Padova, 31 December 2015
Dear Editor,

please find enclosed the revised manuscript cp-208by Giusberti et al. entitled “Variability in
climate and productivity during the Paleocene/Eecdimermal Maximum in the western Tethys
(Forada section)”. We have really appreciated tbmments from reviewers and we have strictly
followed their suggestions. Most of the observaiorgarding text, figures and tables have been
accepted and the text has been modified accordiAdlyarts with changes in the text are highlighte
in red color in the marked up manuscript version.

We appreciated the opportunity to improve the pdgpesed on the reviewers’ comments and look
forward to hearing from the Editor about a finatideon concerning the acceptance of this manuscript
for publication.

The most relevant changes in the manuscript aesdlliselow:

-The title has been changed (as requested by rexsgw

-Introduction. Introduction has been shortened, impyart of it in a new paragraph (par. 4.4) esaditl
"Clues from Forada on PETM climate change" at thet @& the Discussion;

-Removal of par. 2.2.1. Paleocene-Eocene benthamfmifera ecology. In place of 2.2.1, following
reviewer 2 suggestion, we provided a new table Ierd) summarizing the ecology of the most
common taxa at Forada, only based on publishedatitee. We also discussed some aspects of the
ecology of taxa a®sangularia EobigenerinaandKarrerulina in par. 4.3.2;

-Titles of several paragraph of Chapter 4 have lmeedified, according to reviewer's 2 request.

-The Fig. S.1 (Supplementary) is now Text Fig. juFe 1 of the original manuscript became Fig. 10,
as consequence of the moving of part of the Intttda to the new par. 4.4. at the end of Discussion
-Conclusions have been modified into bullet points;

-Specific answers to main issues/comments of botlewers (reported below) are now included in the
text and are clearly recognizable in the markedhapuscript version.

| would be pleased to give you any further inforimathat you might request.

Luca Giusberti on the behalf of the co-authors



Authorsanswersto referee#1 (R. Speijer)

MAIN ISSUES

4212, 13-15: point out to what extent these extactmethods may or may not interfere with

foraminiferal preservation in these deposits, nbt&F.

In pyrite-lean sediments the use of H202 solutiay not significantly alter foram residues; however,

it will corrode pyrite-filled shells. Experimentatudies demonstrate that “H202 is an unsuitable
chemical for extracting delicate CaCO3 and pyridizenicrofossils because of the damage and
dissolution it causes” (Kennedy & Coe 2014 - JourobMicropalaeontology). This is in agreement

with earlier as well as own experimental observasioNote that when all radiolarians are calcified

this calcite must have come from a carbonate squmaabably from within the rock unit and it is not

unlikely that in a hemipelagic setting the mosgfi@foraminifera and/or nannos provided this cédci

The authors are aware of the problems concerniagxtraction methods of forams with pyrite-filled
shells, but the tests in the Forada samples arpymidé filled, and invariably filled by calcite.dte of
the examined samples yielded foraminifera presemed pyrite infilling, or replaced by pyrite.
Moreover, the samples with the lowest content o€Ga(e.g., clays of basal Clay Marl Unit) were
treated with diluted kD, (10%), in order to avoid possible additional bigge of tests. We will add a
sentence in the paragraph ‘Material and Methodas\which we will give details about the state of
preservation of foraminifera at Forada. We do ndlyfrespond to the comment on %F (fragmentation
index) in this paper, because these data (and fatépas) have been discussed in Luciani et al. 700
and we just cite them here.

Part 2.2.1. It is not quite clear how the ecologiogerview is assembled. It seems as if the prefsat
are already included in this overview, as “We allted the taxa to the categories recolonizers (R1L,R2
and opportunistics (01, 0O2), based on their abum@apattern in the studied and other PETM
sections”. Does this mean that the observed padtefiForada are include to allocate the taxa to the
various ecologic groups? If so, then this is na@barect procedure as it may lead to circular reasmn
once the data are being interpreted. It would biptu to add a table with included PETM localities
from which these patterns are derived. (also nb&t topportunist’ is the correct noun to the adjeet
‘opportunistic’).

Having re-read the manuscript in light of commebysreferee #1 and #2 on paragraph 2.2.1 (the
benthic ecology overview), we appreciated theirceon, and also agree with the reviewers that the
paragraph is too long. We thus decided to elimitia#eentire paragraph 2.2.1 and with it any refegen
to taxa ecology as inferred from the Forada re¢erd., the clustering into the categories R1, RR, O
02). Part of these aspects will be also discussdtié Discussion paragraph. In place of paragraph
2.2.1, following referee (1 and 2) suggestions,wileprovide a new table (Table 1) summarizing the
ecology of the most common taxa at Forada, basqulibished literature.

4216, 11: Osangularia - I'd like to caution for dogic interpretations at generic level, especially
when the reference taxa are many millions yearsigeuor older, such as the OAE2 data referred to



here. Mid-Cretaceous benthic foram communities wguée different from those of the early
Paleogene and ecologic affinities at generic leelas far as these can be generalized at all) are
likely to have been different. For instance modeegnticulina is a deep water taxon and Oridorsalis a
cold water taxon (Murray, 2006). Both were, howeveosmmon inhabitants of early Paleogene
(sub)tropical shelves (numerous data from Egyphidia, Tanzania). Extrapolations from the Re-cent
or Mid-Cretaceous to the Paleogene (as for micrataéb pointed out in 4218, 11-18) should be
avoided, especially if there is no information uwdkd from the early Paleogene itself, like for
Osangularia.

We never meant - and in fact did not - draw anyaggoal interpretation for the gen@sangulariaby
quoting those OAEs papers. We just reported theimfasnation. We just use the general information
on test shape (disc-shaped, biconvex, trochosgiealed), to infer that fossil and extadsangularia
most probably were epifaunal, preferring stablegadtophic, well oxygenated environments (e.qg.
Murray, 2006; Alegret et al., 2003; Alegret, 200F9r this reason, we found it of some intereste® s
peaks in abundance of sm@lsangularia,coinciding with the doubtlessly stressed environhdd the
basal CIE in the Forada section, and therefore thatiepeaks oOsangulariaoccur within Cretaceous
OAEs. We also note that Boscolo Galazzo et al. 2@dund small-siz&sangularia(Plate Il fig. 13

in Boscolo Galazzo et al., 2013) within organidirievels immediately following the Middle Eocene
Climatic Optimum in the Alano section. A peak iruabdance of smalDsangulariahas been observed
in the basal PETM at Contessa Section, as higlihfdr the first time in the present manuscript] an
representatives of the genDsangularia(Osangulariaspp.) behaved opportunistically in the PETM of
the Tethyan Alamedilla section (Alegret et al., 200Ne thus, in fact, are making the same point as
the reviewer — that one cannot always assume thatommental preferences of morpho-taxa were
constant over time. We will explain this betterthe text. A specific assignment of basal PETM
osangulariids at Forada (and Contessa section)heiapossible because of their very small size and
sub-optimal state of preservation. We will add stesece in the text to that effect.

4218, 11: the above point could be addressed hase,this problem does not only concern
microhabitats, but ecologic traits in general.

The paragraph will be deleted and substituted Vdble 1 (explained above). The specific case of
Osangulariawill be briefly discussed in the proper sectiortted paper (Discussion, paragraph 4.3.2.).

4219, 13: Results. | consider it a missed oppotythat the authors do not include a statistical
evaluation on such a great data set. This wouldvalfor an objective subdivision of the main patsern
and by plotting the results (e.g. PCA, DCA) in srpdots this will almost certainly provide a graphi
synthesis of the faunal evolution across the PENdw only frequency plots and a summary of
highlights in a table are provided. These data deséetter than that.

We thank the reviewer for the suggestion, but wenatbagree that a full statistical analysis would (
this case) actually add to the interpretation efaesemblages. Multivariate statistical analysisghly
suitable to document subtle patterns which arecleatrly discerned in the raw data, especially when



many taxa are involved. In this case, however, lgipative subdivision of the faunal assemblages is
possible using the raw data at Forada, because afpid stratigraphic succession of biotic evemts,
abrupt and pronounced changes in species abundance.

4221, 9: As an individual Zoophycos often span®erséwdm of sediment and bioturbates 1000s of
years of sedimentation, it is worthwhile to addoffr Giusberti et al. 2007?) to what extent these
bioturbations may or may not have affected therfongferal sequence.

All micropaleontological (benthic and planktic fammifera and calcareous nannofossils) and
geochemical evidence (mineralogy, stable isotop&s) published on the Forada PETM concur in
indicating that the foraminiferal sequence wasuailly unaffected by significant disturbance (werfdu

no evidence of "mixing" of different biotic and abc signals or "anomalous” signals). We stress tha
samples collected for micropaleontological and geaodcal analysis of the PA | interval of Giusberti
et al. (2007) and samples from the rest of the@eetere carefully collected avoiding, where poksib
the portions of rock containing clear evidenceha above-mentioned ichnofossils, and other trases a
Planolites, Thalassinoidegtc. In the specific case of the Pa | intervAlsSemblage B" of the present
manuscript), the entire block of the uppermostiporbf Paleocene (ca. 20 cm) was removed during
sampling in the field, and sliced in the laboratony subsamples of ca. 3 cm thick, checking céisefu
the integrity of the sediment, and lack of (biojdibance. We are well aware of the fact that
hemipelagic Scaglia sediments in "normal conditiare always bioturbated (e.g., mottling). To what
extent bioturbation affected Scaglia sedimentseinegal is beyond the scope of present paper, becaus
a proper and reliable evaluation will be possilidydhrough an extensive ichnological analysis. We
underline that, based on the comment of the reviealmost the 100% of published sections should
undergo a ichnological revision/approach in oraetest the reliability of micropaleontological and
geochemical datasets. We will insert a sentencedin2.2) explaining that we, to the extent pdssib
excluded bioturbated materials, and have founduideace for bioturbation-effects in data published
on the Forada section.

4226, 19: “surface waters were oligotrophic” whesed227, 4 “indicates oligo-mesotrophic surface
waters”

Previously published data on Forada calcareouskfgan(Agnini et al., 2007, Luciani et al., 2007)

indicate "oligotrophic" conditions in surface watésee text and Figure 8) at Forada, whereas dar da
based on benthic forams suggest oligo-mesotrophiena. It is explained in the text at 4.2.1. We
removed from the text (pag. 4227, line 3) the naidieg sentence "in agreement with data on
calcareous plankton)".

4222, 12: are these clays (probably shales; alsotiver places in the text), truly laminated, resgt
from a lack of bioturbation (e.g., laminae withfdient composition, mostly caused by lack of oxXygen
or are they just fissile (homogeneous compositiivajn reorientation of clay minerals through
compaction as is a normal feature in shales? Sanage support of the laminations (cf. Nicolo et al.
2010) could significantly strengthen the interpteta. Without this, skepticism will remain.



Clays in the lowermost decimeters of the CMU aresmales (as described in detail in Giusberti gt al
2007). The only shales occurring in the entire 8aagquence of the region are the black shaléiseof
upper Cenomanian OAE2 Bonarelli level. Clays ofdb&ETM at Forada present primary lamination,
but they are not "fissile", in strict analogy to attRodriguez-Tovar et al. (2011) described forlihsal
siliciclastic unit of PETM at Zumaia section (Spaiwe interpreted such lamination as consequence of
the lack of bioturbators in the strongly stressedditions of basal PETM, conform Nicolo et al.
(2010). Besides high temperatures, changes in &adability and dysoxia of interstitial water pere
as well as low-pH sea-floor conditions, may haweyptl a significant role in excluding macrobenthic
fauna in this early phase of PETM. Deep-sea orga@re highly sensitive to even modest but rapid
pH changes (Seibold and Walsh, 2001; Science, 2B%-320) that have been shown to be harmful
even for infaunal deep-sea communities (Barry £t2804; Journal of Oceanography, 60, 759-766).
Usually, the Paleogene Scaglia Rossa is mottledefgsh flames in reddish-brownish sediments),
indicative of activity of macrobenthics in the smdnts. In the investigated section, mottling
completely disappears only within the basal-maatihated greenish clays of CMU, and gradually
reappears (as thin reddish "flames") at the AssageblD-E transition. We will ensure that this
description of sediment is clear in the revisediaar.

4228, 20: It would perhaps be worthwhile here td adsection on extinction rate within this partiaul
sequence. | have the impression that consideriagrttlusion of the fine size fraction here, leanlsit
(much?) lower extinction rate than the 40% or mibr&t is usually mentioned.

The proportion of Paleocene cosmopolitan “extinctispecies expressed relative to the total of
benthic foraminifera at Forada is quite low (ca%d0clearly related to the huge number of Bolivieac
dominating the fine size fraction used for thisdst{>63 um). Note that many extinction taxa are
epifaunal morphotypes, commonly larger than 126, as also noted elsewhere. Similarly low
percentages (12-15%) of cosmopolitan extinctiora thave been recorded in Scaglia sediments of the
Contessa section (Giusberti et al.,, 2009) and aP (ie 690 by Thomas (2003), where infaunal
morphotypes (buliminids and uniserial calcareous)tare abundant/dominant in the @8 fraction.

We will add a sentence in the text to clarify thesd we will move Fig. S1 from Supplementary
material to the text.

4228, 22-25: note that a very similar dead zonehserved at Dababiya (Ernst et al. 2006), but
relating this to a rise of the CCD and lysoclineinfp the continental shelves of the Tethys seerits g
unlikely. So the question that comes up is, up hiatvghallow depths could a rise of the CCD still
account for the effects observed? Is that indeetbd®00-1500 m or perhaps even shallower?

With this paper the paleobathymetry of the Forastdisn is refined, and our dataset points out ky ful
bathyal paleodepth. We thus argue that the CCDraiaed up to 1000-1500 m in the Tethys (see also
tables in Thomas, 1998); we cannot say anythinguade@thyan shelves. This interpretation is
consistent to what has been observed at Tethyas with similar paleodepths (Egger et al., 2005;
2009; Alegret et al., 2009; Giusberti et al., 20@8)d with the 2 km CCD raise estimated in thelsout



Atlantic (Zachos et al., 2005). As far as the blatdy is concerned, the problem of its interpretati
has been stressed in the text, as also previousi@iusberti et al., (2007). In much shallower,
coastal/mid shelfal sites, carbonate may be nosepved due to local eutrophic conditions with
oxidation of organic matter leading to waters csiwre to carbonate (similar to circumstances in
present-day eutrophied shelves/estuaries), whighwe#l have been the case in the Egyptian sections,
but that is not relevant to this manuscript.

M inor issues:

This paper is about much more than the benthicrforacord as it integrates data from earlier studies
on Forada. In order to maximize readership theetitbuld be improved accordingly, e.g. by adding a
term like ‘integrated’ or alike.

We thank the reviewer for the suggestion and wilbfv his advice modifying the title of the paper.

The introduction is quite long and detailed. Soraetpcan certainly be preserved for the discussion
instead of elaborating them in the introduction.

We agree in part with the reviewer and will trynmdify the introduction accordingly, but we do not
agree that all the introductory text should beudeld in the discussion, because it is introductory
nature and interferes with the line of discussiontle discussion section. We moved part of
introduction to a new paragraph (par. 4.4) entitiétbes from Forada on PETM climate change" at the
end of the Discussion.

4208, 18: First records of anoxia related to the TRE along the Tethyan continental margins:
Gavrilov et al. 1997 — Lithology and Mineral Resoes; Speijer et al. 1997 —Geology).

Ok. We will add these references and Benjamini 2199

4215, 22: Note that G. subglobosa is a common tmdant component (up to 20%) in Paleocene
neritic deposits at Dababiya (and Aweina,...), Egyptreturns within PETM DQB 3 (10-15%),
together with various buliminids and Tappanina satsis (Ernst et al. 2006), under improving, but
probably fluctuating seafloor oxygenation. In thleelf setting (as elsewhere in Egypt) G. subglolitosa
is not part of the first colonizers though (duesevere anoxia persisting after a (nearly) ‘deadezon

Ok. We will add such reference in the Table 1 sunmimgy the ecology of benthic foraminiferal taxa.
It is well possible thaG. subglobosalike T. selmensisoriginated at shallower depths and migrated
into the deep sea after the BFEE, because the faxairmost deep-water sites absent in the Palepcen
or present only rarely in the very latest Paleoddim®mas & Shackleton, 1996).

4226, 3: indicate at what depth ranges the modektiZzQs observed. Under high productivity zones
with a similar export production in warmer oceahge IOMZ is likely to have been more expanded.



Ok, but this varies very strongly by oceans.

4227, 5: add references for “seasonal to periodigatreases in primary productivity” leading to
“high faunal diversity” at middle bathyal depths.

Ok, we will add as references: Fontanier et al0620) Seasonal variability of benthic foraminiferal
faunas at 1000 m depth in the bay of Biscay. JouohaForaminiferal Research, 36, 1, 61-76;
Fontanier et al. (2006b) Stable oxygen and carbotopes of live benthic foraminifera from the Bdy o
Biscay: Microhabitat impact and seasonal varigbiliMarine Micropaleontology 58, 159- 183;
Fontanier et al. (2014) Living (stained) deep-sexarhinifera off Hachinohe (NE JAPAN, Western
Pacific): environmental interplay in oxygen-deptetecosystems. Journal of Foraminiferal Research,
44, 3, p. 281-299. We will add also Gooday (2003).

4232, 20-22: is this similar to modern dust sugptyn the Sahara to the Atlantic? This proposal rseed
some referencing.

Ok. Relevant citations are reported in line 4232 TWe will report them also where indicated by the
reviewer.

4234, 15: indicate that 800 ky after the end of Clligposition is well beyond the top of the studied
interval. This also reminds of the extended (650 kymid period, starting at the onset of the PETM,
observed at Site 401 (Bornemann et al., 2014).

Ok. We will add in the text a sentence including sluggested reference.

Fig. 8: meaning of texts not quite clear: e.g. wimtmeant by “Coccolithus-Toweius dominated
assemblage. No Coccolithus-No Toweius assemblagedted by Zygr., Sphen. and Octol.”? Similar
in other boxes.

