that the
North Atlantic ocean and the Mediterranean sea are the regions contributing the most to
European continental precipitation. Gimeno et al. (2010) identified what oceanic regions15

affect the most continental regions in terms of oceanic moisture. The North Atlantic ocean
affects Europe in winter whereas the Mediterranean sea rather affects Europe in summer,
and they both have an equal influence on Europe in spring and autumn.

Precipitation is not the only variable affected by the SST. Hoerling and Kumar (2003)
and Cassou et al. (2005) demonstrated the contribution of the SST on the 2003 summer20

heat wave. Large-scale T2m, which contains direct information about the seasonal cycle
of local temperature, is also selected to correct the local-scale temperature with a second
subselection level. The other possible combination, with the T2m as first level and the SST
as second level has also been studied but resulted in lower performances (not shown).

In practice, for each target date, the N1 analogue days giving the closest simulated SST25

to the observed one in terms of Euclidean distance are selected among the 125 available.
Then, the N2 analogues days giving the closest simulated T2m to the observed one – also in
terms of Euclidean distance – are selected among the N1 available. N1 and N2 have been

12
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optimized to respectively 80 and 25 (see Appendix C). For the sake of consistency over
France and parsimony of the stepwise subselection method parameters, a single common
grid point is considered for deriving the ERSST SST time series used for computing the
SST analogy for all climatically homogeneous zones in France. This point has been chosen
based on its highest correlation with precipitation over France (see Appendix B). It is located5

in the Atlantic ocean south of Brittany (4◦W, 46◦N). The grid point for deriving the time
series for computing the T2m analogy is chosen as the closest land grid point to each
climatically homogeneous zone, following the approach used for levels 1, 3 and 4 in the
standard SANDHY method.

In the following, this method is called stepwise selection.10

3.4 Performance indicators

The quality of precipitation and temperature reconstructions from the different methods de-
scribed above was first assessed in terms of interannual regime by looking at annual and
seasonal bias, and at the temporal evolution of root-mean-square error (RMSE). Rank cor-
relation on annual and seasonal series were also computed to look at the natural variability15

derived from the hydrometeorological chain 20CR-SANDHY-subselection. All above indica-
tors aimed at comparing reconstructions (1) to Safran pseudo-observations over the second
part of the twentieth century, and (2) to homogenized series over the whole century.

An evaluation at multiple temporal scales of the three selection methods against Safran
data has also been devised based on the Continuous Ranked Probability Score (CRPS) as:20

CRPS =

∞∫
−∞

[F (x)−H0
xobs

(x)]2dx, (1)

where F (x) is the simulated cumulative distribution function of the variable x, x0obs the ob-
served value and H0

xobs
(x) the Heaviside function of x−x0obs. This score is equivalent to the

mean absolute error in a deterministic context. The CRPS was computed for each selec-
tion method at the daily monthly and annual scales and for each climatically homogeneous25

13
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zone, and over the 1 August 1958–31 July 2008 archive period with reference to Safran
data. The Continuous Ranked Probability Skill Score (CRPSS) is used here for comparing
zones with different climatological characteristics. It is computed as:

CRPSS = 1− CRPS
CRPSclim

, (2)

where CRPSclim is the reference climatological distribution over the archive period. For the5

daily time scale, the CRPSclim is calculated over the archive period using data from ±60 days
around the target date to take seasonality into account, as in Radanovics et al. (2013). This
score is only used to compare the different subselection methods to each other. There-
fore, the number of days chosen to compute the CRPSclim does not change the relative
evaluation of the different methods and only serves to normalize results among zones with10

different magnitudes of precipitation/temperature values, and thus with different magnitudes
of CRPS. For the monthly time scale, it is calculated from the interannual distribution of val-
ues from the specific month considered over the archive period. For the annual time scale, it
is calculated from the interannual distribution of annual values over the archive period. The
CRPSS thus expresses the skill of each selection method with respect with the information15

given by the climatology.

4 Performance assessment of the subselection methods

This section presents the assessment of reconstructed precipitation and temperature fields
using SANDHY and the 3 subselection methods described in Sect. 3.3. As mentioned
above, it consists in two parts: (1) a detailed spatial assessment with respect to Safran20

data over the 1959–2007 period, and (2) a more focused temporal assessment over the
1900–2000 period with respect to homogenized series.

14
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4.1 Comparison to Safran

Figure 4 shows the precipitation and temperature interannual regimes for the Finistère case
study zone (see Fig. 2) from Safran data as well as from the reconstructions based on
the three subselection methods. Raw outputs from SANDHY (first domain selection) show
a slight underestimation of precipitation in autumn and winter and a too flat seasonal cycle5

of temperature, as already mentioned in Sect. 3.2. Both the calendar and stepwise meth-
ods improve the temperature cycle, while only the calendar selection slightly improves the
precipitation signal.

