

1

2 **Stable isotope and calcareous nannofossil assemblage record of the late Paleocene**
3 **and early Eocene (Cicogna section)**

4

5 Claudia Agnini^{1,2*}, David J. A. Spofforth³, Gerald R. Dickens^{4,5}, Domenico Rio¹, Heiko Pälike⁶, Jan
6 Backman⁵, Giovanni Muttoni^{7,8}, Edoardo Dallanave⁹

7

8 ¹ Dipartimento di Geoscienze, Università di Padova, Padova, Italy.

9 ² Istituto di Geoscienze e Georisorse- Padova, CNR, Padova, Italy

10 ³ Robertson - CGG GeoSpec, Llandudno, United Kingdom

11 ⁴ Department of Earth Sciences, Rice University, Houston, Texas, USA.

12 ⁵ Department of Geological Sciences, Stockholm University, Stockholm, Sweden

13 ⁶ MARUM, University of Bremen, Bremen, Germany

14 ⁷ Dipartimento di Scienze della Terra “Ardito Desio”, Università Statale di Milano, Milano, Italy

15 ⁸ ALP – Alpine Laboratory of Paleomagnetism, Peveragno (CN), Italy

16 ⁹ Ludwig-Maximilians, Universität München, München, Germany

17

18 *Corresponding author: C. Agnini, Dipartimento di Geoscienze, Università di Padova, 35131 Italy.

19 (claudia.agnini@unipd.it)

20

21 **Abstract.** We present records of stable carbon and oxygen isotopes, CaCO_3 content, and changes in
22 calcareous nannofossil assemblages across an 81 m thick section of upper Paleocene-lower Eocene
23 marine sedimentary rocks now exposed along the Cicogna Stream in northeast Italy. The studied
24 stratigraphic section represents sediment accumulation in a bathyal hemipelagic setting from
25 approximately 57.5 to 52.2 Ma, a multi-million-year time interval characterized by perturbations in
26 the global carbon cycle and changes in calcareous nannofossil assemblages. The bulk carbonate $\delta^{13}\text{C}$
27 profile for the Cicogna section, once placed on a common time scale, resembles that at several other
28 locations across the world, and includes both a long-term drop in $\delta^{13}\text{C}$, and multiple short-term
29 carbon isotope excursions (CIEs). This precise correlation of widely separated $\delta^{13}\text{C}$ records in marine
30 sequences results from temporal changes in the carbon composition of the exogenic carbon cycle.
31 However, diagenesis has likely modified the $\delta^{13}\text{C}$ record at Cicogna, an interpretation supported by
32 variations in bulk carbonate $\delta^{18}\text{O}$, which do not conform to expectations for a primary signal. The
33 record of CaCO_3 content reflects a combination of carbonate dilution and dissolution, as also
34 inferred at other sites. Our detailed documentation and statistical analysis of calcareous nannofossil
35 assemblages show major differences before, during and after the Paleocene Eocene Thermal
36 Maximum. Other CIEs in our lower Paleogene section do not exhibit such a distinctive change;
37 instead, these events are sometimes characterized by variations restricted to a limited number of
38 taxa and transient shifts in the relative abundance of primary assemblage components. Both long-
39 lasting and short-lived modifications to calcareous nannofossil assemblages preferentially affected
40 nannoliths or holocollooliths such as *Discoaster*, *Fasciculithus*, *Rhomboaster/Tribrachiatus*,
41 *Spenolithus* and *Zygrhablithus*, which underwent distinct variations in abundance as well as
42 permanent evolutionary changes in terms of appearances and disappearances. By contrast,
43 placoliths such as *Coccolithus* and *Toweius*, which represent the main component of the
44 assemblages, were characterized by a gradual decline in abundance over time. Comparisons of

45 detailed nannofossil assemblage records at the Cicogna section and at ODP Site 1262 support the
46 idea that variations in the relative and absolute abundances, even some minor changes, were
47 globally synchronous. An obvious link is through climate forcing and carbon cycling, although the
48 linkages between variations in calcareous nannoplankton, changes in $\delta^{13}\text{C}$ records and
49 oceanography will need additional work.

50

51 INDEX TERMS

52 Paleocene, Eocene, calcareous nannofossils, stable isotopes, paleoclimate, Tethys

53

54 1 INTRODUCTION

55

56 A remarkable interval of global warming occurred from the middle Paleocene to the early Eocene,
57 between approximately 59 and 51 million years ago (Ma). This inference comes from a variety of
58 proxies (Huber and Caballero, 2011; Hollis et al., 2012), including the stable oxygen isotope ($\delta^{18}\text{O}$)
59 composition of benthic foraminifera (**Figure 1**). The precise timing of the long-term temperature
60 rise remains somewhat unconstrained, because absolute ages across the early Eocene remain
61 unsolidified. Throughout this work, we assume that the Option-1 (WO-1) time scale presented by
62 Westerhold et al. (2008) is correct (**Table 1**), but acknowledge that an offset of ca 400 kyr may occur
63 within the time interval of interest (Vandenberghe et al., 2012). Debate also surrounds the
64 magnitude and distribution of the temperature warming. Earth's surface temperatures, at least at
65 high latitudes and in the deep sea, seem to have risen by at least 6°C from ca. 59 to 51 Ma (Zachos
66 et al., 2008; Bijl et al., 2009; Huber and Caballero, 2011; Hollis et al., 2012). Indeed, the latter date
67 marks the acme of the Early Eocene Climatic Optimum (EECO), the warmest sustained time interval
68 of the Cenozoic (Zachos et al., 2008; Cramer et al., 2009; Hollis et al., 2012). Such a rise in

69 temperature is not obvious at low latitudes with current data (Pearson et al., 2007; Huber et al.,
70 2011).

71 Somehow related to long-term global warming were a series of major perturbations in the
72 global carbon cycle, as clearly indicated by stable carbon isotope ($\delta^{13}\text{C}$) records in benthic
73 foraminifera (**Figure 1**) and bulk carbonate in numerous marine sediment sequences (Shackleton,
74 1986; Corfield, 1994; Cramer et al., 2003; Zachos et al., 2008; 2010; Westerhold et al., 2011; Slotnick
75 et al., 2012). An overall increase in $\delta^{13}\text{C}$ occurred through most of the Paleocene, which climaxed in
76 a Cenozoic high at ca. 57.5 Ma (Westerhold et al., 2011), commonly referred to as the Paleocene
77 carbon isotope maximum (PCIM). From this time, $\delta^{13}\text{C}$ generally decreased to ca. 52.5 Ma. However,
78 when examined at higher temporal resolution, multiple $\delta^{13}\text{C}$ records show several short-term (<200
79 kyr) negative carbon isotope excursions (CIEs) (Cramer et al., 2003; Lourens et al., 2005; Nicolo et
80 al., 2007; Agnini et al., 2009; Zachos et al., 2010; Slotnick et al., 2012). Some of these CIEs clearly
81 coincided with rapid warming (above references). The most prominent and most widely
82 documented example of these “hyperthermals” was the Paleocene-Eocene Thermal Maximum
83 (PETM) at ca. 55.5 Ma, but other apparently similar events occurred at ca. 53.7 Ma (H1 or Eocene
84 Thermal Maximum 2, ETM-2), and at ca. 52.5 Ma (K/X, sometimes called ETM-3).

85 The early Paleogene in general, and the hyperthermals in particular, have attracted
86 considerable geoscience research. On one level, this is because these time intervals represent a
87 range of possible past analogues for understanding the effects of global warming and massive
88 carbon emissions (cf. Keeling and Whorf, 2004; Zachos et al., 2008). On another level, this is because
89 the long-term and short-term temperature and carbon cycle perturbations provide new
90 perspectives for how systems on Earth’s surface operate. The PCIM probably represents a
91 tremendous storage of ^{13}C -depleted carbon somewhere on Earth’s shallow surface (Shackleton,
92 1986; Kurtz et al., 2003; Komar et al., 2013). In turn, the CIEs probably signify rapid and large inputs

93 of ^{13}C -depleted carbon into the ocean and atmosphere (Dickens et al., 1997; Lourens et al., 2005;
94 Zeebe et al., 2009). The middle Paleocene through early Eocene shows us that Earth's climate and
95 carbon reservoirs were extremely dynamic during past times of global warmth. However, the
96 composition and whereabouts of large quantities of transferable ^{13}C -depleted carbon (e.g., seafloor
97 methane, peat, permafrost) remain uncertain (above references). Indeed, it is not clear if and how
98 the long-term and short-term carbon cycle perturbations were related to one another, or to Earth
99 surface temperatures.

100 The above context presents a series of basic questions to the geoscience community. Two of
101 these are the focus of our study: (1) What is the correct template for understanding carbon cycling
102 during the early Paleogene? Major changes in fluxes of ^{13}C -depleted carbon to the ocean or
103 atmosphere should give predictable and coherent signals in the $\delta^{13}\text{C}$ of carbon-bearing phases
104 across Earth, as well as the distribution of carbonate dissolution on the seafloor. This is not yet
105 established. For example, several recently published $\delta^{13}\text{C}$ records (Kirtland-Turner et al., 2014;
106 Slotnick et al., 2015a; Payros et al., 2015) do not precisely correlate with those at other locations
107 (Cramer et al., 2003; Zachos et al., 2010; Slotnick et al., 2012, 2015b), at least with available
108 stratigraphy. (2) How did marine calcifying organisms respond to major early Paleogene
109 perturbations in temperature and carbon cycling, both in terms of evolution and preservation? The
110 prominent changes in temperature and carbon fluxes almost assuredly caused large variations in
111 seawater pH and carbonate ion concentration (CO_3^{2-}) (Dickens et al., 1997; Zachos et al., 2005; Kump
112 et al., 2009; Zeebe et al., 2009; Leon-Rodriguez and Dickens, 2010; ; Hönisch et al., 2012; Pälike et
113 al., 2012), although the response should depend on location and carbon fluxes involved (Dickens,
114 2000; Zeebe and Westbroek, 2003; Komar et al., 2013). Such changes might also affect the ability of
115 living organisms to calcify (Riebesell et al., 2000, 2008; Kleypas et al., 2006; Iglesias-Rodriguez et al.,

116 2008; Stillman and Paganini, 2015), which might impact the fossil record (Agnini et al., 2006; Raffi
117 and De Bernardi, 2008; Erba et al., 2010; Hönisch et al., 2012).

118 In regards to both questions, calcareous nannoplankton are an obvious group of organisms to
119 focus on. This is because they are a main component of open ocean primary production (Milliman,
120 1993; Winter et al., 1994; Rost and Riebesell, 2004), because they are the dominate the output of
121 carbonate in the ocean (Ziveri et al., 1999; Hay, 2004), and because they exhibit marked changes in
122 species composition from the middle Paleocene through the early Eocene (Romein, 1979; Aubry,
123 1998, Bown et al., 2004; Gibbs et al., 2012). While numerous studies have examined calcareous
124 nannofossils across the PETM from different perspectives (e.g., Bralower, 2002; Stoll and Bains,
125 2003; Gibbs et al., 2006a; 2006b; Agnini et al., 2007a; Mutterlose et al. 2007; Bown and Pearson,
126 2009; Jiang and Wise, 2009, Self-Trail et al., 2012), the relationship between these organisms and
127 carbon cycle perturbations before and after this short-lived warming episode remain poorly
128 documented (Gibbs et al., 2012). It seems possible that the high rate of calcareous nannofossil
129 taxonomic evolution (appearances and extinctions), as well as distinct changes in calcareous
130 nannofossil abundance patterns may provide excellent stratigraphic control across the early
131 Paleogene (Bukry, 1973; Perch-Nielsen, 1985; Backman, 1986, Agnini et al., 2014). Moreover, if the
132 exact relationship between changes in nannofossil assemblages and global carbon cycle
133 perturbations were known, key time intervals could be rapidly identified for more detailed work.
134 Finally, changes in calcareous nannofossils across the early Paleogene provide insights about the
135 response of an important part of the sediment forming marine biota to changes in climate and
136 carbon cycling.

137 Very few stratigraphic sections presently have detailed and coupled records of stable isotopes,
138 carbonate content, and calcareous nannofossil abundances across the broad late Paleocene-early
139 Eocene interval. The two notable exceptions are Ocean Drilling Program (ODP) Site 1262 (southeast

140 Atlantic) (Agnini et al., 2007b; Zachos et al., 2010) and Deep Sea Drilling Project (DSDP) Site 577
141 (northwest Pacific) (Shackleton, 1986; Dickens and Backman, 2013) (**Figure 2**). Here we present
142 geochemical records ($\delta^{13}\text{C}$, $\delta^{18}\text{O}$ and CaCO_3 content) and calcareous nannofossil census data from
143 the Cicogna section in northeast Italy (**Figures 2, 3**). These data are compared with similar
144 information from Sites 1262 and 577. We show that the Cicogna section provides an important
145 template for understanding potential relationships between climate, carbon cycling and the biotic
146 evolution of calcareous nannoplankton.

147

148 **2 THE CICOGLNA SECTION**

149

150 The Cicogna section crops out along the Cicogna Stream near the village of Tassei in the Belluno
151 Province, northeast Italy (**Figure 3**). From a regional geological perspective, the sedimentary rocks
152 of this section belong to the Belluno Basin. This basin represents part of a paleogeographic domain
153 that formed when Jurassic rifting created a series of N–S oriented structural highs (platforms) and
154 lows (basins), which persisted through much of the Paleogene (Bernoulli and Jenkyns, 1974;
155 Bernoulli et al., 1979; Winterer and Bosellini, 1981). Importantly, from the Cretaceous to the middle-
156 late Eocene, expanded deep sea sediment successions accumulated within the basins at nominally
157 30°N latitude (Stefani and Grandesso, 1991; Agnini et al., 2006; 2011; Zattin et al., 2006).

158 The Cicogna section consists of two lithostratigraphic units (**Figure 3**). The lower portion is a
159 well-exposed upper Paleocene and lower Eocene unit referred to as Scaglia Rossa *sensu lato* (**Figures**
160 **3, 4**) (Giusberti et al., 2007; Dallanave et al., 2009). Based on benthic foraminiferal assemblages, the
161 early Paleogene marls of this unit represent lithified pelagic and hemipelagic sediment that
162 accumulated at middle to lower bathyal water depth, likely between 600 m and 1000 m and not
163 deeper than 1500 m (Giusberti et al., 2007; 2015). The upper portion is a thick early to middle

164 Eocene unit called the Belluno Flysch (**Figures 3, 4**). This unit represents a synorogenic deposit on
165 the flanks of the former Trento and Friuli platforms (Grandesso, 1976; Doglioni and Bosellini, 1987).

166 Once corrected for bed strike and dip (ca. 315°N; ca. 45°) and bends in the stream, the Scaglia
167 Rossa at Cicogna measures 80 m in terms of stratigraphic height (Dallanave et al., 2009). The Belluno
168 Flysch measures 1 m in the Cicogna section. Furthermore, the section of interest can be subdivided
169 into several subunits (**Figure 4**). The lower 20 m is comprised of distinctive alternating beds of gray-
170 greenish to purple marls and calcareous marls, the latter defined by carbonate contents higher than
171 60% (**Figure 3c**). This is overlain by approximately 9 m of pink-red marls with much less lithologic
172 alternation. At 28.7 m, the sedimentary package is broken sharply by an approximately 3 m thick
173 red to brownish-red interval of clayey marls with sporadic grey-green cm-scale spots and lenses
174 (**Figure 3f, g**). This has been called the Clay Marl Unit (CMU), and records the core of the prominent
175 negative $\delta^{13}\text{C}$ excursion associated with the PETM at multiple outcrop sites within the Belluno Basin
176 (Agnini et al., 2006; 2007a; Giusberti et al., 2007). Above the CMU, from 31.7 to 39.2 m, the section
177 continues with deposition of rhythmic alternations of marls and calcareous marls (**Figure 3g**). Above
178 this 8.5 m thick interval, at ca. 40.5 m, spatic calcite crystals occur. Generally, couplets of marl and
179 calcareous marl couplets become less evident from 40.5 m until 54 m, where such couplets reoccur
180 (**Figure 3d**). At 75.5 m, a thin calcarenitic bed is encountered, presaging the onset of the Belluno
181 Flysch. This turbidite is followed by a temporary return to hemipelagic sedimentation that ends at
182 80.6 m. Above, sedimentation of the Belluno Flysch begins in earnest (**Figures 3b, 4**).

183 The basic stratigraphy of the Scaglia Rossa in the Cicogna section, including both polarity chron
184 boundaries and key calcareous nannofossil biohorizons has been published (Giusberti et al., 2007;
185 Dallanave et al., 2009). The combined biomagnetostratigraphy indicates that the 81 m of interest
186 spans polarity Chron C25r to Chron 23r, and calcareous nannofossil biozones CP6 to CP10 (Okada
187 and Bukry, 1980) or CNP10 to CNE4 (Agnini et al., 2014). Thus, the section represents a 5.3 million

188 year (Myr) long time interval, from about 57.5 to 52.2 Ma on the W0-1 time scale. This also implies
189 an average sedimentation rate (SR) of ca. 15 m/myr. Although the deposition of hemipelagic
190 sediment might suggest relatively constant SRs over time, the PETM and possibly other
191 hyperthermal events in the Belluno Basin were characterized by higher SRs (Giusberti et al. 2007;
192 Agnini et al., 2009; Tipple et al., 2011; Krishnan et al., 2015).

193 The Scaglia Rossa at Cicogna appears to record fairly continuous sediment accumulation at
194 moderately high deposition rates. This is important because it affords longer time duration than
195 most shallow ocean sites, greater time resolution than most deep ocean sites (**Figure 2**), and an
196 overall different environmental setting. Many early Paleogene records, especially those from paleo-
197 shelf environments, such as in Egypt (e.g, Aubry and Salem, 2012) and New Jersey (Mixon and
198 Powars, 1994; Harris et al., 2010), or from early deep sea drilling expeditions, such as in the Indian
199 Ocean (Slotnick et al., 2015b), are discontinuous, either because of hiatuses or core gaps. Much of
200 the detailed work and current understanding of stable carbon isotope stratigraphy and calcareous
201 nannofossil variations across the broad early Paleogene, therefore, has come from deep-sea drilling
202 sites with multiple holes but slow sedimentation rates, although we note the work in Clarence
203 Valley, New Zealand (**Figure 2**), another area that contains several paleo-slope sections with
204 moderately high sedimentation rates (Nicolo et al., 2007; Slotnick et al., 2012, 2015b; Dallanave et
205 al., 2015). For the Cicogna section, detailed stable isotope and CaCO_3 records are currently lacking,
206 as well as detailed calcareous nannofossil assemblage information, which we present here.

207

208 **3 MATERIAL AND METHODS**

209

210 **3.1 Samples**

211

212 A total of 492 samples were chiseled from outcrops along the section. Samples were selected so as
213 to be as fresh and unaltered as possible. This included chipping off weathered surfaces while in the
214 field. Each sample was calibrated to height (**Figure 4**). Samples then were split, with one portion
215 powdered in an agate ball mill, and subsequently freeze-dried.

216

217 **3.2 Geochemistry**

218

219 Each powdered samples was analyzed for bulk sediment stable isotope composition at the Stable
220 Isotope Laboratory, University of Southampton, UK. A known mass (~80 µg) was placed into a
221 headspace vial, dried overnight, and flushed with helium. 10 mL of 100 % phosphoric acid was added
222 to each sample and allowed to react. The liberated CO₂ gas was measured using an EUROPA
223 Scientific GEO 20-20 mass spectrometer fitted with a microCAPS for carbonate analysis. Results are
224 reported in standard delta notation relative to Vienna Pee Dee Belemnite (VPDB). An in-house
225 standard of Carrara Marble, calibrated to NBS-19 Limestone, was measured multiple times to
226 evaluate accuracy and precision. The external analytical precision (1 σ), based on these replicate
227 analyses, was 0.028 ‰ for $\delta^{13}\text{C}$ and 0.057 ‰ for $\delta^{18}\text{O}$.

228 The amount of CaCO₃ in each sample was calculated from the beam height response during
229 isotope mass spectrometer measurements (Spofforth et al., 2010). The liberated CO₂ gas, when
230 squeezed up in the bellows, is measured and generates a current, the beam height. The pressure of
231 CO₂ gas is directly proportional to the beam height and therefore the mass of carbonate in the
232 sample. Over 100 samples of pure CaCO₃, with masses between 200 and 480 µg, were analyzed to
233 establish a linear relationship between beam height and carbonate content (CaCO₃ = mx + b; R² =
234 0.94 - 0.99). Results were validated by analyzing 30 samples on a C-H-N-O elemental analyzer.

235

236 **3.3 Calcareous nannofossils**

237

238 The un-powdered sample split was examined for calcareous nannofossils. Raw sediments were
239 processed to prepare standard smear slides (Bown and Young, 1998). To assess the reproducibility
240 of our counting methods in every single sample, a pivotal sample was prepared 10 times by two
241 different operators. Repeated counts of the identical sample performed by different analysts gave
242 similar results ($sd < 2-5\%$). Particle density estimates (Bacelle and Bosellini, 1965) were not carried
243 out because samples have a high range in the terrigenous content (22 to 90 %). An increase or
244 decrease of the siliciclastic component is mainly related to the major or minor efficiency of the
245 chemical and mechanical weathering on land (Agnini et al., 2009). In the studied sediments, the
246 variation in the amount of the terrigenous content through time has modified the density of the
247 allochemic particle component. Consequently, calcareous nannofossil absolute abundances could
248 not be estimated correctly using a homogeneous/constant particle density or by weighing the same
249 amount of sediment for each smear slide. However, the scope of semi-quantitative counts
250 performed in this study is to recognize the precise position of biostratigraphic biohorizons rather
251 than use these data as a proxy of the paleoproductivity of taxa. Essentially, the identification of the
252 appearance or disappearance of any given taxon is not affected by its stratigraphic abundance
253 pattern, which obviously reduces the negative effect of the variable abundance of the siliciclastic
254 component throughout the section. Samples were examined under a Zeiss light microscope at
255 1250 \times magnification. Calcareous nannofossils were determined using taxonomy proposed by Aubry
256 (1984, 1988, 1989, 1990, 1999), Perch-Nielsen (1985) and Bown (2005).

257 A total of 200 samples were examined, providing an average time resolution of ca. 25 kyr. A
258 preliminary qualitative estimate of the abundance and preservation state of calcareous nannofossil
259 assemblages was performed for all samples. An initial large batch (185) was analyzed primarily to

260 provide biostratigraphic control for the Cicogna section, and the basic resultshave been presented
261 by Dallanave et al. (2009). We re-checked and refined the positions of some biohorizons by
262 examining 15 additional samples, primarily across some of the CIEs, such as B1/B2, PETM, H1 and
263 H2, and K/X (Cramer et al., 2003). The calcareous nannofossil biostratigraphic schemes used by
264 Dallanave et al. (2009) were those of Martini (1971) and Okada and Bukry (1980). The new zonal
265 scheme of Agnini et al. (2014) is also used here. Biohorizon nomenclature follows that given by
266 Agnini et al. (2014): Base (B), Base common (Bc), Top (T) and Top common (Tc).

267 Calcareous nannofossil biostratigraphic results are based on semi-quantitative analyses, which
268 is based on counts of the number of specimens of selected taxa present in a prefixed area, 1 mm²
269 or 3 long traverses (modified after Backman and Shackleton, 1983). Calcareous nannofossil
270 paleoecological results are instead based on relative abundances of calcareous nannofossil taxa
271 (percent of the total assemblage), calculated from counts of at least 300 specimens.