We will modify both text and figures as follows: #&nblage dominated Iyoccolithus and Toweius.
After the removal ofCoccolithus and Toweius the assemblage is dominated Bygrablithus

SphenolithuandOctolithus.

Table S1: note that Schulte et al. 2011 (Chem. ppadvided additional data and an update on fllivia
discharge during the PETM at Dababiya, relativatie paper by Ernst et al. 2006.

The reference of Schulte et al. 2011 will be addeBable S1 (how Table S3).

Technical issues:

4208, 10: too much ‘profound’ (rather bombastic).



Ok. We will remove "profound” from line 10. We wadlso substitute at lines 6-7 "profound shallowing
of the calcite compensation depth" with "severdigiving of the calcite compensation depth” (already
adopted in Giusberti et al., 2007).

4208, 20: spelling ‘Palike’
Ok

4209, 14: spelling ‘Collinson’
Ok

4213, 13 and elsewhere: please use infaunal/epélaterminology consistently. Here and there the
terms ‘morphotype/morphogroup/morphology’ are usksifor most taxa the preferred microhabitat is
unknown, one of these terms should always be addefaunal/epifaunal. Also note that ‘epibenthic’
and ‘endobenthic’ have been proposed as preferables to denote ‘epifaunal’ and ‘infaunal’
microhabitats (Walker & Miller 1992 - Palaios). Orast terminological nitpicking: I'm not sure
whether the term ‘agglutinant’ as noun or adjectis@ppropriate in English (as it is in Dutch). Mag
English speaking workers generally use ‘agglutidate ‘arenaceous’ (taxa).

Ok. We will make the terminology uniform as sugegestAs far as epifaunal versus epibenthic etc., we
are aware of the Walker & Miller 1992, but we prefee still widely used infaunal and epifaunal
terms, and prefer the more extensive discussiathisftopic in Jorissen et al., 1995, 2007. We will
substitute, as requested, agglutinant with aggteih

4215, 21: spelling ‘Giusberti’
Ok

4231,27: spelling of ‘sibaiyaensis’. Also note thatery similar Acarinina acme (80-90%) is observed
in most PETM sections in Egypt, where it was allskeld to enhanced nutrient availability (Guasti &
Speijer 2007, GSA SP424), in contrast to the — themdely held (open ocean) view that the acme
resulted from oligotrophy.

Ok, we will correct the specific name. The sigrafice of Acarinina acme at Forada has been
previously stressed (comparing the African record eiting Guasti, 2005 and Ernst et al., 2006hin t
paper of Luciani et al. 2007. We will add the swglgd reference in our text. Note, however, that
Acarininaacmes occur widely in open ocean (e.g., Site 88flpus papers by Kelly et al.), and have
been also linked to carbonate over-saturation.

4234, 27: add ‘atmospheric’ (CO2)



Ok

Fig. 1: The Svalbard Archipelago includes the mialand Spitsbergen. Iceland probably slipped into
the text erroneously as it did not yet exist bagat

Ok

Fig. 3: CF has no unit and it's not clear what isamt here. Here and there in the text reference is
made to wght%. Specify this at least clearly in ¢hption. Reference only to Hancock & Dickens
(2005) is insufficient.

Ok. We will specify in the caption: "The weight pent of the >63um size fraction relative to the
weight of the bulk sample (coarse fraction, CF) wafculated for the Forada samples following
Hancock and Dickens (2005)".

Fig. 4: Please clearly specify that N/g for the i@drians refers to the amount of radiolarians ree
to the weight of the washed residue >125 microrg (biten refers to the number of microfossils
relative to the weight of the dry sediment).

Thank you very much for this remark. We realizeat there was a mistake in the original plot (X axis
of the original figure (Fig. 10) from Giusberti @t (2007). We will modify the figure and we wiltd
the sentence suggested. We will use "number" ablaians (instead of "amount of radiolarians™g th
word ‘amount’ is incorrect use of English.

Fig. 5: “Bulimina spp.” should not include other gera. Buliminids? Buliminacea? At any rate specify
usage of the grouping chosen.

We will substitute Bulimind' with "other buliminids”, explaining in the captiavhat is included.

References: In a separate upload various errorslfpbly not exhaustive) are highlighted in yellow in
the reference list: misspellings, non-abbreviatedrpals, missing initials, Palaeo3 being consident

indicated as Palaeo2. Doi numbers are given for iaompart of Elsevier and Science papers I'd
personally plea for consistency in the usage (ahathing.

Ok. We will remove all the doi throughout the refleces and we will correct the errors/mistakes (see
also answer to reviewer #2).



Authorsanswersto referee#2 (N. Mancin)

MAIN ISSUES/'SPECIFIC COMMENTS

1) Title: it is not fully indicative of the work ree presented because the Authors combine new high
resolution benthic foraminiferal results with pudsied calcareous plankton, mineralogical and
biomarker data to document climatic and environrakmhanges across the PETM. | suggest to
change the title accordingly.

We thank both reviewers for the suggestion and Widaltow their advice modifying the title.

2) Introduction. This paragraph is very long andtoondensed. | suggest to reduce it. Some parts
could be preserved for the discussion sections f{em 4208-line 26 to 4209-line 26).

We agree with the reviewer and will try to modifyetintroduction accordingly, but see note above
about including too much material in the discussion

3) Materials and methods. - Subparagraph 2.2.ullyfagree with Speijer's comment about how the
ecological overview has been assembled. Pleasengive details of your explanation. Moreover, this
subparagraph is too long and descriptive makingutl reading. | suggest to synthesize the benthic
foraminiferal ecology into two tables deleting ttiescriptive parts. Some suggestions: the firstetabl
could report the main ecological preferences andrafiabitats of the most common taxa recorded in
the studied section; for each benthic taxon théetabuld include a first column with the known male
depth range, a second column with the mode of{diéep or shallow infauna and epifauna), a third
column with the food supply (quantity, quality gretiodicity), a fourth column with the oxygenatian,
fifth column with the type of substrate and evelhua sixth column with other remarks. The second
table could report the grouping taxa (R1, R2, O2) @nd their occurrence in coeval records from the
studied Forada section to other land sections aamic sites. Both tables should include a last mwiu
with the most relevant reference papers used & itfe ecological preferences. The descriptive art
(only when strictly necessary to the discussions)dbe available as supplementary material.

Having re-read the manuscript in light of the comtaeby referee #1 and #2 on paragraph 2.2.1 (the
benthic ecology overview), we appreciate their eonc We also agree with the reviewers that the
paragraph is too long. We thus propose to elimirth&e entire paragraph 2.2.1, and with it any
reference to taxa ecology as inferred from the dr@gsarecord (e.g., the clustering into the categori
R1, R2, O1, 02). We propose to discuss part ofetlaspects in the Discussion paragraph. In place of
paragraph 2.2.1, following the referees’ suggestianwill provide a table summarizing the ecolody o
the most common taxa at Forada based on publigieeatlire.

4) Conclusions: this paragraph could be signifidgrdtreamlined omitting a few generic statements
and organising it into point bullets reporting ortlye main concluding remarks.



We will modify this part into bullet points.

5) References: the references list is consistedtugdated, but some references cited in the text ar
missing or incorrectly reported in the referenc [fe.g. different year of publication), converssbyne
references reported in the reference list are abserthe text. Please see below in the “Technical
corrections” for further details. Moreover, somdeeences in the reference list do not follow thelgu
of the CPD (non-abbreviated journals, missing Autimotials, misspellings). The reference list shau
be carefully checked, completed and corrected atingly.

Ok. Please note that in some cases the journalsoa@bbreviated because they do not occur inShe |
Journal Title Abbreviations Index. In any case,wik carefully check the entire reference list.

Technical corrections

- 4206-line 14 and elsewhere: The term “agglutiriaatnot fully appropriated, maybe “agglutinated
or arenaceous”. Please correct throughout the M8oadingly.

Ok, we agree. We will substitute agglutinant witglatinated.
- 4207-linel3: “Roehl” please replace with “Rohl”.
Ok

- 4207-line 23: “Dickens et al. 1995” in the refist is reported as “Dickens et al. 1997”, please
correct/uniform.

-05208-Iine 7. “Zachos et al. 2005” in the ref. fiss indicated as “Zachos et al. 2015”, please
correct/uniform or add.

Ok

- 4208-line 10: “The profound paleoceanographicéw item.

See response to reviewer 1 for the same comment.

- 4208-line 16: Boscolo-Galazzo et al. 2014 is mg$rom the ref. list.

Ok

- 4208-line 20 "Paelike” please replace with “Paek



Ok
- 4209-line 7: “Krauss” in the ref. list is citedsd’Kraus”, please uniform.

Ok

- 4209-line 29 “Sluijs et al. 20077, is it 2007a @007b?

Ok. It is Sluijs et al. 2007a.

- 4212- line 22: “Foster et al. 2013” is missing the ref. list. Please add it.

Ok

- 4213-line 20: “Hayward et al. 2012” is missing the ref. list. Please add the ref.
Ok

- 4214-line 2: *: based on their abundance pattemthe studied and other PETM sections” please
add some reference paper to support this sentence.

Ok. As stated above, the subparagraph 2.2.1 wiltbeved and the information presented in a Table.

- 4215-line 21: “Alegret et al. 2011” is reported the ref. list as “Alegret et al. 2010”. Pleaseroect
or add the missing ref.

Ok. The correct citation is Alegret et al. (2010).

- 4216-line 1: “Ishman & Domack 1994” is missingtime ref. list. Please add the ref.
Ok

- 4216-line 29: “Steineck & Thomas, 1996” is miggin the ref. list. Please add it.
Ok

- 4218-linel0: “Mancin et al. 2014” please replaweth “Mancin et al. 2013".

Ok.

- 4218-lines 11 to 18: “Caution is needed:” | wouldove this sentence at the beginning of the
subparagraph dealing with the foraminiferal ecology



We will move it at the end of the previous paragrags our intention would be that of eliminate
paragraph 2.2.1

- 4218-line29: “Roehl” please replace with “Réhl”
Ok.

- 4220-line 11 and elsewhere: The AA use the témmoesphotypes, morphogroups and morphologies”.
Please uniform throughout the MS.

Ok.
- 4221-line5: “opportunists” please replace with pportunistic taxa”.
Ok.

- 4225-linel: | suggest to change in “Discussior@mmoving “environmental reconstruction” because
redundant.

Ok, we agree.
- 4225-linel3: Please change in “Alegret et al. 260
Ok.

- 4225-line 20: | suggest to change the subtitle‘Emvironmental reconstruction during the late
Paleocene”.

We agree.

- 4225-line 21: Please change in “The Belluno Bas#ep-sea environment (Assemblage A)”
We will change it as suggested.

- 4226-line6: “Jorissen et al., 1995” is missingtime ref. list. Please add it.

Ok.

- 4226-line 11: “Fontanier et al 2005” is reporteid the ref. list as “Fontanier et al. 2008”". Please
correct or add the missing reference.

Ok. The correct citation in the ref. list is Fon&ret al., 2005.



- 4227-line 4. previously you said the surface watevere “oligotrophic” and now “oligo-
mesotrophic”. What is the correct one?

See answer to reviewer 1.

- 4227-line 9: Please change in “The precursor @tsmchange (Assemblage B)".
Ok.

- 4228-line 20: | suggest to change in “Climate andrine life during the PETM”.
Ok.

- 4229-line 2: Both the references “Higgs et al94%nd van Santvoort et al. 1996” are missing ia th
ref. list. Please add these references.

Ok
- 4229-line 11: | suggest to change in “The eadglppPETM (Assemblages C and D).
Ok

- 4229-lines 16 and 19: “Zachos et al. 2005” in thef. list is indicated as “Zachos et al. 2015".
Please correct/uniform or add.

Ok
- 4231-line 16: | suggest to change in “The core¢haf CIE and Recovery (assemblages E and F)”.
Ok

- 4235-line 15 “de-oxygenation” this term is notoper. Please replace with “scarce oxygenation” or
“sub-oxic conditions”.

We disagree — the term deoxygenation is used widelye literature of recent oceanic environments —
see e.g., http://www.oceanscientists.org/index fpppzs/ocean-deoxygenation.

- 4237 to 4258 References. The following referenaceseported in the ref. list but they are missing
the text: Fenero et al, 2012 Hess & Jorissen, 200n et al., 2012 Jones & Manning, 1994 Ortiz et
al., 2011 Pearson & Thomas, 2015 Sluijs et al.,268uijs et al., 2008 Smith et al., 2007 Thomas et
al., 1999 Winguth et al., 2010 Zeebe et al., 2009.



We will provide appropriate corrections removingerences missing in the text.

- 4262 caption of Figure 3. Is F-index from Luciatial 2010 or 2007 as previously said in the text?
Please uniform.

Ok. The correct citation is Luciani et al., 2007.

- 4263 caption of Figure 4. Is F-index from Luciatial 2010 or 2007 as previously said in the text?
Please uniform.

Ok. The correct citation is Luciani et al., 2007.

- 4264 Caption of Figure 5. Bulimina spp. shouleyp only different species of the genus Bulimina
and not other similar genera as Buliminella etcede replace Bulimina spp. with “buliminids”.

Ok. See answer to reviewer 1.
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Abstract

The Forada section (northeastern Italy) providesoatinuous, expanded deep-sea record of the
Paleocene/Eocene thermal maximum (PETM) in theralewestern Tethys. We combine a new, high
resolution, benthic foraminiferal assemblage reamitti published calcareous plankton, mineralogical
and biomarker data to document climatic and enwramtal changes across the PETM, highlighting
the benthic foraminiferal extinction event (BEEheTonset of the PETM, occurring ~30 kyr after a
precursor event, is marked by a thin, black, badley layer, possibly representing a brief pulse of
anoxia and carbonate dissolution. The BEE occuwikin the 10 cm interval including this layer.
During the first 3.5 kyr of the PETM, several adgiated recolonizing taxa show rapid species
turnover, indicating a highly unstable, Cag&&rrosive environment. Calcareous taxa reappesited
this interval, and the next ~ 9 kyr were charaztatiby rapid alternation of peaks in abundance of
various calcareous araglutinatecdrecolonizers. These observations suggest thatgigtie stressors,
including deep water CaGetgorrosiveness, low oxygenation, and high envirom@e instability
caused the extinction. Combined faunal and biomatkéa (BIT index, higher plamtalkane average

chain length) and the high abundance of the minehnsdrite suggest that erosion and weathering
1
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increased strongly at the onset of the PETM, dueartiooverall wet climate with invigorated
hydrological cycle, which led to storm flood-everdarrying massive sediment discharge into the
Belluno Basin. This interval was followed by thereoof the PETM, characterized by four
precessionally paced cycles in Ca@€) hematite%,5'*C, abundant occurrence of opportunistic
benthic foraminiferal taxa, as well as calcarecasnofossil and planktonic foraminiferal taxa typica
of high productivity environments, radiolarians,dalower dDn.akanes We interpret these cycles as
reflecting alternation between an overall arid eig) characterized by strong winds and intense
upwelling, and an overall humid climate, with abundant rains &mgh sediment delivery (including
refractory organic carbon) from land. Precessignpdced marl-limestone couplets occur throughout
the recovery interval of the CIE and up to ten meetbove it, suggesting that these wet-dry cycles
persisted, though at declining intensity, after geak PETM. Enhanced climate extremes at mid-
latitudes might have been a direct response tontiesive CQinput in the ocean atmosphere system at
the Paleocene-Eocene transition, and may have hadnary role in restoring the Earth system to

steady state.

1 Introduction

The Paleocene-Eocene Thermal Maximum (PETM) has theelast twenty four years attracted
intensive study by the scientific community, as oh¢he most dramatic and rapid climatic disrupsion
of the Cenozoic (e.g., Kennett and Stott, 1991 hadacet al., 2001; Sluijs et al., 2007a; Mclnerneg a
Wing, 2011; Littler et al., 2014). During the PET#55.6 Ma), the Earth’s surface temperature
increased by ~5°C in a few thousand years (Mclneam& Wing, 2011; Dunkley-Jones et al., 2013;
Zeebe et al., 2014; Bowen et al., 2015), and remdaimgh for 100 to 170-200 kyr (e.grphl et al.,
2007; Giusberti et al., 2007; Murphy et al., 20Ithe PETM is recognized in terrestrial and marine
settings by a negative carbon isotope excursioft;(€lg., Kennett and Stott, 1991; Bowen et al.,
2004), with variable magnitude ranging from ~2-4.5%. marine carbonates (e.g., Thomas and
Shackleton, 1996; Bains et al., 1999; Thomas eR@D2; Zachos et al., 2006; Handley et al., 2008;
McCarren et al., 2008) to 4-7%o in marine and teéri@sorganic carbon and leaf waxes (e.g., Kaiho et
al., 1996; Bowen et al., 2004, 2015; Pagani et28Q6a; Smith et al., 2007; Handley et al., 2008;
McCarren et al., 2008). This CIE is attributed tmassive, rapid input of isotopically light carbiomo
the ocean-atmosphere system, which destabilizedlthial carbon cycle and led to rapid and extreme
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global warming (e.g., Dickens et all997 Thomas and Shackleton, 1996; Pagani et al., 2006b
Panchuk et al., 2008; Dickens, 2011; DeConto e8ll2). Both the source(s) of the carbon and the
triggering mechanism(s) of the emissions are stiingly debated (e.g., Meissner et al., 2014pairt
because the pattern and size of the CIE does ruessarily simply reflect the size and isotopic
signature of the carbon input, but is affectedlic andsedimentary processesd.,Kirtland Turner
and Ridgwell, 2013). Despite these debates, thetmfsthe CIE is an outstanding global correlation
tool (Mclnerney and Wing, 2011; Stassen et al. 2ZB)1formally used to define the base of the Eocene
(Aubry et al., 2007).