Figure 5 shows corresponding results for the Cévennes case study zone. The first domain
selection shows a bias in the temperature signal similar to the other case study zone, and10

strong biases in precipitation in the two intermediary seasons. The latter is mainly due to
the strong seasonal cycle in this region (see Vidal et al., 2010a) and the fact that SANDHY
resamples analogue dates based on the temperature without considering the actual target
season. As a consequence, a target date in spring may have analogue dates from autumn
where precipitation is higher on average, leading to the positive bias in reconstructed spring15

precipitation. Both the calendar and the stepwise methods manage to drastically reduce
such precipitation biases and to correct the temperature cycle.

Figure 6 extends the above results to the whole of France by showing the median annual
and seasonal temperature bias from the three subselection methods. When all methods
have a very low bias at the annual time scale, raw SANDHY outputs (first domain selection)20

show a strong positive (resp. negative) bias in winter (resp. summer), more pronounced in
the northern part of the country. Both the calendar and stepwise methods bring sizeable
improvements in all seasons and generally limits absolute biases under 0.5 ◦C except in
winter in the northern half of France.

Figure 7 shows in a similar way the precipitation bias from the three subselection meth-25

ods. At the annual scale, biases are generally around −10% (with a minimum around
−20% and a maximum around +5%), with a slight overestimation in the Cévennes area
and an underestimation elsewhere, more pronounced around the Mediterranean. Raw
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SANDHY outputs (first domain selection) show substantial biases in all seasons, with an
overestimation in spring around the Cévennes area, the Atlantic and Mediterranean coasts
and an underestimation in summer (except in the Cévennes area), autumn (except in the
most eastern part of the country) and winter (except along the south-western coast). These
spatial patterns are generally preserved by the stepwise selection but with reduced intensity.5

The calendar selection shows a similar spatial pattern in summer and winter but also more
homogeneous biases over France in spring and autumn. This is most noticeable in spring
when the calendar selection mainly shows absolute values under 10%. The three methods
show the same spatial pattern for the annual biases. In autumn, the calendar selection per-
forms better than the stepwise selection while the opposite is observed in summer. Finally,10

relatively little improvement is proposed by the calendar and stepwise methods in summer
(except in the Cévennes area) and winter (except along the Mediterranean coast).

The assessment of subselection methods in terms of interannual variability of tempera-
ture is shown in Fig. 8. The lowest rank correlation values are generally found in summer
(especially in the eastern part of the country), followed by autumn. For the first domain15

selection, values may reach 0.9 only in some regions in both spring and winter. Using the
calendar selection does not provide any improvement and even reduces correlations in
summer. On the other hand, the stepwise selection generates much higher correlations in
all seasons all over the country, with values in spring and winter generally above 0.9, and
a 0.1 to 0.2 improvement in summer with respect to raw SANDHY outputs.20

Figure 9 shows the rank correlations in precipitation between Safran and the three subs-
election methods. The highest correlations are found in winter with values above 0.9 along
the Atlantic coast, the North-East and the Alps. This spatial pattern – along with lower val-
ues around the Mediterranean and in the Loire and Allier valleys on the lee side of Massif
Central mountains – may be found in all seasons. Summer correlations are generally under25

0.6, presumably due to the prominence of convective events hardly explainable by large-
scale predictors during this specific season. Correlations are very similar between the three
methods, with only slight local differences hardly detectable on Fig. 9.
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The above comparisons were only based on median values from the 25 realisations
of each subselection method. Figure 10 now provides a probabilistic assessment of the
quality of the reconstructions at different time scales by comparing the CRPSS (see Eq. 2)
of raw SANDHY outputs (first domain selection) to the other subselection methods, for both
temperature and precipitation. Considering precipitation at the daily time scale, CRPSS5

values are lower using the two subselection methods rather than the first domain selection.
Further investigations show that higher reliability values are obtained when considering
the CRPS decomposition (Hersbach, 2000). Indeed, the two subselection methods leads to
a more drastic selection of precipitation values than simply taking the first domain selection,
which is representative of the 125 available values. As a consequence and because of the10

slight annual precipitation bias (see Fig. 7), observed values are more often outside the
simulations range when the calendar and stepwise selection are considered. At larger time
scales, the skill in reconstructing precipitation is generally slightly increased when using
either the calendar or stepwise selections. Note that the average skill for all three methods
is higher at the monthly time scale than at the daily or annual scale.15

The bottom row of Fig. 10 shows CRPSS results for temperature. At the daily and monthly
time scales, CRPSS values are strongly increased – and interestingly spatially homoge-
nized over France – when using either the calendar and stepwise selections with respect
to the first domain selection. The picture is rather different at the annual time scale, with
only the stepwise selection generating higher skill scores without however homogenizing20

values spatially. The CRPSS increase is much stronger for the stepwise selection at all
time scales, with an improvement of around 0.25 with respect to the first domain selection
at the daily time scale, and up to 0.5 at the monthly time scale. It has to be noted that
negative CRPSS values are generated by the stepwise selection for some few specific and
spatially scattered zones at the annual scale for temperature. A thorough investigation on25

these zones showed that the recent warming trend observed everywhere else in France is
actually simulated by the stepwise selection while not being present on these Safran time
series (not shown). This presumably originates from the inhomogeneities in Safran data that

17



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

have already been documented by Vidal et al. (2010a) and that result from the evolution of
the density of surface observations analysed by the system.