272 To capture changes in calcareous nannofossil assemblages we also use a statistical approach.
273 Principal Component Analysis (PCA) was preferred to other methods, as for instance non-metric
274 dimensional scaling (MDS) procedure for which a small number of axes are chosen prior to the
275 analysis and the data are fitted to these dimensions (Hammer et al., 2001). However, non-metric
276 MDS results were performed and are available as supplementary data (Figure S2).

277 Principal component analysis (PCA) was performed on the percentages of 15 subgroups using the
278 statistical software package, PAST ver. 2.17c (Hammer et al., 2001). Such analysis is often used for
279 examining paleontological data (e.g., Buccianti et al., 2006; Kucera and Malmgren, 1998; Watkins
280 and Self-Trail, 1992; Thibault and Gardin, 2010; Marino et al., 2012; Bordiga et al., 2015), as it can
281 point out hypothetical variables (components) that explain much of the variance in a
282 multidimensional data set. The first principal component accounts for the most variability in any
283 dataset examined. Each succeeding component has the highest variance possible relative to the

284 preceding components (Hammer et al., 2001). This method also increases the symmetry,
285 homoscedasticity and linearity of the data set (Aitchison, 1986). The chosen subgroups were:
286 *Chiasmolithus*, *Coccolithus*, *Ellipsolithus*, *Discoaster*, *Ericsonia*, *Fasciculithus*, *Girgisia*, *Octolithus*,
287 *Prinsius*, *Sphenolithus*, *Toweius*, *Rhomboaster/Tribrachiatus*, *Zyghrabilithus*, reworked forms, and
288 “others”.

289 **4 RESULTS**

290

291 **4.1 Carbon isotopes**

292

293 The bulk rock $\delta^{13}\text{C}$ record for the Cicogna section can be described, in a general sense, as a long-
294 term decrease of approximately 3 ‰, punctuated by a series of negative CIEs (**Figure 4**). The most
295 prominent low in $\delta^{13}\text{C}$ coincides with the CMU.

296 Previously established polarity chron boundaries and key calcareous nannofossil biohorizons at
297 the Cicogna section (Dallanave et al., 2009) provide very good stratigraphic framework. Once placed
298 onto a common time scale, in this case WO-1 (Westerhold et al., 2008), the $\delta^{13}\text{C}$ record at Cicogna
299 is fairly similar to those generated using upper Paleocene and lower Eocene marine carbonate at
300 other locations (Cramer et al., 2003; Zachos et al., 2010; Slotnick et al., 2012). This includes, for
301 example, bulk carbonate $\delta^{13}\text{C}$ records at ODP Site 1262, and DSDP Site 577 (**Figure 5**). The relatively
302 high $\delta^{13}\text{C}$ values near the base of the Cicogna section document the late stages of the PCIM, which
303 was centered within C25r (**Figure 1**). The overall drop in $\delta^{13}\text{C}$ across the section marks the long-term
304 global decrease in $\delta^{13}\text{C}$ that lasted through Chron C24n (**Figure 1**). The record contains multiple
305 negative shifts in $\delta^{13}\text{C}$. There is, however, an intriguing difference: across the Cicogna section, the
306 long-term 3 ‰ shift in bulk carbonate $\delta^{13}\text{C}$ values is generally offset from that in bulk carbonate
307 $\delta^{13}\text{C}$ records at Sites 1262 and 577 by approximately -1 ‰.

308 The superimposed CIEs are considered to correspond to CIEs found in $\delta^{13}\text{C}$ records from
309 elsewhere, some of which represent known or inferred hyperthermal events (Cramer et al., 2003;
310 Lourens et al., 2005; Nicolo et al., 2007; Zachos et al., 2010; Slotnick et al., 2012). There are three
311 pairs of CIEs below the CMU (**Figure 4**), and during the initial upper Paleocene long-term decline in
312 $\delta^{13}\text{C}$. These correspond with the B1/B2, C1/C2 and D1/D2 CIEs documented by others (Cramer et
313 al., 2003; Zachos et al., 2010). Notably, at Site 1262, the B1/B2 CIEs occur during middle C25n, and
314 the C1/C2 CIEs occur at the start of C24r (**Figure 5**). The same is true at Cicogna. Interestingly, at
315 Cicogna, the B2 and C2 CIEs show greater magnitudes than the B1 and C1 CIEs, and these paired
316 excursions are more pronounced than at all other locations examined to date. An additional paired
317 CIE occurs in the uppermost Paleocene (**Figure 4**). This may correlate to a fourth set of late
318 Paleocene CIEs documented at Site 1262 (Zachos et al., 2010).

319 The lower Eocene portion of the $\delta^{13}\text{C}$ record at Cicogna (**Figure 4**) begins at the CMU, which
320 marks the PETM (Giusberti et al., 2007; Dallanave et al., 2009). As at many locations, the PETM is
321 characterized by a prominent negative CIE. The shift in $\delta^{13}\text{C}$ at Cicogna is approximately $-2.5\text{ \textperthousand}$, a
322 decrease that begins abruptly at 28.7 m and returns more gradually to near pre-excursion values by
323 about 33 m. From approximately 33 to 54 m, the $\delta^{13}\text{C}$ curve shows a relatively smooth trend. At 54
324 m, a pair of CIEs begin, with the first pair having a magnitude of about $1.0\text{ \textperthousand}$. These are the H1/H2
325 events (Cramer et al., 2003), which occurred in the upper part of Chron C24r (Lourens et al., 2005;
326 Zachos et al., 2010; Dickens and Backman, 2013; Dallanave et al., 2015). Above the H1/H2 CIEs, and
327 within Chron C24n, are a series of smaller (0.4 to $0.6\text{ \textperthousand}$) CIEs. Those at approximately 60, 65 and 72
328 m, are correlated with the I1/I2, J and K/X events, respectively. In summary, the $\delta^{13}\text{C}$ record at
329 Cicogna correlates with that at ODP Site 1262 (Zachos et al., 2010) and DSDP Site 577 (Dickens and
330 Backman, 2013) (**Figure 5**), as well as at several other locations (Cramer et al., 2003; Slotnick et al.,

331 2012; 2015b). This is important because it enables comparison and discussion between widely
332 separated sedimentary records within a firm temporal framework.

333

334 **4.2 Oxygen isotopes**

335

336 The $\delta^{18}\text{O}$ values range from -1.08 to -3.64 ‰ with a mean value of -1.96 ‰ and a standard deviation
337 (1σ) of 0.50 ‰ (**Figure 4**). However, at the broad scale, $\delta^{18}\text{O}$ increases upsection, with Paleocene
338 samples averaging -2.10 ‰ and Eocene samples averaging -1.89 ‰. This trend is noteworthy
339 because $\delta^{18}\text{O}$ values should decrease upsection, if the composition of the CaCO_3 was principally
340 reflecting rising global temperatures through the early Eocene. The 1σ of $\delta^{18}\text{O}$ values also increases
341 upsection, being 0.33 ‰ across Paleocene samples and 0.56 ‰ across Eocene samples.

342 There is virtually no correlation ($r^2 = 0.014$; $r=0.12$) between $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ values across all
343 samples (**Figure 6**). However, most “short-term” CIEs do display decreases in $\delta^{18}\text{O}$ (**Figure 4**). An
344 interval of anomalously low $\delta^{18}\text{O}$ values occurs from 39.9 m to 40.9 m, where the spatic calcite was
345 observed.

346

347 **4.3 Carbonate content**

348

349 The CaCO_3 content varies between 9.4 and 77.7 % across the sample suite, with a mean value of
350 54.3 % and a 1σ of 8.2 % (**Figure 4**). Two important findings emerge from the CaCO_3 content record.
351 First, from 39 m to 54 m, where we find limited variance in the $\delta^{13}\text{C}$ curve, CaCO_3 content averages
352 52.1 % with a 1σ of 4.9 %. Thus, while the average is similar to that calculated for the entire section,
353 the standard deviation is much less. At Site 1262, the corresponding time interval is also
354 characterized by limited variance in $\delta^{13}\text{C}$ values and carbonate contents, the latter inferred from the

355 abundance of Fe counts in XRF scans (Zachos et al., 2010). Second, across all samples, the CaCO_3
356 content co-varies somewhat ($r=0.29$) with $\delta^{13}\text{C}$ (**Figure 6**). This is because several lows in CaCO_3
357 content coincide with minima in $\delta^{13}\text{C}$, as is obvious for the B1/B2, PETM and H1/H2 events (**Figure**
358 **4**).

359

360 **4.4 Calcareous nannofossils**

361

362 Calcareous nannofossils are generally abundant, diverse, and moderately well preserved. The sole
363 exception is across a 10 cm interval from 28.75 to 28.85 m, which corresponds to the onset of the
364 CIE that marks the PETM. The three samples from this interval are virtually barren of calcareous
365 nannofossils.

366 Secondary overgrowth of calcite can partially or wholly blur species-specific morphological
367 features. Such diagenetic alteration, however, only marginally influences the relative, semi-
368 quantitative and absolute abundance of calcareous nannofossil taxa (Toffanin et al., 2013). Calcite
369 dissolution, on the other hand, can significantly affect the relative abundances of various calcareous
370 nannofossils within a given volume of sediment. This is because the removal of more dissolution
371 susceptible taxa, such as *Toweius* and holococcoliths, necessarily increases the abundance of less
372 dissolution susceptible taxa, such as discoasters (Roth and Thierstein, 1972; Adelseck et al., 1973;
373 Roth, 1983; Bornemann and Mutterlose, 2008; Toffanin et al., 2013). In general, moderate to strong
374 calcite dissolution also decreases the total abundance of calcareous nannofossils within a given
375 volume of sediment (Adelseck et al., 1973; Toffanin et al., 2011). In the Cicogna section, calcite
376 overgrowth on discoasters is the prevalent process affecting calcareous nannofossil assemblages
377 (**Plate I**). Most assemblages display high abundances (>1000 specimens/ mm^2) and a high diversity,
378 which include more fragile taxa. It follows that dissolution has not severely altered most

379 assemblages in samples from the Cicogna section. Rather, the calcareous nannofossil record is
380 considered to represent a genuine paleoecological signal.

381 Nannofossil assemblages from the Cicogna section display several general trends (**Figures 7-9**).
382 At the most basic level, there is a decrease in the total number of nannofossils (N/mm^2) with
383 decreasing age. Paleocene samples average approximately 2600 specimens/ mm^2 , whereas Eocene
384 samples above the H1/H2 events average approximately 1200 specimens/ mm^2 . This decrease in
385 abundance broadly corresponds to a change in calcareous nannofossil composition, as supported
386 through a series of additional observations at the Cicogna section (**Figures 7-9**):

387 • *Coccolithus* and *Toweius* constitute nearly half of the assemblages considering the entire
388 section. However, these genera show a clear decrease in abundance upsection, with a mean
389 value of 60 % in Paleocene samples and 35 % in Eocene samples;

390 • *Zygrablithus bijugatus* shows a low mean value of approximately 4 % in the Paleocene,
391 followed by a sharp increase in the basal part of the Eocene, and a mean value of
392 approximately 25 % upsection in the Eocene. Hence, the abundance of this taxon expands
393 on behalf of *Coccolithus* and *Toweius*;

394 • *Sphenolithus* decreases progressively during the Paleocene, suddenly disappears at the
395 onset of the PETM, before returning to and exceeding pre-PETM values in the lower Eocene.
396 Thus, the abundance of sphenoliths also expands on behalf of *Coccolithus* and *Toweius*;

397 • *Fasciculithus* shows a severe decline in abundance and species diversity at the onset of the
398 PETM (28.70 m), leading up to their extinction at 34.73 m;

399 • *Octolithus* is rare throughout most of the studied section, but displays high abundances from
400 approximately 14.7 m to 27.5 m in the upper Paleocene;

401 • *Discoaster* does not show any distinct change in abundance except for a single peak at the
402 onset of the PETM;

403 • Several Cretaceous and early Paleocene species constitute minor reworked components
404 throughout the section. Notably, the intervals marked by the PETM, H1/H2 and, to a lesser
405 extent, B1/B2 CIEs are characterized by higher abundances of these reworked components;

406 • Representatives of placolith genera, such as *Prinsius*, *Ericsonia*, *Chiasmolithus* and *Girgisia*,
407 are minor components of most samples. *Prinsius* displays a marked permanent decrease in
408 abundance from a mean value of approximately 6 % to 2.5 % across the Paleocene/Eocene
409 boundary. By contrast, *Ericsonia* does not show a prominent difference in abundance
410 between Paleocene and Eocene assemblages, but increases in abundance during known and
411 suspected hyperthermal events;

412 • The Calcareous Nannofossil Excursion Taxa (CNET), which include *Discoaster araneus* and
413 the genus *Rhomboaster* are present during the CIE of the PETM. The evolution of the
414 *Rhomboaster/Tribrachiatus* plexus started at the onset of the PETM, when *Rhomboaster* and
415 *T. bramlettei* first appeared, and continued into the lower Eocene with the successive
416 appearances of *T. contortus* and *T. orthostylus* (Raffi et al., 2005; Agnini et al., 2006; 2007b).

417 Beyond the above variations, evolutionary appearances and extinctions occur during the
418 studied time interval (**Figures 7-9**). Most of these species belong to *Discoaster*, *Sphenolithus* and the
419 *Rhomboaster/Tribrachiatus* lineage, and include *D. multiradiatus*, *D. diastypus*, *D. lodoensis*, *S.*
420 *radians*, *S. anarrhopus*, *T. bramlettei*, *T. contortus* and *T. orthostylus*. The biohorizons defined using
421 these species are exceptionally useful for biostratigraphy and, interestingly, often occur close to
422 changes in $\delta^{13}\text{C}$.

423 All assemblage data were used for PCA analysis. This indicates that PC1 (41.3 %) and PC2 (14.7
424 %) together account for 56 % of the variance in the dataset. The PCA graph (**Figure 8; Figure S1**
425 **supporting material**) shows that samples can be easily subdivided into three subgroups. The first
426 two populations of samples are distinguished because of their different positions along the x-axis

427 (PC1). The third population can be separated from the other two because of its different position
428 along the y-axis (PC2). The use of a different statistical procedure, as for instance MDS, does not
429 substantially change these results (**Figure S2**).

430

431 **5 DISCUSSION**

432

433 **5.1 Integrated stratigraphy and a carbon isotope template**

434

435 Polarity chron boundaries and calcareous nannofossil biohorizons (**Table 1; Figure 4**) provide a solid
436 stratigraphic framework for the Cicogna section. Calcareous nannofossil biohorizons, including
437 additional ones defined here, align in same stratigraphic order when compared to other locations,
438 such as ODP Site 1262 and DSDP Site 577 (**Table 1; Figure 11**). The Cicogna section represents
439 sediment accumulation between 57.5 and 52.2 Ma on the WO-1 time scale (Dallanave et al., 2009).
440 The average SR was ca.15.2 m/Myr, although this must have varied (**Figures 3, 11**). The CMU, which
441 marks the “core” of the PETM and ca. 80-100 kyr, showing a higher sedimentation rate than much
442 of the remaining record (Dallanave et al., 2009; Krishnan et al., 2015).

443 Once placed into the above stratigraphic framework, the bulk carbonate $\delta^{13}\text{C}$ profile
444 documented at Cicogna correlates well to that generated at ODP Site 1262 (**Figure 5**). In fact, it is
445 similar to $\delta^{13}\text{C}$ profiles generated at multiple locations (**Figure 2, Figure S4**), as long as records have
446 been properly calibrated in both the depth and time domains. This includes accounting for core
447 stretching and core gaps at scientific drilling sites, such as at DSDP Site 577 (Dickens and Backman,
448 2013), and accounting for changing strike and dip along land sections, such as done at Cicogna
449 (**Figure 3**). During late Paleocene and early Eocene times, the Cicogna section records the long-term
450 decrease in $\delta^{13}\text{C}$. Superimposed on this drop were multiple, often paired, negative CIEs. The PETM

451 definitively represents the most prominent CIE, but several other CIEs occurred before and after.
452 Importantly, the relative positions of polarity chron boundaries, key calcareous nannofossil
453 biohorizons and CIEs at Cicogna align well with those found at other locations (**Table 1; Figures 5,**
454 **11**).

455 A clearly recognizable $\delta^{13}\text{C}$ pattern spans the late Paleocene through the early Eocene at several
456 locations (Cramer et al., 2003; Nicolo et al., 2007; Galeotti et al., 2010; Zachos et al., 2010; Slotnick
457 et al., 2012, 2015b), although the total number of CIEs remains uncertain. At Cicogna, the problem
458 lies in the interval surrounding the K/X event, which broadly corresponds to the start of the EECO
459 (see discussion in Slotnick et al., 2012). We cannot confirm with our sample resolution whether a
460 series of short-term, small amplitude CIEs mark this time, an idea suggested from $\delta^{13}\text{C}$ records of
461 the Clarence Valley sections (Slotnick et al., 2012; 2015b). However, as at other locations, such as
462 Site 1262, no significant CIEs occurred within the 1.6 Myrs between the PETM and the H-1/ETM-2
463 event (**Figure 5**).

464 The time-correlative $\delta^{13}\text{C}$ template implies changes in the mean ocean $\delta^{13}\text{C}$ of dissolved
465 inorganic carbon (DIC). In turn, these compositional changes very likely represent variations in fluxes
466 of highly ^{13}C -depleted carbon to and from the ocean or atmosphere, such as changes in the release
467 and storage of organic carbon (Shackleton, 1986; Dickens et al., 1997; Kurtz et al., 2003; Deconto et
468 al., 2010; Komar et al., 2013). The $\delta^{13}\text{C}$ record at Cicogna offers no direct insight on the location of
469 this carbon (e.g., seafloor methane, permafrost, peat). However, it does support an important
470 concept: the magnitudes of given CIEs appear somewhat related to one another and to the long-
471 term $\delta^{13}\text{C}$ record. In particular, the PETM occurred about halfway between the long-term high and
472 low in $\delta^{13}\text{C}$, and heralded a relatively long time interval lacking CIEs. A generic explanation is that a
473 very large mass of ^{13}C -depleted carbon was injected from some organic reservoir into the ocean or
474 atmosphere during the PETM, and that the reservoir needed to recharge for considerable time

475 before the next injection (H-1/ETM-2) could occur (Dickens et al., 2003; Kurtz et al., 2003; Lunt et
476 al., 2011; Komar et al., 2013).

477 The overall -1 ‰ offset of the $\delta^{13}\text{C}$ curve between the records at Cicogna and at Sites 577 and
478 1262 (Figure 5) warrants brief discussion. It probably does not reflect wholesale diagenesis and
479 resetting of the primary signal at any of these sections. Otherwise, a recognizable correlative $\delta^{13}\text{C}$
480 record and well-preserved nannofossils (Plate I) would not be found at all three locations. In fact, it
481 is difficult to modify the original $\delta^{13}\text{C}$ composition of carbonate over appreciable distance (> than
482 several meters) in marine sedimentary sequences dominated by fine grained calcite, even those
483 now exposed on land as lithified rock, such as at Cicogna or in the Clarence Valley. This is because
484 the carbon water/rock ratio remains low, because almost all carbon exists in carbonate, and because
485 temperature minimally influences carbon isotope fractionation (Matter et al., 1977; Scholle and
486 Arthur, 1980; Frank et al., 1999). Instead, the offset in the $\delta^{13}\text{C}$ curves probably relates to differences
487 in the composition of the original carbonate, a concept that we return to later.

488 However, local dissolution and re-precipitation of carbonate definitely has occurred in the
489 Cicogna section. This can be observed in the overgrowths of secondary calcite on discoasters and
490 *Rhomboaster/Tribrachiatus* (Plate I). This process should dampen the original CIEs, because on the
491 meter-scale, dissolution and re-precipitation of carbonate would involve $\delta^{13}\text{C}$ gradients in the DIC
492 of surrounding pore water (Matter et al., 1977; Scholle and Arthur, 1980). This may explain, in part,
493 why the magnitude of early Paleogene CIEs in bulk carbonate records are often muted relative to
494 those found in other carbon-bearing phases (Slotnick et al., 2015b).

495

496 **5.2 Oxygen isotopes and a problem recording past temperatures**

497

498 The $\delta^{18}\text{O}$ record at Cicogna is intriguing because many of the CIEs are characterized by negative
499 excursions but absolute values of $\delta^{18}\text{O}$ generally and unexpectedly increase upsection (**Figure 4**).
500 Similar results have been documented in bulk carbonate stable isotope records at other locations,
501 such as ODP Site 1215 (Leon-Rodriguez and Dickens, 2010) and Mead Stream (Slotnick et al., 2012).
502 Even the $\delta^{18}\text{O}$ record of bulk carbonate at Site 1262 shows minimal long-term change from the late
503 Paleocene to the early Eocene (Zachos et al., 2010), the time when high-latitude surface
504 temperatures and deep ocean temperatures presumably increased by 5-6 °C, and one might expect
505 a $>1\text{ ‰}$ decrease in the $\delta^{18}\text{O}$ of marine carbonate.

506 Like previous workers, we cannot discount the notion that temperatures at low and high
507 latitudes responded differently across the early Paleogene (Pearson et al., 2007; Huber and
508 Caballero, 2011). Unlike for carbon isotopes, however, local dissolution and re-precipitation of
509 carbonate should significantly impact the $\delta^{18}\text{O}$ of marine carbonate. This is because the oxygen
510 water/rock ratio would be high before lithification, and because temperature strongly influences
511 oxygen isotope fractionation (Matter et al., 1975; Scholle and Arthur, 1980; Frank et al., 1999). In
512 general, as calcite-rich sediments and surrounding pore water are buried to higher temperatures
513 along a geothermal gradient, local dissolution and re-precipitation of carbonate shifts carbonate
514 $\delta^{18}\text{O}$ to lower values (above references; Schrag et al., 1995). It is likely that, during sediment burial,
515 the bulk carbonate $\delta^{18}\text{O}$ records in many lower Paleogene sections, including at Cicogna, have been
516 modified. We suggest that a signal of surface ocean temperature changes remains in the Cicogna
517 section, which gives rise to short-term $\delta^{18}\text{O}$ excursions that coincide with CIEs and several known or
518 suspected hyperthermal events. However, the entire $\delta^{18}\text{O}$ record at this location likely has shifted
519 to more negative values preferentially with increasing burial depth and age. This partly explains the
520 observed relationship between bulk carbonate $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$, which lies along a trajectory expected
521 for diagenesis (**Figure 6**). A potential test of this idea would be to show that the overgrowths on

522 nannofossils (**Plate I**) have a significantly lower $\delta^{18}\text{O}$ than the primary core carbonate of nannofossil
523 tests.

524

525 **5.3 Calcareous nannofossil assemblages within the context of correlative stable isotope records**

526

527 A detailed stable carbon isotope curve provides a powerful tool to place past changes in calcareous
528 nannofossil assemblages into a highly resolved framework. This is because, as implied above, truly
529 global changes in the $\delta^{13}\text{C}$ composition of the ocean should occur within the cycling time of carbon
530 through ocean, which is <2000 years at present-day and presumably for the entire Cenozoic
531 (Broecker and Peng, 1982; Shackleton, 1986; Dickens et al., 1997).