The carbon cycle perturbation of the PETM led twlification of surface ocean waters (Penman
et al., 2014) andevereshallowing of the calcite compensation depth (CZ&chos et al., 2005; Kelly
et al., 2010; Honisch et al., 2012). Widespreataaate dissolution coincided with the base of tie C
(e.g., Thomas and Shackleton, 1996; Thomas, 1988cdétk and Dickens, 2005; McCarren et al.,
2008). The prefeund paleoceanographic changes affected primary andrexpoductivity (e.g.,
Thomas, 2007; Winguth et al., 2012; Ma et al., 20%hich in general increased in marginal basins
and along continental margins, but decreased in opeans (e.g., Gibbs et al., 2006; Stoll et 80,72
Speijer et al.,, 2012). The higher ocean temperataray have led to increased remineralization of
organic matter in the oceans due to increased wiatahtes (John et al., 2013, 2014; Boscolo Galazz
et al., 2014Ma et al., 2013 The combination of increased remineralizatiaghar temperatures and
increased ocean stratification led to a decreasxygen levels in bottom waters regionally, espbcia
along continental margins (including the Arctic @og and in the Atlantic Ocean (e.dgenjamini,
1992; Speijer et al., 1992; Gauvrilov et al., 19%Aomas, 2007; Chun et al., 2010; Speijer et2ai1,2;
Winguth et al., 2012Nagy et al., 2013Wieczorek et al., 2013; Dickson et al., 20P4like et al.,
2014; Post et al2019, while Oxygen Minimum Zones in open oceans expdrglobally (Zhou et al.,
2014), including at Forada (Luciani et al., 2007).
The increased primary productivity in marginal Inashas been linked to increased influx of nutrients
from the continents, caused by increased erosiah \@eathering due to intensification of the
hydrological cycle, because precipitation is cated to globally-averaged surface temperatures, (e.g
Pierrehumbert, 2002). A widespread increase inik#elin PETM sediments has been related to the
global increase in precipitation and intensity bémical weathering (e.g., Robert and Chamley, 1991;
Robert and Kennett, 1994; Kaiho et al., 1996; Qibsb al., 2000), as also suggested by Os-isotope

evidence (Ravizza et al., 2001; Wieczorek et &13). However, reconstruction of hydrological
3
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changes from clay mineral assemblages is complek,additional evidence is needed (Thiry, 2000;
Schmitz and Pujalte 2003; 2007; Egger et al., 2@085; Handley et al., 2012).

The severe climatic perturbations the PETM profoundly affected terrestrial and marine
ecosystems, triggering faunal and floral radiatiand migrations (e.g., Kelly et al., 1996; Bralower
2002; Gingerich, 2003; Wing et al., 20G5luijs et al., 2007aJaramillo et al., 2010; Mclnerney and
Wing, 2011). Deep-sea benthic foraminifera expegeinthe most severe extinction of the Cenozoic,
the benthic foraminiferal extinction event (BEEh@mas, 1989, 1990, 1998; Kennett and Stott, 1991,
Thomas and Shackleton, 1996; Alegret et al., 200932010). The BEE was rapid (<10 kyr; Thomas,
1989, 2003, 2007), and wiped out the Cretaceous/dband abyssal “Velasco-type fauna” (Berggren
and Aubert, 1975; Tjalsma and Lohmann, 1983; Thori888, 2007), marking a significant step
towards the establishment of modern benthic forderad fauna (Thomas, 2007). The extinction was
far less severe in shelf environments (Gibson.eL8B3; Speijer, 2012; Stassen et al., 2015).

The cause of this global extinction remains unddvate, because neither anoxia nor higher or
lower productivity, nor carbonate dissolution ocedrglobally at bathyal to abyssal depths in thepde
sea, the largest habitat on Earth (e.g., Thoma63,2Q007; Alegret et al., 2010), and benthic
foraminifera are highly efficient dispersers (Ahand Goldstein, 2003). The link between the
environmental changes during the PETM and the beftihaminiferal extincton event thus remains
poorly understood. A common obstacle to perfornmaiteed high-resolution studies of the PETM in
deep-sea sediments is the fact that many recoedsocsudensed or discontinuous, especially across the
few thousand years (Zeebe et al., 2014) of thetoolséhe carbon isotope excursion. The Forada
section (northeastern Italy) represents an outsigrekception in that it contains an expanded csssp-
record of the PETM, which has been extensivelyistlidecause of its continuity and cyclostratigraphy
(Agnini et al., 2007; Giusberti et al., 2007; Lugiat al., 2007; Tipple et al., 2011; Dallanaveakt
2012). Carbonate dissolution is less severe atdaothan in many other sections, with calcareous
benthic foraminifera present for most of the ingdreharacterized by the CIE (> 4 m; Giusberti et al
2007). Given the limited number globally of compleind expanded deep-sea PETM sections, the
Forada section represents an invaluable opportdaityvestigate the environmental impacts of the
PETM and repercussions on deep-sea fauna.

We provide a high-resolution benthic foraminiferacord for the Forada section, in order to
reconstruct the progression (tempo and mode) af@mwental and biotic changes during the PETM.

These data allow us to reconstruct the environnheiigeuption and the benthic foraminiferal response
4
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to PETM warming in detail, and document the comnyunecovery. Benthic foraminiferal data are
integrated with sedimentological and geochemictd §@iusberti et al., 2007; Tipple et al., 201X)da
data on calcareous plankton communities (Agniralt2007; Luciani et al., 2007), providing perhaps
the most complete reconstruction across the PETEUnope todate.

We pay homage to research by Italian researchdard@poli Alliata et al., 1970; Braga et al.,
1975), who first described the benthic foraminifeéuanover across the Paleocene-Eocene transition i
Italy.

2 Materials and methods
2.1 The Forada section

The Forada section (46.036083°N, 12.063975°Ex®osed along the Forada creek, ~ 2 km east of
the village of Lentiai fig. 1) in the Venetian Pre-Alps (NE ltaly). It consistEca. 62 m of Scaglia
Rossa, pink-reddish limestones and marly limestoeeally rhythmically bedded, and encompassing
the Upper Cretaceous through the lower Eocene @e@n et al., 2007; Giusberti et al., 2007). The
upper Paleocene—lower Eocene succession is intedlyy the clay marl unit (CMU; Giusberti et al.,
2007), which marks the PETM and correlates witly-cleh units on other continental margins (e.g.,
Schmitz et al., 2001; Crouch et al., 2003; Johmlgt2008; Nicolo et al., 2010). The investigated
interval has been subdivided into four sub-intes\@sed on th&C record in bulk rock (Giusberti et
al., 2007). From bottom to top, these are the gie-@e main CIE, the CIE recovery and post-CIE
(Fig. 2. The main CIE (Giusberti et al., 200Hgs. 2, 3 occurs in the >3 m-thick CMU, within which
are recorded the shdived occurrences of the calcareous plankton “esioartaxa” (Kelly et al., 1996,
1998) and the BEE (Agnini et al., 2007; Giusbettak, 2007; Luciani et al., 2007). Sedimentation
rates in the CMU were five times higher than in tipper Paleocene, indicating increased continental
weathering and run-off, which led to increased medit influx in the Belluno Basin (Giusberti et al.,
2007).

2.2 Benthic foraminifera
Benthic foraminiferal assemblages were studied 4ns&@mplesfrom the same set studied by

Luciani et al. (2007across an ~11 meter-thick interval straddling tBE8 M (-467 to +591.5 cmi-ig.
5



152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

2), which reflects ~ 800 kyr (Giusberti et al., 2D07n this study the planktic foraminifera
fragmentation index (F Index) of Luciani et al. QZQ is used as a proxy for dissolutidAgs. 2, 3
(Hancock and Dickens, 2005). The sample spacingpdothic foraminiferal assemblage analysis was
determined based on biostratigraphic and cyclogtegthic data (Agnini et al., 2007; Giusberti et al
2007; Luciani et al., 2007). A sampling interval35 cm was used across the onset of the CIE (-42.5
to + 50 cm interval), a 25 cm sample interval abermain CIE (from +75 to 335 cm). Below -42.5 cm
and above 335 cm we adopted a spacing betweend280aom Samples were collected excluding, to
the extent possible, bioturbated material. Furedection and removal of bioturbated material was
carried out in the laboratory before sample prangsdata previously collected from the Forada
section indicate that significant bioturbation effeare not present (e.g., Agnini et al., 2007 ;sGauti

et al., 2007; Luciani et al., 2007).

Foraminifera were extracted from theluratedmarls and limestones using the “cold acetolyse”
technique of Lirer (2000), following Luciani et #2007). Soft marlyand clayeysamples (mostly from
the CMU interval) were disaggregated using a 10-3@¥tion of hydrogen peroxidéhe samples
with the lowest content of CaGQe.g., clays of basal CMU) were treated with didlteydrogen
peroxide (10%), in order to prevent possible adddi breakage of tests (especially of planktic
foraminifera). For more details on the comparis@iween the two methods of preparation (cold
acetolyse versus hydrogen peroxide), we refer mdni et al. (2007).

The quantitative studgf benthic foraminiferavas based on representative splits (using a micro-
splitter Jones, Geneq Inc.) of approximately 20@-#@dividuals >63um and <50Qum (Table S). The
use of the small-size fraction is time-consuming aresents difficulties in taxonomic determination,
but we preferred to avoid the loss of small taxiiclv are important for paleoecological investigaso
(e.g., Thomas 1985; Boscolo Galazzo et al., 20035), especially directly after the BEE when small
species are dominant (Thomas, 1998; Foster et2@l3). Between 0 and -222 cm (uppermost
Paleocene), the fraction125 um of at least 1/4 of the residue was carefully sednfor large
specimens of the extinction taxa, here labeled fi@gslitan Extinction Taxa” (CET) (see Thomas,
1998, 2003). These CET records have been treat@dagwely (Fig. 4). The extinction taxa include:
Anomalinoides rubiginosus, Angulogavelinella avnimelechi, Aragonia velascoensis, Bolivinoides
delicatulus, Cibicidoides dayi, C. hyphalus, C. velascoensis, Clavulina amorpha, Clavulinoides
trilatera, Clavulinoides globulifera, Coryphostoma midwayensis, Dorothia beloides, D. bulletta, D.

pupa, D. retusa, Neoeponides megastoma, Gavelinella beccariiformis, Gyroidinoides globosus, G.
6
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guadratus, Marsonella indentata, Neoflabellina jarvisi, N. semireticulata, Nuttallinella florealis,
Osangularia velascoensis, Paralabamina hillebrandti, Pullenia coryelli, Remesella varians (e.qg.,
Beckmann, 1960; Von Hillebrandt, 1962; Tjalsma &otimann, 1983; Speijer et al., 1996; Thomas,
1998), each of which is present at Forada.

We identified most common taxa at the species I€veble S). Taxa with high morphological
variability and/or variable preservation were idged at generic or higher taxonomic level. Speaisie
of the most representative taxa were imaged usiagSEM at the C.U.G.A.S. (Centro Universitario
Grandi Apparecchiature Scientifiche) of Padova @ity Plates 1-% Relative abundances of the
taxa and taxon-groups, along with faunal indiceshsas the calcareous-agglutinated ratio, the irghun
epifaunal ratio, and bi-triserial percentage weatwated Figs. 2, 5-7 and Fig. $1The absolute
abundance (N/g: number of benthic foraminiferagram-bulk dried sediment) was calculated for both
the>63 and>500 um fractions. Faunal diversitydices(Species diversity and Fisher+ig. 2) were
calculated using the PAST package (Hammer et @012 Segments belonging to tubular/branched
agglutinated forms (e.gRhizammina, Rhabdammina, Bathysiphon) were counted, but excluded from
calculations because there is no reliable methocbtwert the abundance of multiple fragments into
that of single individuals (Ernst et al., 2006).

We assigned species to epifaunal and infaomaphotypedy comparing their test morphology to
the morphotypesn Corliss (1985), Jones and Charnock (1985), i€ond Chen (1988), Kaminski
and Gradstein, (2005), Hayward et al. (2012), arshdih et al. (2013 owever,caution is needed in
applying taxonomic uniformitarianism due to our itk@d knowledge of the biology and ecology of the
highly diverse living species. Even for many liviagecies, the relation between test morphology and
microhabitat has not been directly observed, bekisapolated from data on other taxa (e.g., Jemiss
1999). The assignment of modern foraminifera torafiabitats based on their morphology may be
accurate only about 75% (Buzas et al., 1993): coisgas between past and recent environments thus
need careful evaluation, and cross correlation eéetwbenthic foraminiferal and other proxy data. The
ecology as evaluated from the literature (Tables Bhown for selected benthic foraminiferal taxanir
the PETM interval at Forada.

2.3 Age model
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The age model used for calculating the longevitpeaithic foraminiferal assemblages (see below)
follows Luciani et al. (2007), with the lower Eoeuhronology based on the cyclostratigraphic age
model of Giusberti et al. (200Fjg. 3). The duration of each precessional cycle has besamed to be
21 kyr. Sedimentological and geochemical parameaiscdlate cyclically within the main CIE, in at
least five complete precessional cyclésg§. 2, 3. The CIE recovery interval is composed of six
distinct, precessional marly-limestone couplet egdfFig. 3. The recognition of eleven cycles in the
combined CIE and recovery interval implies an eaterof the total duration of the CIE of ca. 230 kyr
(Fig. 3. Giusberti et al. (2007) andohl et al. (2007) disagree on the duration of the n@iid and
recovery interval (179117 kyr and 231+22 kyr, retpely). The main difference between these two
chronologies is the assignment of different numlmérgrecessional cycles within the main body and
recovery interval (Tipple et al. 2011).3Ne-based chronology for Site 1266 (Walvis Ridge)gasts a
total PETM duration of 234 +48/-34 kyr (Murphy &t 2010), in line with the age model of Giusberti
et al. (2007).

Lithological cycles have not been firmly identified the Paleocene part of the secti@md
sedimentation rates are interpolated between tee dlathe PETM at £0 cm and the lowest occurrence
of the calcareous nannofosBilscoaster multiradiatus at ca.—12.5 m (Giusberti et al., 2007), using a
duration of the time between these events of 1\M@8(Westerhold et al., 2007). In this age modeé t

investigated portion of Forada section spans dak§0

3 Results

Benthic foraminiferal assemblages are generallyidated by calcareous hyaline taxa (85-90%;
Fig. 2), but agglutinated taxa significantly increaseabundance within the CMU (25-90%ig. 2).
Infaunal taxa strongly dominate the assemblageutirout the studied interval (~80%). Faunal
diversity is fairly high, particularly in the uppdtaleoceneHig. 2), and preservation is generally
moderate, though poor within the lowermost centareeof the EocenéViost foraminiferal tests at
Forada are recrystallized, and totally or partiéiligd with calcite.

Composition and abundance of the assemblages cl@pngenently across the ca. 11 m-thick
interval investigatedHigs. 2, 5-J coeval with the geochemical signature of the PEBl broadly

coincident with the main lithological changes. Waeagnized six successive benthic foraminiferal
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assemblages (labeled A tofFgs. 2, 5-8, mainly based on changes in abundance of thelisted in
Tablel. Assemblages A and B are characteristic of theidantly reddish calcareous manttled by
greenish "flames"of the uppermost Paleocene, separated by the bamen clay layer from
Assemblages C, D and E, which occur in the firdt bfithe main excursion of the CIE (lowermost
Eocene), within the CMUbg@sal green laminated clays overlied by mottledlisfdclays marly clays
and marls). Assemblage F characterizes the marlkeotipper half of the CMU, as well as the CIE
recovery interval and the overlying post-excursioterval of reddish limestone—marl couplets
(Giusberti et al., 2007).

3.1.1 Assemblage A: the upper Paleocene fauna

Assemblage A (-467.5 to -37.5 cm, estimated dumattd30 kyr) has a high diversity, with
abundant infaunal taxa (ca. 70-80F4g. 2). Small bolivinids (<12%um) of theBolivinoides crenulata
group (Plate 3Figs 7-9), and smooth-walleBolivina spp. together comprise 50-60% of the >L®3
fauna(Fig. 5), with Sphogenerinoides brevispinosa (~10%) andther buliminidsless commonHigs.

5, 6). Epifaunal morphotypes are mainly representedigll cibicidids (10%)Anomalinoides spp.
(5%) and Cibicidoides spp. (usually <5%fFig. 5. Rare taxa include reussellids, angulogerinids,
nodosariids, dentalinids, gyroidinids, valvalabaiehén and unilocular hyaline taxaFig. SJ.
Agglutinated taxa are mainly represented pjroplectammina spectabilis, Trochamminoides spp.,
Paratrochamminoides spp., Reophax spp. and Subreophax spp. The Paleocene Cosmopolitan
Extinction Taxa (CET; Plate 1) are not a major congnt of the assemblage >6& (<10%;Fig. 6),

but are common to abundant in the size fraction53if (>20%). Many of these have large, heavily
calcified tests. The most common taxa inclu@avelinella beccariiformis, Pullenia coryelli and
Coryphostoma midwayensis (Table S). CET such a€lavulinoides globulifera, Cibicidoides dayi and
Cibicidoides velascoensis are common in the >50@n size fraction, together with trochamminids and
large lituolids (Plate 1figs 19, 6-8; Plate 4figs. 7, 8, 14, 20). The latter occur up to the tophaf t
Paleocene, but are absent in the Eocene. At -2611,3he Cosmopolitan Extinction Tax@ET) peak

at 15%, their maximum abundance in the studied®sedctig. 6. At the same level, peaks of large,
stout, heavily calcified taxa (e.gGibicidoides and anomalinids) co-occur with agglutinated taxa
(Glomospira, Spiroplectammina andHaplophragmoides, Figs. 6, J, whereas small, thin-walled forms

such as bolivinidsS phogenerinoides brevispinosa and cibicids decline markedly in relative abundanc
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(Figs. 5-7. Faunal density (N/g), diversity and the percgatabundance of infaunal morphotypes
decreaseRig. 2), as dos**C and CaC@% whereas the planktonic foraminiferal fragmentatiodex
(F Index) increases significantlyi@). 2. The upper boundary of this assemblage is deflmedhe
increase in abundance of thepportunistic taxaTappanina selmensis and Sphogenerinoides

brevispinosa, marking the onset of Assemblage B
3.1.2 Assemblage B: the pre-CIE Paleocene fauna

Assemblage B occurs at -31 to 0 cm, estimated idarat 34 kyr. At about -20 cm the lithology
shifts from reddish to greenish marls wbophycos andChondrites (intervals Pa | and Il of Giusberti
et al., 2007). In this assembla@hogenerinoides brevispinosa and Tappanina selmensis increase in
relative abundance compared to Assemblage¥®% at ~-27 and —12 cniigs. 6, J. Between the
two peaksof S brevispinosa (at about ~-20 cm; Figs. 6, there is a transient negative carbon isotope
excursion of about 1%., a drop in Cagftdbm 60 to 40%, a decline in the coarse fractm2%, and a
peak in the F-Index (85-90%;jgs. 2, 3. Small and thin-walled taxa such lagivinids, cibicidids and
S brevispinosa decrease markedly in relative abundance, wherggshbavily calcified taxa (e.g.,
Cosmopolitan Extinction TaxaCibicidoides spp., Nuttallides truempyi) and agglutinated forms
increase Kigs. 5-73. In addition, faunal density drops, as does teegntage of infaunal taxa (from
90% to 50%), and diversity increasdsg( 2. From -4.5 cm upwards, the preservation of benthi
foraminifera deteriorates, while the F Index reach@0% Figs. 2, 3. At -1.5 cm preservation worsens
and most bi-triserial taxa decline in abundancestdrally, whereas benthic foraminiferal absolute
abundance and CaG®% both decreasd-(g. 2). Faunal diversity peaks, and anomalini@iicidoides
spp.,N. truempyi, O. umbonatus as well as agglutinated forms increase markedhglative abundance
(Figs. 2, 5, & In the uppermost Paleocene sample, we seeghedtioccurrence of most CEHids. 4,

6). Few CET (e.g.Aragonia velascoensis) disappear below this samgeig. 4). These are generally
rare, occurring discontinuously throughout the Bedme, even in large samples of residue >125 pm
(Fig. 4). The uppermost occurrence of the CET definesugiger boundary of this assemblage, at the

base of the black clay layer.

