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Stratigraphic distribution of benthic foraminiferal extinction taxa (CET) across the Paleocene/Eocene boundary in the Forada section plotted
against lithology, 813C bulk record, CaCO3 percentage, isotopic intervals and recognized benthic foraminiferal assemblages (A to F). Based on
data from the > 63 pm size fraction integrated with data from > 125 micron fraction. The gray bands indicate intervals of carbonate dissolution.
Question marks: doubtful identification. Triangle: post BEE occurrence of one specimen of Coryphostoma midwayensis has been recorded in the
sample BRI 300 (295 cm above the base of CMU).
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Stratigraphic distribution of benthic foraminiferal extinction taxa (CET) across the Paleocene/Eocene boundary in the Forada section plotted 
against lithology, d13C bulk record, CaCO3 percentage, isotopic intervals and recognized benthic foraminiferal assemblages (A to F). Based on data from the > 63 μm size fraction integrated with data from > 125 micron fraction. The gray bands indicate intervals of carbonate dissolution. Question marks: doubtful identification. Triangle: post BEE occurrence of one specimen of Coryphostoma midwayensis has been recorded in the sample BRI 300 (295 cm above the base of CMU).
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Relative abundance of selected benthic foraminifera (< 5 %) across the PETM at Forada plotted against biostratigraphy,
precessional cycles, lithology, 613C bulk record, recognized benthic foraminiferal assemblages (A to F) and isotopic intervals.
Benthic foraminiferal 5 biozonation after Berggren and Miller (1989). The gray bands indicate intervals of carbonate dissolution.
o = pre-CIE dissolution, B = burndown layer, BFDI=benthic foraminiferal dissolution interval.
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Relative abundance of selected benthic foraminifera (< 5 %) across the PETM at Forada plotted against biostratigraphy, 
precessional cycles, lithology, d13C bulk record, recognized benthic foraminiferal assemblages (A to F) and isotopic intervals. 
Benthic foraminiferal 5 biozonation after Berggren and Miller (1989). The gray bands indicate intervals of carbonate dissolution.
a = pre-CIE dissolution, b = burndown layer, BFDI=benthic foraminiferal dissolution interval.
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Relative abundance of selected benthic foraminifera across the Paleocene/Eocene boundary at Contessa Road (central Italy) plotted against
biostratigraphy, lithology, recognized assemblages (A to F) and 513C record together with the isotopic intervals. Modified from Giusberti et al.
(2009). The gray bands indicate intervals of carbonate dissolution.
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Relative abundance of selected benthic foraminifera across the Paleocene/Eocene boundary at Contessa Road (central Italy) plotted against 
biostratigraphy, lithology, recognized assemblages (A to F) and d13C record together with the isotopic intervals. Modified from Giusberti et al. 
(2009). The gray bands indicate intervals of carbonate dissolution.
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Clay mineral assemblage and quartz % in the upper Paleocene
and basal Eocene of the Forada section. (1) Isotopic intervals; (2)
Benthic foraminiferal assemblages. Redrawn from Giusberti et al.
(2007).
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Clay mineral assemblage and quartz % in the upper Paleocene 
and basal Eocene of the Forada section. (1) Isotopic intervals; (2) 
Benthic foraminiferal assemblages. Redrawn from Giusberti et al. 
(2007).