Except for the CRPSS, this section mainly compared the different subselection methods
(First domain, Calendar and Stepwise) to Safran at the monthly/seasonal time scales where
differences are the most prominent and improvements first needed. A comparison of daily5

cumulative distribution functions points out a similar overestimation of dry days whatever the
method considered. Concerning daily temperatures, conclusions are very similar to those
drawn from monthly temperatures (not shown).

4.2 Comparison to homogenized series

Figure 11 shows the annual and seasonal rank correlation of temperature between homog-10

enized series described in Sect. 2.4 and all 3 subselection methods. Seasonal and spatial
patterns follow the same conclusions highlighted by Fig. 8 over the 1959–2007 period. Cor-
relations are indeed improved in a similar way by using the stepwise selection compared to
the other two methods. Correlation values for the stepwise selection are around 0.05 lower
than the ones with Safran data (1959–2007) plotted in Fig. 8 for all seasons except winter.15

The annual and seasonal rank correlation of precipitation between homogenized series
and the three subselection methods are shown in Fig. 12. Correlations are very similar
amongst the three methods, like they were with Safran as a reference over a shorter and
recent period (see Fig. 8). Values from all seasons are again slightly lower (around 0.05)
that the ones obtained with reference to Safran over the 1959–2007 period.20

The evolution of the RMSE for both Safran time series and the reconstructions with all
3 subselection methods, using the homogenized series as a reference, are presented in
Fig. 13. Monthly RMSE are first calculated and then averaged yearly for each realization.
To have an idea of the average daily error for precipitation, the RMSE in mm/year is divided
by the number of days in each corresponding year to get a RMSE in mm/day. Ribbons25

then show the range between minimum and maximum annual values of the 25 realizations
from each method. Looking first at precipitation results, reconstruction errors are relatively
constant over time, with an average value around 1.3mmday−1. Errors are however slightly
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higher before the 1940s. It is important to note that Safran errors account for more than one-
third of reconstruction errors. These errors have been documented by Vidal et al. (2010a)
and stems mainly from the spatial interpolation step of the analysis system, but also in
part here from the temporal inhomogeneities in Safran input data. Note that RMSE values
provided by Vidal et al. (2010a) and Quintana-Seguí et al. (2008) were respectively com-5

puted at the daily and hourly time scale and are thus not directly comparable to the ones
in Fig. 13 that are computed at the monthly time scale. The stepwise selection generates
slightly lower errors than the two other methods.

The picture is quite different for temperature. Figure 13 indeed shows large differences
between the three selection methods, with an average RMSE of 1.3 ◦C for the first domain10

selection, 1.1 ◦C for the calendar selection, and 1.0 ◦C for the stepwise selection. The latter
even reaches 0.9 ◦C over 1959–2000 where Safran errors are around 0.8 ◦C. The stepwise
selection thus clearly outperforms the other two methods for temperature, with errors of the
same order of magnitude as Safran itself.

5 Reconstruction examples15

This section presents two examples of reconstructed precipitation and temperature through
the stepwise selection. This specific method has been selected for its higher performance
compared to the other subselection methods (see Sect. 4). This section aims at providing
qualitative insights on the reconstructed outputs and at looking in more details into features
along (1) the local-scale temporal dimension and (2) the spatial dimension for a temporal20

snapshot. The focus is here on the monthly/seasonal time scale at which reconstructions
are expected to deliver relevant additional information.

5.1 Temporal reconstruction: time series at Paris Montsouris

Paris Montsouris is a station with available data since 1873 with good quality data due to the
low number of detected breaks over the years (Moisselin et al., 2002). This station has for25

example been used by Slonosky (2002) to reconstruct three centuries of precipitation data
19
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in Paris blended from different sources. Homogenized temperature and precipitation data
from this station have also been used to perform climate variability assessments (Dieppois
et al., 2013; Lüdecke et al., 2013). It is included in the list of homogenized stations described
in Sect. 2.4 and used in Sect. 4.2.