3.1.3 The black clay

10
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The lowermost Eocene is a thin, black clay layetq0+0.3 cm), slightly enriched in organic
carbon, and carbonate-free (Giusberti et al., 260%. 3, §. This clay marks the base of the CMU,
and contains a few specimens only, agglutinatedhbzforaminifera of the genetdapl ophragmoides
and Recurvoides (10 specimens in 22 g washed sediment). It prgbabk deposited over less than a
millennium, in view of its small thickness and @awithin the precessionally paced cycles in the
PETM.

3.1.4 Assemblage C: basal CIE agglutinated fauna

We label this lowermost Eocene interval (lowermb@tcm of laminated green clays of CMU,;
estimated duration ~3.5 kyr) the BFDI (i.e., beatfuraminiferal dissolution interval), sediment lvit
low CaCQ wt % (~15%), and the most negati/&C values in bulk carbonate (-2%0). Assemblage C is
dominated by agglutinated taxa (about 90%;. 2) with badly preserved and deformed tests. Tests of
calcareous-hyaline forms are rare, partially digstland fragmented. Assemblage C has minimum
values of faunal density (<5), diversity, and wt#arse fractionKig. 2). Infaunal morphotypes have
their lowest abundance (ca. 36%ps. 2, §. Agglutinated foraminifera are mainly representsd
Eobigenerina variabilis (25%; Plate 1, Figs. 2,)3 Haplophragmoides spp. (20%),Glomospira spp.
(15%), Saccamina spp. (10%) andpiroplectammina navarroana (~ 8%;Plate 2, Fig.  In its upper
part, Assemblage C has high abundancdsaoferulina spp. (~20%K. conversa; Plate 2, Fig. ¥and
Ammobaculites agglutinans (10%; Plate 2, Fig. ). The latter taxa occur at relatively high aburaaim
the overlying assemblages, up to ~+50-70 €myg. 6, J. The upper boundary of this assemblage is
defined by the first substantial recovery of hyaltaxa (>50%).

3.1.5 Assemblage D: lowermost CIE fauna

In Assemblage D (+10 to +35 cm, lithologically cheterized by laminated green clays; estimated
duration ~9 kyr), calcareous-hyaline forms are iastly present and badly preserved, with dominant
taxa having dwarfed and thin-walled tests, e@obocassidulina subglobosa (25%), Tappanina
selmensis (20%), andOsangularia spp. (~11%f-igs. 6, 7 Plate 2, Figs. 13-)6A specific assignment
of basal PETM osangulariids at Forada is not ptes$iecause of their very small size and poor sthte
preservation From +30 cm upwards, relative abundancesGofubglobosa and Osangularia spp.
drastically decline, whereds selmensis reaches its maximum abundance (ca. 38M¢s. 6, J. Minor
components are "othéuliminids" group(up to 10% at the top of the Assemblage;See 5 and Fig.
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5- related captioy) Pleurostomella spp.,Oridorsalis umbonatus, anomalinids and stilostomellidsi(s.

5, 6 andFig. SJ). Agglutinated forms remain abundant, up to 50%:+20 cm, calcified radiolarians
become abundant, dominating the microfossil asSoniap to +2 m above the base of CMU (Luciani
et al., 2007;Figs. 3, §. Within the interval of Assemblage B**C shifts from -2 to -1%., and the
CaCQ wt% recovers to ~40%, despite strong dilution wétrigenous sediment§i@. 3. The upper

boundary of this assemblage is defined by the sterdi decrease at selmensis (to <5%).
3.1.6 Assemblage E: main CIE fauna |

In this interval (+35 to +185 cm; lithologically aracterized by green and reddish clays and marls;
estimated duration ca. 42 kyr) benthic foraminifgyeeservation improves, and calcareous-hyaline
forms dominate the assemblages aggig.(2). Sphogenerinoides brevispinosa is consistently present
again, with two peaks up to 20%igs. 6, 7J. Pleurostomella spp. increase to up to >10%, and
Bolivinoides crenulata and smooth-walledBolivina spp. to up to 30 - 40%-(gs. 5, §. Calcareous-
hyaline epifaunals such as cibicids and anomalinetgppear at <5%”F(g. 5. Faunal density and
diversity gradually increase upwards, whereas dggited taxa markedly decrease in abundance
(<20%) at ~+70 cmKig. 2. The upper boundary of this assemblage is definethe marked drom

relative abundancef S, brevispinosa (to <5%).
3.1.7 Assemblage F: main CIE fauna Il, CIE recovery and post CIE fauna

Assemblage F characterizes the upper half of th& @dddish marls), from about +185 cm up to
its top (+337.5 cm), and the overlying intervald(rearly limestone couplets) up to +649 cm; estithate
total duration > 281 kyr). The relative abundanféeSphogenerinoides brevispinosa is low (<5%),
whereasBulimina tuxpamensis and Nuttallides truempyi increase in abundance, respectively to 5 and
10%, and show cyclical variations in relative abamck Figs. 6, 7. Pleurostomellids (~10%), "other
buliminids" group (~10%; Fig. 5, cibicids (~10%),0Oridorsalis umbonatus (~5%), stilostomellids
(~5%) and Abyssammina spp. (~5%) are commoriifs. 5, §. Relative abundance of infaunal taxa
(mostly bolivinids) and faunal density (N/g) retsrmo their Paleocene values (75-80F%¢g. 2).
Diversity increases (simple diversity up to 60,héiso diversity up to 20Fig. 2 but remains lower
than in the Paleocene. All faunal indices showicgthivariation Fig. 2), as do the relative abundance

of benthic foraminifera, and planktic foraminifemtd calcareous nannofossil assemblages (Agnini et
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al., 2007; Luciani et al., 2007). In the lower thof the interval in which this assemblage occjurst,
above the CMU (ca. +337.5 cm), the relative andlaibs abundance of radiolarians decrease markedly
and agglutinatedtaxa such aslomospira spp.,Eobigenerina variabilis andKarrerulina spp. slightly

increase in relative abundance (~+2-3%ps§. 2, 3, 6, ¥

4 Discussion
4.1 Paleodepth of the Forada section

Based on benthic foraminifera in the >125um sizaetion, Giusberti et al. (2007) suggested a
paleodepth between 600 and 1000 meters for thedl&a@®action. Our data on the >63 pum size fraction
suggest a somewhat greater paleodepth, i.e., ipper bathyal, between 1000 and 1500 meters (van
Morkhoven et al., 1986). Representatives of thayedtand abyssal Velasco-type fauna (Berggren and
Aubert, 1975), such a#ragonia velascoensis, Cibicidoides velascoensis, Gyroidinoides globosus,
Nuttallides truempyi, Nuttallinella florealis, Osangularia velascoensis and Gavelinella beccariiformis
are common at Forada. The faunas across the upgeR&EI M interval and higher are similar to the
PETM-fauna in the upper abyssal Alamedilla sec{iouther Spain; Alegret et ak0099 and at
Walvis Ridge at 1500 m paleodepth (Thomas and 3iaxck 1996; Thomas, 1998\byssammina
spp. andN\uttallides truempyi (upper depth limit at 1000 and 300 m respectivelgn Morkhoven et
al., 1986; Speijer and Schmitz, 1998) increasebumndance by more than a factor of 2 during the
PETM at Forada, as typical for PETM deep-sea bertimaminiferal records (e.g., Thomas, 1998;
Thomas and Shackleton, 1996; Thomas, 2007; Alegrat., 2009a, 2011; Giusberti et al., 2009). In
these deliberations we excluded the bolivinidsabee we consider that their high abundance isaue t

the “delta depression effect” (see below).
4.2  Environmental reconstruction during the late Paleocene
4.2.1 The Belluno Basin Paleocene deep-sea environment (Assemblage A)

Throughout most of the investigated section, infsiistrongly dominate over epifaunals, mainly
due to the high abundances of bolivinidsgé. 2, 5. Such dominance of bolivinids is common in
lower and middle Eocene hemipelagic Scaglia sedisnenthe Belluno basin (Agnini et al., 2009;
Boscolo Galazzo et al., 2013). Presently, bolianate common along continental margins, and at
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bathyal depths, at the interception of the oxygenimum zone(OMZ) with the seafloortypically
between 200 and 1000 m in modern oceans (Levin3)28igh abundances of bolivinids commonly
correlate with high organic matter flux and/or ogggdepletion (e.g., Murray, 1991; Gooday, 1994;
Bernhard and Sen Gupta, 1999; Schmiedl et al., ;ZD@@mas et al., 2000; Jorissen et al., 1995, 2007,
Thomas, 2007). We see high abundances of suchypically at greater depths than usual in regions
with significant organic matter input from rivetbe so-called “delta-depression” effect first désea

in the Gulf of Mexico (Pflum and Frerichs, 1976yidsen et al., 2007). Such lateral inputs of organi
matter thus result in (partial) decoupling betwéla food supply to the benthos and local primary
productivity (e.g., Fontanier et al., 2005; Arntiag, 2013).

At Forada, there is neither geochemical nor sediabegical evidence for persistent suboxic
conditions at the sea-floor (Giusberti et al., 20@nd the high benthic foraminiferal faunal divirs
likewise does not indicate low oxygen conditiondieTupper Paleocene calcareous plankton is
dominated by morozovellidadicatingoligotrophicsurface water conditions (Luciani et al., 20Big.

8). The calcareous nannofossil assemblage is doedinaéty the generalist taxaoweius and
Coccolithus, with high percentages @&phenolithus and Fasciculithus (Agnini et al., 2007Fig. 9,
supporting that surface waters were oligotrophiee Wus think that environments in the Belluno
Basin, close to a continental margin (Agnini ef 2007), were characterized by the “delta depressio
effect”, in which hemipelagic sedimentation incaigted significant laterally transported terrigenous
organic matter to serve as food for the benthag,(Eontanier et al., 2008; Arndt et al., 2013).

The occurrence of large, epifaunal (> 500 um) ggefhssemblage A and B), has been related to an
optimum food supply, but also to very low food slypince a lack of food keeps individuals from
reproducing successfully and leads to continuettigresvth (Boltovskoy et al., 1991; Thomas and
Gooday, 1996).

Overall, Assemblage A, indicates oligo-mesotropsicface wategswith bolivinids probably
exploiting refractory, laterally advected organiatter. The high faunal diversity suggests that@eals
to periodical increases in primary productivity nfeawve occurrede.g., Gooday, 2003; Fontanier et al.,
2006a, 2006b, 2014allowing a species-rich, highly diverse infaumal a&pifauna to inhabit the sea-
floor, and co-occur with the bolivinids in the sedintary record.

At Forada, the relative abundance of Paleocene Qpslitan Extinction Taxa (CET) is low
(average <10%; Fig. 6), due to the large numba@abdivinacea dominating the fine size fraction used
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for this study (>63um). Many CET (Plate 1) are epifaunal morphotype@snmonly larger than 125
um, as also noted elsewhere (e.g., Giusberti e2@09). Similarly low percentages (12-15%) of CET
have been recorded in Scaglia sediments of theeGsatsection (Giusberti et al., 2009) and at ODP
Site 690 by Thomas (2003), where infaunal morphedybuliminids and uniserial calcareous taxa) are

abundant in the >68m fraction.

4.2.2 The precursor warming event (Assemblage B)

The onset of Assemblage B, about 34 kyr beforeotiget of the CIE (~-30 cm), is marked by
increase in relative abundance of opportunisticataguch as Tappanina selmensis and
Sphogenerinoides brevispinosa (Figs. 6, 7 Table ). The arrival ofTappanina selmensis, an upper
bathyal to outer shelf species the Maastrichtian (Frenzel, 2000), at greatestldemight indicate
warming of deep waters before the beginning ofRE&M, as also reflected in the migration of warm-
water planktonic species to high southern latituHsomas and Shackleton, 1996able 1. The
benthic foraminiferal changes roughly coincidedwatsignificant increase in acarininidsgtapktonic
foraminiferg >50%), likely indicating warming of surface watgiLuciani et al., 20Q7Fig. 8. The
foraminiferal assemblages hence suggest warmimgighvout the water column, and increased surface
nutrient availability and deep-water food availapilwhereas no changes in productivity in calcaseo
nannofossils are recorded (Agnini et al., 2007;i&nicet al., 2007Fig. 8. The foraminiferal evidence
for warming is associated with an increaséi.aikanes2nNd TEXgs values Fig. 9), suggesting increased

aridity and sea surface temperature prior to tteebaf the CIE (Tipple et al., 2011).

Multiple proxies thus indicate that climatic andeanographic conditions started to change ~30
kyr before the onset of the CIE, pointing to a PEPkecursor event, reflected by a <5-cm thick
dissolution interval at ~-22 cm, coinciding witthagative shift in bullé**C (-1%o; Figs. 2, 3. Within
this interval dissolution-sensitive benthic foraifera (e.g.,S. brevispinosa and small bolivinids)
markedly decrease in abundance, while more robu$tgglutinatedtaxa increaseHgs. 2, 5-§, as
does the F-Index of planktic foraminifera (to ~ 83%6; Luciani et al., 2007#ig. 3. This dissolution
level may thus reflect a brief episode of risingdgline/CCD (<5 kyr) in response to a precursory
emission of isotopically light carbon (Bowen et @015). Similar precursor events have been obderve

worldwide (e.g., Sluijs et al., 2007b; 2011; Secetdl., 2010; Kraus et al., 2013; Garel et al130
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441  Bornemann et al.,, 2014; Bowen et al., 2015), indigathat disturbance of the global carbon cycle
442  started before the PETM, as potentially also réfiécin the occurrence of hyperthermals in the
443  Paleocene (Thomas et al., 2000; Cramer et al.,;Z06&ioni et al., 2012).

444 At the top of Assemblage B (uppermost 4.5 cm), jusdr to the onset of the CIE, carbonate
445  preservation declined markedly, as reflected imdek, CaC@%, and foraminiferal preservation. In
446  this interval, representing the “burndown” layerl (R.g., Thomas and Shackleton, 1996; Thomas et
447  al., 1999; Giusberti et al., 200¥jgs. 4, 7, § CET remained present. Dissolution in the uppkr B
448  removed most thin, dissolution-prone calcareouts tgsg., S phogenerinoides brevispinosa and small

449  bolivinids), concentrating the more heavily cakeifiand the agglutinated taxa (included CEif;, 5-

450 7). Benthic foraminiferal assemblages in the topnRaeocene at Forada thus cannot be interpreted

451  with confidence due to the severe dissolution.
452 4.3 Climate and marine life during the PETM
453 4.3.1 The black clay: a desert below the CCD

454 This very thin, carbonate-free interval is somewdrd@gmatic. The virtually barren sediment may
455 have been deposited during the maximum rise of G@&D, under environmental conditions so
456  unfavorable that benthic life was excluded, a "deawdke" éensu Harries and Kauffman, 1990) during
457 the earliest phase of the PETM. Geochemical reddiceés in the black clay and the underlying and
458  overlying samples suggest persistently oxygenatgtbim waters (Giusberti et al., 2007), but may
459  reflect diagenesis during re-oxygenation of bottwaters after a short period of anoxia, as commonly
460 observed for Mediterrean sapropels (Higgs et 804ivan Santvoort et al., 1996). The presenchef t
461  thin black clay without microfossils thus is higldyggestive of a brief pulse of anoxia, as supddrie
462 a single peak value of organic carbon (0.6 wt %ysBerti et al., 2007). The high value of biogenic
463  barium (3151 ppm) in the black clakif. 3), despite the fact that barite is generally nasprved
464  under anoxic conditions (Paytan and Griffith, 20P@ytan et al, 2007) may represent reprecipitatton
465 the oxic/anoxic sediment interface after dissolutitmder anoxic conditions (Giusberti et al., 2007),
466  and/or high rates of organic remineralization ie tater column,during which the barite forms (Ma et
467  al., 2014).