Table S1. Summary of the localities where paleohydrological reconstructions for the
PETM are available and of the proxies used to infer hydrological changes. Numbers follow
north to south paleolatitudinal order as in text Figure 1.
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(16) Central Valley of Inreasein CaCO3% at the Increase in physical
California (USA) 35°N NA NA NA NA PETM, increased sediment | weathering due to changes Johnetal., (2008);
(shallow marine) accumulation rates; in the hydrological cycle;
(17) B.asque Basin Pollens suggesf a shiftfrom Shift from hemipelagic Increased mechal n‘ica\
(Zumaia, Trabakua permanent conifer forests to . erosion on the continent
~3E0) P - . . marls and limestones to N . Bolle etal. (1998); Schmitz
pass, Ermua 35°N NA Kaoliniteincrease; a periodic vegetation with NA N due to increasing seasonal y
i n carbonate-free, clay rich l R i etal. (2001);
sections), Northern mostly angiosperms and units; aridity alternate with rainy
Spain (marine); ferns; ’ periods;
Shift from arid to
(18) Tremp Basin, Increase in clay content; seasonally wetter but still
f ~aEO . e Schmitzand Pujalte (2003;
Northern Spain 35°N NA Smectite increase; NA NA Claret Conglomerate atthe | generally dry conditions; 2007);
(continental); base of the CIE; episodic flash floods at the g
onset of the PETM;
X Gradual shift fi -
(19) Alamedilla marrlz tzaa rsec; clgoﬁferfga\- Increased aricity on Luetal. (1998); Ar i
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i i Increased terrestrial N A Rodriguezetal. (2014);
Spain (marine) . . continental erosion;
sediment deposition;
(20) Tornillo Basin, Shift fromred to black Increased humidity and
Texas (USA) 30°N NA Kaolinite increase; NA NA paleosols with no rainfalls; White etal., (2008);
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(shallow marine) . . . hydrological cycle;
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continental conditions at
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N ~Eo : : n the onset of the CIE; More
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shallowmarine clays; climate coinciding with the
middle to uppermost CIE;
(25) Northern
Neotropics N . Pollens indicate increased
(Colombia and ~10°N Negative shift (35%) at the NA plant diversity and NA No lithological changes; | High rate of precipitations; | Jaramilloetal.(2010);
onset of the PETM I
Venezuela) abundance of angiosperms;
(continental)
(26) TDP Site 14, . N Increased aridity with
ositive shift at the onset of
Tanzania (shallow | ~20°S P Increasein kaolinite; No floral changes; NA No lithological changes; intense periodical Handley et al. (2008;2012)
N the PETM (+15-40%o) PR .
marine) precipitations;
Increases in Pollens indicative of conifer-
27) T i secti PR, dominated rainfc ts; N . " . ;
(27) Tawanui section, o kaolinite/illite and °T“'”a ed rainforests; no - Increase in TOC%, C/N, Increasein terrestrial Kaiho etal., (1996); Crouch
North Island (New | ~45°S NA . . major changes at the PETM; Apectodinium acme; " . and Visscher, (2003);
. kaolinite/smectite : > R Si02, Al203 weathering and runoff g
Zealand) (marine) ratios increase in terrestrial Crouchetal.,, (2003);
palynomorphs;
(28) Clarence river Hancock et al. (2003); Hollis
valley, South Island ~55° NA NA NA NA Shift from limestone to clay Increase in terrestrial etal. (2005); Nicoloetal.
(New Zealand) rich marls (recessive unit); | weathering and runoff; | (2007;2010); Slotnicketal.
(marine) (2012)
29) Central
(29) Negative and positive Pollens and oleanane Shift from shales to dark . N
Westland, South fluctuati £ about £20% tthet it | dst ith ites Eustatic sea level rise, Sl 1. (2008); Handi
Island (New Zealand) | ~55°S uctuations ot about £20%o NA suggestne ransitiona Apectodinium acme rr1u stones wi ) pyrite; possibly increased uijs etal. ( ); Handley
N across the PETM (-140 - development of mangrove increased terrigenous . o etal. (2011);
(terrestrial to ) sesonality in precipitations;
shallow marine) 160%o) swamps; biomarkers;
Apectodinium acme; increasing
ite 3 . . abundances of normal marine ustatic sea level rise,
(30) ODP Site 1172 bund f | i El i level ri:
. Increase in terrestrial N X . . S .
EastTasman Palteau | 65°S NA NA lynomorphs: taxa among dynocists, with a No lithological changes; possibly increased Sluijs etal. (2011);
shallow marine) peak in the euryhaline sesonality in precipitations;
hall i palynomorphs; kin the euryhali lity in precipitati
taxon Eocladopyxis;
31) ODP Site 690, A . N N L
(3 ! 65°S NA Increasein kaolinite; NA NA No lithological changes; Increased precipitations; | Robertand Kennett (1994);

Weddell Sea
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Table S2. Census data of benthic foraminifera across the Paleocene/Eocene boundary in the Forada section (>63
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Table S3. Taxonomic list of benthic foraminiferal taxa recognized in the Paleocene-Eocene
at Forada section®.