Figure 14 compares annual and seasonal evolution of temperature from the Paris5

Montsouris homogenized series, Safran data and the range of reconstructed series from
the stepwise selection. The variability is very satisfactorily simulated at the annual time
scale, in coherence with Figs. 8 and 11. The uncertainty in reconstructions seems however
underestimated, with observations being too often out of the range of the 25 realizations.
Winter temperature reconstructions moreover suffer from a hot bias, leading to a systematic10

overestimation of temperature in cold years. However, the recent trend in spring tempera-
ture is well captured by the reconstruction method.

Some more information may be drawn from examining specific features of the seasonal
time series. Some extremely cold seasons are reasonably well simulated, like winter and
spring 1963 (see e.g. Greatbatch et al., 2015). The temperature for other events like the ex-15

tremely cold winter 1879–1880, and especially December 1879 (Angot, 1881) are however
largely overestimated with, for example, an overestimation of approximately 4◦C in Decem-
ber 1879. In this particular case, this may be due to the peculiar convergence of meteo-
rological features (snow cover feedback, temperature inversion, etc., see U., 1884; Angot,
1881) that may hardly be captured by 20CR and/or our downscaling method. Extremely hot20

seasons are generally well simulated, especially recent summers like 1976 (Brochet, 1977)
or 2003 (Trigo et al., 2005), but also much older events like spring 1893 (Plumandon, 1893).

Figure 15 shows the corresponding evolution of precipitation for Paris Montsouris. As for
temperature, the interannual variability is satisfactorily simulated at the annual time scale,
in coherence with Figs. 9 and 12. The main difference lies in the uncertainty range which is25

much higher than for temperature, leading to a quite reliable reconstructed ensemble. The
reconstruction method has unsurprisingly difficulties in simulating the extreme wet autumn
of 1896 (Mascart, 1898). Nevertheless, other extreme events like the dry summer 1949
(Sanson, 1950) or the exceptionally dry year of 1921 (Duband et al., 2004) are well simu-
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lated, even if observed values are consistently overestimated considering the median of the
simulations.

For both precipitation and temperature, springs and summers around year 2000 are
under-estimated in comparison to homogenized time series. This specific discrepancy may
be related to soil-atmosphere retroactions which are not taken into account in the one-way5

downscaling approach considered.

5.2 Spatial reconstruction: December 1909 precipitation over France

December 1909 precipitation over France has here been chosen as an example recon-
struction based on its hydrological and socio-economic consequences. Indeed, high (but
not extreme) precipitation amounts fell in this particular month over the north-eastern part10

of France (Angot, 1911). At the end the month, soils were saturated and heavy rain in Jan-
uary 1910, combined with frozen grounds and melting snow, led to widespread floods in the
region (Lang et al., 2013). December 1909 thus appears as a key factor for understanding
the early 1910 floods (Schneider, 1997), and especially the most studied 100 year flood of
the Seine in Paris (see e.g. Marti and Lepelletier, 1997) but also other important floods on15

the Rhine (Martin et al., 2011) or Rhône (Pardé, 1925) tributaries.
Figure 16 shows the map of December 1909 precipitation adapted from Angot (1911,

Pl. III) and compiled with observations available at that time. Heavy and unusual amounts
have been recorded over several mountain ranges, (Morvan, Southern Vosges, Jura and
Northern French Alps). The map of observations currently available in the Météo-France20

database is shown in the top row of Fig. 17 with the same colour scale. The Seine basin
is well covered with observations, following the Météo-France data rescue efforts for un-
derstanding the flood in Paris (see the “extreme rainfall” database and website1). However,
several regions appear as void of observations: Picardie (North), the main part of the Loire
basin (Centre), Jura mountain range (East), most of the Alps, and Provence (South-East).25

1http://pluiesextremes.meteo.fr/1910-01-18/crue-historique-de-la-seine.html
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Rows 2 to 4 in Fig. 17 show maps compiling local minimum, median and maximum of the
25-member ensemble monthly precipitation amounts for December 1909 from the stepwise
selection. Spatial patterns are in very good agreement with the observations from both
Fig. 16 and the first row of Fig. 17. Observed values are very close or slightly lower than
median simulated values, which demonstrates the small bias of the method. The last 35

maps in Fig. 17 also confirm the occurrence of large rainfall amounts in the areas void of
currently available observations, especially the Jura mountain range where an exceptional
flooding of the town of Besançon was recorded in January 1910 (Allard, 1910; Boudou
et al., 2016).

6 Discussion10

6.1 Homogeneity and uncertainty of 20CR predictors

This section aims at summarizing literature findings about potential inhomogeneities of
20CR predictors and associated uncertainties that may directly affect downscaled recon-
structed products assessed in Sect. 4.