468 4.3.2 The early peak PETM (Assemblages C and D)
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The 10 cm of sediment directly overlying the PatsmEocene boundary (i.e. the base of the CIE;
Figs. 7, § was deposited in strongly CagOcorrosive watershelow the lysocline andlose to or
below the CCD. The rapid rise of the CCD/lysoclaheing the PETM is a predicted consequence of
massive input of carbon (G@r CH,) in the ocean-atmosphere system on a millenmatgcale (e.g.,
Dickens et al., 1997; Thomas, 1998; Zachos et2805; Zeebe et al., 2009, 2014; Hoenisch et al.,
2012). The carbonate dissolution at Forada is sterdi with observations at many other deep-ses site
(e.g., Schmitz et al., 1997, Thomas, 1998; Zachosal.e 2005; Kelly et al.,, 2010). The benthic
foraminiferal extinction event (BEE) at Forada.(imrresponding téhe the BB1/BB2 zonal boundary
of Berggren and Miller, 1989) occurs within this &@-thick interval, between the top of the CET-
bearing burndown layer and the base of Assemblagehiere benthic calcareous taxa reappEars(

4, 7, §. The concentration of CEif the burndown laygrand the reappearance of calcareous hyaline
taxa only 10 cm above the onset of the PETM at daraonfirms that the CET extinction occurred
over 3.5 kyr or less in the central western Tetlysiilar to evaluations of this timing from carbon
cycle modeling (Zeebe et al., 2014).

Sediment just above the black clay, reflectingrst fslight deepening of the CCD, contains a low
diversity, fauna of mostlggglutinated dwarfed (close to 63 pm diamete) benthic foraminifera, and
calcareous nannofossils with signs of dissolutwithy planktic foraminifera virtually absent (Agniet
al., 2007; Luciani et al., 200Fig. 8. This first wave of benthic pioneers recolonizbd sea-floor
during the peak-CIE, in CaG@ndersaturated waters, and reflects a highly steesnvironment
(Assemblage CFigs. 6-§. Among the pioneergobigenerina variabilis is peculiar of the PETM of
the Forada section (Figs. 6, Bobigenerina is a recently erected genus in the Textulariogsida
including non-calcareous species previously assigoeBigenerina (Cetean et al., 2011), and it is
known to behave opportunistically during Cretace@eganic Anoxic Event 2 (OAE2; Table 1). A
major component of the upper part of Assemblages Karrerulina conversa (Fig. 7). The species
dominates the lowermost Eocene deposits in thesPQarpatians @, 2004), commonly occurring in
the Paleocene-Eocene of the Central North Sea ahdatdor margin, and in Morocco (Kaminski and
Gradstein, 2005). ModerKarrerulina (e.g., K. apicularis=K. conversa) live in oligotrophic abyssal
plains, with well-oxygenated bottom and interskitiaters (Table 1). However, the test morphology of
Karrerulina, combined with its abundant occurrence in the tleab stressed environment of the basal

PETM at Forada and Zumaia (Table 1), suggestghisagenus may also act opportunistically.
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After ca. 4 kyr, a further deepening of CCD allowsedonsistent increase in abundance of benthic
calcareous taxa (ca. 50%; AssemblageF; 2), coinciding with the lowermost recovery of bulk
carbonate>*C values, from -2%o to -1%. (Giusberti et al., 200ipple et al., 2011Fig. 7). These
calcareous recolonizers included dwarfed and thalled forms of G. subglobosa, Tappanina
selmensis, Osangularia spp. andOridorsalis umbonatus (Figs. 6, 7. A similar peak in small
Osangularia also occurs in the basal PETM at Contessa Secttdpcumented for the first time in the
present paper (Fig. S2). Representatives of theigg@sangularia (Osangularia spp.) behaved
opportunistically in the PETM of the Tethyan Alaniedsection (Alegret et al., 2009a). Moreover,
Boscolo Galazzo et al. (2013) found small-s2sangularia within organic-rich levels immediately
following the Middle Eocene Climatic Optimum in tAéano section (in northeastern Italy). During the
Cretaceous OAE®sangularia spp. opportunistically repopulated the sea floarirdy short-term re-
oxygenation phases (see references in Table 1hoédth Osangularia is generally referred to as
preferring stable well oxygenated environments.{&yrray, 2006; Alegret et al., 2003), we suggest
that some extinct species of this genus could dgtbehave as opportunist and recolonizer.

Assemblage D contains almost equal abundancesladreaus andgglutinatectaxa, indicating
that factors other than bottom water Ca@0ncentration were controlling faunal variabiltthin this
assemblageHigs. 6, 7. Possibly, strongly enhanced runoff and sedindslivery can explain the
abundance of agglutinated taxa (40-60%), sucfslamospira spp. (e.g.Arreguin-Rodriguezt al.,
2013, 2014), above the first 10 cm of the CMU. \Wastrecognize a rapid succession of recolonizer
taxa during the first 12 kyr of the CIE (Assemblag&D). The small size of both thegglutinatecand
hyaline recolonizers is indicative of r-strategpecies which reproduce quickly and can thus quickl
repopulate stressed environments, as soon as icorgditnprove slightly (e.g., Koutsoukos et al., @99
Thomas, 2003). The rapid pace at which differergutations of recolonizers succeeded each other
indicates a highly unstable environment, with mdrkactuations in the amount, timing and quality of
the food reaching the sea floor. Sediment depawsitiaring this interval may have occurred in rapid
pulses, e.g., following intense rainstorms, cagyirefractory organic matter to the deep-sea
environment. Pauses between events may have alltiveedhenthic foraminifera to recolonize the
sediment, profiting of the abundance of food. TIss consistent with calcareous nannofossil
assemblages showing an increasé&ritsonia and declines in abundance Sghenolithus, Octolithus,

Zygrablithus andFasciculithus, indicating an unstable and nutrient rich uppetewaolumn (Agnini et
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al., 2007;Fig. 8. Archaeal biomarkers show a large influx of tetrial, soil-derived organic matter
(Branched and Isoprenoid Tetraethers or BIT Indesin the onset of the PETM up to ~+10 cm
(Tipple et al., 2011). Higher plamtalkane average chain length (ACL) decreased imatelgi after
the onset of the CIE, consistent with increasedidiyn(Fig. 9 Tipple et al., 2011). The abundance of
the clay mineral chlorite indicates enhanced plaserosion (Robert and Kennett, 1994) during
deposition of the lower 50 cm of the CMU, rapidcdeasing upward=(g. S3.

The greenish marly clays containing Assemblagesi 2 show primary lamination, indicating
that macrobenthic invertebrates were absent, d3eat and Mead Stream sections (New Zealand,;
Nicolo et al., 2010), and Zumaya (Spain; Rodrigliezar et al., 2011). The presence of benthic
foraminifera, however, indicates that bottom ancepeaters were not permanently anoxic. Pore waters
may have become dysoxic periodically due to highperatures, decomposing organic matter and
possibly enhanced water column stratification, ilegdo the absence of metazoans and stressed
benthic foraminiferal assemblagésow-pH sea-floor conditions may have also playesignificant
role in excluding macrobenthic fauna in this egshase of PETM at Forada. Deep-sea animals are
highly sensistive to even modest but rapid pH ckaneibel and Walsh, 2001), which are harmful

even for infaunal deep-sea communities (Barry.e2804).

4.3.3 The core of the CIE and Recovery (Assemblages E, F)

The benthic foraminiferal assemblage changes stgnifly from Assemblage D to assemblage E,
coinciding with the gradual reappearing of mottli@g thin reddish “flames” in the green sediment).
Bolivinids return as a major faunal component (508t)d agglutinated taxaecrease in abundance.
Peaks of tapered elongate calcareous forms, imgudiphogenerinoides brevispinosa, "other
buliminids" group,pleurostomellids and stilostomellids, replace tbeolonizers (Figs. 5, 6). These
groups could have beeinctioned asopportunistic taxa, able to flourish when food Elypwas
periodically high (e.g.Table ). Coinciding with Assemblage E, planktic forameré return to be a
significant component of the microfossil assembldgey., Luciani et al.,, 2007Fig. 8, while
radiolarians remain abundant throughout the CMWg6Gerti et al, 2007; Luciani et al., 2007). The
planktic foraminiferal assemblage is dominated bgrimininids, with a double peak of the excursion
speciesAcarinina sibaiyaensis and A. africana, which, combined with the high percentages of the
nannofossiEricsonia, indicate warm and eutrophic surface waters (Eigist et al., 2006; Guasti and
Speijer, 2007Agnini et al., 2007; Luciani et al., 2007ig. 9).
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Detrital hematite sharply increased in concentraibthe onset of Assemblage E (Giusberti et al,
2007; Dallanave et al., 2010; 20Rg. 3). Hematite forms in soils under warm and dry ctinds, and
an increase of hematite in marine sediments isidered indicative of an arid climate over the
adjoining landwith increased wind strength (Larrasoafia et al., 2883ng et al., 2007; Iltambi et al.,
2009), or humid to subhumid climates with seasdmghg (Torrent et al., 2006). It is delivered teet
deep-sea environment through river runoff or adiaealust (e.g., Zhang et al., 2007; Itambi et al.,
2009). Within the CMU, hematite shows cyclical tiwations with a ~21 kyr periodicity, but other
terrigenous components (quartz and phyllosilicatieshot co-vary in abundance after a ~15% increase
at the onset of the CMU-(g. 3. To explain the different abundance patternsjnterpret hematite as
wind-delivered, silicate minerals as runoff-deleer

The hematite% peaks may be indicative of cycliaiability in wind-delivered material, rather
than the earlier prevailing consistently humid @ten The lithological anomaly of the CMU, the
fivefold increase in sedimentation rates and irgeeia reworked Cretaceous nannofossils (Agnini et
al., 2007;Fig. 8, as well as the silicate mineral and hematite@onds all indicate marked fluctuations
in the hydrological regime throughout this intervdigh hematite% may reflect the presence of high-
pressure cells over land, during an overall drynate phase, with increased wind strength and dust
delivery to the sed@l arrasoafa et al., 2003; Zhang et al., 2007; ltaghlal., 2009) In contrast, low
values of hematite% may indicate periods of gredtemidity and enhanced precipitation. Such
alternation of wet and arid phases favored deegikession on the continental areas surroundimg th
Belluno basin (Thiry, 2000; Schmitz and Pujalte)2)) causing major washouts during the wet phases,
which may explain the fivefold increase in sedination rates and 15% increase in phyllosilicate
abundance in the CMU(g. 3.

The hematite% cycles are in phase with cycles iIC@&b, radiolarian abundance, and bulk
carbonate5™*C, slightly preceding the others stratigraphic#fyg. 3. During the arid climate phase,
enhanced wind strength may have generated intamsace water mixing and offshore nutrient
upwelling, inducing increases in primary produdsivand phytoplankton blooms. The blooms in
primary productivity resulted in deposition of ablant algal biomass, leading to the occurrence of
peaks of pleurostomellids, stilostomellids a8gbhogenerinoides brevispinosa in Assemblage E.
Productivity may have remained fairly high durirgp twet periods, as indicated by consistently high
biogenic barium throughout the CMU (Giusberti et @D07; Paytan et al., 2007). During the rainy
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periods, upwelling rates may have been lower, wittrients mostly supplied in river runoff. The
delivery of food to the seafloor may have been nmwetinuous, but with more important input of
refractory organic matter from land.

In contrast to these proxies, which show cyclitypatcessional periods throughout the CMU,
higher planin-alkane average chain length (ACL) a3 vary only in its lowermost 50 cm (Tipple et
al., 2011;Fig. 9. Possibly, the sedimentaryalkanes were derived from a pool of plant material
produced during subsequent wet and dry phasetas®CL anddD may represent averaged records
of leaf waxn-alkanes produced during different mean climatéestan the upper CMU. Even so, the
oD values within the CMU are on average ~15%o lowantabove and beloviFi. 9), as reported for
the Cicogna section (10 km away; Krishnan et aD15), possibly reflecting more humid
conditions/higher precipitation during the PETM weéhes (e.g., Sachse et al.,, 2006; Smith and
Freeman, 2006), or greater productivity of planterial during the wet phases. Alternatively, it may
reflect a primary change in the isotopic compositib meteoric waters (Krishnan et al., 2015).

In the following benthic foraminiferal Assemblage @pper CMU, recovery phase),
Sphogenerinoides brevispinosa and Tappanina selmensis are less abundant, where&slimina
tuxpamensis, Abyssammina spp., and\uttallides truempyi increase in relative abundang@egs. 6, 7.
These are typical deep-sea, open-ocean taxa whiclre tunder more oligotrophic conditions (e.qg.,
Thomas, 1998), and might indicate progressivelg latense or shorter primary productivity blooms
during the arid phases, and/or mark the returulty bxygenated sea-floor and pore water conditions
Less intense eutrophy at the transition from Assage®hE to F is further supported by calcareous
plankton data, showing a decrease in the plankdranfiniferal excursion species, and among
nannofossils, a decreaseBknicsonia (Agnini et al., 2007; Luciani et al., 2007; Fig. &onciding with
the top of the CMU, there were marked changes lecao@ous plankton assemblages, although benthic
foraminiferal Assemblage F persisted. Among calmasenannofossils the abundancezggrablithus,
Sohenolithus and Octolithus increased, whereas that of reworked taxa decre@Sed 8). In the
planktic foraminiferal assemblag@carinina species declined in abundance, and the fauna leecam
more diverse, with fluctuations modulated by lithgy} in the marl-limestone couplets overlying the
CMU (Fig. 8).

The lithological unit above the CMU consists of alternation of limestones and marls at

precessional frequencies (~21 ky¥sy. 2. These limestone-marl couplets persist for ug toeters
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above the CMUwell beyond the top of the studied interv@8iusberti et al., 2007; Luciani et al.,
2007), then gradually become less clearly expregadihg upwards. The marl-limestone couplets may
reflect the persistence of wet (marl)-arid (limestpcycles for ~ 800 kyr after the end of the CMU
deposition, though at an amplitude declining ovweet This persistence resembles the extended (650
kyr) humid period, starting at the onset of PETM¢agnized in the sediment record at Site 401 of
eastern North Atlantic (Bornemann et al., 201@ur benthic foraminiferal data agree with this
interpretation, showing substantially unchangedfkea conditions up to +650 cm (uppermost sample

analyzed).

4.4 Clues from Forada on PETM climate change

The integrated dataset collected at Forada supfieeteccurrence of enhanced climatic contrasts
and productivity changes in the western Tethysmduthe PETM, and agrees with previous studies
suggesting intense weather extremes at mid tocuib#d latitudesKig. 10; Table SB At the onset of
the PETM, middle to subtropical latitudes may h&een characterized by intense, monsoonal-type
rainfall, followed by a succession of wet and afichses, possibly precessionally packding the core
of the PETM(e.g.,Collinsonet al., 2007Krausand Rigging, 2007; Egger et al., 2009; Foremaad.get
2014; Stassen et al.,, 2012a,b; 20Egy. 10 and Table §3The Forada record allows to distinctly
recognize the temporal successions among theseatlislimatic phases up to 800 kyr after the ommset
the PETM, and to directly relate themthe progression of the CIE, its recovery and teation. The
climatic conditions inferred from the Forada sectand other records at similar latitudes diffemiro
those derived from the subtropical net evaporatmme (15°-35°N), (e.g., from the Tremp-Graus Basin
- Pyrenees), which document a generally much drignate with a brief interval of increased
storminess and intense flash flood events at theetoof the PETM (Schmitz and Pujalte, 2007).
Records from subtropical to mid-latitudes alsoetifrom records within the northern rain belt antbi
the Arctic basin (>50°N), which suggest that huroashditions may have been more persistent there,
with increased rates of precipitation, and on ayermoister conditions during the PETM (Pagani gt al
2006b; Sluijs et al., 2006; Harding et al., 201¥plik et al., 2011; Kender et al., 2012; Wieczoetk
al., 2013;Fig. 10; Table SB

The combination of altheseclimatic recordsKig. 10; Table SBsuggestshatthe net result of
increased weather extremes during peak-PETM mighé been to decrease rainout at subtropical to

mid latitudes, and increase moisture transport tdwhe high latitudes, as originally suggested by
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Pagani et al. (2006b). Few tropical records exdetthat precipitation changes here are less clear.
Rainfall in coastal Tanzania may have decreasehgitine early PETM, but combined with violent
precipitation events and floodings (Handley et28l08; 2012; Aze et al., 2014able SJ. In Central
America, conditiongluring the PETMmay have shifted to more continuously humid (Jadtarat al.,
2010).

The long-lasting cyclity and precise chronologyFatrada suggest that this enhanced climate
variability at subtropical to mid latitudes may lalasted for several hundred of thousand years afte
the onset of the CIE. Despitee possible decrease of net raindhese weather extremes persisting
over several 10kyrs may have significantly enhanced the ratero$ien and weathering, through the
occurrence of alternating wet-dry periods. The Wwedhg mayhave led to a decrease atmospheric
CO; levels, by consumption of GQduring weathering reactions. The increased supplgations
through enhanced weathering-erosion would haveedrivcean pH up, angtmosphericCO, down
(Broecker and Peng, 1982; Raymo et al., 1988; Zad@oal., 2005). Enhanced seasonal extremes
across large geographical areas (the subtropicalddatitudinal belt) thus might have been a resao
to the large CQinput at the Paleocene-Eocene transition, andimagg had a primary role in restoring

the carbon cycle to steady state.

6 Conclusions

The continuous and expanded record of benthic fimiésra across the PETM at Forada,
integrated with the extensive datasets previoushegated across this interval, may provide the most
complete reconstruction of ecological and climatianges during the Paleocene/Eocene thermal
maximum in Europe. Coupled sedimentological, mdecand micropaleontological records highlight

a complex sequence of environmental and climataghs during the time period across the CIE:

- Climatic and oceanographic conditions startediange ~30 kyr before the onset of the PETM, with
a possible precursor event.

- Our high-resolution benthic foraminiferal recazdmbined with the established chronology lets us
infer that the BEE in the central-western Tethysuoed over a time interval of not more than 4 kyr.
At the onset of the PETM, combined de-oxygenatamidification and environmental instability may

have synergistically impacted deep sea life.
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-Four benthic foraminiferal assemblages occur (& lower F) within the CMU (coinciding with the
main phase of CIE). Assemblage C is characterizeduzcessive peaks of different agglutinated
recolonizers. Calcareous recolonizers return infellewing Assemblage D, after calcium carbonate
saturation increased. The complex succession éspEaagglutinated and hyaline recolonizers in ¢hes
two assemblages (C, D; 12.5 kyr), suggests multgg®pulation episodes. The benthic foraminiferal
data integrated with molecular and mineralogicaladaoint to increased precipitation and strong
continental erosion during this short initial stagehe PETM.