Agglutinant taxa
Ammobaculites agglutinans = Spirolina agglutinati®rbigny, 1846platell, fig. 1
Ammobaculitespp.
Ammodiscus cretaceus = Operculina cretageaiss, 184FlatelV, fig. 1
Ammodiscus peruviangerry, 1928platelV, fig.2
Ammodiscus tenuissim@zybowski, 1898
Ammodiscuspp.
Ammosphaeroidina pseudopauciloculata = Cystamminella pseudopaucilojittaik, 1966
Arenobuliminaspp.
Aschemocella grandis = Reophax gran@izybowski, 1896
Aschemocellaf. moniliformisNeagu, 1964
Aschemocella
Caudammina ovuloides Reophax ovuloideGrzybowski, 1901platelV, fig. 12
Caudamminaspp.
Cyclammina placenta Nonionina placentd&euss, 1851
Clavulinoides amorpha Clavulina amorphaCushman, 192@latel, fig. 21
Clavulinoides globulifera= Pseudoclavulina globulifereen Dam & Sigal, 195@Iate 1, fig. 19
Clavulinoides trilateraCushman, 192@late |, fig. 20
Clavulinoidesspp.
Dorothia beloidesron Hillebrandt, 1962plate, fig. 23
Dorothia pupa= Textularia pupaReuss, 186latel, fig. 24
Dorothia retusa= Gaudryina retusaCushman, 1926
Dorothia trochoidegViarsson, 1878
Dorothiasp. (juvenile forms)
Dorothia spp.
Eobigenerina variabilis= Bigenerina variabilisvVasiek, 1947 in Cetean et al. (201B)ate I,
fig. 2,3
Fragments of tubular agglutinants, belonging to:
* Rhabdamminapp.
* Rhizamminapp.
» Bathysiphorspp.
Gaudryina pyramidat&Cushman, 192@late 1V, fig. 13
Gaudryinasp.with rectangular cross sectipRlate 1V. fig. 10
Gaudryinasp.with triangular cross section
Gaudryinasp.
Glomospira charoides Trochammina squamata var. charoid&snes & Parker, 186@)ate 1,
fig. 13
Glomospira diffunden€ushman & Renz, 1946

Glomospira gordialiss Trochammina squamata var. gordiallenes & Parker, 1860tate 4, fig.
9

Glomospira irregulariss Ammodiscus irregulari&rzybowski, 1898platell, fig. 11
Glomospira serpens Ammodiscus serpei@rzybowski, 1898platelV, fig. 6
Glomospiraspp.
Haplophragmoides horridus Haplophragmium horridunGrzybowski, 1901plate IV, fig. 4
Haplophragmoides stomatus /kirkibrrectusgroup, includes:

» Haplophragmoides stomat@rzybowski, 1898

- Haplophragmoides kirkiVickenden, 1932platel1, fig. 9

» Haplophragmoides porrectudaslakova, 1955



Haplophragmoides waltes Trochammina walterGrzybowski, 1898platelV, fig. 3
Haplophragmoidespp.

Hormosina velascoensis = Nodosinella velascoe@ashman, 192@latelV, fig. 15
Hormosinaspp.

Hormosinid (indetermined)

Hyperamminaspp.

Karrerulina coniformis= Gaudryina coniformigsrzybowski, 1898platelV, fig. 11
Karrerulina conversa= Gaudryina convers&rzybowski, 1901platell, Fig. 4
Karrerulina horrida = Karreriella horrida Mjatlyuk, 1970;Platell, fig. 5
Karrerulina spp.

Karrerotextulariasp.

Karrierella spp.

Lagenamminapp.