Compo et al. (2011) compared 20CR to other reanalyses like ERA-40 (Uppala et al.,15

2005), ERA-Interim (Dee et al., 2011) or NCEP/NCAR (Kalnay et al., 1996) and demon-
strated its good quality on common recent periods. However, this quality should actually be
lower in the first part of the simulated period due to the lower overall density of assimilated
SLP data (Compo et al., 2010). Ferguson and Villarini (2014) and Lee and Biasutti (2014)
showed that such impacts are rather limited on surface variables over Western Europe20

thanks to the good early data coverage in ISPD (see Yin et al., 2008, Appendix C). This
notably increases our confidence on the T2m used as an additional predictor in the step-
wise subselection method. However, no comprehensive study focused on upper-air vari-
ables such as the ones used as predictors by the original SANDHY downscaling method
like geopotential heights. Several authors also looked in details into the homogeneity of25

different indices of storminess in Northern Europe, with features not very distant from the
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shape of the 1000 hPa geopotential height used as predictor from SANDHY. Krueger et al.
(2013) found that extreme geostrophic wind speed over the North Atlantic suffer from inho-
mogeneities that are likely due to the increasing number of observations assimilated into
20CR over time. Wang et al. (2013) also found some inhomogeneities in cyclone activity in
the 20CR ensemble mean before the 1930s in Northern Europe (see also the discussions5

in Krueger et al., 2013; Wang et al., 2014). All studies mentioned above are in accordance
with our findings in Figs. 13 to 15 which show systematic biases before the 1930s/1940s.

The 20CR inhomogeneities discussed in the references above partly relate to using the
ensemble mean as in the present study. Wang et al. (2013) for example showed that the
evolution of cyclone activity over the Northern Hemisphere is dramatically different when10

considering the ensemble mean or individual members, with the latter giving much more
homogeneous results over the twentieth century. Krueger et al. (2013) also found that
the spread between ensemble member extreme geostrophic wind speed increases before
the 1940s in the North Atlantic. These findings strongly suggest that downscaling studies
should benefit from using predictors from individual 20CR members instead of the ensem-15

ble mean in order to propagate the reanalysis uncertainty and hopefully reduce systematic
biases in the late ninetieth/early twentieth century. However, doing so would first require all
specific predictor variables to be available from individual members. In the case of SANDHY,
one should necessarily use a degraded version as the vertical velocity at 850 hPa is not
available. Second, the computation time would therefore dramatically increase compared20

to downscaling the ensemble mean only.

6.2 Other potential sources of reconstruction uncertainty

The assessment of reconstructions in the beginning of the target period presented in
Sects. 4.2 and 5.1 may be influenced by other factors. For example, homogenized series
taken in these sections as long-term references may suffer from issues related to the ho-25

mogenization method used. Indeed, Moisselin et al. (2002) pointed out inconsistencies in
the evolution of linear precipitation trends due to the homogenisation performed indepen-
dently inside different regional administrative division. New datasets of homogenized series
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are being developed by Météo-France in order to remove such inconsistencies but are cur-
rently limited to the second part of the twentieth century (Gibelin et al., 2014).

Besides such issues, the discrepancies in reconstructed and observed precipitation in the
late nineteenth century (e.g. in Figs. 13 to 15) might also be due to peculiar teleconnections
with the Tropics (Bichet et al., 2014) that may weaken the temporal transferability of the5

SANDHY downscaling method.

6.3 Choosing the appropriate reconstruction method

Section 4 compared three different post-processing methods of SANDHY outputs. Para-
graphs below attempt to provide some advice in using one or another method in different
downscaling contexts.10

Section 4 showed that the use of either the calendar and stepwise methods strongly re-
duces precipitation and temperature biases in comparison to the first domain selection (raw
SANDHY outputs). Even if the stepwise selection shows better performances for tempera-
ture reconstructions – and especially in terms of rank correlations or RMSE – the calendar
selection may be retained in specific cases. First, if one is interested in simulating precip-15

itation only, the calendar selection offers a much easier implementation, without the need
to resort to additional predictors (T2m and SST). This may for example be the case in the
context of quantitative precipitation forecast for which SANDHY has been originally devel-
oped.

Nevertheless, the stepwise selection appears much more suitable and adapted to con-20

texts where seasons are exposed to potential shifts, like in long-term historical reconstruc-
tions as here or in climate change impact studies. Indeed, the selection of analogue days
may in this case closely follow the decadal to multi-decadal variability as well as the anthro-
pogenic warming signal carried out by both the T2m and the SST.
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6.4 Using the reconstruction datasets

As mentioned in Sect. 3.2, analogue days are randomly combined from one climatically
homogeneous zone to the next for all three subselection methods. This specific feature
may lead to a lack of spatial continuity in the associated meteorological time series. For
local studies (e.g. a specific climatically homogeneous zone), precipitation and temperature5

data can be used at a daily time scale. For regional to national studies, using a monthly
scale like in Fig. 17 balances the random sampling effect observed at the daily scale. On-
going works on different and very promising methods will allow resampling local ensemble
members to derive an ensemble of spatially coherent daily precipitation and temperature
fields.10