- Within the core of the CIES**C and mineralogical properties such as hematitecatmium carbonate
wt % vary at precessional periodicity. Combinedhwitata on radiolarian abundance and benthic
foraminiferal assemblage composition this variypgiuggests an alternation of overall wetter anerdr
periods. Enhanced weather extremes during mosteofPETM may have lecbta decrease in total
precipitation over the central western Tethys.

- The benthic foraminiferal assemblage at Foradandit significantly change with the onset of the
deposition of marl-limestone couplets unit above @MU (mid and upper third of Assemblage F).
This suggests that the enhanced climatic varighalitprecessional timescales persisted well affter t
end of the CIE recovery. We argue that enhancesbsehextremes at mid-latitudes might have been a
direct climate response to the huge,(@put at the Paleocene-Eocene transition, and hmaag had a
primary role in restoring carbon cycle steady sthteugh links withthe water cycle and weathering

rates.
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Figures captions

Figure 1 Location of the Forada section in the contexitted Piave River Valley in the Belluno

Province (the “Valbelluna”), northeastern Italy.

Figure 2 Faunal and geochemical variations across the PETNForada section plotted against
chronostratigraphy, precessional cycles, litholaggognized benthic foraminiferal assemblages (A to
G) and isotopic intervals. % agglutinated=agglutdao agglutinated and calcareous hyaline ratio; %
infaunal taxa=infaunal to infaunal and epifaundlorasimple diversity and Fisher-diversity index;
N/g=number of benthic foraminifera per gram (faudehsity) in the >63 mm size fraction; coarse
fraction (CF) calculated according to Hancock arnckBns (2005as the weight percent of the >
size fraction relative to the weight of the bulkrgde Fragmentation index (F-Index) is from Luciani
et al. 007). The gray bands indicate intervals of carbonassalution. a= pre-CIE dissolution,
B=burndown layer, BFDI=benthic foraminiferal dissidun interval. Modified from Giusberti et al.
(2007).

Figure 3 Summary of the main mineralogical, geochemical eyclostratigraphic features recognized
across the Paleocene-Eocene boundary and in tiiemdd unit (CMU) of the Forada section and
radiolarian abundance plotted against isotopic rnrale and recognized benthic foraminiferal
assemblages (A to R)/g for the radiolarians refers to the number efiokarians (>125um fraction)
per gram of dry sediment-Index from Luciani et al.2007). VPDB—Vienna Peedee belemnite
standard. Modified from Giusberti et al. (2007).

Fig. 4. Stratigraphic distribution of benthic forguiferal extinction taxa (CET) across the
Paleocene/Eocene boundary in the Forada sectidteglagainst lithologys*>C bulk record, CaC®
percentage, isotopic intervals and recognized lefdhaminiferal assemblages (A to F), based oa dat
from the >63um size fraction integrated with data from >125 micfraction. The gray bands indicate
intervals of carbonate dissolution. Question mar#teubtful identification. Triangle: post BEE
occurrence of one specimen @bryphostoma midwayensis has been recorded in the sample BRI 300
(295 cm above the base of CMU).

Figure 5. Relative abundance of the most abundanthix foraminiferal taxa across the PETM at

Forada plotted against biostratigraphy, precessiopeles, lithology,3**C bulk record, recognized
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benthic foraminiferal assemblages (A to F) andopmt intervals. Benthic foraminiferal biozonation
after Berggren and Miller (1989). The gray bandiidate intervals of carbonate dissolutios. pre-
CIE dissolution, p=burndown layer, BFDI=benthic foraminiferal dissidm interval. "Other
buliminids” group includes only representatives tbé families Buliminidae, Buliminellidae and

Turrilinidae Bulimina, Bulimineglla, Quadratobuliminella, Stella andTurrilina).

Figure 6. Relative abundance of selected benthianimifera across the PETM at Forada plotted
against biostratigraphy, precessional cycles, Ity 3°C bulk record, recognized benthic
foraminiferal assemblages (A to F) and isotopienvdls. Benthic foraminiferal biozonation after
Berggren and Miller (1989). The gray bands indidatervals of carbonate dissolution= pre-CIE

dissolution f=burndown layer, BFDI=benthic foraminiferal dissidun interval.

Figure 7. Enlargement of the interval from -1m &mtacross the P/E boundary at Forada showing the
relative abundance of selected benthic foraminifgdoted against biostratigraphy, precessionalesycl
lithology, 3°C bulk record, recognized benthic foraminiferal emsblages (A to F) and isotopic
intervals. Benthic foraminiferal biozonation aftéerggren and Miller (1989). The gray bands indicate
intervals of carbonate dissolutioa=Pre-CIE dissolution interval}=burndown layer, BFDI=benthic

foraminiferal dissolution interval.

Figure 8. Summary of main calcareous plankton é&alous nannofossils and planktonic foraminifera)
and benthic foraminiferal events and inferred emwmental conditions (from Agnini et al., 2007;
Luciani et al., 2007 and present work), isotopiteiivals, thickness, precessional cycles and benthic
foraminiferal assemblages (A to F) recognized iis thork. The stratigraphic intervals containing
assemblages A and B, C and D to F are considerguteasxtinction, extinction and repopulation

intervals, respectively. Benthic foraminiferal ztoa after Berggren and Miller (1989).

Figure 9. Stable carbon isotope ratios of highanph-alkanes (a), stable hydrogen isotope ratios o
higher plant n-alkanes (b) with higher plant averabain length values (c) for Forada PETM plotted
against isotopic intervals and recognized benthiarhiniferal assemblages (A to F). Terrestrial bigh
plant n-C27, n-C29, and n-C3dD values are shown as crosses, closed circles, taaugles,

respectively. Redrawn from data of Tipple et ad1(P).
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Figure 10. Paleogeographic map (from http://wwwimods/odsn/services/paleomap/paleomap hanl

55 Ma showing sites where paleohydrological recocsbns for the PETM are available. Numbers
follow a north to south paleolatitudinal order. Bluwlots indicate areas where an increase in
precipitation has been inferred; Green dots indi@aeas where an increase in climatic contrasg or
fluctuating precipitation regime have been inferr@lange dots indicate areas where an increase in
aridity has been inferred; Purple dots indicat@aamehere hydrological changes have been inferred bu
the pattern not specified. 1. Lomonosov Ridge, iBr8ea; 2, 3. Spitsbergen Central Basin and
Svalbard archipelago; 4. Central North Sea BasinEdstern North Sea Basin; 6. Williston Basin,
western North Dakota, (USA) 7. Bighorn Basin, Wynm{USA); 8. Rhenodanubian Basin, Austria; 9.
Belluno Basin, northeastern Italy; 10. Aktumsuk #&adirtakapy sections, Uzbekistan and Kazakhstan;
11. Dieppe-Hampshire Basin, France; 12. LondonrBak3. DSDP Site 401 Bay of Biscay, North-
eastern Atlantic Ocean; 14. Western Colorado (U3A);New Jersey Coastal Plain (USA); 16. Central
Valley of California (USA); 17. Basque Basin, nath Spain; 18. Tremp Basin, northern Spain; 19.
Alamedilla section, southern Spain; 20. TornillosBa Texas (USA); 21. Salisbury embayment, mid-
Atlantic coastal plain (USA); 22. Gafsa Basin, Taiaj 23. Zin Valley of Negev, Israel; 24. Dababiya
section, Egypt; 25. Northern Neotropics, (Colomamd Venezuela); 26. TDP Site 14, Tanzania; 27.
Tawanui section, North Island (New Zealand); 2&r&hce River valley, South Island (New Zealand);
29. Central Westland, South Island (New Zealan@);CBDP Site 1172, East Tasman Plateau; 31. ODP
Site 690 Weddell Sea, Southern Ocean. See Supplenaiate S3 for references and additional

information.
Table caption

Table 1. Summary of the known ecological prefersrmafeselected benthic foraminifera, as evaluated

from the literature, common at Forada.
Plates captions

Plate 1. SEM micrographs of the most represent&®asleocene cosmopolitan extinction taxa (CET)
occurring at Forada. JAngulogavelinglla avnimelechi, spiral view (BRI-25.5); 2Angulogaveinella
avnimelechi, lateral view (BRI-185.5); 3Gavelinella beccariiformis, umbilical view (BRI-75); 4.
Osangularia velascoensis, spiral view (BRI-50,5); 5.Anomalinoides rubiginosus (BRI-9); 6.

Cibicidoides dayi (BRI-37); 7. Cibicidoides velascoensis, spiral view (BRI-75,5); 8.Cibicidoides
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1477  velascoensis, lateral view (BRI-135.5); 9Cibicidoides hyphalus (BRI-50,5); 10. Neoeponides'
1478  megastoma (BRI-135); 11.Gyroidinoides globosus (BRI-50.5); 12.Gyroidinoides quadratus (BRI-
1479  185,5); 13. Coryphostoma midwayensis (BRI-50,5); 14. Aragonia velascoensis (BRI-50.5); 15.
1480  Bolivinoides delicatulus (BRI-135.5); 16 Neoflabellina semireticulata (BRI-365); 17.Pullenia coryelli
1481  (BRI-50,5); 18. Remesella varians (BRI-310.5); 19. Clawulinoides globulifera (BRI-25.5); 20.
1482  Clawulinoides trilatera (BRI-33); 21.Clavulinoides amorpha; 22. Marssonella indentata (BRI-25.5);
1483  23.Dorothia beloides (BRI-260); 24.Dorothia pupa (BRI-105).

1484 Plate 2. SEM micrographs of the most representapecies of the Eocene postextinction faunas
1485  occurring at Forada. Ammobaculites agglutinans (BRI+10); 2.Eobigenerina variabilis (BRI+50); 3.
1486  Eobigenerina variabilis (BRI+50); 4.Karrerulina conversa (BRI+50); 5.Karrerulina horrida (BRI-
1487  25.5); 6. Spiroplectammina navarroana (BRI-33/7); 7. Spiroplectammina spectabilis (BRI+50); 8.
1488 Rashnovammina munda (BRI-50,5); 9. Haplophragmoides cf. kirki. (BRI+5); 10. Saccammina
1489  placenta (BRI-25.5); 11.Glomospira irregularis (BRI+35); 12.Glomospira charoides (BRI-75.5); 13.
1490 Osangularia sp. (BRI+15); 14.Globocassidulina subglobosa (BRI+15); 15. Tappanina selmensis
1491  (BRI+15); 16. Tappanina selmensis (BRI-9); 17. Sphogenerinoides brevispinosa (BRI-11); 18.
1492  Sphogenerinoides brevispinosa (BRI-365); 19. Bulimina tuxpamensis (BRI+150); 20. Bulimina
1493  tuxpamensis (BRI+150); 21.Pleurostomella sp. (BRI+150); 22Bolivina sp. costate (BRI+385); 23.
1494  Nuttallides truempyi (BRI+150); 24.Oridorsalis umbonatus (BRI-135.5); 25.Aragonia aragonensis
1495  (BRI-105); 26.Abyssammina poagi (TAL7B).

1496 Plate 3. SEM micrographs of the most representdtiva of the upper Paleocene-lower Eocene of
1497  Forada section. 1Quadratobuliminella pyramidalis (BRI-75.5); 2 Buliminella grata (BRI-591); 3.
1498  Bulimina midwayensis (BRI+35); 4. Bulimina alazanensis (BRI +150); 5,6.Bulimina trinitatensis
1499  (BRI-9); 7. Bolivinoides crenulata (BRI-9); 8. Bolivinoides crenulata (BRI-25.5); 9. Bolivinoides
1500 floridana (BRI-410); 10Boalivina sp. smooth (BRI-410); 11Bolivina sp. smooth (BRI-410); 12.
1501  Reussella sp. (BRI-365); 13Angulogerina muralis (BRI-75.5); 14.Angulogerina muralis (BRI-75.5);
1502  15. Angulogerina? sp. (BRI-9); 16.Angulogerina? sp.(BRI-35.5); 17Rectobulimina carpentierae
1503  (BRI-466); 18. Allomorphina trochoides (BRI-25.5); 19.Quadrimorphina allomorphinoides (TAL
1504  7B); 20. Cibicidoides eocaenus (BRI-9); 21. Anomalinoides sp. 2 (BRI-135); 22Cibicides sp. (BRI-
1505  591); 23.Cibicidoides praemundulus (BRI+150); 24 Nonion havanense (BRI-591).
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Plate 4. SEM micrographs of some taxa of the upaeocene-lower Eocene of Forada section. 1.
Ammodiscus cretaceus (BRI-29.5); 2.Ammodiscus peruvianus (BRI-9); 3. Haplophragmoides walteri
(BRI-75.5); 4. Haplophragmoides horridus (BRI +35); 5. Recurvoides sp. (BRI -33/-37); 6.
Glomospira serpens (BRI-260); 7. Trochamminoides proteus (BRI-25.5); 8. Paratrochamminoides
heteromorphus (BRI+40); 9.Glomospira cf. gordialis (BRI +35); 10.Gaudryina sp. (BRI +15); 11.
Karrerulina coniformis (BRI -135); 12.Caudammina ovuloides (BRI-260); 13.Gaudryina pyramidata
(BRI-17.5); 14. Big-sized lituolid, apertural vie(BRI-9); 15. Hormosina velascoensis (BRI-33/37);

16. Pseudonodosinella troyeri (BRI-260); 17. Pseudobolivina® sp. 2 in Galeotti et al. (2004)
(BRI+35); 18.Pseudoclavulina trinitatensis (BRI1+150); 19.Spiroplectammina spectabilis (BRI-50.5);

20. Big-sized lituolid, lateral view (BRI-9).
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Fig. 6
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Fig. 10
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Table 1.

Ammobaculites agglutinans

Deep-infaunal recoloniser within the K/Pg boundary clay at Sopelana section (Spain). Adapted to
low carbonate availability with high capability for dispersal and colonisation of abiotic substrates.
Reported in present day slope high productivity areas.

Gooday, 2003; Gooday et al., 2001; Kuhnt and Kaminski, 1993.

Eobigenerina variabilis

Opportunist, able to live under low oxygen conditions. Dominant in the recovery faunas after the
Cretaceous OAE2.

Cetean et al., 2008a,b. See also text.

Globocassidulina subglobosa

Cosmopolitan, highly adaptable, long-ranging opportunistic species. Modern representatives of this
species described from a wide variety of environmental settings, including hydrate mounds.
Possibly feeding on phytodetritus and reflecting pulsed food supply to the sea floor in oxygenated
deepwater settings. Abundant at high southern latitudes where seasonality is extreme. At many
sites it appears after the BEE and blooms as an opportunist.

Ernst et al., 2006; Gooday, 1993, 1994; Gupta and Thomas,
2003; Gooday et al., 2008; Ishman and Domack, 1994; Jorissen
et al., 2007; Mohan et al., 2011; Murray and Pudsey, 2004;
Nomura, 1995; Panieri and Sen Gupta, 2007; Sgarrella et al.,
1997; Singh and Gupta, 2004; Suhr et al., 2003; Takata et al.,
2010; Takeda and Kahio, 2007.

Glomospira spp.

Very abundant in the lowermost Eocene at several deep-water locations (the “Glomospira acme”).
Generally oligotrophic indicators, they though could be indicative of an abundant supply of
terrigenous, refractory organic matter, independent from local primary productivity. Resistant to
carbonate dissolution and able to live in environments with low carbonate supply. High ecological
tolerance: occur in environments subjected to rapid changes with fluctuating ecological conditions.

Arreguin-Rodriguez et al., 2013, 2014; Galeotti et al., 2004;
Kaminski and Gradstein, 2005; Kaminski et al., 1996; Kuhnt and
Collins, 1996; Ortiz, 1995; Waskowska, 2011.

Haplophragmoides spp.

Representatives of the genus pioneer sediments just above anoxic OAE2 black shales in the
abyssal North Atlantic that contain no benthic foraminifera. Commonly documented in the basal
PETM dissolution interval of shelfal and bathyal Tethyan sections.

Alegret et al., 2005; Ernst et al., 2006; Friedrich, 2009; Kuhnt,
1992; Ortiz, 1995.

Karrrerulina conversa

Deep infaunal taxon peaking in the basal PETM at Zumaya (Spain). Resistant to carbonate
dissolution and able to live in environments with low carbonate supply. Modern representatives are
part of the oligotrophic biofacies on abyssal plains with well-oxygenated bottom and interstitial
waters. Recognized in the lowermost Eocene of the Iberia Abyssal Plain.

Bak, 2004; Kaminski and Gradstein, 2005; Kuhnt and Collins,
1996; Kuhnt et al. 2000; Ortiz, 1995; See text.

Oridorsalis umbonatus

Very long-ranging, extant taxon (since the Turonian-Coniacian). Opportunistic lifestyle. Reported
both in oligotrophic and eutrophic environments. It may feed on phytodetritus. Shallow infaunal
dweller, with very small tests but increased calcification just above the base of the PETM at Site
1263 (Walvis Ridge, SE Atlantic), where it dominates the assemblage.

Foster et al., 2013; Kaiho, 1998; Katz et al., 2003; Gooday, 1993,
1994; Gupta and Thomas, 1999; Gupta et al., 2008; Schmiedl,
1995; Schmiedl and Mackensen, 1997; Thomas and Shackleton,
1996; Wendler et al., 2013.

Osangularia spp.

Opportunistically repopulate the sea floor during short-term re-oxygenation phases of Cretaceous
OAEs. Opportunistic phytodetritus feeders during OAEL1b, thriving on an enhanced carbon flux to
the sea floor and tolerating some degree of oxygen depletion. Peak of Osangularia spp. are
reported across the PETM of the Alamedilla section (Spain).