Lituotuba lituiformis= Trochammina lituiformiBrady, 1879

Lituolids; Big-size specimens (usually >5@®n) occurring exclusively in the Paleocene portidrine Forada
section;PlatelV, fig. 14, 20

Marssonella indentata Gaudryina indentat€Cushman & Jarvis 1926}atel, fig. 22
Paratrochamminoides heteromorphus = TrochamminardoehorphaGrzybowski, 1898plate
1V, fig. 8
Paratrochamminoidespp.
Psammosphaerspp.
"Pseudobolivinids" group, including:

e Rashnovammina mundaPseudobolivina mundérasheninnikov, 197®latell, fig. 8

e Bicazamminapp.

* “Pseudobolivinasp. 2 in Galeotti et al., 200®]late 1V, fig. 17

» Pseudobolivinaspp.
Pseudoclavulina trinitatensiSushman & Renz 1948late |V, fig. 18
Pseudoclavulinapp.
Pseudonodosariapp.
Pseudonodosariasp.
Pseudonodosinella elongataReophax elongat&rzybowski, 1898
Pseudonodosinella nodulosaReophax nodulosBrady, 1879 emend. Loeblich & Tappan,
1987
Pseudonodosinella troyer Reophax troyerTappan, 196(Rlate 1V, fig. 15
Recurvoidesf. walteri = Haplophragmium walterGrzybowski, 1898 emend. Mjatliuk, 1970
Recurvoidespp.
Remesella varians Matanzia variansGlaessner, 193 Pjatel, fig. 18
Remesellavarians?
Reophaxspp.
Reophacid indetermined
Rzehakinid indetermined
Saccammina grzybowsgchubert, 1902
Saccammina placentaReophax placent&rzybowski,1898Platell, Fig. 10
Sculptobacculites barBeckmann, 1991
Spiroplectammina navarroanaushman, 1932late 2, Fig. 6
Spiroplectammina spectabilrs Spiroplecta spectabili€srzybowski, 1898 emend. Kaminski,
1984;Platell, fig. 7 and Plate |V, fig. 19
Spiroplectinella israelskywon Hillebrandt, 1962
Spiroplectinella subhaeringensisTextularia subhaeringens{srzybowski,1896
Spiroplectamminapp.
Spiroplectamminasp.
Subreophax pseudoscalardkeophax pseudoscalarisamuel, 1977

ii



Subreophax scalaris Reophax guttifer&rzybowski, 1896
Subreophaspp.
Trochamminidsintermediate forms betwediochamminoides Paratrochamminoides.

Trochamminoides proteus = Trochammina prot&asrer, 1866sensuRdgl, 1955 late 1V, fig.
7
Trochamminoidespp.

Por cellaneous taxa
Miliolids

Calcareous-hyaline taxa

Abyssammina incis8chnitker & Tjalsma, 1980

Abyssamminaf. incisaSchnitker & Tjalsma, 1980

Abyssammina poa@chnitker & Tjalsma, 198®jate 1 fig. 26

Abyssammina quadratachnitker & Tjalsma, 1980

Abyssamminapp.

Alabamina midwayensBrotzen, 1948

Alabaminaspp.

Allomorphina trochoides = Globigerina trochoid&guss, 1845latelll, fig. 18
Allomorphinasp.

Angulogavelinella avnimelechi = PseudovalvulinesianimelechReiss, 1952platel, fig. 1, 2
Angulogerina muralis= Uvigerina muralisTerquem, 1882latel 11, fig. 13, 14

Angulogerin® sp.;Platelll, fig. 15, 16.

Angulogerinaspp.