532 Across the study interval at Cicogna, several calcareous nannofossil taxa appear or disappear
533 (**Table 1**). Moreover, their abundances also change between these horizons (**Figures 7-9**). One might
534 hypothesize that these changes in nannofossil assemblages were related to the established (e.g.,
535 the PETM, H1/ETM-2 and K/X) and potential (e.g., the B1/B2, I1/I2) hyperthermal events that
536 occurred during the late Paleocene and early Eocene (**Figures 1, 5**). However, the timing between
537 recorded evolutionary appearances and extinctions of calcareous nannofossils and perturbations in
538 $\delta^{13}\text{C}$ are variable (**Figures 7-9**). For instance, several significant calcareous nannofossil changes
539 observed close to H1/H2 hyperthermals (e.g., B *T. othostylus*, B *S. radians*, B *S. villa*e, Tc *D.*
540 *multiradiatus*, T *T. contortus*) predate these events. By contrast, several biotic changes observed
541 close to the B1/B2 CIEs (e.g., B *D. delicatus*, Tc *S. anarrhopus*, B *D. multiradiatus*, T *Ericsonia robusta*)
542 happened at the end of these events. The PETM seems to provide the only case when a negative
543 CIE precisely corresponds to major changes in calcareous nannofossil assemblages.

544 Profound changes in calcareous nannofossil assemblages occurred across the PETM in several
545 locations (**Figure 2**), both in terms of relative abundances and increases in origination and extinction

546 rates (Aubry, 1998; Bown et al., 2004; Raffi et al., 2005; Gibbs et al., 2006a; Agnini et al., 2007a; Self-
547 Trail et al., 2012). At Cicogna, the assemblages show remarkable, though mostly transient, relative
548 abundance variations across the PETM, including an increase in *Coccolithus*, a decrease in
549 *Zygrhablithus*, *Sphenolithus*, *Toweius* and *Prinsius*, and an extinction of most fasciculith species
550 (**Figure 8**). Not surprisingly, these changes are very similar to those in the Forada section, which is
551 also located in the Belluno Basin (Agnini et al., 2007a).

552 Although these changes in relative abundance of taxa alone represent a notable difference with
553 respect to background conditions, most of the changes are transient and/or local when compared
554 with other datasets (Bralower, 2002; Gibbs et al., 2006b; Agnini et al., 2007b; Angori et al., 2007;
555 Mutterlose et al., 2007). For instance, an increase in abundance of *Discoaster* and *Fasciculithus* was
556 reported for some of the PETM section studied (e.g., Bralower, 2002; Tremolada and Bralower,
557 2004; Raffi et al. 2009), but these assemblage variations were not observed in other sections (e.g.,
558 Gibbs et al. 2006; Agnini et al., 2007a; Self-Trail et al., 2012). The only global calcareous nannofossil
559 assemblage features of the PETM are represented by the evolutionary appearance of
560 *Rhomboaster/Tribrachiatus* lineage, the presence during the CIE of short-lived species such as
561 *Discoaster areneus*, and the disappearance of several species of fasciculiths (Raffi et al., 2005; Agnini
562 et al., 2007a).

563 While changes in calcareous nannoplankton assemblages during the PETM have been
564 investigated at high resolution at different locations (e.g., Bralower, 2002, Gibbs et al., 2006b; Agnini
565 et al. 2007a), the longer-term perspective in which such changes occurred during the early
566 Paleogene has remained uncertain (Gibbs et al., 2012). The record at Cicogna provides this
567 opportunity.

568 The PCA analysis of calcareous nannofossil census data (%) indicates that two principal
569 components (PC1 and PC2) account for most (56.0 %) of the variability in our 15 selected subgroups.

570 Such analysis also permits the studied samples to be subdivided into three populations (**Figure 10**).
571 The first two populations are distinguished because of a major difference along the x-axis
572 representing PC1, whereas the third population stands out because of a significant difference along
573 the y-axis representing PC2. Importantly, each of these three populations constitutes a
574 homogeneous group in the time domain: Group 1 includes all upper Paleocene samples (Paleocene
575 samples and B1/B2 events); Group 2 consists of almost all lower Eocene samples (Eocene samples,
576 H1/H2 events and K event); Group 3 comprises samples that span the PETM (both core and
577 recovery), and two samples that come from sediment deposited during the core of the H1 and B2
578 events (**Figure 10**). These results indicate that late Paleocene calcareous nannofossil assemblages
579 are statistically different in their composition from those of early Eocene samples. Moreover, the
580 calcareous nannofossil assemblages across the PETM, and the climax of the B2 and H1 events, are
581 statistically different from those of either the late Paleocene or the early Eocene.

582 The general shift in the relative abundance of placoliths (i.e., *Coccolithus*, *Toweius* and *Prinsius*),
583 the major component of the late Paleocene assemblages, to nannoliths/holococcoliths (i.e.,
584 *Sphenolithus* and *Zygrhablithus*), the major component of the early Eocene assemblages, largely
585 explains the PC1 component. By contrast, the dramatic shift toward negative values in the PC2
586 component during the PETM happens because of the increase of *Ericsonia* and reworking and the
587 presence of *Rhomboaster-Tibrachiatus* plexus. Presumably, this relates to peculiar
588 paleoenvironmental conditions that developed during the event. One can hypothesize that this may
589 have been a major difference in the physicochemical parameters of sea surface waters, such as
590 higher temperatures, higher nutrient concentration or reduced carbonate saturation state.

591 Statistical analysis of our data from Cicogna does not highlight any prominent short-term
592 changes in calcareous nannofossil assemblages, other than across the PETM and perhaps the B2 and
593 H1 events. However, several biohorizons occur around the B1/B2 events. Specifically, these are the

594 Bc *Z. bijugatus*, the brief high abundance of *Octolithus* spp., the evolutionary onset of the *D.*
595 *delicatus*/*D. multiradiatus* lineage, the presence of the short-ranged *E. robusta*, the final radiation
596 of late Paleocene fasciculiths (i.e., *F. richardii* group, *F. hayi*, *F. lilianae*, *F. alanii*), and the Tc of *S.*
597 *anarrhopus*. All these happened at Cicogna and at Site 1262 within Chron C25n (Agnini et al., 2007b;
598 Dallanave et al., 2009; **Figure 11**), which spanned only 0.54 Myr (Westerhold et al., 2008). These
599 near-synchronous events are intriguing because while the various nannofossils represent only minor
600 components of late Paleogene assemblages, they were destined to become either an abundant
601 constituent of Eocene populations (e.g., *Z. bijugatus* and the *D. delicatus*/*D. multiradiatus* lineage),
602 or extinct after having been a distinctive element of Paleocene assemblages (e.g. *Fasciculithus* spp.
603 and *S. anarrhopus*). Following the PCIM, the long-term increase in temperature and decrease in $\delta^{13}\text{C}$
604 (**Figure 1**) coincided with a series of minor changes in nannofossil assemblages, which subsequently
605 became important, presumably for evolutionary reasons.

606 Similar to the late Paleocene, calcareous nannofossil assemblages after the PETM do not show
607 major rearrangements of common taxa during the early Eocene. Instead, minor components of
608 these assemblages exhibit a sequence of closely spaced biohorizons. The sequence of these
609 biohorizons is: T *Fasciculithus*, B *D. diastypus*, B *T. contortus*, T *T. bramlettei*, Tc *D. multiradiatus*, T
610 *T. contortus*, B *T. orthostylus*, B *S. radians*, T *D. multiradiatus*, B *D. lodoensis*, B *G. gammation* and
611 Bc *D. lodoensis* (**Table 1**). Within the resolution of available paleomagnetic and $\delta^{13}\text{C}$ data, all these
612 biohorizons are virtually synchronous between the Cicogna section and ODP Site 1262 (**Figure 11**).
613 They also almost all occurred in near synchrony at Site 577 (Dickens and Backman, 2013), although
614 the precise correlation remains uncertain, given problems with coring disturbance and subtleties in
615 age models at this location.

616 Importantly, for stratigraphic purposes, the B and Bc of *D. lodoensis* are approximately coeval
617 at all three locations and spaced apart by about 750 kyr. Unless one examines samples in detail,
618 these two biohorizons can be confused and result in an erroneous assignment of early Eocene ages.

619 The evolutionary appearances and extinctions amongst early Eocene nannofossil assemblages
620 may suggest the presence of uneven communities living in an extreme climate in which alterations
621 of environmental conditions, even minor, might trigger evolutionary changes or prominent
622 variations in abundances of a limited number of taxa that typically do not represent the dominant
623 component of assemblages. explained possible explanation is a generally higher tolerance of
624 cosmopolitan taxa to variations in environmental conditions (Boucot, 1975; Winter et al., 1994). In
625 contrast, highly specialized taxa that are adapted to a particular ecological niche, may display
626 greater sensitivity to modifications in the photic zone environment (MacArthur and Wilson, 1967;
627 Pianka, 1970; Baumann et al., 2005).

628 In summary, several genera of calcareous nannofossils, such as *Rhomboaster*, *Tribrachiatus*,
629 *Sphenolithus*, *Discoaster* and *Zygrhablithus* were, at least to some extent, affected during the late
630 Paleocene-early Eocene transition, because they show an increased rate of taxonomic evolution
631 (**Figure 11**). However these genera are all minor groups in terms of overall abundance, at least in
632 most lower Paleogene sediment sequences, and they all belong to nannoliths and holococcoliths. It
633 appears that these organisms were more sensitive to environmental changes than heterococcoliths,
634 for example the cosmopolitan genera *Coccolithus* and *Toweius*.

635

636 5.4 Early Paleogene calcareous nannofossil evolution

637

638 Any comprehensive paleoenvironmental interpretation involving early Paleogene calcareous
639 nannofossils remains tentative because many taxa, such as *Rhomboaster/Tribrachiatus*, *Discoaster*,

640 *Sphenolithus* and *Zygrhablithus*, are extinct. Still, some single species or species groups are
641 considered to be useful for reconstructions of paleoenvironmental conditions (Geisen et al., 2004).
642 With that viewpoint, and with an understanding of modern holococcolith/nannolith ecology and
643 classical biogeographical model, we provide a scenario regarding late Paleocene-early Eocene
644 calcareous nannofossil evolution.

645 Modern holococcolithophores have numerous tiny rhombohedral calcite crystallites, and are
646 considered as haploid stages of certain heterococcolithophores, which can live in just about any
647 marine photic zone environment, although higher abundances and diversity are typical in
648 oligotrophic settings (Billard and Inouye, 2004). The most common Paleogene holococcolith was
649 *Zygrhablithus bijugatus*. This taxon has been interpreted as a *K*-specialist more adapted to stable
650 environments and oligotrophic conditions (Aubry, 1998; Bralower, 2002; Tremolada and Bralower,
651 2004; Agnini et al., 2007a; Self-Trail et al., 2012). Nannolith is a term used to describe peculiar
652 morphotypes usually observed in association with coccoliths, but lacking the typical features of
653 heterococcoliths or holococcoliths. *Ceratolithus cristatus*, a modern nannolith, has been observed
654 on the same cell together with *Neosphaera coccolithomorpha* (Alcolber and Jordan, 1997),
655 suggesting that the nannolith stage (*C. cristatus*) corresponds to the holococcolith stage in other
656 taxa (Young et al., 2005). Paleogene nannoliths include taxa with peculiar morphologies such as
657 *Discoaster*, *Fasciculithus* and *Sphenolithus*. These genera often have been associated with warm
658 waters and oligotrophic environments and are almost unanimously interpreted as *K*-specialists (Haq
659 and Lohmann, 1976; Backman, 1986; Wei and Wise, 1990; Bralower, 2002; Gibbs et al., 2004; 2006a;
660 2006b; Agnini et al., 2007a). *K* specialists fluctuate at or near the carrying capacity (*K*) of the
661 environment in which they thrive (MacArthur and Wilson, 1967), and are usually characterized by
662 long individual life-cycles and low reproductive potential. The *K*-specialist strategy is advantageous
663 in highly stable, typically oligotrophic environments, which allows the evolution of stenotopy and

664 where organisms compete by specialization and habitat partitioning (Hallock, 1987; Premoli Silva
665 and Sliter, 1999). The narrow range of adaptability to changes in habitat or ecological conditions
666 stimulates a rapid speciation.

667 At present, it is commonly accepted that modern holococcoliths and nannoliths are not
668 produced by autonomous organisms; rather, they are stages in the life cycle of coccolithophores.
669 Moreover, the passage between the two stages may be triggered by environmental factors (Billard
670 and Inouye, 2004).

671 Hence, though Paleogene holococcoliths/nannoliths have no direct descendants in present-day
672 oceans, they may very well have shared similar physiological features and life cycles with modern
673 taxa. Assuming this is the case, the increase in the relative abundance of holococcoliths and
674 nannoliths at the expense of heterococcoliths as well as the higher rates of evolution shown by
675 holococcoliths and nannoliths may suggest conditions in which highly specialized taxa could flourish
676 and rapidly evolve. This scenario is consistent with the idea, based on laboratory and modern ocean
677 data, that the calcareous nannoplankton response to environmental change is species or group
678 specific rather than homogeneous across the entire assemblage (Riebesell et al., 2000; Langer et al.,
679 2006; Iglesias-Rodriguez et al., 2008; Lohbeck et al., 2012). Variations in the thermal and chemical
680 structure of photic zone waters may thus account for the observed changes in the early Paleogene
681 calcareous nannofossil assemblages.

682
683 **5.5 Carbon isotope of surface waters during the early Paleogene**
684

685 Like at Cicogna, well-preserved calcareous nannofossils dominate bulk sediment carbonate contents
686 of early Paleogene strata at Sites 577 and 1262 (Backman, 1986; Zachos et al., 2004; Dickens and
687 Backman, 2013). Given that the nannofossil assemblages are fairly similar (**Figure 11**), a really basic

688 question returns: why is the overall early Paleogene bulk carbonate $\delta^{13}\text{C}$ record at Cicogna less by
689 approximately 1 ‰?

690 A variety of explanations for the $\delta^{13}\text{C}$ offset can be offered. For example, sediments at Cicogna had
691 greater amounts of organic matter, and during burial diagenesis, a fraction of this carbon was
692 consistently added so as to decrease the $\delta^{13}\text{C}$ of pore water DIC. We note, though, that C_{org} contents
693 (wt %) at the proximal Forada section generally have values less than 0.1 wt % (Giusberti et al.,
694 2007). Similar C_{org} contents are found at ODP Site 1262, where values range from 0.0 to 0.3 wt %
695 (Zachos et al., 2004).

696 A cursory examination of early Paleogene bulk carbonate $\delta^{13}\text{C}$ records from other sites of the
697 North Atlantic/western Tethys region (e.g., Sites 550 and 1051; **Figure 2**) shows a commonality:
698 these locations also display negative 0.5 to 1 ‰ offsets relative to correlative records at Sites 577
699 and 1262 (Cramer et al., 2003). The $\delta^{13}\text{C}$ of DIC in modern surface waters (<100 m) ranges by about
700 2 ‰, because of the differences in temperature, primary productivity and water mass mixing
701 (Kroopnick, 1985; Tagliabue and Bopp, 2008). Notably, however, gradients in $\delta^{13}\text{C}$ of surface water
702 DIC are gradual, such that large regions have fairly similar values. It is possible that bulk carbonate
703 $\delta^{13}\text{C}$ values in early Paleogene North Atlantic sections record lower values than locations near the
704 Equator or in southern latitudes because of past ocean circulation.

705

706 **6 SUMMARY AND CONCLUSIONS**

707

708 We generate records of bulk carbonate $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$, CaCO_3 content and calcareous nannofossil
709 assemblages from the Cicogna section, a marine sedimentary succession that now crops out along
710 a stream in the Southern Alps of northeast Italy. The combined geochemical and calcareous
711 nannofossil results allow us to generate a detailed stratigraphy for the section, as well as to explore

712 relationships between stable isotope variations and nannofossil assemblages. Most lower
713 Paleogene sections examined to date lack such coupled data sets.

714 The $\delta^{13}\text{C}$ record and calcareous nannofossil assemblages show that the section spans \sim 5.3 Myr
715 of the late Paleocene and early Eocene interval, from 57.5 to 52.2 Ma on the WO-1 timescale. This
716 is consistent with previous paleomagnetic information and preliminary calcareous nannofossil
717 biostratigraphy (Dallanave et al., 2009), but provides a more detailed stratigraphic framework, one
718 appropriate for correlations to other locations around the world. In particular, the fairly well
719 resolved $\delta^{13}\text{C}$ record shows long-term and short variations that correspond to those found in several
720 other sections, including an established series of negative CIEs. The most prominent CIE marks the
721 PETM, while other less pronounced CIEs represent the H-1, K/X and other “events” documented
722 elsewhere. The $\delta^{13}\text{C}$ variations observed at Cicogna clearly reflect global changes in the fluxes of
723 carbon to and from the ocean and atmosphere.

724 PCA analysis of calcareous nannofossil assemblages shows three distinct sample clusters. Late
725 Paleocene and early Eocene assemblages were distinctly different from each other and from that of
726 the PETM. Indeed, the PETM, the most intense hyperthermal during the late Paleocene - early
727 Eocene, was characterized by a unique calcareous nannofossil assemblage composition. This
728 suggests that the brief episode of extreme warming permanently modified the composition of
729 calcareous nannoplankton through an increase in the rate of taxonomic evolution (Gibbs et al.,
730 2006a). Less prominent hyperthermal events do not show significant variations in the main
731 components of assemblages, but rather were characterized by a series of changes affecting a limited
732 number of rare taxa. These taxa may have been less tolerant to environmental changes in their
733 habitats.

734 More common taxa, essentially consisting of placoliths, such as the cosmopolitan *Coccolithus*
735 and *Toweius*, display a progressive long-term decrease interrupted by transient changes in their

736 relative abundance but virtually no extinction or origination events occur in these groups during the
737 pertinent time interval. Species belonging to nannoliths and holococcoliths (*Discoaster*,
738 *Fasciculithus*, *Rhomboaster/Tribrachiatus*, *Sphenolithus* and *Zygrhablithus*), generally show a higher
739 rate of evolution and a higher concentration of biohorizons close to $\delta^{13}\text{C}$ perturbations. In
740 conclusion, calcareous nannoplankton show a different response of the various components of the
741 assemblages, this is consistent with a species or taxonomic unit sensitivity of calcareous
742 phytoplankton to paleoenvironmental perturbations. This evolutionary climate-forced model is
743 supported by data from ODP Site 1262, which demonstrate that these changes are global and
744 synchronous between middle latitudes in the western Tethys region and the South Atlantic.

745

746 7 ACKNOWLEDGMENTS

747 CA would like to thank Carlotta Betto for preparing smear slides for calcareous nannofossil
748 analyses. We also acknowledge valuable comments from the referees two anonymous reviewers.
749 Funding for this work came from several sources. Primary support came from a MIUR grant to CA,
750 ED and DR (PRIN 2010-2011 - prot. 2010X3PP8J_003. JB acknowledges support from the Swedish
751 Research Council. GRD received funding from a National Science Foundation (NSF) grant (NSF-
752 FESD-OCE-1338842).

753 8 FIGURE AND TABLE CAPTIONS

754 **Figure 1.** Middle Paleocene to middle Eocene (64 to 48 Ma) stable isotope ($\delta^{13}\text{C}$ and $\delta^{18}\text{O}$) records
755 of benthic foraminifera from multiple locations (Zachos et al., 2008) placed on the Option 1 (W01)
756 time scale of Westerhold et al. (2008). Also shown are positions of polarity chrons and calcareous
757 nannofossil biozones for this time interval, both from the CP Biozone scheme (Okada and Bukry,
758 1980) and the CN Biozone scheme (Agnini et al., 2014). Various “events” are noted within this
759 chronostratigraphic framework, including the Paleocene carbon isotope maximum (PCIM), the
760 Paleocene-Eocene thermal maximum (PETM), the H-1/ETM-2 event, the K/X event, and the Early
761 Eocene Climatic Optimum (EECO). To the right is the general lithologic column and
762 magnetostratigraphy of the Cicogna section (Dallanave et al., 2009).

763

764 **Figure 2.** Paleogeographic map indicating approximate locations at 55 Ma for several key sites with
765 detailed stable isotope records across the late Paleocene and early Eocene. These include (marked
766 with black dots and star) the Cicogna section (NE Italy, this study), DSDP Site 577 (Shatsky Rise,
767 Dickens and Backman, 2013), ODP Sites 1051 (Blake Nose, Ogg and Bardot, 2001), 1215 (central
768 Pacific, Raffi et al., 2005), and 1262 (Walvis Ridge, Westerhold et al., 2008), and the Clarence Valley
769 (CV) sections (New Zealand, Slotnick et al., 2015b). The grey areas represent plate fragments, while
770 the black lines show present-day shorelines. Boxes next to site locations show average
771 sedimentation rates from the base of Chron C25n to the base of Chron C23r (57.20 - 52.36 Ma). The
772 base map is from <http://www.odsn.de/odsn/services/paleomap/paleomap.html>. Red triangles are
773 locations where a decrease in diversity of *Fasciculithus* spp. has been documented near the PETM.
774 Locations include the Clarence Valley sections, central Pacific (ODP Sites 1215, 1220, 1221), western
775 Pacific (DSDP Site 577 and ODP Site 865), South Atlantic (Walvis Ridge, DSDP Site 527, ODP Sites
776 1262, 1263-1267; Maud Rise, ODP Site 690), equatorial Atlantic (Ceara Rise, ODP Site 929, Demerara

777 Rise, ODP Sites 1259, 1260), northwestern Atlantic (New Jersey Margin land sections, ODP Site 1051,
778 IODP Site U1403, U1409), northeastern Atlantic (Bay of Biscay DSDP Sites 401, 549 and 550, Zumaya
779 land section), Indian Ocean (DSDP Site 213; ODP 672; Kerguelen Plateau, ODP Site 1135)(Backman,
780 1986; Aubry, 1999; Bralower, 2002; Dupuis et al., 2003; Tremolada and Bralower, 2004; Bralower
781 and Mutterlose, 1995; Monechi et al., 2000; Gibbs et al., 2004; Raffi et al., 2005; Agnini et al., 2007a;
782 Angori et al., 2007, Mutterlose et al., 2007; Jiang and Wise, 2009; Shamrock, 2010; Norris et al, 2014;
783 Dallanave et al., 2015).

784

785 **Figure 3.** The location and representative photographs of the Cicogna section in northeast Italy. (a)
786 Geographic map showing the main Late Cretaceous–early Paleogene paleogeographic domains of
787 the Italian Southern Alps (modified after Cati et al., 1989); (b) Geological map of the local area
788 (modified after Costa et al, 1996 indicating also the location of the Cicogna section (red asterisk); (c)
789 Alternating beds of Paleocene gray-green marls and calcareous marls (0-20 m); (d) The Scaglia Rossa
790 *sensu latu* overlain by the Belluno Flysch; (e) Marl/calcareous marl couplets in the lower Eocene
791 portion of the section (approximately 40.0-70.0 m); (f) The base of the Clay Marl Unit, which denotes
792 the onset of the PETM (approximately 28.7-29.3 m); (g) The brownish-red interval of clayey marls
793 with sporadic grey-green cm-scale spots and lenses, the CMU, overlain by prominent rhythmic
794 alternations of marls and calcareous marls (approximately 28.7-33.0 m).

795

796 **Figure 4.** The Cicogna section with records of bulk carbonate $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ data, and CaCO_3 content.
797 Calcareous nannofossil biostratigraphy (CP and NP biozones) and magnetostratigraphy are after
798 Dallanave et al. (2009), CN biozones are also reported. Orange and yellow bands mark major $\delta^{13}\text{C}$
799 excursions. Dashed lines indicate minor CIEs that have been labeled elsewhere (e.g., E1/E2, F and

800 G; Cramer et al., 2003), whereas dotted lines indicate minor changes in $\delta^{13}\text{C}$ that appear to occur
801 also at ODP Site 1262 (see also **Figure 5**).