Alegret et al., 2009a; Friedrich, 2009; Friedrich et al., 2005;
Holbourn and Kuhnt, 2001; Holbourn et al., 2001. See also text.

Saccammina spp.

Recolonizer within the K/Pg boundary clay of the Sopelana section (Spain). Adapted to low
carbonate availability with high capability for dispersal and colonisation of abiotic substrates.
Common on modern productive continental margins.

Gooday et al., 2008; Kuhnt and Kaminski, 1993.

Siphogenerinoides brevispinosa

Typical of many open ocean sites in the aftermath of the peak CIE. Opportunist capable to rapidly
colonize the sediment when productivity increases during environmental instability. At some
locations it bloomed during the PETM and other hyperthermals, at others it had its highest
occurrence in the lowermost part of the PETM.

Giusberti et al., 2009; Thomas, 1998, 2003, 2007; Thomas and
Shackleton, 1996.

Spiroplectammina navarroana

Minor component of PETM postextinction faunas. At some locations common just after the K/Pg
boundary.

Alegret et al., 2003; Alegret et al., 2009b; Ortiz, 1995.

Stilostomellids and
pleurostomellids

Infaunal taxa widely distributed in oligotrophic and eutrophic regions with sustained or highly
seasonal phytoplankton productivity. Tolerated warm, locally oxygen-depleted, carbonate-corrosive
bottom waters, as demonstrated by their survival across the PETM. Across Cretaceous OAEs,
pleurostomellids were found within black- shales. Possibly adapted to low-oxygen conditions, or
able to rapidly recolonize the sea-floor during brief intervals of reoxygenation.

Coccioni and Galeotti, 1993; Friedrich, 2009; Friedrich et al.,
2005; Hayward et al., 2010a,b, 2012; Holbourn and Kuhnt, 2001;
Mancin et al., 2013.

Tappanina selmensis

Upper bathyal to outer shelf species in the Campanian and throughout the Paleocene. High-
productivity, stress-tolerant and opportunistic species possibly thriving in continuously stressed,
dysoxic sea bottom conditions. Common in the deep-sea only just before and especially following
the BEE.

Alegret et al., 2009a; Boersma, 1984; D'haenens et al., 2012;
Frenzel, 2000; Giusberti et al., 2009; Kuhnt, 1996; Kuhnt and
Kaminski, 1996; Stassen et al., 2012a,b, 2015; Steineck and
Thomas, 1996; Thomas, 1989, 1990, 1998; Thomas and
Shackleton, 1996; van Morkhoven et al., 1986.
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Abstract

The Forada section (northeastern Italy) providesoatinuous, expanded deep-sea record of the
Paleocene/Eocene thermal maximum (PETM) in theralewestern Tethys. We combine a new, high
resolution, benthic foraminiferal assemblage reamitti published calcareous plankton, mineralogical
and biomarker data to document climatic and enwramtal changes across the PETM, highlighting
the benthic foraminiferal extinction event (BEEheTonset of the PETM, occurring ~30 kyr after a
precursor event, is marked by a thin, black, badley layer, possibly representing a brief pulse of
anoxia and carbonate dissolution. The BEE occuwidin the 10 cm interval including this layer.
During the first 3.5 kyr of the PETM, several adgiated recolonizing taxa show rapid species
turnover, indicating a highly unstable, Cag&&rrosive environment. Calcareous taxa reappesited
this interval, and the next ~ 9 kyr were charazeatiby rapid alternation of peaks in abundance of
various calcareous and agglutinated recolonizdres@ observations suggest that synergistic stegssor
including deep water CaGgEaorrosiveness, low oxygenation, and high enviromiale instability
caused the extinction. Combined faunal and biomatkéa (BIT index, higher plamtalkane average

chain length) and the high abundance of the minen&drite suggest that erosion and weathering
1
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increased strongly at the onset of the PETM, dueartiooverall wet climate with invigorated
hydrological cycle, which led to storm flood-everdarrying massive sediment discharge into the
Belluno Basin. This interval was followed by thereoof the PETM, characterized by four
precessionally paced cycles in Ca@€) hematite%,5'*C, abundant occurrence of opportunistic
benthic foraminiferal taxa, as well as calcareocasnofossil and planktonic foraminiferal taxa typica
of high productivity environments, radiolarians,dalower dDn.akanes We interpret these cycles as
reflecting alternation between an overall arid éig) characterized by strong winds and intense
upwelling, and an overall humid climate, with abantirains and high sediment delivery (including
refractory organic carbon) from land. Precessignpdced marl-limestone couplets occur throughout
the recovery interval of the CIE and up to ten meetbove it, suggesting that these wet-dry cycles
persisted, though at declining intensity, after geak PETM. Enhanced climate extremes at mid-
latitudes might have been a direct response tontiesive CQinput in the ocean atmosphere system at
the Paleocene-Eocene transition, and may have hadnary role in restoring the Earth system to

steady state.

1 Introduction

The Paleocene-Eocene Thermal Maximum (PETM) has theelast twenty four years attracted
intensive study by the scientific community, as oh¢he most dramatic and rapid climatic disrupsion
of the Cenozoic (e.g., Kennett and Stott, 1991 hadacet al., 2001; Sluijs et al., 2007a; Mclnerneg a
Wing, 2011; Littler et al., 2014). During the PET#55.6 Ma), the Earth’s surface temperature
increased by ~5°C in a few thousand years (McIineam& Wing, 2011; Dunkley-Jones et al., 2013;
Zeebe et al., 2014; Bowen et al., 2015), and resdaimgh for 100 to 170-200 kyr (e.g., RoOhl et al.,
2007; Giusberti et al., 2007; Murphy et al., 20Ithe PETM is recognized in terrestrial and marine
settings by a negative carbon isotope excursioft;(€lg., Kennett and Stott, 1991; Bowen et al.,
2004), with variable magnitude ranging from ~2-4.5%. marine carbonates (e.g., Thomas and
Shackleton, 1996; Bains et al., 1999; Thomas e@D2; Zachos et al., 2006; Handley et al., 2008;
McCarren et al., 2008) to 4-7%o in marine and teéri@sorganic carbon and leaf waxes (e.g., Kaiho et
al., 1996; Bowen et al., 2004, 2015; Pagani et28Q6a; Smith et al., 2007; Handley et al., 2008;
McCarren et al., 2008). This CIE is attributed tmassive, rapid input of isotopically light carbiomo
the ocean-atmosphere system, which destabilizedlttial carbon cycle and led to rapid and extreme

2
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global warming (e.g., Dickens et al., 1997; Thonaasl Shackleton, 1996; Pagani et al., 2006b;
Panchuk et al., 2008; Dickens, 2011; DeConto e8ll2). Both the source(s) of the carbon and the
triggering mechanism(s) of the emissions are stibngly debated (e.g., Meissner et al., 2014pairt
because the pattern and size of the CIE does ruessarily simply reflect the size and isotopic
signature of the carbon input, but is affected loyib and sedimentary processes (e.g., Kirtlanch&ur
and Ridgwell, 2013). Despite these debates, thetmfsthe CIE is an outstanding global correlation
tool (Mclnerney and Wing, 2011; Stassen et al. 2B)1formally used to define the base of the Eocene
(Aubry et al., 2007).

The carbon cycle perturbation of the PETM led twlification of surface ocean waters (Penman
et al., 2014) and severe shallowing of the calompensation depth (CCD; Zachos et al., 2005; Kelly
et al., 2010; Honisch et al., 2012). Widespreataaate dissolution coincided with the base of tie C
(e.g., Thomas and Shackleton, 1996; Thomas, 1988cdétk and Dickens, 2005; McCarren et al.,
2008). The —prefeundpaleoceanographic changes affected primary andrexpoductivity (e.g.,
Thomas, 2007; Winguth et al., 2012; Ma et al., 20%hich in general increased in marginal basins
and along continental margins, but decreased in opeans (e.g., Gibbs et al., 2006; Stoll et 80,72
Speijer et al., 2012). The higher ocean temperataray have led to increased remineralization of
organic matter in the oceans due to increased wigtahtes (John et al., 2013, 2014; Boscolo Galazz
et al., 2014; Ma et al., 2014). The combinationnafeased remineralization, higher temperatures and
increased ocean stratification led to a decreasxygen levels in bottom waters regionally, espbcia
along continental margins (including the Arctic @gg and in the Atlantic Ocean (e.g., Benjamini,
1992; Speijer et al., 1992; Gauvrilov et al., 19%9pmas, 2007; Chun et al., 2010; Speijer et all220
Winguth et al., 2012; Nagy et al., 2013; Wieczoetkal., 2013; Dickson et al., 2014; Palike et al.,
2014; Post et al., 2016), while Oxygen Minimum Zeineopen oceans expanded globally (Zhou et al.,
2014), including at Forada (Luciani et al., 2007).

The increased primary productivity in marginal Inashas been linked to increased influx of nutrients
from the continents, caused by increased erosiah vaeathering due to intensification of the
hydrological cycle, because precipitation is cated to globally-averaged surface temperatures, (e.g
Pierrehumbert, 2002). A widespread increase inik#®lin PETM sediments has been related to the
global increase in precipitation and intensity bémical weathering (e.g., Robert and Chamley, 1991;
Robert and Kennett, 1994; Kaiho et al., 1996; Gibsb al., 2000), as also suggested by Os-isotope

evidence (Ravizza et al., 2001; Wieczorek et &013). However, reconstruction of hydrological
3
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changes from clay mineral assemblages is complek,additional evidence is needed (Thiry, 2000;
Schmitz and Pujalte 2003; 2007; Egger et al., 2Q085; Handley et al., 2012).

The severe climatic perturbations of the PETM puoflly affected terrestrial and marine
ecosystems, triggering faunal and floral radiatiand migrations (e.g., Kelly et al., 1996; Bralower
2002; Gingerich, 2003; Wing et al., 2005; Sluijsaét 2007a; Jaramillo et al., 2010; Mclnerney and
Wing, 2011). Deep-sea benthic foraminifera expeeeinthe most severe extinction of the Cenozoic,
the benthic foraminiferal extinction event (BEEh@mas, 1989, 1990, 1998; Kennett and Stott, 1991,
Thomas and Shackleton, 1996; Alegret et al., 2009a2010). The BEE was rapid (<10 kyr; Thomas,
1989, 2003, 2007), and wiped out the Cretaceous/dband abyssal “Velasco-type fauna” (Berggren
and Aubert, 1975; Tjalsma and Lohmann, 1983; Thori898, 2007), marking a significant step
towards the establishment of modern benthic forderal fauna (Thomas, 2007). The extinction was
far less severe in shelf environments (Gibson.eL8B3; Speijer, 2012; Stassen et al., 2015).

The cause of this global extinction remains unddvate, because neither anoxia nor higher or
lower productivity, nor carbonate dissolution ocedrglobally at bathyal to abyssal depths in thepde
sea, the largest habitat on Earth (e.g., Thoma63,2Q007; Alegret et al., 2010), and benthic
foraminifera are highly efficient dispersers (Ahand Goldstein, 2003). The link between the
environmental changes during the PETM and the eftihaminiferal extincton event thus remains
poorly understood. A common obstacle to performaitkdd high-resolution studies of the PETM in
deep-sea sediments is the fact that many recoedsocsudensed or discontinuous, especially across the
few thousand years (Zeebe et al., 2014) of thetoolséhe carbon isotope excursion. The Forada
section (northeastern Italy) represents an outsigrekception in that it contains an expanded csssp-
record of the PETM, which has been extensivelyistlidecause of its continuity and cyclostratigraphy
(Agnini et al., 2007; Giusberti et al., 2007; Lugiat al., 2007; Tipple et al., 2011; Dallanaveakt
2012). Carbonate dissolution is less severe atdaothan in many other sections, with calcareous
benthic foraminifera present for most of the intdreharacterized by the CIE (> 4 m; Giusberti et al
2007). Given the limited number globally of compleind expanded deep-sea PETM sections, the
Forada section represents an invaluable opportdaityvestigate the environmental impacts of the
PETM and repercussions on deep-sea fauna.

We provide a high-resolution benthic foraminiferacord for the Forada section, in order to
reconstruct the progression (tempo and mode) of@mwental and biotic changes during the PETM.

These data allow us to reconstruct the environnheiigeuption and the benthic foraminiferal response
4
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to PETM warming in detail, and document the comryunecovery. Benthic foraminiferal data are
integrated with sedimentological and geochemictd §@iusberti et al., 2007; Tipple et al., 201X)da
data on calcareous plankton communities (Agniralt2007; Luciani et al., 2007), providing perhaps
the most complete reconstruction across the PETEUnope todate.

We pay homage to research by Italian researchdard@poli Alliata et al., 1970; Braga et al.,
1975), who first described the benthic foraminiféuanover across the Paleocene-Eocene transition i
Italy.

2 Materials and methods
2.1 The Forada section

The Forada section (46.036083°N, 12.063975°Ex®osed along the Forada creek, ~ 2 km east of
the village of Lentiai (Fig. 1) in the Venetian Pkips (NE ltaly). It consists of ca. 62 m of Scagli
Rossa, pink-reddish limestones and marly limestoleeally rhythmically bedded, and encompassing
the Upper Cretaceous through the lower Eocene @a@n et al., 2007; Giusberti et al., 2007). The
upper Paleocene—lower Eocene succession is intedlyy the clay marl unit (CMU; Giusberti et al.,
2007), which marks the PETM and correlates witly-cleh units on other continental margins (e.g.,
Schmitz et al., 2001; Crouch et al., 2003; Johmlgt2008; Nicolo et al., 2010). The investigated
interval has been subdivided into four sub-intes\@sed on th&C record in bulk rock (Giusberti et
al., 2007). From bottom to top, these are the gie-@e main CIE, the CIE recovery and post-CIE
(Fig. 2). The main CIE (Giusberti et al., 2007;$ig, 3) occurs in the >3 m-thick CMU, within which
are recorded the shdived occurrences of the calcareous plankton “esioartaxa” (Kelly et al., 1996,
1998) and the BEE (Agnini et al., 2007; Giusbettak, 2007; Luciani et al., 2007). Sedimentation
rates in the CMU were five times higher than in tipper Paleocene, indicating increased continental
weathering and run-off, which led to increased medit influx in the Belluno Basin (Giusberti et al.,
2007).

2.2 Benthic foraminifera
Benthic foraminiferal assemblages were studied 4ns&@mples from the same set studied by

Luciani et al. (2007) across an ~11 meter-thickrval straddling the PETM (-467 to +591.5 cm; Fig.
5
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2), which reflects ~ 800 kyr (Giusberti et al., ZD0In this study the planktic foraminifera
fragmentation index (F Index) of Luciani et al. (Z0 is used as a proxy for dissolution (Figs. 2, 3)
(Hancock and Dickens, 2005). The sample spacingpdothic foraminiferal assemblage analysis was
determined based on biostratigraphic and cyclaogtegghic data (Agnini et al., 2007; Giusberti et al
2007; Luciani et al., 2007). A sampling interval3% cm was used across the onset of the CIE (-42.5
to + 50 cm interval), a 25 cm sample interval aber main CIE (from +75 to 335 cm). Below -42.5 cm
and above 335 cm we adopted a spacing betweend®260aom. Samples were collected excluding, to
the extent possible, bioturbated material. Furedection and removal of bioturbated material was
carried out in the laboratory before sample prangsdata previously collected from the Forada
section indicate that significant bioturbation etfeare not present (e.g., Agnini et al., 2007;sGauti

et al., 2007; Luciani et al., 2007).

Foraminifera were extracted from the indurated sharid limestones using the “cold acetolyse”
technique of Lirer (2000), following Luciani et #2007). Soft marly and clayey samples (mostly from
the CMU interval) were disaggregated using a 10-3@dation of hydrogen peroxide. The samples
with the lowest content of CaGQe.g., clays of basal CMU) were treated with didlteydrogen
peroxide (10%), in order to prevent possible adddi breakage of tests (especially of planktic
foraminifera). For more details on the comparis@iween the two methods of preparation (cold
acetolyse versus hydrogen peroxide), we refer wduni et al. (2007).

The quantitative study of benthic foraminifera vised on representative splits (using a micro-
splitter Jones, Geneq Inc.) of approximately 20@-#dividuals >63um and <50Qum (Table S1). The
use of the small-size fraction is time-consuming presents difficulties in taxonomic determination,
but we preferred to avoid the loss of small taxhicl are important for paleoecological investigaso
(e.g., Thomas 1985; Boscolo Galazzo et al., 20035), especially directly after the BEE when small
species are dominant (Thomas, 1998; Foster et2@l3). Between 0 and -222 cm (uppermost
Paleocene), the fraction125 um of at least 1/4 of the residue was carefully sednfor large
specimens of the extinction taxa, here labeled fi@gmlitan Extinction Taxa” (CET) (see Thomas,
1998, 2003). These CET records have been treatddagively (Fig. 4). The extinction taxa include:
Anomalinoides rubiginosus, Angulogavelinella avnimelechi, Aragonia velascoensis, Bolivinoides
delicatulus, Cibicidoides dayi, C. hyphalus, C. velascoensis, Clavulina amorpha, Clavulinoides
trilatera, Clavulinoides globulifera, Coryphostoma midwayensis, Dorothia beloides, D. bulletta, D.

pupa, D. retusa, Neoeponides megastoma, Gavelinella beccariiformis, Gyroidinoides globosus, G.
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quadratus, Marsonella indentata, Neoflabellina jarvisi, N. semireticulata, Nuttallinella florealis,
Osangularia velascoensis, Paralabamina hillebrandti, Pullenia coryelli, Remesella varians (e.qg.,
Beckmann, 1960; Von Hillebrandt, 1962; Tjalsma &otimann, 1983; Speijer et al., 1996; Thomas,
1998), each of which is present at Forada.