Angulogerinid indetermined

Anomalinoides rubiginosus = Anomalina rubigindSashman, 192@latel, fig. 5
Anomalinoidessp. 1; Small-size anomalinid with low trochospiral coilingtrongly compressed, not
biumbilicate, fourteen chambers in the last whempoth. It occurs exclusively within the CMU intahat Forada.
Anomalinoidessp. 2; Small-size anomalinid with low trochospiral coilingith a spiral side showing an
elevated spiral suture and small costae alonguheeslines. It occurs exclusively in the Paleocpo#ion of the
Forada sectiorPlatelll, fig. 21

Anomalinoidespp.
Aragonia aragonensis = Textularia aragonensisttall, 1930;Platell, fig. 25
Aragonia velascoensis = Textularia velascoe@@ishman, 192%latel, fig. 14
Astacolusspp. group, includes:
e Saracenariaspp.
» Astacolusspp.
* Planulariaspp.
Bolivina spp. smoothplate 11, fig. 10, 11
Bolivina spp. with costaerlatell, fig. 22
“Bolivina” sp. A;bolivinid with an initial biserial coiling followedby triserial coiling
Bolivina? sp.
Bolivinoides crenulatgroup, includes:
» Bolivinoides crenulata Bolivina crenulataCushman, 193@latelll, fig. 7,8
» Bolivina floridanaCushman, 1918&latelll, fig. 9
Bolivinoides delicatulu€ushman, 192Rlatel, fig. 15
Bolivinoidescf. delicatulusCushman, 1927
Bulimina alazanensi€ushman, 192Rlatelll, fig. 4
Bulimina callahaniGalloway & Morrey, 1931
Bulimina kugleriCushman & Renz, 1942
Buliminacf. kugleriCushman & Renz, 1942



Bulimina midwayensigroup, includes:
* Bulimina midwayensi€ushman & Parker, 1936tatelll, fig. 3
* Bulimina macilentaCushman & Parker, 1939
* Buliminacf. macilentaCushman & Parker, 1939
Bulimina semicostataluttall, 1930
Bulimina trihedraCushman, 1926
Buliminacf. trihedra Cushman, 1926
Bulimina trinitatensisCushman & Jarvis, 1928latelll, fig. 5, 6
Bulimina tuxpamensi€ole, 1928platell, fig. 19, 20
Buliminasp. 1;small-size buliminid comparable to the genBraiminella, SitellaandPraebulimina
Buliminasp. 2
Buliminaspp.
Buliminella grataParker & Bermudez, 1937
Buliminellaspp.;Tavola 2, Fig. 2
Cibicids;PlatellIl, fig. 22
Cibicidoides dayk Planulina dayiwWhite, 1928platel, fig. 6
Cibicidoides eocaenus Rotalia eocaenasiumbel, 1868ensuvan Morkhoven et al., 1986;
Platelll, fig. 20
Cibicidoides hyphalus Anomalinoides hypalusisher, 1969platel, fig. 9
Cibicidoides praemunduluBerggren & Miller, 1986pPlatelll, fig. 23
Cibicidoidescf. pseudoperlucidus Cibicides(Gemellides) pseudoperlucidiykova, 1954 in
Tjalsma and Lohmann, 1983
Cibicidoides velascoenssAnomalina velascoens@ushman, 192%latel, fig. 7, 8
Cibicidoidesspp.
Coryphostoma midwayenstBolivina midwayensi€ushman, 193®latel, fig. 13
Coryphostoma sp.; small-size biserial forms with several chambers garable toCoryphostomaand
occurring exclusively in the lower Eocene portidrite study section
Dentalina spp.;we include both smooth and costate forrhadvidentalinaand Dentalina sensuLoeblich &
Tappan, 1987)
Ellipsoglandulinaspp.
Ellipsoidina
Ellipsopolymorphina
Ellipsopolymorphina
Eouvigerinasp.
Eponidessp.
Eponide8 sp
Fursenkoinasp.
Gavelinella beccariiformis Rotalia beccariiformisVhite, 1928platel, fig. 3
Globocassidulina subglobosa Cassidulina subglobos&rady, 1881;Plate II, fig. 14 (dwarfed
specimen)
Globorotalitesspp.
Gyroidinoides globosuss Nonionina globosaHagenow, 1842 emend. Alegret & Thomas
(2001);Platel, fig. 11
Gyroidinoides quadratus Gyroidina quadrataCushman &Church, 1929atel, fig. 12
Gyroidinoides subangulatusRotalia soldaniiPlummer, 1926
Gyroidinoidesspp.
Hanzawaia ammophila Rotalia ammophilaGimbel, 1868
Hanzawaiaspp.
Indetermined trochospiral hyalineowoup including small size, badly preserved aneiedninable low
trochospiral forms
Lagenid indeterminate