802

803 **Figure 5.** Stratigraphic correlation between upper Paleocene and lower Eocene sections at Cicogna,
804 ODP Site 1262 (Zachos et al., 2010), and DSDP Site 577 (Cramer et al., 2003; Dickens and Backman,
805 2013). All three sites have independently derived nannofossil biohorizons, polarity chronos and $\delta^{13}\text{C}$
806 records, which account for subtle temporal offsets. . Color bands and symbols are the same as in
807 Figure 4. Note the missing record at Site 577 that corresponds with known core gaps.

808

809 **Figure 6.** Plots of (a) bulk carbonate $\delta^{13}\text{C}$ versus bulk oxygen $\delta^{18}\text{O}$, and (b) bulk carbonate $\delta^{13}\text{C}$ versus
810 CaCO_3 content for samples from the Cicogna section. The black arrow shows the expected effect of
811 burial diagenesis. . Note the clear distinction in $\delta^{13}\text{C}$ for Paleocene and Eocene samples, which
812 relates to a long-term decrease in $\delta^{13}\text{C}$ (**Figure 5**).

813

814 **Figure 7.** Relative (%) and semi-quantitative (N/mm^2) abundances of selected calcareous
815 nannofossil genera across the Cicogna section. Also shown are the lithostratigraphy,
816 magnetostratigraphy, biostratigraphy and carbon isotope ($\delta^{13}\text{C}$) stratigraphy at the Cicogna section
817 (**Figure 4**). Color bands and symbols are the same as in previous figures.

818

819 **Figure 8.** Relative (%) and semi-quantitative (N/mm^2) abundances of selected, mainly late
820 Paleocene, calcareous nannofossil taxa across the Cicogna section. Also shown are the
821 lithostratigraphy, magnetostratigraphy, biostratigraphy and carbon isotope ($\delta^{13}\text{C}$) stratigraphy at
822 the Cicogna section (**Figure 4**). Color bands and symbols are the same as in previous figures.

823 **Figure 9.** Relative (%) and semi-quantitative (N/mm^2) abundances of selected, mainly early Eocene,
824 calcareous nannofossil taxa across the Cicogna section. Also shown are the lithostratigraphy,
825 magnetostratigraphy, biostratigraphy and carbon isotope ($\delta^{13}C$) stratigraphy at the Cicogna section
826 (**Figure 4**). Color bands and symbols are the same as in previous figures.

827

828 **Figure 10.** Principal Component Analysis (PCA) of calcareous nannofossil percentage data of the
829 Cicogna section. Calcareous nannofossils are subdivided into 15 subgroups (*Chiasmolithus*,
830 *Coccolithus*, *Ellipsolithus*, *Discoaster*, *Ericsonia*, *Fasciculithus*, *Grgisia*, *Octolithus*, *Prinsius*,
831 *Sphenolithus*, *Toweius*, *Rhomboaster/Tibrachiatus*, *Zyghrabilithus*, reworking, others). Scatter plot
832 of percentage data of calcareous nannofossil taxa of samples from the Cicogna section in terms of
833 the first and second component. Each sample is represented by a circle and labelled. Different colors
834 serve to separate sub-sets of samples having the same age.

835

836 **Figure 11.** Comparison of $\delta^{13}C$ profiles and semi-quantitative abundance patterns of selected
837 calcareous nannofossil taxa from the Cicogna section and ODP Site 1262. Calcareous nannofossil
838 biohorizons from DSDP Site 577 are reported in the right part of the figure. Orange and yellow bands
839 mark CIEs shown in previous figures.). Color bands and symbols are the same as in previous figures.

840

841 **Plate I.** Images of selected calcareous nannofossil taxa from samples of the Cicogna section. Scale
842 bar 10 μ m.

843 **1.** *Discoaster lodoensis* Bramlette and Riedel, 1954. Parallel light. Parallel nicols. Sample CIC/07-492.

844 **2-3.** *Grgisia gammation* (Bramlette Sullivan, 1961) Varol 1989. Crossed nicols. Sample CIC/07-437.

845 **4-5.** *Chiphragmalithus calathus* Bramlette and Sullivan, 1961; 4. Parallel light; 5. Crossed nicols.

846 Sample CIC/07-447. **6-7.** *Sphenolithus radians* Deflandre in Grassé, 1952. 6. Crossed nicols 0°; 7.

847 Crossed nicols 45°. Sample CIC/07-437. **8.** *Tribrachiatus orthostylus* Shamrai, 1963. Parallel light.

848 Sample 208-1262A-11H- 1, 149. Sample CIC/07-447. **9-10.** *Tribrachiatus contortus* (Stradner 1958)

849 Bukry 1972. Parallel light. Sample CIC/07-335. **11-13.** *Zyghrabilithus bijugatus* (Deflandre in

850 Deflandre and Fert, 1954) Deflandre, 1959. Crossed nicols. Sample CIC/07-437. **14.** *Discoaster*

851 *salisburgensis* Stradner, 1961. Parallel light. Sample CIC/07-335. **15.** *Discoaster diastypus* Bramlette

852 and Sullivan, 1961. Parallel light. Sample CIC/07-335. **16.** *Fasciculithus tympaniformis* Hay and

853 Mohler in Hay et al. 1967. Crossed nicols. Sample CIC/07-335. **17.** *Octolithus multiplus* (Perch-
854 Nielsen, 1973) Romein, 1979. Crossed nicols. Sample CIC/07-122. **18.** *Discoaster multiradiatus*

855 Bramlette and Riedel 1954. Parallel light. Sample CIC/07-122. **19.** *Toweius pertusus* (Sullivan, 1965)

856 Romein, 1979. Crossed nicols. Sample CIC/07-122. **20.** *Toweius occultatus* (Locker, 1967) Perch-
857 Nielsen, 1971. Crossed nicols. Sample CIC/07-122. **21.** *Toweius eminens* (Bramlette and Sullivan,
858 1961) Perch-Nielsen, 1971. Crossed nicols. Sample CIC/07-029. **22.** *Toweius eminens* (Bramlette and
859 Sullivan, 1961) Perch-Nielsen, 1971. Crossed nicols. Sample CIC/07-029. **23.** *Toweius eminens*
860 (Bramlette and Sullivan, 1961) Perch-Nielsen, 1971. Crossed nicols. Sample CIC/07-122. **24.** *Prinsius*

861 *bisulcus* (Stradner, 1963) Hay and Mohler, 1967. Crossed nicols. Sample CIC/07-029. **25.** *Ericsonia*

862 *robusta* Bramlette and Sullivan 1961. Crossed nicols. Sample CIC/07-029. **26-27.** *Sphenolithus*

863 *anarrhopus* Bukry and Bramlette, 1969. 24. Crossed nicols 0°; 25. Crossed nicols 45°. Sample CIC/07-
864 029. **28-29.** *Zyghrabilithus bijugatus* (Deflandre in Deflandre and Fert, 1954) Deflandre, 1959.

865 Crossed nicols. Sample CIC/07-122. **30.** *Thoracosphaera saxeae* (Stradner, 1961). Crossed nicols.

866 Sample CIC/07-122.

867

868 **Table 1.** Stratigraphic heights and ages of polarity chron boundaries, key calcareous nannofossil

869 datums, and CIEs at the Cicogna Section and ODP Site 1262.

870

871 **9. SUPPLEMENTARY INFORMATION**

872 **S2. Additional information on statistical analysis**

873 Nannofossil data from the Cicogna section (NE Italy) were subjected to statistical analysis using the
874 program PAST.

875 For PCA analysis, we additionally provide the biplot and the loading graphs of Component 1 and
876 Component 2 (**Figure S1**).

877 For non-metric multidimensional scaling (MDS) analysis, the species counts were combined to
878 produce a matrix of 15 genera. A square root transformation, used to standardize the matrix, was
879 chosen to minimize the influence of dominant taxa on the ordination (Schneider et al., 2011). Non-
880 metric multidimensional scaling (MDS), using the Bray–Curtis distance metric (**Figure S2**) was
881 applied in order to avoid assumptions as much as possible and guarantee the preservation of the
882 relative differences between the samples (McCune and Grace, 2002).

883 **References**

884 Schneider L.J., Bralower, T.J., Kump, L.R.: Response of nannoplankton to early Eocene ocean
885 destratification, *Palaeogeogr., Palaeoclimatol., Palaeoecol.*, 310, 152–162, 2011.
886 McCune, B., Grace, J.B.: *Analysis of Ecology Communities*. MjM Software Design, Gleneden Beach,
887 Oregon, 2002.

888

889 **S2. Further explanation regarding biostratigraphic calcareous nannofossil counts**

890 The high abundance, widespread distribution and rapid evolution of calcareous nannofossils make
891 them one of the most powerful tool to date Cenozoic marine sediments. The use of semi-
892 quantitative counting and the gathering of high resolved datasets greatly enhance their correlation
893 potential (Backman et al., 2012; Agnini et al., 2014).

894 The methodology used in this study for samples of ODP Site 1262 is that proposed by Backman
895 and Shackleton (1983), which consists in counting the number of calcareous nannofossils belonging
896 to a specific taxon present in a prefixed area (1 mm²). Because of significant dilution by terrigenous
897 material in samples from the Cicogna section, we extended the study area to 9 mm². To further

898 appreciate the importance of semi-quantitative estimates and high-resolution sampling, we
899 compare the Top *D. multiradiatus* and Base *D. lodoensis* as recorded from the Cicogna section, ODP
900 Site 1262 and DSDP Site 550 (**FigureS3**). At Cicogna and ODP Site 1262, we provide detailed
901 abundance patterns of these two taxa. *Discoaster multiradiatus* shows a first decrease in abundance
902 preceding the H1 event and a definitive disappearance just before the onset of the I1 event.
903 *Discoaster lodoensis* displays a first presence in the I1 event, which is followed by an interval of
904 absence that eventually leads to its continuous and common presence close to the onset of the X
905 event (**Figure S3**). Datasets from the Cicogna section and ODP Site 1262 allow a very detailed
906 characterization of these two biohorizons and the recognition of peculiar features that are not
907 present in the low-resolution qualitative biostratigraphic data available for DSDP Site 550. As a
908 consequence, the stratigraphic position of Top *D. multiradiatus* and Base *D. lodoensis* at DSDP Site
909 550 are inaccurate. We hope that this simple exercise could serve to emphasize the crucial
910 importance of producing high-resolution semi-quantitative data to obtain the most reliable
911 biostratigraphic results.

912

913 **References**

914 Ali, J. and Hailwood, E.: Magnetostratigraphic (re)calibration of the Paleocene/Eocene boundary
915 interval in Holes 550 and 549, Goban Spur, eastern North Atlantic, *Earth Planet. Sci. Lett.*, 161,
916 201-213, 1998.

917 Agnini, C., Fornaciari, E., Raffi, I., Rio, D., Röhl, U., and Westerhold, T.: High-resolution nannofossil
918 biochronology of middle Paleocene to early Eocene at ODP Site 1262: implications for
919 calcareous nannoplankton evolution. *Mar. Micropaleontol.*, 64, 215-248,
920 doi:10.1016/j.marmicro.2007.05.003, 2007b.

921 Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., and Rio, D.: Biozonation and
922 biochronology of Paleogene calcareous nannofossils from low and middle latitudes, *Newslett. Stratigr.*, 47, 131-181, doi:10.1127/0078-0421/2014/0042, 2014.

923 Backman, J., Raffi, I., Rio, D., Fornaciari, E. and Pälike, H., 2012: Biozonation and biochronology of
924 Miocene through Pleistocene calcareous nannofossils from low and middle latitudes, *Newslett. Stratigr.*, 45, 221-244.

925 Cramer, B. S., Wright, J. D., Kent, D. V., and Aubry, M.-P.: Orbital climate forcing of $\delta^{13}\text{C}$ excursions
926 in the late Paleocene–early Eocene (Chrons C24n–C25n), *Paleoceanography*, 18 (4), 1097,
927 doi:10.1029/2003PA000909, 2003.

930 Dallanave, E., Agnini, C., Muttoni, G., and Rio, D.: Magneto-biostratigraphy of the Cicogna section
931 (Italy): implications for the late Paleocene-early Eocene time scale, *Earth Planet. Sci. Lett.*, 285,
932 39-51, doi:10.1016/j.epsl.2009.05.033, 2009.

933 Müller, C.: Biostratigraphic and paleoenvironmental interpretation of the Goban Spur region based
934 on a study of calcareous nannoplankton, *Deep Sea Drill. Project, Initial Rep.*, 80, 389-414,
935 1985.

936 Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale, V., Bowles, J., and Evans, H. F.:
937 Astronomical calibration of the Paleocene time, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*,
938 257, 377-403, doi:10.1016/j.palaeo.2007.09.016, 2008.

939 Zachos, J. C., Kroon, D., Blum, P., et al.: Early Cenozoic Extreme Climates: The Walvis Ridge Transect,
940 *Proc. Ocean Drill. Program, Initial Rep.*, 208 doi:10.2973/odp.proc.ir.208.2004, 2004.

941

942 **S3. Looking through “frosty glass”: Comparison to records at ODP Site 690**

943 We have presented fairly detailed records of bulk carbonate $\delta^{13}\text{C}$ and quantified calcareous
944 nannofossil assemblages for the lower Paleogene section at Cicogna, and compared these records
945 with those at the only two locations with similar information. From this comparison, we suggest
946 that a very detailed template exists for the alignment of $\delta^{13}\text{C}$ records and calcareous nannofossil
947 assemblage counts across the early Paleogene (**Figure 11**), one with much higher resolution than
948 given in most previous work, and one most likely related to changes in past global carbon cycling,
949 oceanography, and calcareous nannoplankton evolution.

950 Significant variations in calcareous nannofossil abundances definitely happened at multiple
951 locations during the PETM (Bralower, 2002, and references noted in main text). However, it is by no
952 means clear whether such changes extended across the broader early Paleogene, nor how such
953 changes might compare to those across the PETM. One can certainly speculate that variations in
954 calcareous nannofossil abundance records and bulk carbonate $\delta^{13}\text{C}$ records might correlate in fine
955 temporal detail across widely distributed sites throughout the early Paleogene, given well-
956 established calcareous nannofossil biozone schemes (Martini, 1971; Okada and Bukry, 1980; Agnini
957 et al., 2014), and a growing appreciation of a very dynamic carbon cycle over this time interval.
958 Nonetheless, the generation of detailed and coupled multi-million year records for quantified
959 calcareous nannofossil abundances and bulk carbonate $\delta^{13}\text{C}$ perplexed one of the referees for this

960 paper, who insisted that we needed to make comparisons with existing work at ODP Site 690 and
961 to explain discrepancies.

962 The lower Paleogene record at Site 690 provides a very good example in which to highlight the
963 basic background and importance of our work. Three holes were drilled and cored at ODP Site 690
964 on Maud Rise (South Atlantic; Figure 1) in 1987 using the advanced piston corer (APC) (Barker et al.,
965 1988). Sediment recovery within each core was nearly 100 %, although some cores were shorter
966 than the full 9.7 m. However, most of the lower Paleogene sequence was retrieved in only one of
967 the holes, 690B (Barker et al., 1988). This is important, because m-scale gaps generally occur
968 between successive cores during APC operations (Ruddiman et al., 1987; Lisiecki and Herbert, 2007).
969 The early Paleogene section at Site 690 is, almost assuredly, incomplete, with “missing” portions at
970 each core break.

971 Sediment from Core 690B-19H has been the focus of numerous papers, as it contains the PETM
972 (Kennett and Stott, 1991; Bains et al., 1999; Bralower, 2002). However, correlating this core to the
973 surrounding sedimentary record at Site 690, and the latter to early Paleogene records at other
974 locations is problematic, at least with any detail. For example, using Hole 690B records, Cramer et
975 al. (2003) estimated that 1.4 Myr occurred between the PETM and the H-1 event. This is incorrect,
976 as the duration is close to 1.8 Myr (Westerhold et al., 2008). Beyond the aforementioned core gaps,
977 there are major issues with the paleomagnetic record of early Paleogene sediments in Hole 690B
978 (Ali et al., 2000). Indeed, Ali et al. (2000) recommend using calcareous nannofossil records for
979 correlation purposes of this interval.

980 Records of bulk carbonate $\delta^{13}\text{C}$ (Cramer et al., 2003) and calcareous nannofossil relative
981 abundances (Pospichal and Wise, 1990) have been generated using sediment at Hole 690B. When
982 coupled together (Figure S4), these records show similarities to those at Cicogna (Figure 11). There
983 is the long-term late Paleocene-early Eocene drop in $\delta^{13}\text{C}$ and several superimposed short-term

984 negative CIEs. There are also closely coeval changes in calcareous nannofossil abundances, such as
985 the peak in *D. multiradiatus* across the C event, the subsequent peak in *Fasciculithus* spp., and the
986 cross-over of *T. contortus* and *T. orthostylus* just before the H-1 event. One can also see the problem
987 with examining nannofossils at low depth/time resolution and qualitatively. We suggest here a
988 “frosty glass” hypothesis, where details of Earth system change in the distant past are blurred
989 presently by poorly resolved stratigraphy. This includes basic problems with aligning sections in
990 depth and time, as well as interpretable quantification of data at high spatial resolution. Despite the
991 need for additional work at Site 690, we suggest that available records at this location support the
992 template offered in the main text.

993 **References**

994 Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., and Rio, D.: Biozonation and
995 biochronology of Paleogene calcareous nannofossils from low and middle latitudes, *Newslett. Stratigr.*, 47, 131-181, doi:10.1127/0078-0421/2014/0042, 2014.

996 Ali, J. R., Kent, D. V., and Hailwood, E. A.: Magnetostratigraphic reinvestigation of the
997 Palaeocene/Eocene boundary interval in Hole 690B, Maud Rise, Antarctica, *Geophys. J. Int.*,
998 141 (3), 639-646, doi: 10.1046/j.1365-246X.2000.00109.x, 2000.

999 Bains, S., Corfield, R. M. and Norris R. D.: Mechanisms of climate warming at the end of the
1000 Paleocene, *Science*, 285, 724-727, 1999.

1001 Barker, P.E, Kennett, J.P., et al.: *Proc. ODP, Init. Repts.*, 113, 1-774,
1002 doi:10.2973/odp.proc.ir.113.1988, 1988.

1003 Bralower, T. J.: Evidence of surface water oligotrophy during the Paleocene–Eocene thermal
1004 maximum: nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise,
1005 Weddell Sea, *Paleoceanography*, 17, 1029-1042, doi:10.1029/2001PA000662, 2002.

1006 Cramer, B. S., Wright, J. D., Kent, D. V., and Aubry, M.-P.: Orbital climate forcing of $\delta^{13}\text{C}$ excursions
1007 in the late Paleocene-early Eocene (Chrons C24n–C25n), *Paleoceanography*, 18 (4), 1097,
1008 doi:10.1029/2003PA000909, 2003.

1009 Kennett, J. P. and Stott, L. D.: Abrupt deep-sea warming, palaeoceanographic changes and benthic
1010 extinctions at the end of the Palaeocene, *Nature* 353, 225-229 doi:10.1038/353225a0, 1991.

1011 Lisiecki, L. E., and Herbert, T. D.: Automated composite depth scale construction and estimates of
1012 sediment core extension, *Paleoceanography*, 22(4), PA4213, doi:10.1029/2006PA001401,
1013 2007.

1014 Martini, E.: Standard Tertiary and Quaternary calcareous nannoplankton zonation, in: *Proceedings*
1015 of the 2nd Planktonic Conference, 2, *Tecnoscienza*, Roma, 739-785, 1971.

1016 Okada, H., and Bukry, D.: Supplementary modification and introduction of code numbers to the low-
1017 latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975), *Mar. Micropaleontol.*, 5, 321-
1018 325, doi:10.1016/0377-8398(80)90016-X, 1980.

1019 Pospichal, J. J., and Wise Jr., S. W.: Paleocene to middle Eocene calcareous nannofossils of Maud
1020 Rise, Weddell Sea, *Proc. Ocean Drill. Program, Sci. Results*, 113, 613-638,
1021 doi:10.2973/odp.proc.sr.113.205.1990, 1990.

1023 Ruddiman, W. F., Cameron, D., and Clement, B. M.: Sediment disturbance and correlation of offset
1024 holes drilled with the hydraulic piston corer, Proc. Deep Sea Drill. Project, Init. Repts., 94, 615–
1025 634. doi:10.2973/dsdp.proc.94.111.1987, 1987.

1026 Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale, V., Bowles, J., and Evans, H. F.:
1027 Astronomical calibration of the Paleocene time, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*,
1028 257, 377–403, doi:10.1016/j.palaeo.2007.09.016, 2008.

1029

1030 **Supplementary figure captions****Figure S1.** PCA plots of calcareous nannofossil data from the Cicogna
1031 section (Italy). A) Loading plot of Component 1; B) Loading plot of Component 2; C) Biplot.

1032 **Figure S2.** Non-metric multidimensional scaling (NMS) plot of calcareous nannofossil data from the
1033 Cicogna section (Italy). Grey dots = barren to virtually barren samples.

1034 **Figure S3.** Abundance patterns of *D. multiradiatus* and *D. lodoensis* from the Cicogna section, ODP
1035 Site 1262 and DSDP Site 550. For these three successions paleomagnetic (Ali and Hailwood, 1998;
1036 Dallanave et al., 2009; Westerhold et al., 2008), carbon isotope (Cramer et al., 2003; Zachos et al.,
1037 2004; this study) and calcareous nannofossil data (Müller, 1985; Agnini et al., 2007, this study) are
1038 available. Top *D. multiradiatus* and Base *D. lodoensis* are clearly recognizable at Cicogna and ODP
1039 Site 1262, where quantitative counts have been performed. By contrast, qualitative data from DSDP
1040 Site 550 do not provide reliable biostratigraphic data P= present; R=rare; F=few; C=common;
1041 A=abundant; V=very abundant.

1042 **Figure S4.** Carbon isotope data from ODP Site 690 (Cramer et al., 2003) plotted against qualitative
1043 abundance estimates of selected calcareous nannofossil taxa (Pospichal and Wei, 1990). Top
1044 *Fasciculithus* spp. (Aubry et al., 1996)

1045 **Table S1.** Bulk carbonate stable isotopes and carbonate content of samples from the Cicogna
1046 section.

1047 **Table S2.** Calcareous nannofossil assemblage counts for samples from the Cicogna section.

1048 **Table S3.** Dataset used to perform the principal component analysis for calcareous nannofossil
1049 assemblages from the Cicogna section. Calcareous nannofossils are subdivided in 15 subgroups

1050 (*Chiasmolithus*, *Coccolithus*, *Ellipsolithus*, *Discoaster*, *Ericsonia*, *Fascicuithus*, *Girgisia*, *Octolithus*,
1051 *Prinsius*, *Sphenolithus*, *Toweius*, *Rhomboaster/Tribrachiatus*, *Zyghrabilithus*, reworking, others). In
1052 order to avoid the closed-sum effect that derives from the use of percentage data, we apply a log
1053 transformation of raw data.

1054 **Table S4.** Dataset used to perform the non-metric multidimensional scaling (MDS) for calcareous
1055 nannofossil assemblages from the Cicogna section. Calcareous nannofossils are subdivided in 15
1056 subgroups (*Chiasmolithus*, *Coccolithus*, *Ellipsolithus*, *Discoaster*, *Ericsonia*, *Fascicuithus*, *Girgisia*,
1057 *Octolithus*, *Prinsius*, *Sphenolithus*, *Toweius*, *Rhomboaster/Tribrachiatus*, *Zyghrabilithus*, reworking,
1058 others). A square root transformation was used to minimize the influence of dominant taxa on the
1059 ordination.