7 Conclusions

This paper describes a daily high-resolution reconstruction of precipitation and temperature
fields since 1871 over France through a statistical downscaling of the Twentieth Century
Reanalysis. The motivation for this study comes from the lack of available surface observa-
tions before the 1950s and the poor understanding of local-scale climate variability from the15

late nineteenth century onwards.
The downscaling of the 20CR with SANDHY provides a daily set of 125 analogues dates

for each day in the 1871–2012 period, over 608 climatically homogeneous zones paving
France. The ensemble of analogue dates is then converted into probabilistic meteorological
daily fields. A warm bias in winter and a cold bias in summer are identified over France20

in SANDHY reconstructed series. Additionally, wet and dry biases in intermediary seasons
are identified for regions with a high seasonal variability. Post-processing approaches have
been developed with the aim of keeping unchanged the structure of the SANDHY method
while reducing those seasonal biases. Two analogue subselection methods are therefore
developed. The stepwise selection adds two new analogy levels with a first selection of 8025

analogues based on the ERSST SST similarity and a second selection of 25 analogues
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based on the 20CR T2m similarity. The calendar selection selects the 25 analogues closest
to the target calendar day. These two approaches are then compared to the 25 analogues
derived from the first predictor domain considered as representative of the 125 analogues
from SANDHY outputs.

A performance assessment using both dependent and independent data showed an im-5

provement in terms of precipitation and temperature biases, mean errors and rank corre-
lations using both subselection approaches with respect to the first domain selection. The
lower quality of reconstructions identified before the 1930s might be explained by poten-
tial inhomogeneities of 20CR predictors. Few differences are observed between the two
subselection approaches considering precipitation data. However, the stepwise selection10

leads to higher rank correlations and lower mean errors between reconstructed and ob-
served temperatures. Even without assimilating T2m observations, 20CR outputs obviously
provides quite useful information on this variable. Examples of a temporal and spatial re-
construction outputs from the stepwise selection showed a persistent warm bias in winter
and some issues to reconstruct seasonal extreme values, but also the overall good quality15

of the reconstructions.
The two approaches developed in this study can be applied in different contexts: the cal-

endar selection is an easily applicable method ideal in a quantitative precipitation forecast
context whereas the stepwise selection is more suitable for historical reconstructions or cli-
mate change studies with potential season shifts. The probabilistic downscaling of 20CR20

will constitute a perfect framework for assessing the recent observed events but also future
events projected by climate change impact studies and putting them in a historical perspec-
tive. More specifically, the coupling between the SANDHY probabilistic downscaling method
and the stepwise subselection – called SANDHY-SUB from now on – may be used in vari-
ous contexts, such as past hydrological studies or specific reconstructions of meteorological25

events and will improve the knowledge of the French local climate over the last 140 years.
The reconstructed meteorological fields derived from the modelling chain 20CR-

SANDHY-SUB will now serve as forcings for hydrological models to obtain daily probabilistic
river flow reconstructed series since 1871 for a large number of near-natural catchments in
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France. Such a hydrometeorological reconstruction will benefit from the inter-variable con-
sistency inherently provided by the analogue approach and from the improvement brought
by the compromises across temperature and precipitation reconstruction sought after in the
present work. It will first be used to study historical drought and low-flow events that strongly
depend on both temperature – through evapotranspiration processes – and precipitation.5

Acknowledgements. 20th Century Reanalysis V2 data was provided by the NOAA/OAR/ESRL PSD,
Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. Support for the Twen-
tieth Century Reanalysis Project dataset is provided by the U.S. Department of Energy, Office of
Science Innovative and Novel Computational Impact on Theory and Experiment (DOE INCITE) pro-
gram, and Office of Biological and Environmental Research (BER), and by the National Oceanic and10

Atmospheric Administration Climate Program Office. The authors would also like to thank Météo-
France for providing access to the Safran database, the homogenized series as well as raw surface
observations. The authors are grateful to Martin Boudou for providing the December 1909 precipi-
tation map adapted from Angot (1911). L. Caillouet PhD thesis is funded by Irstea and CNR.

Appendix A: Outline of the different downscaling methods15

The four analogy levels describing the SANDHY method in Sect. 3.1 are illustrated in
Fig. A1. To reconstruct precipitation over a climatically homogeneous zone for a specific
target date, a selection of 25 analogues is provided through analogues subselections. For
all these steps, an atmospheric reanalysis provides the corresponding target date predictor
and the meteorological archive predictor where the analogue situations are searched for.20

The only step requiring an analogy domain definition – where the analogy is looked for –
is the one involving geopotential height predictors. The local optimisation process providing
this definition is described in detail in Radanovics et al. (2013).