Lenticulinaspp. (smooth-walled)
Loxostomid indeterminate
Neoflabellina jarvisi= Flabellina jarvisiCushman, 1935
Neoflabellina semireticulata Flabellina semireticulataCushman & Jarvis, 1928tatel, fig. 16
Neoflabellinasp.
“Neoeponides” megastomaPulvinulina megastom&rzybowski, 1896plate 1, fig. 10
Nodosarellaspp.
Nodosaria/Chrysalogoniumgroup, includes the genera:
* Nodosariaspp.
* Pyramidulinaspp.
« Chrysalogoniunspp.
Nodosariid (indeterminate)
Nonion havanens€ushman & Bermudez, 193 atelll, fig. 24
Nonionspp.
Nonionellaspp.
Nonionids (indeterminate)
Nuttallides truempyF Eponides truempyiuttall, 1930;Platell, fig. 23
Nuttallinella florealis= Gyroidina florealiswhite, 1928
Oridorsaliscf. plummerae= cf. Eponides plummera@ushman, 1948
Oridorsalis umbonatus Rotalina umbonat&euss, 1851 latell, fig. 24
Oridorsaliscf. umbonatugReuss, 1851)
Oridorsalissp.
Oridorsalis? sp.
Orthomorphinaspp.
Osangularia velascoenstsTruncatulina velascoens@@ushman, 192&latel, fig. 4
Osangulariaspp.small-size Plate 2, fig. 13
Paleopolymorphinapp.
Paralabamina hillebrandt= Neoeponides hillebrandkisher, 1969
Pyramidina europaea Angulogerina europae&ushman & Edwards, 1937
Pleurostomellaspp.;Plate 2, fig. 22
Pleurostomellids
Polymorphinids
Praebuliminaspp.
Protoelphidiun? sp.
Pullenia coryelliWhite, 1929platel, fig. 17.
Pullenia cretace@Cushman, 1936
Pullenia jarvisiCushman, 1936
Pullenia paleocenic®rotzen, 1948 emend. Pozaryska, 1965
Pullenia quinquelob&euss, 1951
Pulleniaspp.
Quadratobuliminella pyramidalide Klasz, 1953latelll, fig. 1
Quadrimorphina advena Valvulineria advena&ushman & Siegfus, 1939
Quadrimorphina allomorphinoides Valvulina allomorphinoide®euss, 186Rlatelll, fig. 19
Quadrimorphina profund&chnitker & Tjalsma, 1980
Quadrimorphinaspp.
Ramulina pseudoaculea@lsson, 1960
Rectobulimina carpentieragarie, 1956platell, fig. 17
Recurvoides anormidljatliuk, 1970
Reussella cimbrica Pseudouvigerina cimbric@iroelsen, 1945
Reussellaspp.
Reussellid indeterminate



Siphogenerinoides brevispino€aishman, 193%®late l, fig. 17, 18
Siphogenerinoidéssp.
Sitella? sp.
Stilostomellids ificlude gener&iphonodosariand Stilostomell
Tappanina selmensks Bolivinita selmensi€ushman, 1933 emend. Brotzen, 1948e I1, fig.
15, 16
Trifarina sp.
Turrilina brevispiraTen Dam, 1944
Turrillina sp.
Unilocular forms
Biserials indeterminate
Uvigerinasp.
Uvigerina?
Valvalabamina depressa/planulag@oup, includes:
» Valvalabamina depressaRotalina depressalth, 1850
* Valvalabamina planulata Gyroidina planulataCushman & Renz, 1941
Valvalabamina praeacuta Anomalina preacutd/asilenko, 1950
Valavalabaminaspp.
Valvulineriaspp.

*Note: benthic foraminiferal taxa were identifiedaimly following the taxonomy outlined in the papeiged in the
reference list below.
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