1060

1061

1062 **10 REFERENCES**

1063

1064 Adelseck Jr., C. G., Geehan, G. W., and Roth, P. H.: Experimental evidence for the selective
1065 dissolution and overgrowth of calcareous nannofossils during diagenesis, *Geol. Soc. Am. Bull.*,
1066 84, 2755-2762, 1973.

1067 Agnini, C., Muttoni, G., Kent, D. V., and Rio, D.: Eocene biostratigraphy and magnetic stratigraphy
1068 from Possagno, Italy: The calcareous nannofossil response to climate variability, *Earth Planet.*
1069 *Sci. Lett.*, 241, 815-830, doi:10.1016/j.epsl.2005.11.005, 2006.

1070 Agnini, C., Fornaciari, E., Rio, D., Tateo, F., Backman, J., and Giusberti, L.: Responses of calcareous
1071 nannofossil assemblages, mineralogy and geochemistry to the environmental perturbations
1072 across the Paleocene/Eocene boundary in the Venetian Pre-Alps, *Mar. Micropaleontol.*, 63,
1073 19-38, doi:10.1016/j.marmicro.2006.10.002, 2007a.

1074 Agnini, C., Fornaciari, E., Raffi, I., Rio, D., Röhl, U., and Westerhold, T.: High-resolution nannofossil
1075 biochronology of middle Paleocene to early Eocene at ODP Site 1262: implications for
1076 calcareous nannoplankton evolution. *Mar. Micropaleontol.*, 64, 215-248,
1077 doi:10.1016/j.marmicro.2007.05.003, 2007b.

1078 Agnini, C., Macrì, P., Backman, J., Brinkhuis, H., Fornaciari, E., Giusberti, L., Luciani, V., Rio, D., Sluijs,
1079 A., and Speranza, F.: An early Eocene carbon cycle perturbation at 52.5 Ma in the Southern
1080 Alps: Chronology and biotic response, *Paleoceanography*, 24, PA2209,
1081 doi:10.1029/2008PA001649, 2009.

1082 Agnini, C., Fornaciari, E., Giusberti, L., Grandesso, P., Lanci, L., Luciani, V., Muttoni, G., Pälike, H., Rio,
1083 D., Spofforth, D. J. A., and Stefani, C.: Integrated bio-magnetostratigraphy of the Alano section
1084 (NE Italy): a proposal for defining the middle-late Eocene boundary, *Geol. Soc. Am. Bull.*, 123,
1085 841-872, doi:10.1130/B30158.1, 2011.

1086 Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., and Rio, D.: Biozonation and
1087 biochronology of Paleogene calcareous nannofossils from low and middle latitudes, *Newslett.*
1088 *Stratigr.*, 47, 131-181, doi:10.1127/0078-0421/2014/0042, 2014.

1089 Aitchison, J.: *The Statistical Analysis of Compositional Data*. Chapman and Hall, London - New York,
1090 12, 1-416, 1986.

1091 Alcober, J. A. and Jordan, R. W.: An interesting association between *Neosphaera coccolithomorpha*
1092 and *Ceratolithus cristatus*, *Eur. J. Phycol.*, 32, 91-93, 1997.

1093 Angori, E., Bernaola, G., and Monechi, S.: Calcareous nannofossil assemblages and their response to
1094 the Paleocene-Eocene Thermal Maximum event at different latitudes: ODP Site 690 and
1095 Tethyan sections, *Geol. Soc. Am. Spec. Pap.*, 424, 69-85, doi:10.1130/2007.2424(04), 2007.

1096 Aubry, M.-P.: *Handbook of Cenozoic Calcareous Nannoplankton*, book 1, *Ortholithae (Discoaster)*,
1097 Am. Mus. Nat. Hist. *Micropaleontol. Press*, New York, 1-263, 1984.

1098 Aubry, M.-P.: *Handbook of Cenozoic Calcareous Nannoplankton*, book 2, *Ortholithae*
1099 (*Holococcoliths, Ceratoliths, Ortholiths and Other*), Am. Mus. Nat. Hist. *Micropaleontol. Press*,
1100 New York, 1-279, 1988.

1101 Aubry, M.-P.: *Handbook of Cenozoic Calcareous Nannoplankton*, book 3, *Ortholithae (Pentaliths and*
1102 *Other)*, *Heliolithae (Fasciculiths, Sphenoliths and Other)*, Am. Mus. Nat. Hist. *Micropaleontol.*
1103 *Press*, New York, 1-279, 1989.

1104 Aubry, M.-P.: *Handbook of Cenozoic Calcareous Nannoplankton*, book 4, *Heliolithae (Helicoliths,*
1105 *Cribritoliths, Lopadoliths and Other)*, Am. Mus. Nat. Hist. *Micropaleontol. Press*, New York, 1-
1106 381, 1990.

1107 Aubry, M.-P.: Early Paleogene calcareous nannoplankton evolution: a tale of climatic amelioration,
1108 in: Late Paleocene–early Eocene Biotic and Climatic Events in the Marine and Terrestrial
1109 Records, Columbia University Press, New York, 158-201, 1998.

1110 Aubry, M.-P.: Handbook of Cenozoic Calcareous Nannoplankton, book 5, *Heliolithae (Zygoliths and*
1111 *Rhabdoliths)*, Am. Mus. Nat. Hist. Micropaleontol. Press, New York, 1-368, 1999.

1112 Aubry, M.-P.: Late Paleocene–early Eocene sedimentary history in western Cuba: implications for
1113 the LPTM and for regional tectonic history, *Micropaleontol.*, 45, 5-18, 1999.

1114 Aubry, M.-P. and Salem, R.: The Dababiya Core: A window into Paleocene to early Eocene
1115 depositional history in Egypt based on coccolith stratigraphy, *Stratigraphy*, 9, 287-346, 2012.

1116 Baccelle, L. and Bosellini, A.: Diagrammi per la stima visiva della composizione percentuale nelle
1117 rocce sedimentarie, *Ann. Univ. Ferrara*, 9, 4, 59-62, 1965.

1118 Backman, J.: Late Paleocene to middle Eocene calcareous nannofossil biochronology from the
1119 Shatsky Rise, Walvis Ridge and Italy, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 57, 43-59,
1120 1986.

1121 Backman, J. and Shackleton N. J.: Quantitative biochronology of Pliocene and early Pleistocene
1122 calcareous nannoplankton from the Atlantic, Indian and Pacific Oceans, *Mar. Micropaleontol.*,
1123 8, 141-170, doi:10.1016/0377-8398(83)90009-9, 1983.

1124 Baumann, K.-H., Andrleit, H., Böckel, B., Geisen, M., and Kinkel, H.: The significance of extant
1125 coccolithophores as indicators of ocean water masses, surface water temperature, and
1126 palaeoproductivity: a review, *Paläontol. Zeitsch.*, 79, 93-112, 2005.

1127 Bernoulli, D., and Jenkyns, H.C.: Alpine, Mediterranean, and Central Atlantic Mesozoic facies in
1128 relation to the early evolution of the Tethys, in: Modern and Ancient Geosynclinal
1129 Sedimentation, Society for Sedimentary Geology (SEPM) Special Publication, 19, 19–160,
1130 1974.

1131 Bernoulli, D., Caron, C., Homewood, P., Kalin, O., and Van Stijvenberg, J.: Evolution of continental
1132 margins in the Alps, *Schweiz. Miner. Petrog.*, 59, 165-170, 1979.

1133 Bijl, P. K., Schouten, S., Sluijs, A., Reichart, G. J., Zachos, J. C., Brinkhuis, H.: Early Palaeogene
1134 temperature evolution of the southwest Pacific Ocean, *Nature*, 461, 776-779,
1135 doi:10.1038/nature08399, 2009.

1136 Billard, C. and Innouye, I.: What is new in coccolithophore biology?, in: *Coccolithophores - From*
1137 *Molecular Processes to Global Impact*, Springer, Berlin, 1-29, 2004.

1138 Bordiga, M., Henderiks, J., Tori, F., Monechi, S., Fenero, R., and Thomas, E.: The Eocene–Oligocene
1139 transition at ODP Site 1263, Atlantic Ocean: decreases in nannoplankton size and abundance
1140 and correlation with benthic foraminiferal assemblages, *Clim. Past Discuss.*, 11, 1615-1664,
1141 doi:10.5194/cpd-11-1615-2015, 2015.

1142 Bornemann, A. and Mutterlose, J.: Calcareous nannofossil and $\delta^{13}\text{C}$ records from the Early
1143 Cretaceous of the Western Atlantic Ocean: evidence for enhanced fertilization across the
1144 Berriasian–Valanginian transition, *Palaios*, 23, 821-832, 2008.

1145 Boucot, A. J.: Evolution and Extinction Rate Controls. Elsevier, Amsterdam, The Netherlands, 250p.
1146 1975.

1147 Bown, P. R.: Paleogene calcareous nannofossils from the Kilwa and Lindi areas of coastal Tanzania:
1148 Tanzania Drilling Project Sites 1 to 10, *J. Nannoplankt. Res.*, 27, 21-95, 2005.

1149 Bown, P., and Pearson, P.: Calcareous plankton evolution and the Paleocene/Eocene thermal
1150 maximum event: New evidence from Tanzania, *Mar. Micropaleontol.*, 71, 60-70, doi:
1151 10.1016/j.marmicro.2009.01.005, 2009.

1152 Bown, P. R. and Young, J. R.: Techniques, in: *Calcareous Nannofossil Biostratigraphy*, Chapman &
1153 Hall, London, 16-28, 1998.

1154 Bown, P. R., Lees, J. A., and Young, J. R.: Calcareous nannoplankton evolution and diversity through
1155 time, in: *Coccolithophores - From Molecular Processes to Global Impact*, Springer, Berlin, 481-
1156 508, 2004.

1157 Bralower, T.J.: Evidence of surface water oligotrophy during the Paleocene–Eocene thermal
1158 maximum: nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise,
1159 Weddell Sea, *Paleoceanography*, 17, 1029-1042, doi:10.1029/2001PA000662, 2002.

1160 Bralower, T. J., Mutterlose, J.: Calcareous nannofossil biostratigraphy of ODP Site 865, Allison Guyot,
1161 Central Pacific Ocean: a tropical Paleogene reference section. *Proc Ocean Drill Prog Sci Results*,
1162 143, 31-72, doi:10.2973/odp.proc.sr.143.204.1995, 1995.

1163 Broecker, W. S. and Peng, T.-H.: *Tracers in the Sea*, Eldigio Press, LamontDoherty Geological
1164 Observatory, Palisades, New York, 1-690, 1982.

1165 Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V.: Compositional data analysis in the
1166 geosciences: From theory to practice, *Geol. Soc. London, London, Spec. Publ.*, 264, 1- 12, doi:
1167 10.1144/GSL.SP.2006.264, 2006.

1168 Bukry, D.: Low-latitude coccolith biostratigraphic zonation. *Initial Rep. Deep Sea Drill. Proj.*, 15, 685–703, 1973.

1169 Cati, A., Sartorio, D., and Venturini, S.: Carbonate platforms in the subsurface of the northern
1170 Adriatic area, *Mem. Soc. Geol. It.*, 40, 295-308, 1989.

1171 Corfield, R. M.: Palaeocene oceans and climate: An isotopic perspective, *Earth Sci. Rev.*, 37, 225-252,
1172 doi.org/10.1016/0012-8252(94)90030-2, 1994.

1173 Costa, V., Doglioni, C., Grandesso, P., Masetti, D., Pellegrini, G.B., and Tracanella, E.: *Carta Geologica*
1174 d'Italia, Foglio 063, Belluno: Roma, Servizio Geologico d'Italia, scale 1:50,000, 1 sheet + 74 p.,
1175 1996.

1176 Cramer, B. S., Wright, J. D., Kent, D. V., and Aubry, M.-P.: Orbital climate forcing of $\delta^{13}\text{C}$ excursions
1177 in the late Paleocene– early Eocene (Chrons C24n –C25n), *Paleoceanography*, 18 (4), 1097,
1178 doi:10.1029/2003PA000909, 2003.

1179 Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K. G.: Ocean overturning since
1180 the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation,
1181 *Paleoceanography*, 24, PA4216, doi:10.1029/2008PA001683, 2009.

1182 Dallanave, E., Agnini, C., Muttoni, G., and Rio, D.: Magneto-biostratigraphy of the Cicogna section
1183 (Italy): implications for the late Paleocene-early Eocene time scale, *Earth Planet. Sci. Lett.*, 285,
1184 39-51, doi:10.1016/j.epsl.2009.05.033, 2009.

1185 Dallanave, E., Agnini, C., Bachtadse, V., Muttoni, G., Crampton, J. S., Strong, C. P., Hines, B. R., Hollis,
1186 C. J., and Slotnick., B. S.: Early to middle Eocene magnetostratigraphy of the southwest Pacific
1187 Ocean and climate influence on sedimentation: insights from the Mead Stream section, New
1188 Zealand, *Geol. Soc. Am. Bull.*, 127, 643-660, doi: 10.1130/B31147.1, 2015.

1189 DeConto, R. M., Galeotti, S., Pagani, M., Tracy, D., Schaefer, K. Zhang, T., Pollard, D., and Beerling D.
1190 J.: Past extreme warming events linked to massive carbon release from thawing permafrost,
1191 *Nature*, 484, 87-91, doi:10.1038/nature10929, 2012.

1192 Dickens, G. R.: Methane oxidation during the late Palaeocene thermal maximum, *Bull. Soc. Geol.*
1193 *France*, 171 (1), 37-49, 2000.

1194 Dickens, G. R.: Rethinking the global carbon cycle with a large, dynamic and microbially mediated
1195 gas hydrate capacitor, *Earth Planet. Sci. Lett.*, 213, 169-183, 2003.

1196 Dickens, G. R. and Backman, J.: Core alignment and composite depth scale for the lower Paleogene
1197 through uppermost Cretaceous interval at Deep Sea Drilling Project Site 577, *Newslett. Stratigr.*, 46, 47-68, doi:10.1127/0078-0421/2013/0027, 2013.

1198 Dickens, G. R., Castillo, M. M., and Walker, J. C. G.: A blast of gas in the latest Paleocene: Simulating
1199 first-order effects of massive dissociation of oceanic methane hydrate, *Geology*, 25, 259–262,
1200 1997.

1202
1203 Doglioni, C. and Bosellini, A.: Eoalpine and mesoalpine tectonics in the Southern Alps, *Geol.*
1204 *Rundsch.*, 77, 734-754, 1987.
1205 Dupuis, C., Aubry, M.-P., Steurbaut, E., Berggren, W.A., Ouda, K., Magioncalda, R., Cramer, B.S., Kent,
1206 D.V., Speijer, R.P., and Heilmann-Clausen, C.: The Dababiya Quarry section: lithostratigraphy,
1207 geochemistry and paleontology. *Micropaleontology*, 49 (suppl. 1), 41–59. 2003.
1208 Erba, E., Bottini, C., Weissert, H. J., Keller, C. E.: Calcareous nannoplankton response to surface-
1209 water acidification around Oceanic Anoxic Event 1a. *Science* 329, 428, doi:
1210 10.1126/science.1188886, 2010.
1211 Frank, T. D., Arthur, M. A., and Dean W. E.: Diagenesis of Lower Cretaceous pelagic carbonates,
1212 North Atlantic: paleoceanographic signals obscured, *J. Foraminiferal Res.*, 29, 340–351, 1999.
1213 Galeotti, S., Krishnan, S., Pagani, M., Lanci, L., Gaudio, A., Zachos, J. C., Monechi, S., Morelli, G., and
1214 Lourens, L.: Orbital chronology of early Eocene hyperthermals from the Contessa Road
1215 section, central Italy, *Earth Planet. Sci. Lett.*, 290, 192-200, doi:10.1016/j.epsl.2009.12.021,
1216 2010.
1217 Geisen, M., Young, J. R., Probert, I., Sáez, A. G., Baumann, K.-H., Bollmann, J., Cros, L., De Vargas, C.,
1218 Medlin, L. K., and Sprengel, C.: Species level variation in coccolithophores, in:
1219 *Coccolithophores –From Molecular Processes to Global Impact*, Springer, Berlin, 327-366,
1220 2004.
1221 Gibbs, S. J., Shackleton, N. J., and Young, J. R.: Orbitally forced climate signals in mid-Pliocene
1222 nannofossil assemblages, *Mar. Micropaleontol.*, 51, 39-56, 2004.
1223 Gibbs, S. J., Bown, P. R., Sessa, J. A., Bralower, T. J., and Wilson, P. A.: Nannoplankton extinction and
1224 origination across the Paleocene-Eocene thermal maximum, *Science*, 314, 1770-1773,
1225 doi:10.1126/science.1133902, 2006a.
1226 Gibbs, S. J., Bralower, T. J., Bown, P. R., Zachos, J. C., and Bybell, L.M.: Shelf and open-ocean
1227 calcareous phytoplankton assemblages across the Paleocene–Eocene thermal maximum:
1228 implications for global productivity gradients, *Geology*, 34, 233-236, doi:10.1130/G22381.1,
1229 2006b.
1230 Gibbs, S. J., Bown, P. R., Murphy, B. H., Sluijs, A., Edgar, K. M., Pälike, H., Bolton, C. T., and Zachos,
1231 J.C.: Scaled biotic disruption during early Eocene global warming events, *Biogeosciences*, 9,
1232 4679-4688, doi:10.5194/bg-9-4679-2012, 2012.
1233 Giusberti, L., Rio, D., Agnini, C., Backman, J., Fornaciari, E., Tateo, F., and Oddone, M.: Mode and
1234 tempo of the Paleocene-Eocene Thermal Maximum in an expanded section in the Venetian
1235 Pre-Alps, *Geol. Soc. Am. Bull.*, 119, 391-412, doi:10.1130/B25994.1, 2007.
1236 Giusberti, L., Boscolo Galazzo, F., and Thomas, E.: Benthic foraminifera at the Paleocene/Eocene
1237 thermal maximum in the western Tethys (Forada section): variability in climate and
1238 productivity, *Clim. Past Discuss.*, 11, 4205-4272, doi:10.5194/cpd-11-4205-2015,
1239 2015. Grandesso, P.: *Biostratigrafia delle formazioni terziarie del Vallone Bellunese*, *Boll. Soc.*
1240 *Geol. Ital.*, 94, 1323-1348, 1976.
1241 Hallock, P.: Fluctuations in the trophic resource continuum: A factor in global diversity cycles?,
1242 *Paleoceanography*, 2, 457–471, 1987.
1243 Hammer, Ø, Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological statistics software package for
1244 education and data analysis, *Palaeontol. Electron.*, 4, 9 pp., 2001.
1245 Haq, B. U. and Lohmann, G. P.: Early Cenozoic calcareous nannoplankton biogeography of the
1246 Atlantic Ocean, *Mar. Micropaleontol.*, 1, 119-194, 1976.
1247
1248 Harris, A.D., Miller, K.G., Browning, J. V., Sugarman, P.J., Olsson, R.K., Cramer, B.S. and Wright, J.D.;
1249 Integrated stratigraphic studies of Paleocene- lowermost Eocene sequences, New Jersey

1250 Coastal Plain: Evidence for glacioeustatic control. *Paleoceanography*, 25, PA3211,
1251 doi:10.1029/2009PA001800, 2010.Hay, W. W.: Carbonate fluxes and calcareous
1252 nannoplankton, in: *Coccolithophores - From Molecular Processes to Global Impact*, Springer,
1253 Berlin, 508-528, 2004.

1254 Höönsch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S.J., Sluijs, A., Zeebe, R., Kump, L.,
1255 Martindale, R. C., Greene, S. E., Kiessling, W., Ries, J., Zachos, J. C., Royer, D. L., Barker, S.,
1256 Marchitto Jr., T. M., Moyer, R., Pelejero, C., Ziveri, P., Foster, G. L., and Williams, B.: The
1257 geological record of ocean acidification, *Science*, 335, 1058-1063,
1258 doi:10.1126/science.1208277, 2012.

1259 Hollis, C.J., Taylor, K. W. R., Handley, L., Pancost, R. D., Huber, M., Creech, J. B., Hines, B.R., Crouch,
1260 E. M., Morgans, H. E. G., Crampton, J. S., Gibbs, S., Pearson, P. N., and Zachos, J. C.: Early
1261 Paleogene temperature history of the southwest Pacific Ocean: Reconciling proxies and
1262 models, *Earth Planet. Sci. Lett.*, 349-350, 53-66, 2012.

1263 Huber, M., and Caballero, R.: The Early Eocene equable climate problem revisited, *Clim. Past*, 7, 603-
1264 633, 2011.

1265 Iglesias-Rodriguez, M. D., Halloran, P. R., Rickaby, R. E. M., Hall, I. R., Colmenero-Hidalgo, E., Gittins,
1266 J. R., Green, D. R. H., Tyrrell, T., Gibbs, S. J., Von Dassow, P., Rehm, E., Armbrust, E. V., and
1267 Boessenkool, K. P.: Phytoplankton calcification in a high-CO₂ world, *Science*, 320, 336-340,
1268 doi:10.1126/science.1154122, 2008.

1269 Jiang, S., and Wise Jr., S.W: Distinguishing the influence of diagenesis on the paleoecological
1270 reconstruction of nannoplankton across the Paleocene/Eocene Thermal Maximum: An
1271 example from the Kerguelen Plateau, southern Indian Ocean, *Mar. Micropaleontol.*, 72, 49-
1272 59, doi: 10.1016/j.marmicro.2009.03.003, 2009.

1273 Keeling, C. D. and Whorf, T. P.: Atmospheric carbon dioxide record from Mauna Loa, in: *Oak Ridge
1274 Laboratory Trends: A Compendium of Data on Global Change*. Carbon Dioxide Information
1275 Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,
1276 Tennessee, U.S.A., <http://cdiac.esd.ornl.gov/trends/co2/sio-keel-flask/sio-keel-flask.html>,
1277 2004.

1278 Kirtland-Turner, S., Sexton, P. F., Charles, C. D., and Norris, R. D.: Persistence of carbon release
1279 events through the peak of early Eocene global warmth, *Nature Geosci.*, 7, 748-751,
1280 doi:10.1038/ngeo2240, 2014.

1281 Kleypas, J. A., Feely, R. A., Fabry, V. J., Langdon, C., Sabine, C. L., and Robbins, L. L.: Impacts of ocean
1282 acidification on coral reefs and other marine calcifiers: A guide for future research, *Contrib.*
1283 No. 2857, NOAA/Pacific Marine Environm. Lab., 88 pp., 2006.

1284 Komar, N., Zeebe, R. E., and Dickens, G.R.: Understanding long-term carbon cycle trends: The late
1285 Paleocene through the early Eocene. *Paleoceanography*, 28, 650-662,
1286 doi:10.1002/palo.20060, 2013.

1287 Krishnan, S., Pagani, M., Agnini, C.: Leaf waxes as recorders of paleoclimatic changes during the
1288 Paleocene-Eocene Thermal Maximum: Regional expressions from the Belluno Basin. *Organic
1289 Geochemistry*, 80, 8-17, doi: 10.1016/j.orggeochem.2014.12.005, 2015.

1290 Kroopnick, P. M.: The distribution of ¹³C of ΣCO₂ in the world oceans, *Deep Sea Res. Part A*, 32, 57-
1291 84, 1985.

1292 Kucera, M., Malmgren, B.A.: Logratio transformation of compositional data — a resolution of the
1293 constant sum constraint, *Mar. Micropaleontol.*, 34, 117-120, 1998.Kump, L. R., Bralower, T. J.,
1294 and Ridgwell, A.: Ocean acidification in deep time, *Oceanography*, 22, 94-107, 2009.

1295 Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C., and Paytan, A.: Early Cenozoic decoupling of the
1296 global carbon and sulfur cycles, *Paleoceanography*, 18, 1090, doi:10.1029/2003PA000908,
1297 2003.