The overall process described in Sect. 3 is illustrated in Fig. A2. The "Simulation with
SANDHY" process described in Fig. A1 is applied five times using five different geopoten-25

tial height domain definitions and 20CR as inputs. The First domain selection, Calendar
selection and Stepwise selection are then derived using the output of the five simulations.
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Appendix B: Choice of the SST predictor spatial domain for the stepwise selection

The stepwise subselection method as described in Sect. 3.3.3 includes an analogy step
based on SST similarity. As mentioned above, for sake of parsimony, a single SST grid
point is considered for computing the similarity of analogue dates. The most informative
point for simulating precipitation has therefore to be selected. Absolute values of seasonal5

rank correlations between different SST grid points from the NOAA ERSST (Smith et al.,
2008) and precipitation from all Safran climatically homogeneous zones (see Fig. 2) have
been computed over the 1959–2007 period. As shown in Fig. B1, the median correlation is
highest in autumn. The spatial pattern of correlations is moreover quite different from one
season to another, making difficult the choice of the most informative grid point.10

Two grid points close to France – in the Atlantic and the Mediterranean, respectively,
see Fig. B1 – and with reasonably high correlations for all seasons have been selected for
further investigation. A subselection of 25 analogues dates from the 125 ones provided by
SANDHY and based on SST similarity on each of the two points have been performed over
the 1959–2007 period. Figure B2 displays the daily RMSE skill score in both precipitation15

and temperature for this subselection with respect to the first domain selection. It compares
the subselection using the two points for each climatically homogeneous zone. It shows that
SST from both grid points are informative additional predictors by displaying skill scores that
are mainly positive over France. Moreover, the Atlantic and the Mediterranean grid points
show similar skill scores. The final choice towards the Atlantic grid point (4◦W, 46◦N) was20

finally made following conclusions from van der Ent and Savenije (2013) who demonstrated
that the Atlantic Ocean has a larger influence area over France.

Appendix C: Optimization of the number of analogues for the calendar and stepwise
selection

The number of analogues to retain for the calendar and stepwise methods described in25

Sect. 3.3 is optimized with respect to a RMSE skill score taking the first domain subse-
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lection as reference. RMSEs are calculated on monthly time series for each of the 608
climatically homogeneous zones (see Fig. 2) in relation to corresponding Safran data over
the 1959–2007 period. They are furthermore calculated for individual realisations from each
subselection method, and only the median is considered in the skill score. The skill score
thus gives a map of the improvement of a subselection method with N2 (resp. N1–N2) ana-5

logues for the calendar (resp. stepwise) selection compared to the first domain selection
with 25 analogues.

A detailed sensitivity analysis was performed with N2 varying from 125 – the number of
analogues given by SANDHY, corresponding to no subselection – to 5. For the stepwise
selection, N1 was considered to vary from 125 to N2. The aim here is then to find out what10

N2 (calendar selection) or N1–N2 (stepwise selection) leads to the highest improvement on
average over France. For the calendar selection, each N2 was associated with a median
rank for the skill score over the 608 climatically homogeneous zones. A standard deviation in
rank was also computed to get an idea of the spatial variation in improvement over France.
Similarly, for the stepwise selection, each N1–N2 was associated with a median rank and15

a standard deviation in rank for the skill score over France. Finally, skill scores and ranks
are computed in parallel for precipitation and temperature.

Figure C1 summarises the results, with dark grey rectangles highlighting N2 or N1–N2
with best ranks for both precipitation and temperature, i.e. where the best compromise for
two variables is to be found. For the calendar selection, good results are obtained with20

N2 between 15 and 40, and for the stepwise selection, N1 should be between 40 and 80,
and N2 between 10 and 25. As no specific optimal combination clearly arises within these
domains, the choice was made to select N2 = 25 for the calendar selection and N1 = 80
and N2 = 25 for the stepwise selection. This choice has the advantage of generating an
equal number of final analogue dates across the 3 subselection methods and the original25

single-domain SANDHY method, thus preventing potential biases in probabilistic scores like
the CRPS (see Eq. 1 and Fig. 10).
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Table 1. Characteristics of SANDHY predictors. N depends on the length of the archive period.

Predictor Pressure level (hPa) and time (UTC) Similarity criterion Number of analogues

Temperature 925 at +36h, 600 at +12h Euclidean distance N
Geopotential 1000 at +12h, 500 at +24h Teweles and Wobus Score 170

Vertical velocity 850 at +6h +12h +18h +24h Euclidean distance 70
Humidity (PWC×Rh) 850 at +12h +24h Euclidean distance 25
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Figure 1. Evolution of the monthly averaged number of available precipitation and temperature sta-
tions in the Météo-France database (as of March 2015) since 1871.
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Figure 2. Map of the 608 climatologically homogeneous zones defined in the Safran dataset.
Coloured zones highlight case study zones used in Sect. 4: Finistère in Brittany and Cévennes
in the Massif Central mountain range.
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Figure 3. Spatial coverage of the available precipitation and temperature homogenized series pro-
duced by Météo-France during the full 1900–2000 period in France.
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Figure 4. Precipitation and temperature interannual regimes between 1959 and 2007 for the Fin-
istère case study zone from Safran and the three subselection methods, through their 25 individual
realisations.
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Figure 5. As for Fig. 4 but for the Cévennes case study zone.