1298 Langer, G., M., Geisen, Baumann, K.-H., Kläs, J., Riebesell, U., Thoms, S., and Young, J. R.: Species-
1299 specific response of calcifying algae to changing seawater carbonate chemistry, *Geochem.*
1300 *Geophys. Geosyst.*, 7, Q09006, doi:10.1029/2005GC001227, 2006.

1301 Leon-Rodriguez, L. and Dickens, G. R.: Constraints on ocean acidification associated with rapid and
1302 massive carbon injections: The early Paleogene record at Ocean Drilling Program Site 1215,
1303 Equatorial Pacific Ocean, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 298, 409-420,
1304 doi:org/10.1016/j.palaeo.2010.10.029, 2010.

1305 Lohbeck, K. T., Riebesell, U., and Reusch, T. B. H.: Adaptive evolution of a key phytoplankton species
1306 to ocean acidification, *Nature Geosci.*, 5, 346-351, doi:10.1038/ngeo1441, 2012.

1307 Lourens, L. J., Sluijs, A., Kroon, D., Zachos, J. C., Thomas, E., Röhl, U., Bowles, J., and Raffi, I.:
1308 Astronomical pacing of late Palaeocene to early Eocene global warming events, *Nature*, 435,
1309 1083-1087, doi:10.1038/nature03814, 2005.

1310 Lunt, D. J., Ridgwell, A., Sluijs, A., Zachos, J. C., Hunter, S., and Haywood, A.: A model for orbital
1311 pacing of methane hydrate destabilization during the Palaeogene, *Nature Geosci.*, 4, 775-778,
1312 doi:10.1038/ngeo1266, 2011.

1313 MacArthur, R. and Wilson, E.O.: *The Theory of Island Biogeography*, Princeton University Press, ISBN
1314 0-691-08836-5M, 1967.

1315 Marino, M., Maiorano, P., and Lirer, F.: Changes in calcareous nannofossil assemblages during the
1316 Mid-Pleistocene Revolution, *Mar. Micropaleontol.*, 69, 70-90,
1317 doi:10.1016/j.marmicro.2007.11.010, 2008.

1318 Martini, E.: Standard Tertiary and Quaternary calcareous nannoplankton zonation, in: *Proceedings*
1319 of the 2nd Planktonic Conference, 2, *Tecnoscienza*, Roma, 739-785, 1971.

1320 Matter, A., Douglas, R. G., and Perch-Nielsen, K: Fossil preservation, geochemistry and diagenesis of
1321 pelagic carbonates from Shatsky Rise, northwest Pacific, *Init. Rep. DSDP*, 32, 891-922, 1975.

1322 Mixon, R.B. and Powars D.S.: Folds and faults in the inner Coastal Plain of Virginia and Maryland:
1323 their effect on the distribution and thickness of Tertiary rock units and local geomorphic
1324 history. In Frederiksen N.O., and Kraft K. (Eds.), *Cretaceous and Tertiary Stratigraphy,*
1325 paleontology, and structure, southwestern Maryland and northeastern Virginia. *American*
1326 *Association of Stratigraphic Palynologists Field Trip Volume and Guidebook* (1984), 112-122,
1327 1994

1328 Milliman, J. D.: Production and accumulation of calcium carbonate in the ocean: Budget of a
1329 nonsteady state. *Global Biogeochemical Cycles*, 7, 927-957, doi: 10.1029/93GB02524, 1993.

1330 Monechi, S., Angori, E., von Salis, K.: Calcareous nannofossil turnover around the Paleocene/Eocene
1331 transition at Alamedilla (southern Spain). *Bull. Soc. Geol. Fr.*, 171, 477-489, 2000.

1332 Mutterlose, J., Linnert, C., and Norris, R.: Calcareous nannofossils from the Paleocene-Eocene
1333 Thermal Maximum of the equatorial Atlantic (ODP Site 1260B): Evidence for tropical warming,
1334 *Mar. Micropaleontol.*, 65, 13-31, doi:10.1016/j.marmicro.2007.05.004, 2007.

1335 Nicolo, M. J., Dickens, G. R., Hollis, C. J., and Zachos, J. C.: Multiple early Eocene hyperthermals: Their
1336 sedimentary expression on the New Zealand continental margin and in the deep sea, *Geology*,
1337 35, 699-702, doi:10.1130/G23648A.1, 2007.

1338 Norris, R.D., Wilson, P.A, Blum, P., and the Expedition 342 Scientists: Expedition 342 summary. *Proc.*
1339 *IODP*, 342, 1-149, doi:10.2204/iodp.proc.342.2014, 2014.

1340 Ogg, J.G., and Bardot, L.: Aptian through Eocene magnetostratigraphic correlation of the Blake Nose
1341 Transect (Leg 171B), Florida continental margin, *Proc. ODP, Sci. Results*, 171B, 1-58,
1342 doi:10.2973/odp.proc.sr.171B.104.2001 2001.

1343 Okada, H., and Bukry, D.: Supplementary modification and introduction of code numbers to the low-
1344 latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975), *Mar. Micropaleontol.*, 5, 321-
1345 325, doi:10.1016/0377-8398(80)90016-X, 1980.

1346 Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K., Klaus, A., Acton, G. D., Anderson,
1347 L., Backman, J., Baldauf, J. G., Beltran, C., Bohaty, S. M., Bown, P. R., Busch, W. H., Channell, J.
1348 E. T., Chun, C. O. J., Delaney, M. L., Dewang, P., Dunkley Jones, T., Edgar, K. M., Evans, H. F.,
1349 Fitch, P., Foster, G. L., Gussone, N., Hasegawa, H., Hathorne, E. C., Hayashi, H., Herrle, J. O.,
1350 Holbourn, A. E. L., Hovan, S. A., Hyeong, K., Iijima, K., Ito, T., Kamikuri, S.-I., Kimoto, K., Kuroda,
1351 J., Leon-Rodriguez, L., Malinverno, A., Moore, T. C., Murphy, B., Murphy, D. P., Nakamura, H.,
1352 Ogane, K., Ohneiser, C., Richter, C., Robinson, R. S., Rohling, E. J., Romero, O. E., Sawada, K.,
1353 Scher, H. D., Schneider, L., Sluijs, A., Takata, H., Tian, J., Tsujimoto, A., Wade, B. S., Westerhold,
1354 T., Wilkens, R. H., Williams, T., Wilson, P. A., Yamamoto, Y., Yamamoto, S., Yamazaki, T., and
1355 Zeebe, R. E.: A Cenozoic record of the equatorial Pacific carbonate compensation depth,
1356 *Nature*, 488, 609-614, doi:10.1038/nature11360, 2012

1357 Payros, A., Ortiz, S., Millán, I., Arostegi, J., Orue-Etxebarria, X., and Apellaniz, E.: Early Eocene climatic
1358 optimum: Environmental impact on the north Iberian continental margin, *Geol. Soc. Am. Bull.*, 127, 1632-1644doi:10.1130/B31278.1, 2015.

1360 Pearson, P. N., van Dongen, B. E., Nicholas, C. J., Pancost, R. D., Schouten, S., Singano, J. M., and
1361 Wade, B. S.: Stable warm tropical climate through the Eocene Epoch, *Geology*, 35, 211-214,
1362 2007.

1363 Perch-Nielsen, K.: Cenozoic calcareous nannofossils, in: *Plankton stratigraphy*, Cambridge Univ.
1364 Press, New York, 427-554, 1985.

1365 Pianka, E. R.: On r and K selection. *Amer. Natural.*, 104, 592-597, doi:10.1086/282697, 1970.

1366 Premoli Silva, I. and Sliter, W.V.: Cretaceous paleoceanography: Evidence from planktonic
1367 foraminiferal evolution, *Geol. Soc. Am. Spec. Pap.*, 332, 301-328, doi:10.1130/0-8137-2332-
1368 9.301, 1999.

1369 Raffi, I., Backman, J., and Pälike, H.: Changes in calcareous nannofossil assemblage across the
1370 Paleocene/Eocene transition from the paleo-equatorial Pacific Ocean, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 226, 93-126, doi:10.1016/j.palaeo.2005.05.006, 2005.

1372 Raffi, I., and De Bernardi, B.: Response of calcareous nannofossils to the Paleocene-Eocene Thermal
1373 Maximum: Observations on composition, preservation and calcification in sediments from
1374 ODP Site 1263 (Walvis Ridge - SW Atlantic), *Mar. Micropaleontol.*, 69, 119-138, doi:
1375 10.1016/j.marmicro.2008.07.002, 2008.

1376 Raffi, I., Backman, J., Zachos, J.C., Sluijs, A.: The response of calcareous nannofossil assemblages to
1377 the Paleocene Eocene Thermal Maximum at the Walvis Ridge in the South Atlantic. *Mar. Micropaleontol.*, 70, 201-212, doi:10.1016/j.marmicro.2008.12.005, 2009.

1379 Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, R. E., and Morel, F. M. M.: Reduced
1380 calcification of marine plankton in response to increased atmospheric CO₂, *Nature*, 407, 364-
1381 367, doi:10.1038/35030078, 2000.

1382 Riebesell, U., Bellerby, R. G. J., Engel, A., Fabry, V. J., Hutchins, D. A., Reusch, K.G., Schulz, T. B. H.,
1383 and Morel, F. M. M.: Comment on "Phytoplankton calcification in a high-CO₂ world", *Science*,
1384 322, 1466b, doi:10.1126/science.1161096, 2008.

1385 Romein, A.J.T.: Lineages in early Paleogene calcareous nannoplankton. *Utrecht Micropaleont. Bull.*,
1386 22, 1-231, 1979.

1387 Rost, B. and Riebesell, U.: Coccolithophores and the biological pump: responses to environmental
1388 changes, in: *Coccolithophores - From Molecular Processes to Global Impact*, Springer, Berlin,
1389 99-125, 2004.

1390 Roth, P.H.: Jurassic and Lower Cretaceous calcareous nannofossils in the western North Atlantic (Site
1391 534): biostratigraphy, preservation, and some observations on biogeography and
1392 paleoceanography, *DSDP Init. Repts.*, 76, 587-621, 1983.

1393 Roth, P.H., and Thierstein, H.R.: Calcareous nannoplankton: Leg XIV of the Deep Sea Drilling Project,
1394 DSDP Init. Repts., 14, 421-486, 1972.

1395 Schrag, D.P., DePaolo, D.J., and Richter, F.M.: Reconstructing past sea surface temperatures:
1396 correcting for diagenesis of bulk marine carbonate, *Geochim. Cosmochim. Acta*, 59, 2265-
1397 2278, 1995.

1398 Scholle P. A., and Arthur, M. A.: Carbon isotope fluctuations in Cretaceous pelagic limestones:
1399 potential stratigraphic and petroleum exploration tool, *Amer. Assoc. Pet. Geol. Bulletin*, 64,
1400 67-87, 1980.

1401 Self-Trail, J. M., Powars, D. S., Watkins, D. K., and Wandless, G.: Calcareous nannofossil assemblage
1402 changes across the Paleocene-Eocene thermal maximum: Evidence from a shelf setting, *Mar.*
1403 *Micropaleontol.*, 92-93, doi:10.1016/j.marmicro.2012.05.003, 2012.

1404 Shackleton, N. J.: Paleogene stable isotope events, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 57, 91-
1405 102, 1986.

1406 Shamrock, J.L.: Eocene calcareous nannofossil biostratigraphy, paleoecology and biochronology of
1407 ODP Leg 122 Hole 762c, Eastern Indian Ocean (Exmouth Plateau). PhD thesis, University of
1408 Nebraska, 2010.

1409 Slotnick, B. S., Dickens, G. R., Nicolo, M. J., Hollis, C. J., Crampton, J. S., Zachos, J. C., and Sluijs, A.:
1410 Large-amplitude variations in carbon cycling and terrestrial weathering during the latest
1411 Paleocene and earliest Eocene: The record at Mead Stream, New Zealand, *J. Geol.*, 120, 1-19,
1412 doi:10.1086/666743, 2012.

1413 Slotnick, B. S., Lauretano, V., Backman, J., Dickens, G. R., Sluijs, A., and Lourens, L.: Early Paleogene
1414 variations in the calcite compensation depth: new constraints using old borehole sediments
1415 from across Ninetyeast Ridge, central Indian Ocean, *Clim. Past*, 11, 473-493, , doi:10.5194/cp-
1416 11-473-2015, 2015a.

1417 Slotnick, B. S., Dickens, G. R., Hollis, C. J., Crampton, J. S., Strong, C. P., and Phillips, A.: The onset of
1418 the Early Eocene Climatic Optimum at Branch Stream, Clarence River valley, New Zealand, New
1419 Zealand. *J. Geol. Geophys.*, 58, 262-280 doi: 10.1080/00288306.2015.1063514, 2015b.

1420 Spofforth, D. J. A., Agnini, C., Pälike, H., Rio, D., Fornaciari, E., Giusberti, L., Luciani, V., Lanci, L.,
1421 Muttoni, G., and Bohaty, S. M.: Organic carbon burial following the Middle Eocene Climatic
1422 Optimum (MECO) in the central - western Tethys, *Paleoceanography*, 25, PA3210,
1423 doi:10.1029/2009PA001738, 2010.

1424 Stefani, C. and Grandesso, P.: Studio preliminare di due sezioni del Flysch bellunese, *Rend. Soc. Geol.*
1425 It., 14, 157-162, 1991.

1426 Stillman, J. H., and Paganini, A. W., Biogeochemical adaptation to ocean acidification, *J. Exper.*
1427 *Biology*, 218, 1946-1955, doi:10.1242/jeb.115584, 2015.

1428 Stoll, H.M., and Bains, S.: Coccolith Sr/Ca records of productivity during the Paleocene-Eocene
1429 thermal maximum from the Weddell Sea. *Paleoceanography*, 18(2), 1049,
1430 doi:10.1029/2002PA000875, 2003.

1431 Tagliabue, A., and L. Bopp: Towards understanding global variability in ocean carbon-13, *Global*
1432 *Biogeochem. Cycles*, 22, GB1035, doi:10.1029/2007GB003037, 2008.

1433 Thierstein, H. R., Geitzenauer, K. R., Molfino, B., and Shackleton, N. J.: Global synchronicity of late
1434 Quaternary coccolith datum levels: validation by oxygen isotopes, *Geology*, 5, 400-404, 1977.

1435 Thibault, N. and Gardin, S.: The calcareous nannofossil response to the end-Cretaceous warm event
1436 in the tropical Pacific, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 291, 239-252,
1437 doi:10.1016/j.palaeo.2010.02.036, 2010.

1438 Tipple, B. J., Pagani, M., Krishnan, S., Dirghangi, S. S., Galeotti, S., Agnini, C., Giusberti, L., and Rio,
1439 D.: Coupled high-resolution marine and terrestrial records of carbon and hydrologic cycles

1440 variations during the Paleocene-Eocene Thermal Maximum (PETM), *Earth Planet. Sci. Lett.*,
1441 311, 82-92, doi:10.1016/j.epsl.2011.08.045, 2011.

1442 Toffanin, F., Agnini, C., Fornaciari, E., Rio, D., Giusberti, L., Luciani, V., Spofforth, D. J. A., and Pälike,
1443 H.: Changes in calcareous nannofossil assemblages during the Middle Eocene Climatic
1444 Optimum: clues from the central-western Tethys (Alano section, NE Italy), *Mar. Micropaleontol.*, 81, 22-31, doi:10.1016/j.marmicro.2011.07.002, 2011.

1445 Toffanin, F., Agnini, C., Rio, D., Acton, G., and Westerhold, T.: Middle Eocene to early Oligocene
1446 calcareous nannofossil biostratigraphy at IODP Site U1333 (equatorial Pacific),
1447 *Micropaleontol.*, 59, 69-82, 2013.

1448 Tremolada, F. and Bralower, T. J.: Nannofossil assemblage fluctuations during the Paleocene–
1449 Eocene Thermal Maximum at Sites 213 (Indian Ocean) and 401 (North Atlantic Ocean):
1450 palaeoceanographic implications, *Mar. Micropaleontol.*, 52, 107-116,
1451 doi:10.1016/j.marmicro.2004.04.002, 2004.

1452 Vandenbergh, N., Hilgen, F. J., and Speijer, R. P.: The Paleogene Period, in: *The Geologic Time Scale*
1453 2012, Amsterdam, the Netherlands (Elsevier BV), 855–922, 2012.

1454 Watkins, D. K. and Self-Trail, J. M.: Calcareous nannofossil evidence for the existence of the Gulf
1455 Stream during the late Maastrichtian, *Paleoceanography*, 20, Pa3006,
1456 doi:10.1029/2004pa001121, 1992.

1457 Wei, W., and Wise Jr. S. W.: Biogeographic gradients of middle Eocene–Oligocene calcareous
1458 nannoplankton in the South Atlantic Ocean, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 79, 29–
1459 61, 1990.

1460 Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale, V., Bowles, J., and Evans, H. F.:
1461 Astronomical calibration of the Paleocene time, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*,
1462 257, 377-403, doi:10.1016/j.palaeo.2007.09.016, 2008.

1463 Westerhold, T., Röhl, U., Donner, B., McCarren, H.K. and Zachos, J.C.: A complete high - resolution
1464 Paleocene benthic stable isotope record for the central Pacific (ODP Site 1209).
1465 *Paleoceanography*, 26, PA2216,doi:10.1029/2010PA002092, 2011

1466 Winter, A., Jordan, R.W., and Roth, P.H.: Biogeography of living coccolithophores. in:
1467 *Coccolithophores* edited by Winter, A., and Siesser, W.G., Cambridge Univ. Press, Cambridge
1468 , 161-177, 1994.

1469 Winterer, E. L. and Bosellini, A.: Subsidence and sedimentation on Jurassic passive continental
1470 margin, Southern Alps, Italy, *Am. Assoc. Petr. Geol. Bull.*, 65, 394-421, 1981.

1471 Young, J. R., Geisen, M., and Probert, I.: A review of selected aspects of coccolithophore biology with
1472 implications for paleobiodiversity estimation, *Micropaleontology*, 51, 267-288, 2005.,

1473 Zachos, J.C., Kroon, D., Blum, P., et al.: Early Cenozoic Extreme Climates: The Walvis Ridge Transect.
1474 *Proc. Ocean Drill. Program, Initial Rep.* 208 doi:10.2973/odp.proc.ir.208.2004, 2004.

1475 Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M.,
1476 Raffi, I., Lourens, L. J., McCarren, H., and Kroon, D.: Rapid acidification of the ocean during the
1477 Paleocene-Eocene Thermal Maximum, *Science* 308, 1611-1615,
1478 doi:10.1126/science.1109004, 2005.

1479 Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming
1480 and carbon-cycle dynamics, *Nature*, 451, 279-283, doi:10.1038/nature06588, 2008.

1481 Zachos, J. C., McCarren, H., Murphy, B., Röhl, U., and Westerhold, T.: Tempo and scale of late
1482 Paleocene and early Eocene carbon isotope cycles: Implications for the origin of
1483 hyperthermals. *Earth Planet. Sci. Lett.*, 299, 242-249, doi:10.1016/j.epsl.2010.09.004, 2010.

1484 Zattin, M., Cuman, A., Fantoni, R., Martin, S., Scotti, P., and Stefani, C.: From middle Jurassic heating
1485 to Neogene cooling: The thermochronological evolution of the southern Alps, *Tectonophysics*,
1486 414, 191-202, doi:10.1016/j.tecto.2005.10.020, 2006.

1487

1488 Zeebe, R. E. and Westbroek, P.: A simple model for the CaCO_3 saturation state of the ocean: The
1489 "Strangelove", the "Neritan", and the "Cretan" ocean, *Geochem. Geophys. Geosyst.*, 4, 1104,
1490 doi:10.1029/2003GC000538, 2003, 2003.

1491 Zeebe, R. E., Zachos, J. C., and Dickens, G. R.: Carbon dioxide forcing alone insufficient to explain
1492 Paleocene-Eocene Thermal Maximum warming, *Nature Geosci.*, 2, 576-580,
1493 doi:10.1038/NGEO578, 2009.

1494 Ziveri, P., Young, J., and van Hinte J. E.: Coccolithophore export production and accumulation rates.
1495 in: On determination of sediment accumulation rates, *GeoResearch Forum*, Trans Tech
1496 Publications LTD, Switzerland, 5, 41-56, 1999.

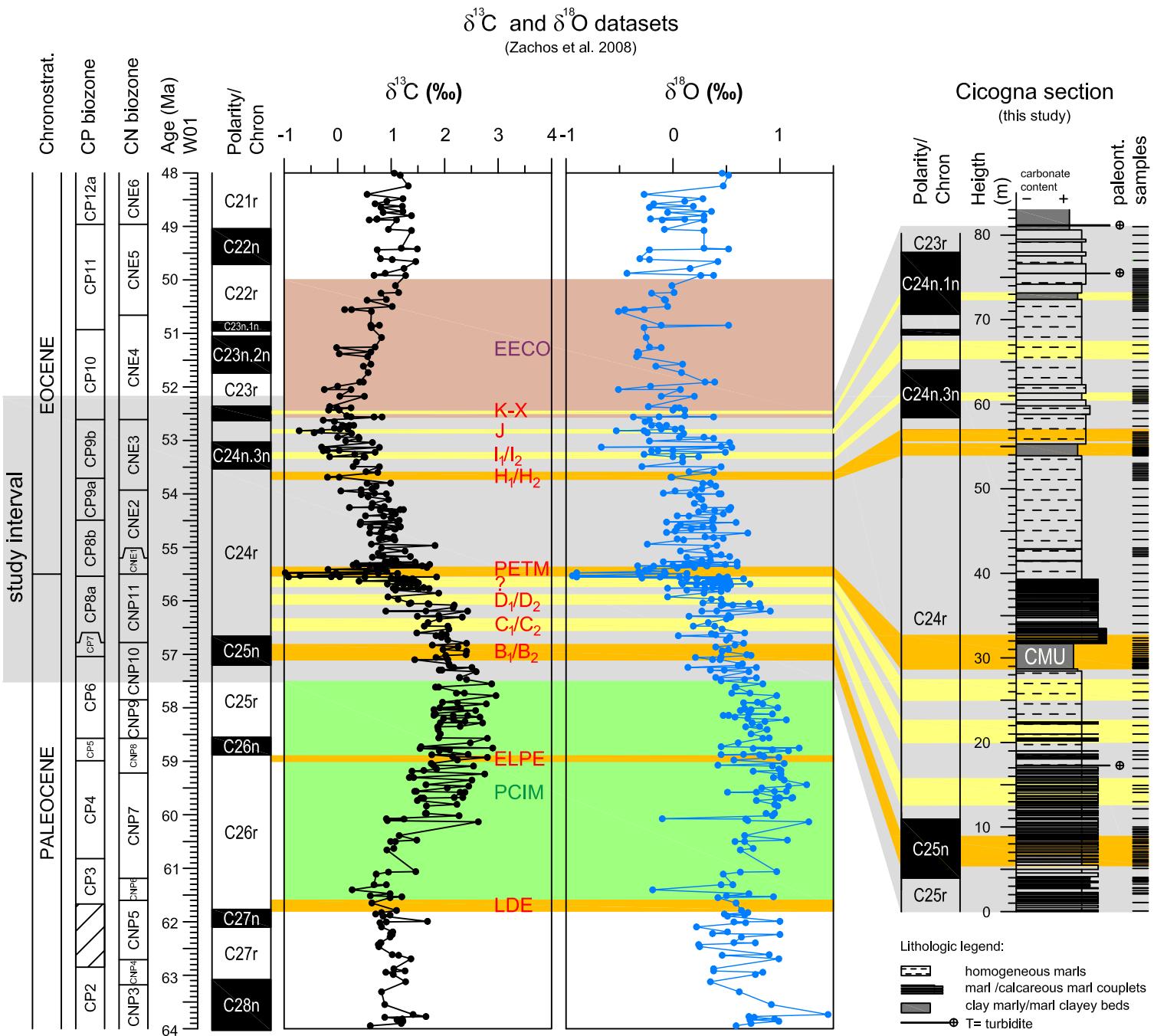
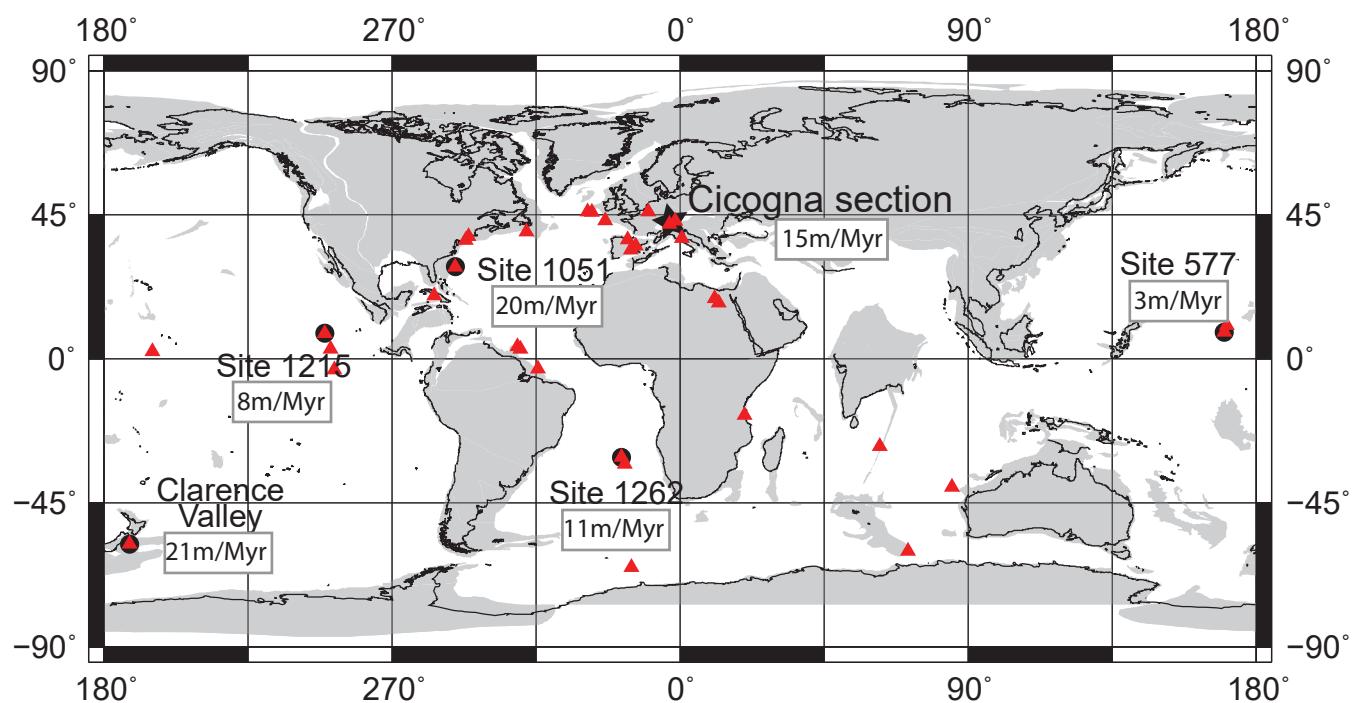



Figure 1_ Agnini et al.

55 Ma Reconstruction

Figure 2_Agnini et al.

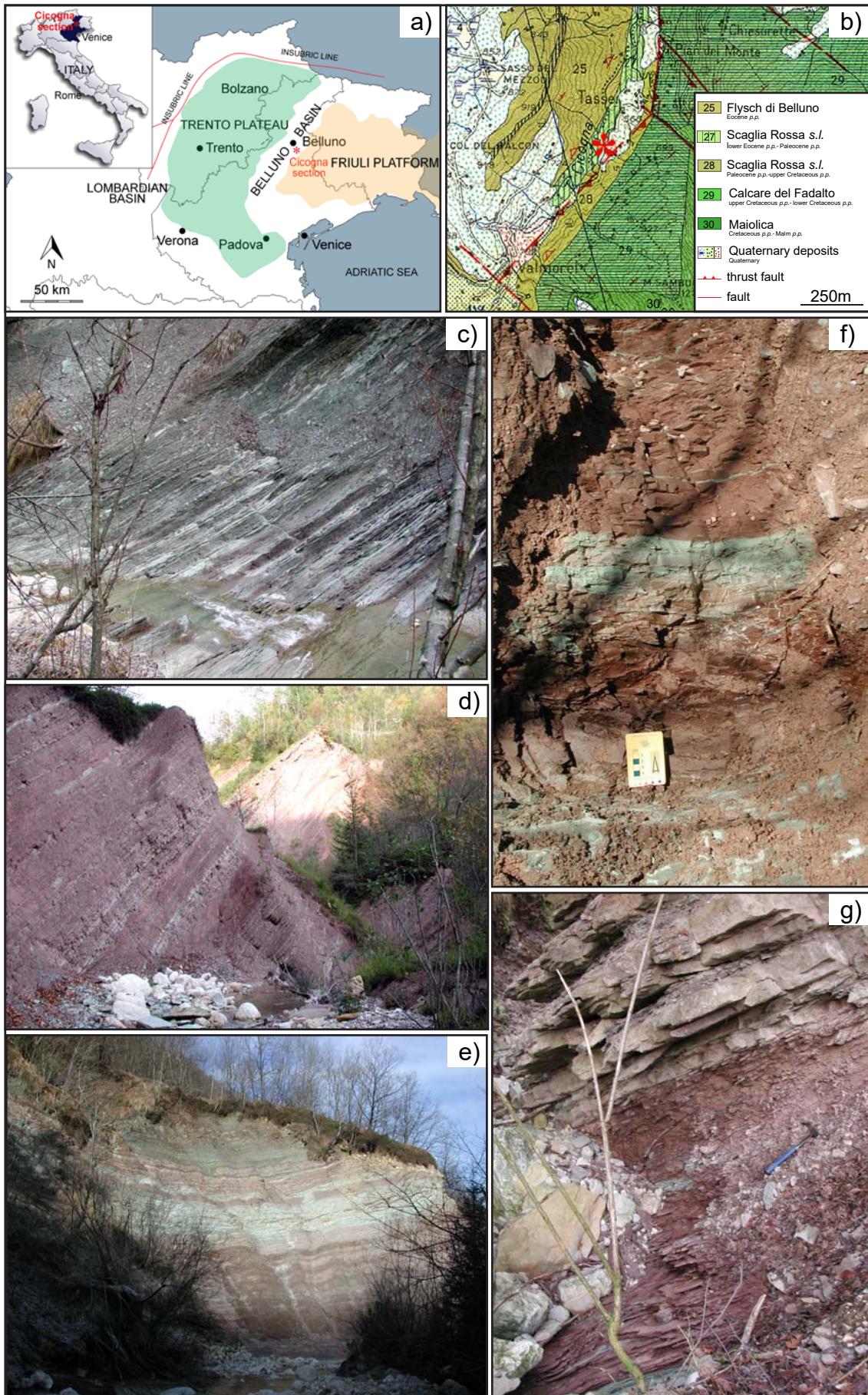


Figure 3_Agnini et al.

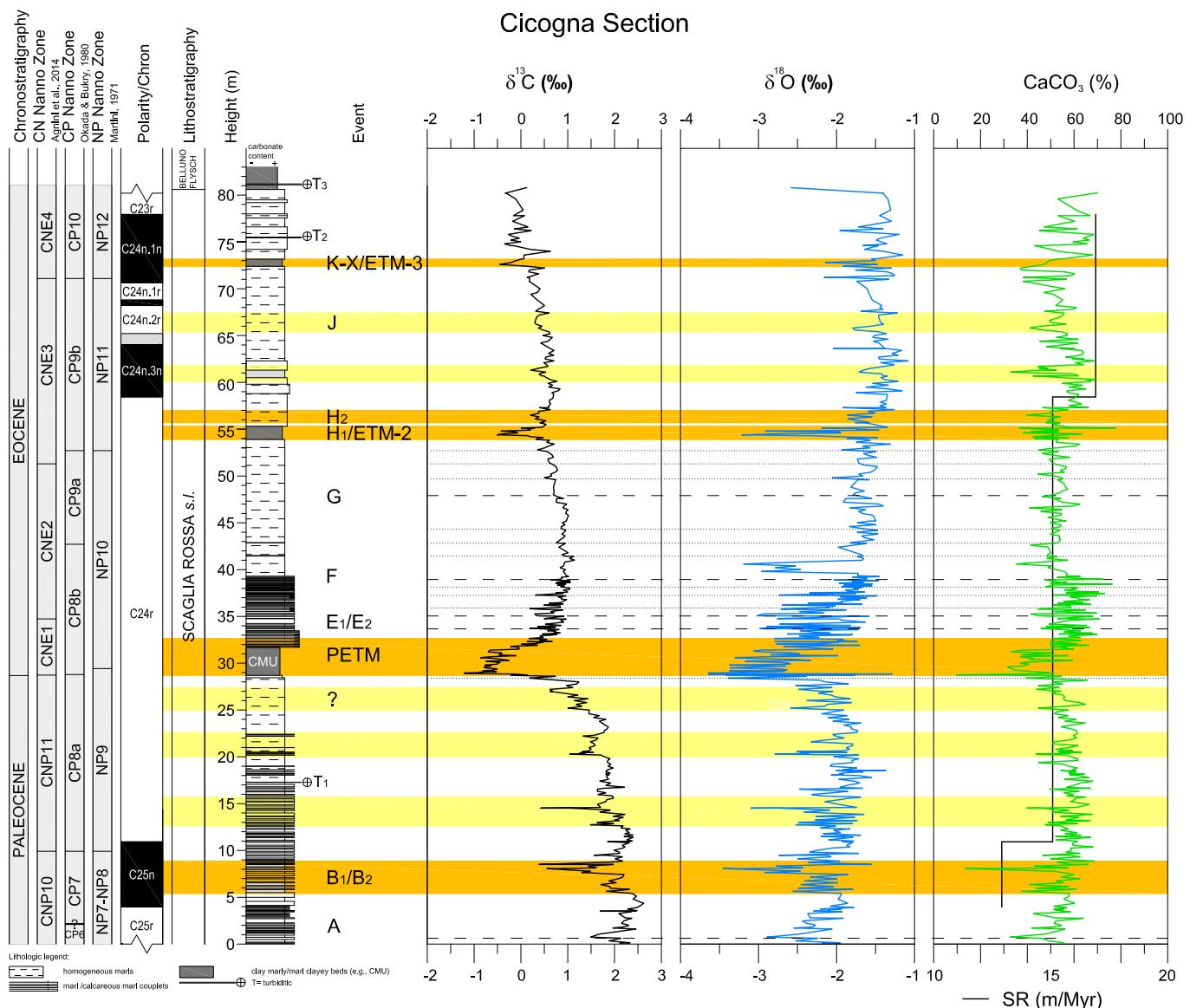


Figure 4_Agnini et al

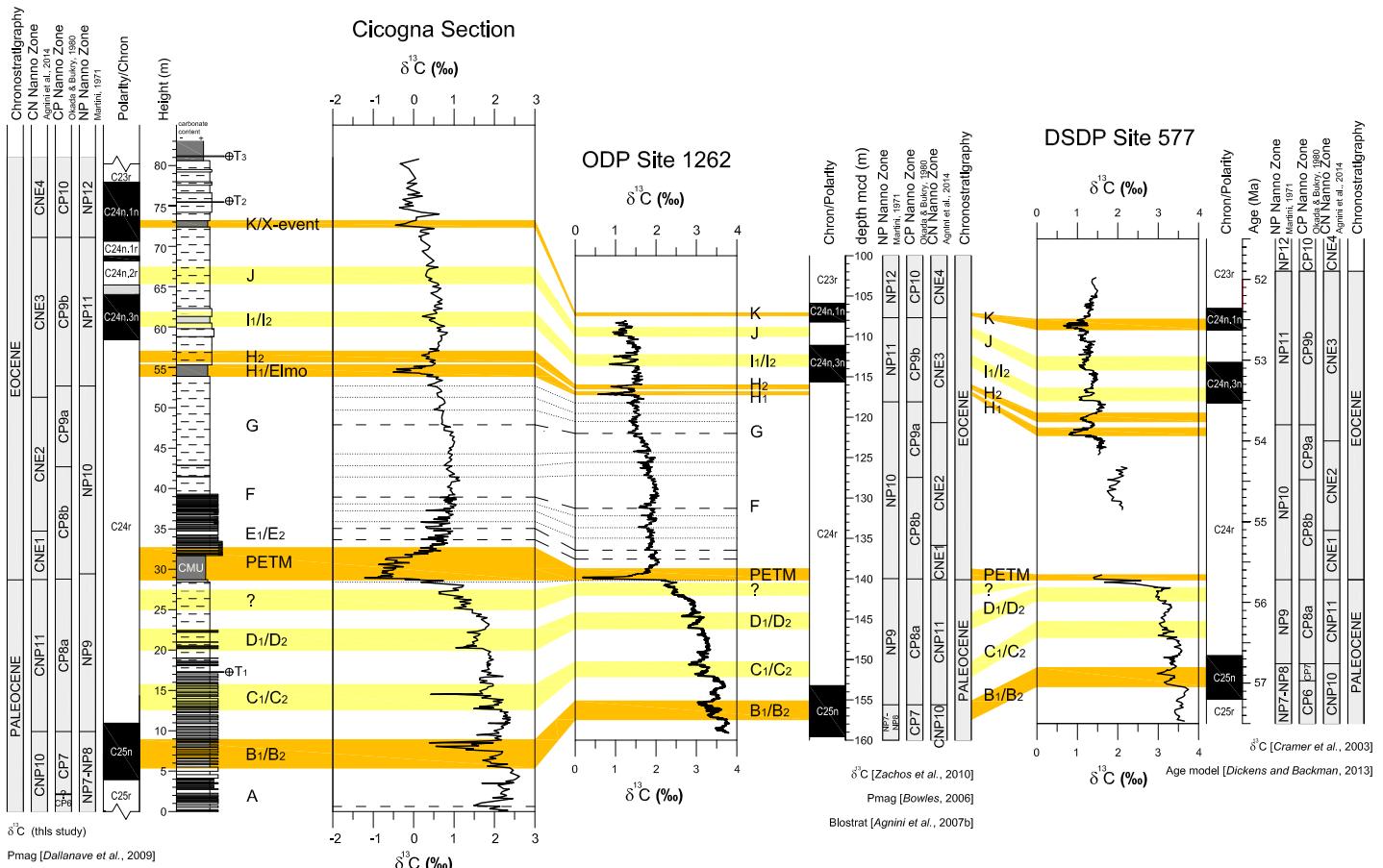


Figure 5 Agnini et al

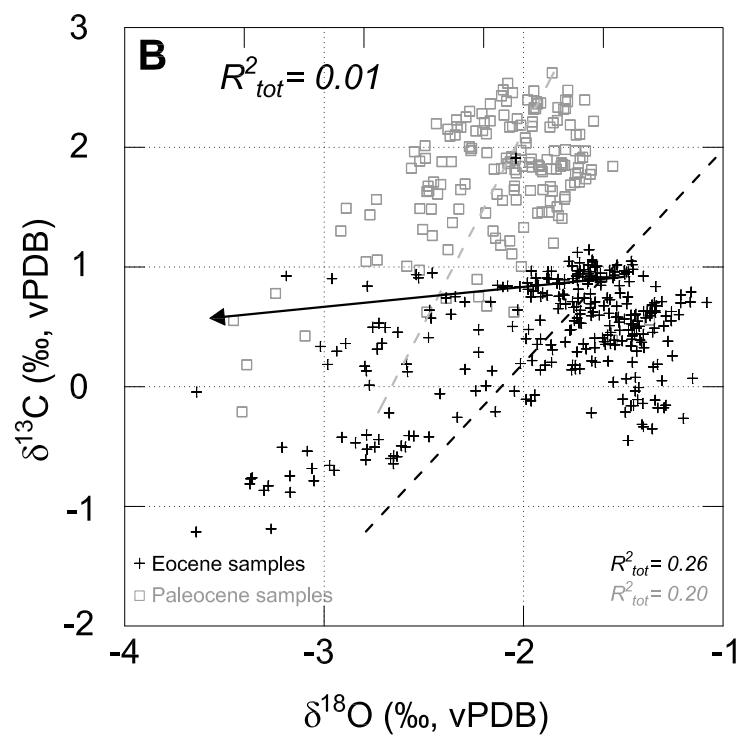
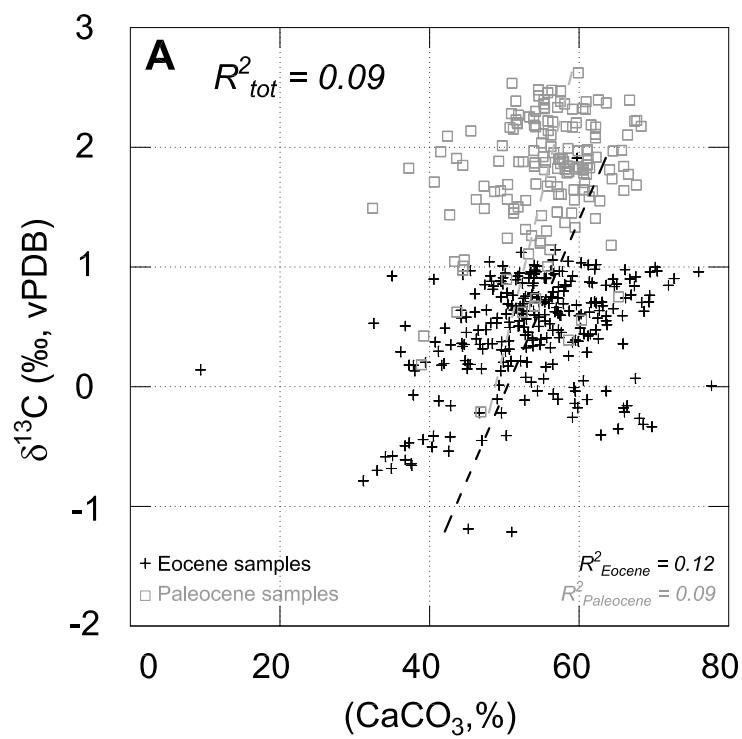



Figure 6_Agnini et al.

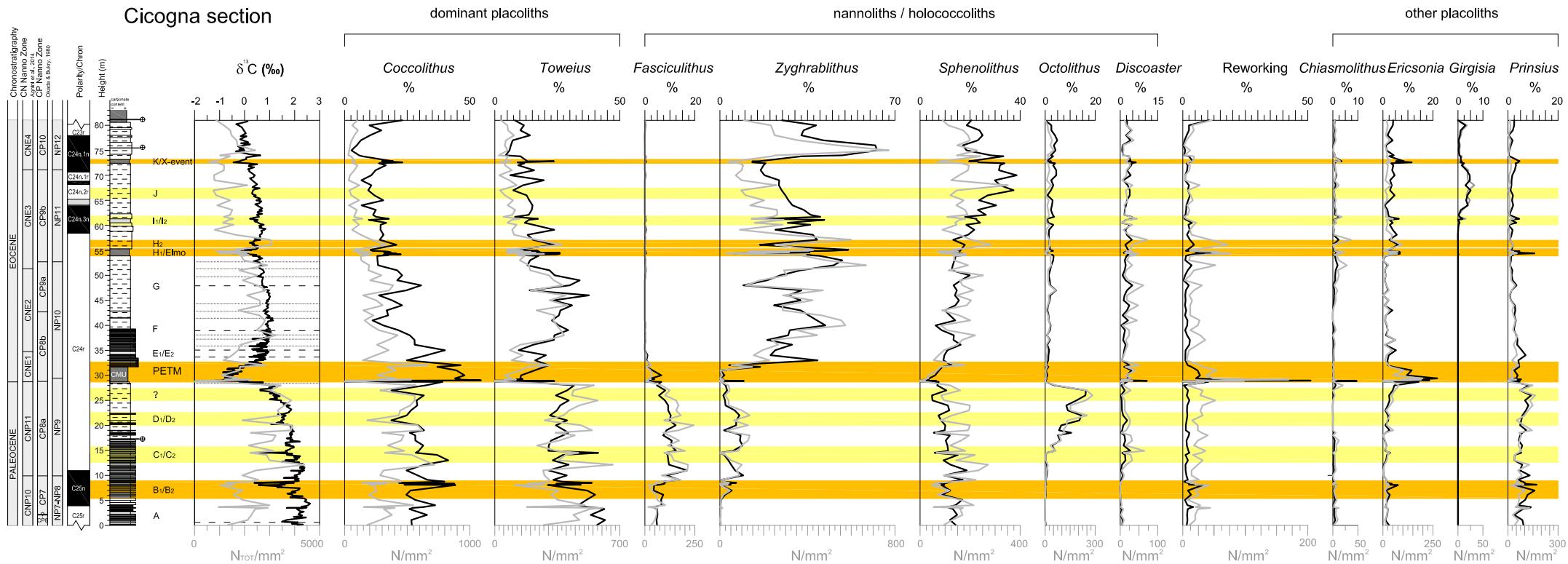


Figure 7_Agnini et al.