43



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

First domain Calendar Stepwise

Year
S

pring
S

um
m

er
A

utum
n

W
inter

Bias (°C)
 
1.5
 
1
 
0.5
 
0
 
−0.5
 
−1
 
−1.5

Figure 6. Median of annual and seasonal temperature bias between Safran and the three subselec-
tion methods for the 1959–2007 period. Red corresponds to an overestimation of the reconstructed
temperature. Minimum bias of −1.0◦C for the first domain selection in summer and maximum bias
of 1.7◦C for the first domain selection in winter.
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Figure 7. As for Fig. 6, but for precipitation. Red corresponds to an underestimation fo precipitation.
Minimum bias of −34% for the first domain selection in autumn and maximum bias of 41% for the
first domain selection in spring.
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Figure 8. Median of the annual and seasonal temperature rank correlation between Safran all sub-
selection methods for the 1959–2007 period. Minimum value of 0.35 for the first domain selection
(year) and maximum value of 0.97 for the stepwise selection (year).
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Figure 9. As for Fig. 8, but for precipitation. Minimum value of 0.19 for the first domain selection in
summer and maximum value of 0.92 for the first domain selection in winter.
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Figure 10. Daily, monthly and annual precipitation and temperature CRPSS for the calendar and
stepwise methods compared to the first domain selection over the 1959–2007 period. One point for
each climatically homogeneous zone mapped in Fig. 2.
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Figure 11. Median of the annual and seasonal temperature rank correlation between homogenized
series and all 3 subselection methods for the 1900–2000 period. Minimum correlation of 0.58 for the
first domain selection in winter and maximum correlation of 0.95 for the stepwise selection in winter.
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Figure 12. As for Fig. 11 but for precipitation. Minimum correlation of 0.10 for the calendar selection
in summer and maximum correlation of 0.91 for the first domain selection in winter.
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Figure 13. Temporal evolution of the precipitation and temperature RMSE for both Safran and the
reconstructions with all 3 subselection methods, with the homogenized series as a reference. Values
are initially computed at the monthly time scale. See text for details.
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Figure 14. Paris Montsouris temperature homogenized time series, corresponding Safran data and
reconstructed series from the stepwise selection at the annual and seasonal time scales over the
1871–2012 time period. Grey and blue ribbons define the range and the interquartile range, respec-
tively, of values from all 25 realizations from the stepwise selection. Note the different scales for the
y axes.
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Figure 15. As for Fig. 14 but for precipitation.
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Figure 16. Map of December 1909 precipitation, adapted from Angot (1911).
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Figure 17. December 1909 precipitation. Top: observations currently available from the Météo-
France database. Below: minimum, median and maximum monthly precipitation from the 25 realiza-
tions of the stepwise selection. Maximum values from observations, minimal, median and maximum
simulations of 520, 409, 533 and 625mm respectively.
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Figure A1. Synthetic diagram showing the sequence of analogy steps in the SANDHY method to
reconstruct precipitation and temperature over a climatically homogeneous zone for a specific target
date.
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Figure A2. Synthetic diagram showing the sequence of steps for reconstructing precipitation and
temperature over a climatically homogeneous zone for a specific target date using the three subse-
lection methods described in the main text.

57



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Spring Summer Autumn Winter

40°N

45°N

50°N

55°N

10°W 0° 0°E 10°W 0° 0°E 10°W 0° 0°E 10°W 0° 0°E

0.1 0.2 0.3 0.4
Corr

Figure B1. Median of the absolute values of the rank correlations between SST and precipitation
from the 608 climatically homogeneous zones over the 1959–2007 period. Selected grid cells with
high correlations are highlighted in red.
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Figure B2. RMSE skill scores in precipitation and temperature for individual climatically homoge-
neous zones over the 1959–2007 period, calculated for a subselection of 25 analogue dates based
on SST similarity on either the Atlantic and Mediterranean grid point, with the first domain selection
as benchmark reference.
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Figure C1. Normalized median ranks over France of RMSE skill scores and normalized standard
deviations of these ranks for each N2 (calendar selection, left) and each N1–N2 (stepwise selection,
right), and for precipitation (top) and temperature (bottom). Light grey rectangles highlight ranks
lower than 0.5 independently for precipitation and temperature. Dark grey rectangles highlight ranks
lower than 0.5 for both precipitation and temperature.
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