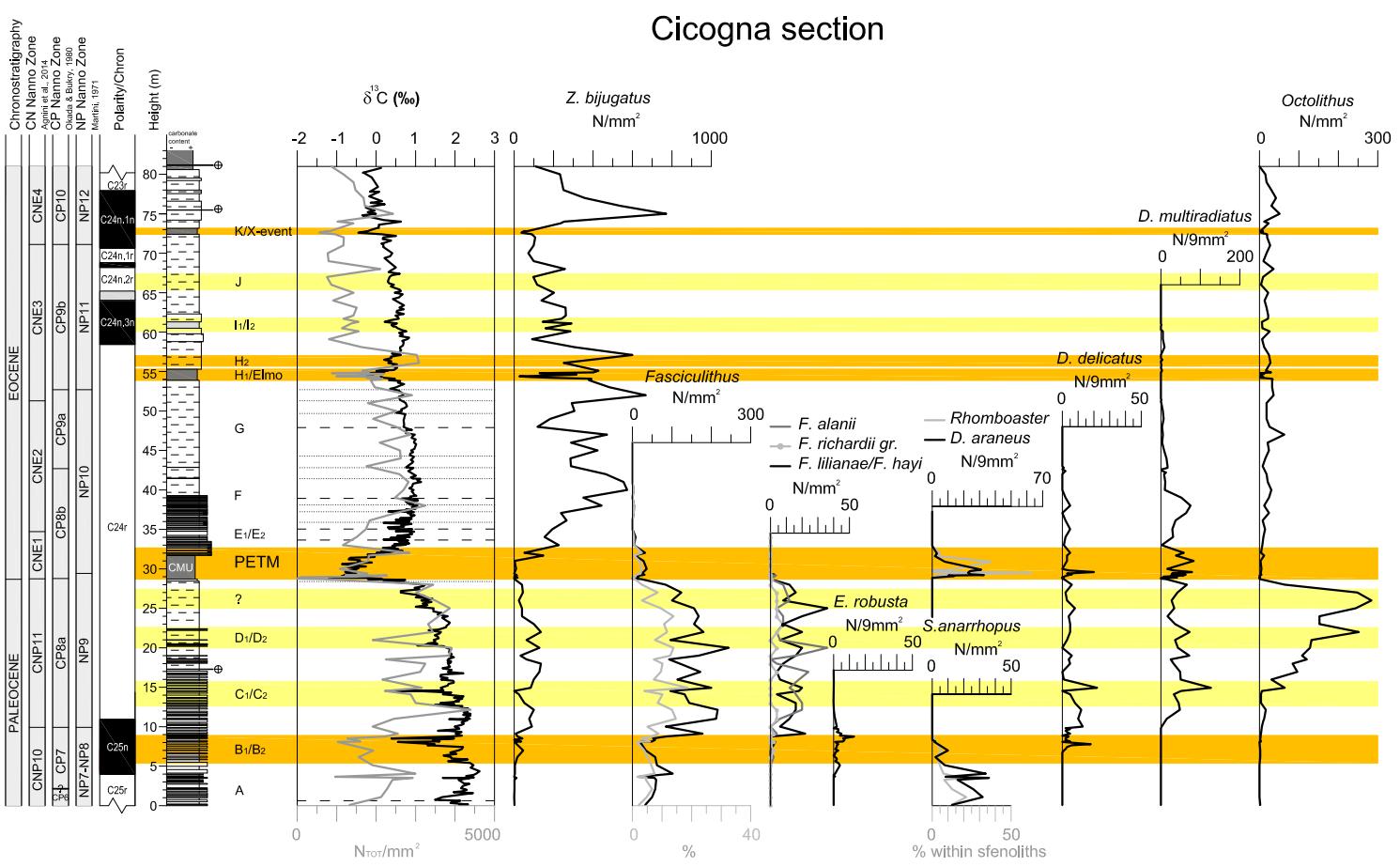


Figure 8_Agnini et al.

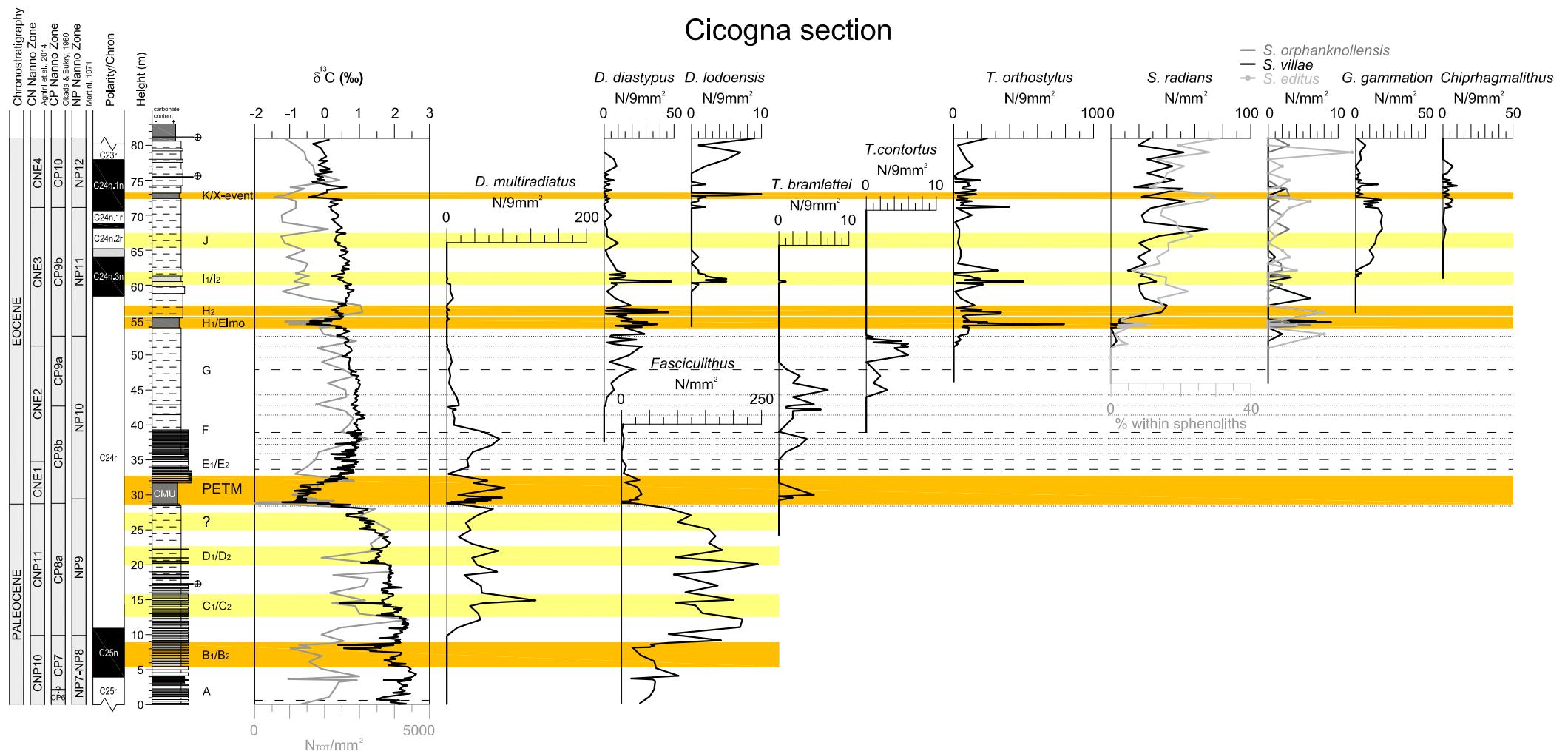


Figure9_Agnini et al.

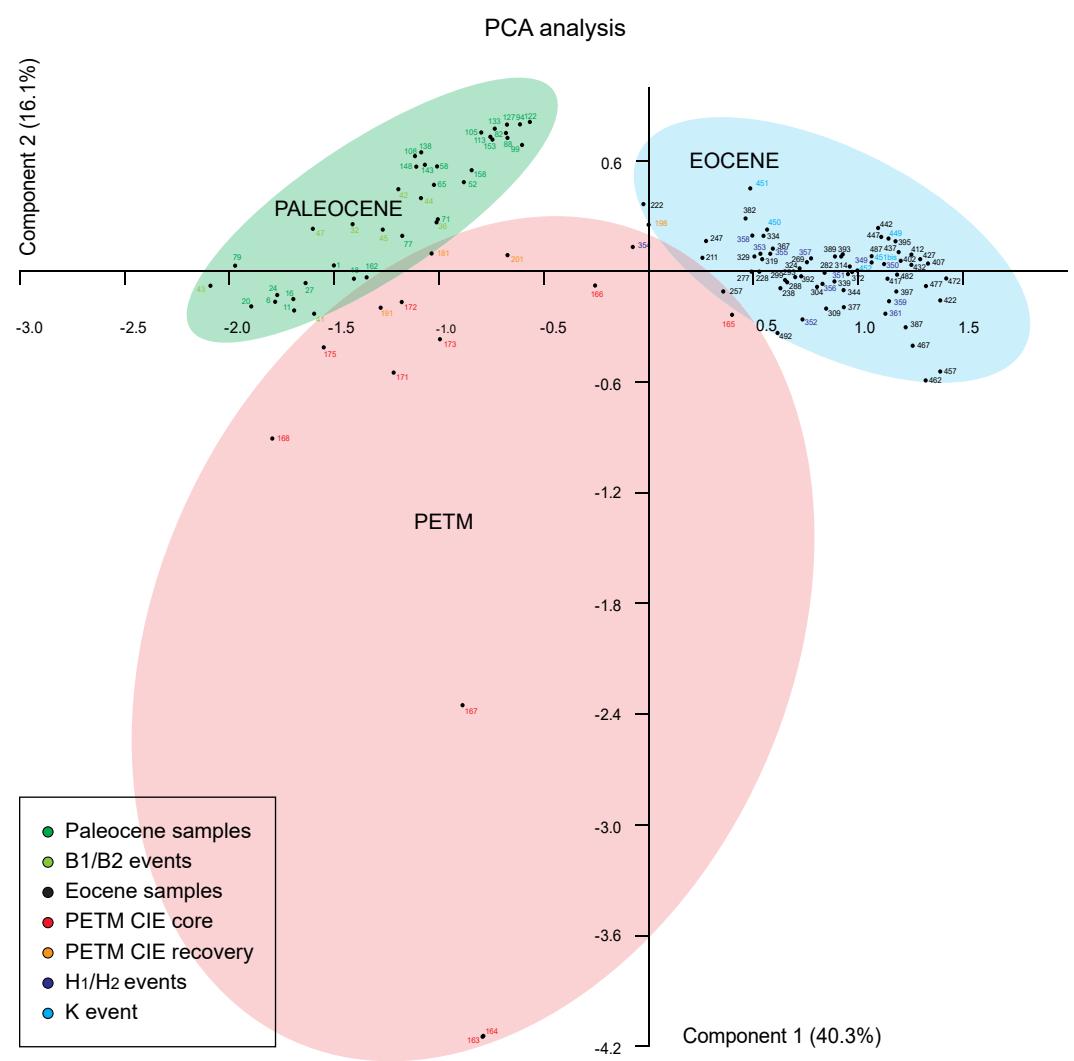
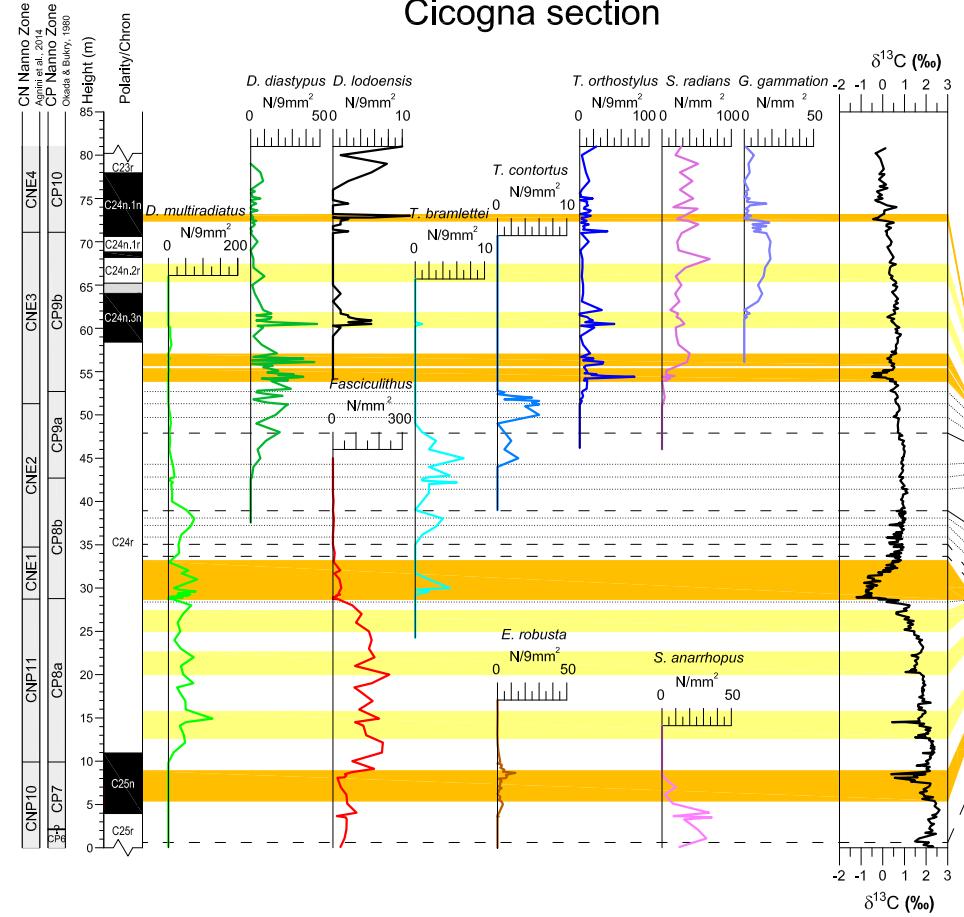



Figure 10_Agnini et al.

Cicogna section

ODP Site 1262

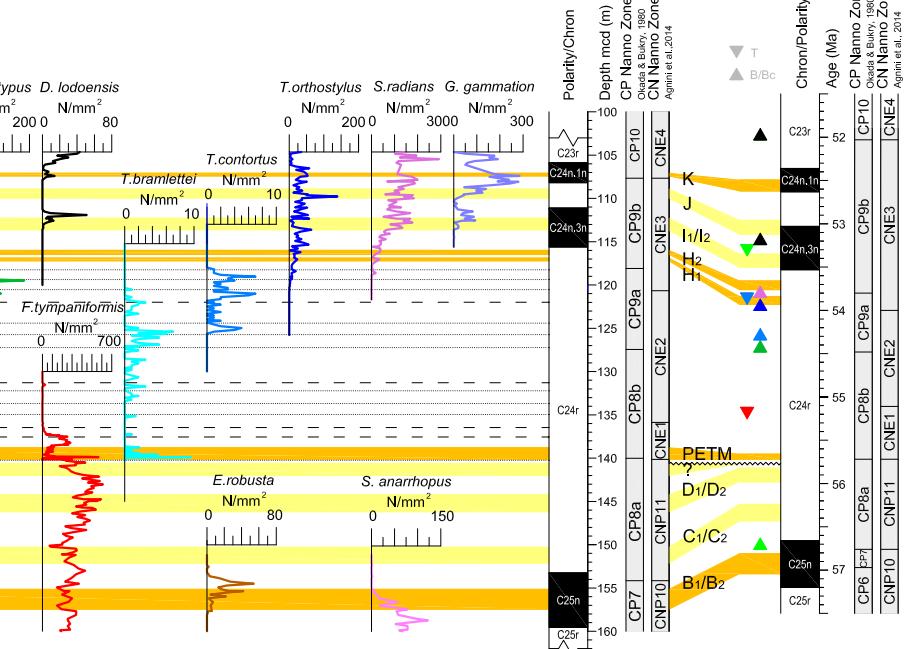


Figure 11_ Agnini et al.

Table 1

Event	Nanno Zones			Cicogna section		DARM09I		W01	CK95	GTS04	GTS12	Site 1262		AG07+This study		W01	CK95	GTS04	GTS12	
	NP ^a	CP ^a	CN ^a	Height (m)	Err (m)	Chron notation	Age (Ma)	Age (Ma)	Age (Ma)	Age (Ma)	Depth (mcd)	Err (m)	Chron notation	Age (Ma)	Age (Ma)	Age (Ma)	Age (Ma)			
				77.94			0.000	52.364	52.364	52.646	52.620		105.88		0.000	52.364	52.364	52.646	52.620	
				72.20	0.10	C24n.1n	0.786	52.57	52.60	52.93	52.98		-	-	-	-	-	-		
B	Discoaster lodoen NP12	CP10		71.10	0.10	C24n.1n	0.936	52.61	52.64	52.98	53.05	107.67	0.18	C24n.1n	0.777	52.57	52.60	52.92	52.97	
Bc	Chirphagmalithus spp.			71.10	0.10	C24n.1n	0.936	52.61	52.64	52.98	53.05	107.67	0.18	C24n.1n	0.777	52.57	52.60	52.92	52.97	
				70.64			0.000	52.630	52.663	53.004	53.074		108.19		0.000	52.630	52.663	53.004	53.074	
				68.80			0.000	-	52.757	53.116	53.199			-		0.000	-	52.757	53.116	53.199
				68.21			0.000	-	52.801	53.167	53.274			-		0.000	-	52.801	53.167	53.274
B	Chirphagmalithus spp.			66.50	0.50	C24n.2r	0.473	52.82	52.85	53.22	53.34	109.22	0.10	C24n.2rl.1r	0.358	52.77	52.75	53.11	53.20	
				65.40	0.10	C24n.2r	0.778	52.94	52.88	53.26	53.38	109.96	0.02	C24n.2rl.1r	0.616	52.88	52.81	53.18	53.28	
				64.60			0.000	53.030	52.903	53.286	53.416		111.06		0.000	53.03	52.903	53.286	53.416	
B	Gigia gamma			61.20	0.10	C24n.3n	0.526	53.29	53.14	53.56	53.71	113.52	0.11	C24n.3n	0.540	53.30	53.14	53.57	53.72	
Br	Discoaster lodiensis			60.40	0.10	C24n.3n	0.650	53.36	53.19	53.63	53.78	113.52	0.11	C24n.3n	0.540	53.30	53.14	53.57	53.72	
T	Discoaster multiradiatus			60.20	0.10	C24n.3n	0.681	53.37	53.21	53.64	53.80	113.52	0.11	C24n.3n	0.540	53.30	53.14	53.57	53.72	
				60.10	0.10	C24n.3n	0.697	53.38	53.21	53.65	53.81	113.66	0.02	C24n.3n	0.570	53.32	53.16	53.58	53.74	
				58.14			0.000	55.530	53.347	53.808	53.983	115.61			0.000	53.530	53.347	53.808	53.983	
				53.90	0.10	C24r	0.090	53.81	53.58	54.06	54.26	117.21	0.01	C24r	0.042	53.66	53.46	53.93	57.12	
T	Tribacchatus cont NP11	CP9b		52.70	0.10	C24r	0.115	53.89	53.64	54.14	54.34	118.09	0.10	C24r	0.066	53.74	53.52	54.00	57.14	
Tc	Discoaster multiradiatus			51.50	0.10	C24r	0.141	53.97	53.71	54.21	54.42	119.38	0.11	C24r	0.100	53.84	53.60	54.09	57.16	
B	Sphenolithus radians			51.30	0.10	C24r	0.145	53.98	53.72	54.22	54.43	118.72	0.10	C24r	0.083	53.79	53.56	54.04	57.15	
B	Tribacchatus orthostylus	CNE3		51.30	0.10	C24r	0.145	53.98	53.72	54.22	54.43	120.67	0.10	C24r	0.134	53.95	53.69	54.19	57.18	
T	Tribacchatus bramlettei			48.50	0.50	C24r	0.204	54.17	53.87	54.39	54.62	121.30	0.11	C24r	0.151	54.00	53.73	54.24	57.18	
B	Tribacchatus contortus	CP9a		45.50	0.50	C24r	0.268	54.37	54.03	54.57	54.82	125.50	0.10	C24r	0.263	54.35	54.02	54.56	57.25	
B	Discoaster clastypus	CP9a		42.70	0.10	C24r	0.327	54.55	54.18	54.74	55.00	127.45	0.10	C24r	0.314	54.51	54.15	54.71	57.28	
B	Tribacchatus bran NP10			35.58	0.55	C24r	0.478	55.03	54.57	55.17	55.47	133.34	0.11	C24r	0.471	55.00	54.55	55.15	57.36	
T	Fasciculithus spp./F. tympaniformis	CNE2		34.73	0.13	C24r	0.496	55.08	54.61	55.22	55.53	135.87	0.11	C24r	0.538	55.21	54.72	55.35	57.40	
T	Rhomboaster spp.			32.52	0.48	C24r	0.543	55.23	54.73	55.36	55.67	139.72	0.01	C24r	0.640	55.53	54.98	55.64	57.46	
X	Fasciculithus / Zygrhablithus			31.60	0.10	C24r	0.562	55.29	54.78	55.41	55.74	139.80	0.02	C24r	0.643	55.54	54.99	55.64	57.46	
Br	Tribacchatus bramlettei			29.43	0.18	C24r	0.608	55.43	54.90	55.55	55.88	139.99	0.02	C24r	0.648	55.56	55.00	55.66	57.46	
B	Discoaster araneus			28.95	0.05	C24r	0.618	55.47	54.93	55.57	55.91	-	-	-	-	-	-	-		
B	Rhomboaster spp. NP9b	CP8b		28.88	0.03	C24r	0.620	55.47	54.93	55.58	55.92	140.02	0.01	C24r	0.648	55.56	55.01	55.66	57.46	
				28.73	0.03	C24r	0.623	55.48	54.94	55.59	55.93	140.13	0.02	C24r	0.652	55.57	55.01	55.67	57.46	
				28.73	0.03	C24r	0.623	55.48	54.94	55.59	55.93	140.13	0.02	C24r	0.652	55.57	55.01	55.67	57.46	
decrease	Fasciculithus spp.			28.73	0.03	C24r	0.623	55.48	54.94	55.59	55.93	140.13	0.02	C24r	0.652	55.57	55.01	55.67	57.46	
T	F. richardii gr.	CNE1		28.73	0.03	C24r	0.623	55.48	54.94	55.59	55.93	140.13	0.02	C24r	0.652	55.57	55.01	55.67	57.46	
				25.00	0.10	C24r	0.702	55.73	55.14	55.81	56.17	142.00	0.02	C24r	0.701	55.72	55.14	55.81	57.49	
				20.00	0.10	C24r	0.808	56.06	55.41	56.12	56.50	146.17	0.02	C24r	0.812	56.07	55.42	56.13	57.55	
				12.61	0.10	C24r	0.964	56.55	55.81	56.56	56.99	152.08	0.02	C24r	0.969	56.56	55.82	56.58	57.64	
T	Ericsonia robusta			11.2	0.2	C24r	0.994	56.64	55.89	56.65	57.08	153.32	0.10	C25n	0.011	56.67	55.91	56.67	57.11	
				10.93			0.000	56.660	55.904	56.665	57.101	153.25			0.000	56.660	55.904	56.665	57.101	
Bc	F. alani			10.51	0.49	C25n	0.060	56.69	55.93	56.70	57.13	152.77	0.02	C24r	0.987	56.62	55.87	56.63	57.65	
B	Discoaster multirradiatus NP9a			9.90	0.10	C25n	0.147	56.74	55.98	56.74	57.18	154.61	0.11	C25n	0.216	56.78	56.01	56.78	57.22	
Tc	Sphenolithus anarrhopus			8.62	0.49	C25n	0.331	56.84	56.07	56.84	57.28	155.03	0.11	C25n	0.283	56.81	56.04	56.81	57.26	
B	Discoaster delicatus gr.			6.86	0.12	C25n	0.583	56.97	56.19	56.97	57.42	156.92	0.11	C25n	0.583	56.97	56.19	56.97	57.42	
				5.41	0.10	C25n	0.791	57.08	56.29	57.07	57.54	158.37	0.02	C25n	0.813	57.10	56.30	57.08	56.62	
B	Ericsonia robusta			3.97	0.07	C25n	0.998	57.20	56.39	57.18	57.65	158.00	0.11	C25n	0.754	57.06	56.27	57.05	57.52	
				3.96			0.000	57.197	56.391	57.180	57.666	159.55			0.000	57.197	56.391	57.180	57.666	
B	Discoaster nobilis gr.	CP7		2.14	0.05	C25r		57.337	56.518	57.314	57.801	157.35	0.10	C25n	0.651	57.01	56.22	57.00	57.46	
B	D. mohleri	NP7	CP6	-	-	-	-	-	-	-	-	171.50	0.11	C25r	0.984	58.53	58.53	58.53	58.53	
				-			0.000	58.550	57.554	58.379	58.959	171.70			0.000	58.550	57.554	58.379	58.959	

Reference calcareous nannofossil biozonations: *NP (Martini, 1971); ^CP (Okada and Buikya, 1980); ^ CN (Agnini et al., 2014)

Reference timescales: W01 (Westerhold et al., 2008; option1); CK95 (Cande and Kent, 1995); GTS04 (Ogg and Smith, 2004); GTS12 (Ogg, 2012)

IDARM09 (Dallanave et al., 2009)

+AG07 (Agnini et al., 2007)