We identified most common taxa at the species I€vable S2). Taxa with high morphological
variability and/or variable preservation were idged at generic or higher taxonomic level. Speaisie
of the most representative taxa were imaged u$iagSEM at the C.U.G.A.S. (Centro Universitario
Grandi Apparecchiature Scientifiche) of Padova @rsity (Plates 1-4). Relative abundances of the
taxa and taxon-groups, along with faunal indiceshsas the calcareous-agglutinated ratio, the irghun
epifaunal ratio, and bi-triserial percentage weawated (Figs. 2, 5-7 and Fig. S1). The absolute
abundance (N/g: number of benthic foraminiferagram-bulk dried sediment) was calculated for both
the>63 and>500 um fractions. Faunal diversity indices (Species diitg and Fisher; Fig. 2) were
calculated using the PAST package (Hammer et @012 Segments belonging to tubular/branched
agglutinated forms (e.gRhizammina, Rhabdammina, Bathysiphon) were counted, but excluded from
calculations because there is no reliable methotbtvert the abundance of multiple fragments into
that of single individuals (Ernst et al., 2006).

We assigned species to epifaunal and infaunal notypls by comparing their test morphology to
the morphotypes in Corliss (1985), Jones and Cleri(©985), Corliss and Chen (1988), Kaminski
and Gradstein, (2005), Hayward et al. (2012), arshdih et al. (2013). However, caution is needed in
applying taxonomic uniformitarianism due to our it knowledge of the biology and ecology of the
highly diverse living species. Even for many liviagecies, the relation between test morphology and
microhabitat has not been directly observed, bekisapolated from data on other taxa (e.g., Jemiss
1999). The assignment of modern foraminifera toratiabitats based on their morphology may be
accurate only about 75% (Buzas et al., 1993): coisqas between past and recent environments thus
need careful evaluation, and cross correlation eetwbenthic foraminiferal and other proxy data. The
ecology as evaluated from the literature (Tables Bhown for selected benthic foraminiferal taxanir
the PETM interval at Forada.

2.3 Age model
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The age model used for calculating the longevitpeaithic foraminiferal assemblages (see below)
follows Luciani et al. (2007), with the lower Eoeuhronology based on the cyclostratigraphic age
model of Giusberti et al. (2007; Fig. 3). The dimatof each precessional cycle has been assunies to
21 kyr. Sedimentological and geochemical parameaiscdlate cyclically within the main CIE, in at
least five complete precessional cycles (Figs.)2,TBe CIE recovery interval is composed of six
distinct, precessional marly-limestone couplet egqlFig. 3). The recognition of eleven cycles ia th
combined CIE and recovery interval implies an eaterof the total duration of the CIE of ca. 230 kyr
(Fig. 3). Giusberti et al. (2007) and Rohl et @0q7) disagree on the duration of the main CIE and
recovery interval (179+17 kyr and 231+22 kyr, retpeely). The main difference between these two
chronologies is the assignment of different numlmérgrecessional cycles within the main body and
recovery interval (Tipple et al. 2011).3Ne-based chronology for Site 1266 (Walvis Ridge)gasts a
total PETM duration of 234 +48/-34 kyr (Murphy &t 2010), in line with the age model of Giusberti
et al. (2007).

Lithological cycles have not been firmly identified the Paleocene part of the section, and
sedimentation rates are interpolated between tee dlathe PETM at £0 cm and the lowest occurrence
of the calcareous nannofosBilscoaster multiradiatus at ca.—12.5 m (Giusberti et al., 2007), using a
duration of the time between these events of 1\M@8(Westerhold et al., 2007). In this age modeé t

investigated portion of Forada section spans dak§

3 Results

Benthic foraminiferal assemblages are generallyidated by calcareous hyaline taxa (85-90%;
Fig. 2), but agglutinated taxa significantly incsean abundance within the CMU (25-90%; Fig. 2).
Infaunal taxa strongly dominate the assemblageutiirout the studied interval (~80%). Faunal
diversity is fairly high, particularly in the uppdtaleocene (Fig. 2), and preservation is generally
moderate, though poor within the lowermost centareof the Eocene. Most foraminiferal tests at
Forada are recrystallized, and totally or partifillgd with calcite.

Composition and abundance of the assemblages clmangenently across the ca. 11 m-thick
interval investigated (Figs. 2, 5-7) coeval witle theochemical signature of the PETM, and broadly

coincident with the main lithological changes. Weeagnized six successive benthic foraminiferal



241
242
243
244
245
246
247
248

249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

assemblages (labeled A to F; Figs. 2, 5-8), mdialyed on changes in abundance of the taxa listed in
Table 1. Assemblages A and B are characteristibeoflominantly reddish calcareous marls mottled by
greenish "flames" of the uppermost Paleocene, atghrby the thin, barren clay layer from
Assemblages C, D and E, which occur in the firdt bfithe main excursion of the CIE (lowermost
Eocene), within the CMU (basal green laminated slayerlied by mottled reddish clays, marly clays
and marls). Assemblage F characterizes the marlkeotipper half of the CMU, as well as the CIE
recovery interval and the overlying post-excursioerval of reddish limestone—marl couplets
(Giusberti et al., 2007).

3.1.1 Assemblage A: the upper Paleocene fauna

Assemblage A (-467.5 to -37.5 cm, estimated dumattd30 kyr) has a high diversity, with
abundant infaunal taxa (ca. 70-80%; Fig. 2). Sinalivinids (<125um) of theBolivinoides crenulata
group (Plate 3, Figs. 7-9), and smooth-waBativina spp. together comprise 50-60% of the >L83
fauna (Fig. 5), withiSphogenerinoides brevispinosa (~10%) and other buliminids less common (Figs.
5, 6). Epifaunal morphotypes are mainly represetgdmall cibicidids (10%)Anomalinoides spp.
(5%) and Cibicidoides spp. (usually <5%; Fig. 5). Rare taxa include sellgls, angulogerinids,
nodosariids, dentalinids, gyroidinids, valvalabaishsn and unilocular hyaline taxa (Fig. S1).
Agglutinated taxa are mainly represented Jpjroplectammina spectabilis, Trochamminoides spp.,
Paratrochamminoides spp., Reophax spp. and Subreophax spp. The Paleocene Cosmopolitan
Extinction Taxa (CET; Plate 1) are not a major comgnt of the assemblage >68 (<10%; Fig. 6),
but are common to abundant in the size fraction53i (>20%). Many of these have large, heavily
calcified tests. The most common taxa inclu@avelinella beccariiformis, Pullenia coryelli and
Coryphostoma midwayensis (Table S1). CET such & avulinoides globulifera, Cibicidoides dayi and
Cibicidoides velascoensis are common in the >50@n size fraction, together with trochamminids and
large lituolids (Plate 1, Figs. 19, 6-8; Plate ®ysk-7, 8, 14, 20). The latter occur up to the adbphe
Paleocene, but are absent in the Eocene. At -261,3he Cosmopolitan Extinction Taxa (CET) peak
at 15%, their maximum abundance in the studied®seFig. 6). At the same level, peaks of large,
stout, heavily calcified taxa (e.gGibicidoides and anomalinids) co-occur with agglutinated taxa
(Glomospira, Spiroplectammina andHaplophragmoides, Figs. 6, 7), whereas small, thin-walled forms

such as bolivinidsS phogenerinoides brevispinosa and cibicids decline markedly in relative abundanc
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(Figs. 5-7). Faunal density (N/g), diversity ane thercentage abundance of infaunal morphotypes
decrease (Fig. 2), as @0°C and CaC@s% whereas the planktonic foraminiferal fragmentatiodex
(F Index) increases significantly (Fig. 2). The apfpoundary of this assemblage is defined by the
increase in abundance of the opportunistic t&eppanina selmensis and Sphogenerinoides

brevispinosa, marking the onset of Assemblage B
3.1.2 Assemblage B: the pre-CIE Paleocene fauna

Assemblage B occurs at -31 to 0 cm, estimated idarat 34 kyr. At about -20 cm the lithology
shifts from reddish to greenish marls wbophycos andChondrites (intervals Pa | and Il of Giusberti
et al., 2007). In this assembla@hogenerinoides brevispinosa and Tappanina selmensis increase in
relative abundance compared to Assemblage¥% at ~-27 and —12 cm; Figs. 6, 7). Between the
two peaks ofS brevispinosa (at about ~-20 cm; Figs. 6, 7), there is a trartsiegative carbon isotope
excursion of about 1%., a drop in Cagftdbm 60 to 40%, a decline in the coarse fractm2%, and a
peak in the F-Index (85-90%; Figs. 2, 3). Small #nd-walled taxa such dwmlivinids, cibicidids and
S brevispinosa decrease markedly in relative abundance, wherggshbavily calcified taxa (e.g.,
Cosmopolitan Extinction TaxaCibicidoides spp., Nuttallides truempyi) and agglutinated forms
increase (Figs. 5-7). In addition, faunal densitypd, as does the percentage of infaunal taxa (from
90% to 50%), and diversity increases (Fig. 2). Frdn® cm upwards, the preservation of benthic
foraminifera deteriorates, while the F Index reach@0% (Figs. 2, 3). At -1.5 cm preservation wossen
and most bi-triserial taxa decline in abundancestdrally, whereas benthic foraminiferal absolute
abundance and CaG® both decrease (Fig. 2). Faunal diversity peaks,amomalinidsCibicidoides
spp.,N. truempyi, O. umbonatus as well as agglutinated forms increase markedhglative abundance
(Figs. 2, 5, 6). In the uppermost Paleocene sam@esee the highest occurrence of most CET (Figs. 4
6). Few CET (e.g.Aragonia velascoensis) disappear below this sample (Fig. 4). These areeally
rare, occurring discontinuously throughout the Bedme, even in large samples of residue >125 pm
(Fig. 4). The uppermost occurrence of the CET @sfithe upper boundary of this assemblage, at the

base of the black clay layer.

3.1.3 The black clay
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The lowermost Eocene is a thin, black clay layetq0+0.3 cm), slightly enriched in organic
carbon, and carbonate-free (Giusberti et al., 261035. 3, 8). This clay marks the base of the CMU,
and contains a few specimens only, agglutinatedhbzforaminifera of the genetdapl ophragmoides
and Recurvoides (10 specimens in 22 g washed sediment). It prgbabk deposited over less than a
millennium, in view of its small thickness and @awithin the precessionally paced cycles in the
PETM.

3.1.4 Assemblage C: basal CIE agglutinated fauna

We label this lowermost Eocene interval (lowermb@tcm of laminated green clays of CMU,;
estimated duration ~3.5 kyr) the BFDI (i.e., beatfuraminiferal dissolution interval), sediment kvit
low CaCQ wt % (~15%), and the most negatd/&C values in bulk carbonate (-2%0). Assemblage C is
dominated by agglutinated taxa (about 90%; Fignvi#) badly preserved and deformed tests. Tests of
calcareous-hyaline forms are rare, partially digstland fragmented. Assemblage C has minimum
values of faunal density (<5), diversity, and wt#arse fraction (Fig. 2). Infaunal morphotypes have
their lowest abundance (ca. 36%; Figs. 2, 6). Ayghtied foraminifera are mainly represented by
Eobigenerina variabilis (25%; Plate 1, Figs. 2, 3Haplophragmoides spp. (20%),Glomospira spp.
(15%), Saccamina spp. (10%) andpiroplectammina navarroana (~ 8%; Plate 2, Fig. 6). In its upper
part, Assemblage C has high abundancdsaoferulina spp. (~20%K. conversa; Plate 2, Fig. 4) and
Ammobaculites agglutinans (10%; Plate 2, Fig. 1). The latter taxa occuregtively high abundance in
the overlying assemblages, up to ~+50-70 cm (FgS.). The upper boundary of this assemblage is

defined by the first substantial recovery of hyaltaxa (>50%).
3.1.5 Assemblage D: lowermost CIE fauna

In Assemblage D (+10 to +35 cm, lithologically cheterized by laminated green clays; estimated
duration ~9 kyr), calcareous-hyaline forms are iestly present and badly preserved, with dominant
taxa having dwarfed and thin-walled tests, e@obocassidulina subglobosa (25%), Tappanina
selmensis (20%), andOsangularia spp. (~11%; Figs. 6, 7; Plate 2, Figs. 13-16)pAc#ic assignment
of basal PETM osangulariids at Forada is not péssibcause of their very small size and poor sthte
preservation. From +30 cm upwards, relative abucerof G. subglobosa and Osangularia spp.
drastically decline, whereds selmensis reaches its maximum abundance (ca. 33%; Figs). &Jirfor
components are "other buliminids" group (up to 180the top of the Assemblage; see Fig. 5 and Fig.
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5- related caption)}?leurostomella spp.,Oridorsalis umbonatus, anomalinids and stilostomellids (Figs.
5, 6 and Fig. S1). Agglutinated forms remain abutdap to 50%. At +20 cm, calcified radiolarians
become abundant, dominating the microfossil asSoniap to +2 m above the base of CMU (Luciani
et al., 2007; Figs. 3, 8). Within the interval obgemblage D§°C shifts from -2 to -1%., and the
CaCQ wt% recovers to ~40%, despite strong dilution wétrigenous sediments (Fig. 3). The upper

boundary of this assemblage is defined by the stardi decrease at selmensis (to <5%).
3.1.6 Assemblage E: main CIE fauna |

In this interval (+35 to +185 cm; lithologically aracterized by green and reddish clays and marls;
estimated duration ca. 42 kyr) benthic foraminifgyeeservation improves, and calcareous-hyaline
forms dominate the assemblages again (FigShogenerinoides brevispinosa is consistently present
again, with two peaks up to 20% (Figs. 6, P)eurostomella spp. increase to up to >10%, and
Bolivinoides crenulata and smooth-walledBolivina spp. to up to 30 - 40% (Figs. 5, 6). Calcareous-
hyaline epifaunals such as cibicids and anomalinedppear at <5% (Fig. 5). Faunal density and
diversity gradually increase upwards, whereas diggited taxa markedly decrease in abundance
(<20%) at ~+70 cm (Fig. 2). The upper boundaryhid assemblage is defined by the marked drop in

relative abundance & brevispinosa (to <5%).
3.1.7 Assemblage F: main CIE fauna Il, CIE recovery and post CIE fauna

Assemblage F characterizes the upper half of th& @dddish marls), from about +185 cm up to
its top (+337.5 cm), and the overlying intervald(rearly limestone couplets) up to +649 cm; estithate
total duration > 281 kyr). The relative abundanféeSphogenerinoides brevispinosa is low (<5%),
whereasBulimina tuxpamensis and Nuttallides truempyi increase in abundance, respectively to 5 and
10%, and show cyclical variations in relative abamck (Figs. 6, 7). Pleurostomellids (~10%), "other
buliminids" group (~10%,; Fig. 5), cibicids (~10%ridorsalis umbonatus (~5%), stilostomellids
(~5%) and Abyssammina spp. (~5%) are common (Figs. 5, 6). Relative abuond of infaunal taxa
(mostly bolivinids) and faunal density (N/g) retsrmo their Paleocene values (75-80%; Fig. 2).
Diversity increases (simple diversity up to 60,heiso diversity up to 20; Fig. 2) but remains lower
than in the Paleocene. All faunal indices showicgthvariation (Fig. 2), as do the relative aburmian

of benthic foraminifera, and planktic foraminifemtd calcareous nannofossil assemblages (Agnini et
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al., 2007; Luciani et al., 2007). In the lower thof the interval in which this assemblage occjurst,
above the CMU (ca. +337.5 cm), the relative andlaibs abundance of radiolarians decrease markedly
and agglutinated taxa such @omospira spp.,Eobigenerina variabilis andKarrerulina spp. slightly

increase in relative abundance (~+2-3%) (Figs, B, 3).

4 Discussion
4.1 Paleodepth of the Forada section

Based on benthic foraminifera in the >125um sizetion, Giusberti et al. (2007) suggested a
paleodepth between 600 and 1000 meters for thedl&a@®action. Our data on the >63 pum size fraction
suggest a somewhat greater paleodepth, i.e., Upper bathyal, between 1000 and 1500 meters (van
Morkhoven et al., 1986). Representatives of thayedtand abyssal Velasco-type fauna (Berggren and
Aubert, 1975), such a#ragonia velascoensis, Cibicidoides velascoensis, Gyroidinoides globosus,
Nuttallides truempyi, Nuttallinella florealis, Osangularia velascoensis and Gavelinella beccariiformis
are common at Forada. The faunas across the upgeRET M interval and higher are similar to the
PETM-fauna in the upper abyssal Alamedilla sec{iouther Spain; Alegret et al., 2009a) and at
Walvis Ridge at 1500 m paleodepth (Thomas and 3tack 1996; Thomas, 1998A\byssammina
spp. andN\uttallides truempyi (upper depth limit at 1000 and 300 m respectivelgn Morkhoven et
al., 1986; Speijer and Schmitz, 1998) increasebumndance by more than a factor of 2 during the
PETM at Forada, as typical for PETM deep-sea bertimaminiferal records (e.g., Thomas, 1998;
Thomas and Shackleton, 1996; Thomas, 2007; Alegdrat., 2009a, 2011; Giusberti et al., 2009). In
these deliberations we excluded the bolivinidsabee we consider that their high abundance isaue t

the “delta depression effect” (see below).
4.2  Environmental reconstruction during the late Paleocene
4.2.1 The Belluno Basin Paleocene deep-sea environment (Assemblage A)

Throughout most of the investigated section, infsistrongly dominate over epifaunals, mainly
due to the high abundances of bolivinids (Figs5R,Such dominance of bolivinids is common in
lower and middle Eocene hemipelagic Scaglia sedisnenthe Belluno basin (Agnini et al., 2009;
Boscolo Galazzo et al., 2013). Presently, bolianate common along continental margins, and at
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bathyal depths, at the interception of the oxygenimum zone (OMZ) with the seafloor, typically
between 200 and 1000 m in modern oceans (Levin3)2®figh abundances of bolivinids commonly
correlate with high organic matter flux and/or ogggdepletion (e.g., Murray, 1991; Gooday, 1994;
Bernhard and Sen Gupta, 1999; Schmiedl et al., ;ZD@@mas et al., 2000; Jorissen et al., 1995, 2007,
Thomas, 2007). We see high abundances of suchypically at greater depths than usual in regions
with significant organic matter input from rivetbe so-called “delta-depression” effect first désea

in the Gulf of Mexico (Pflum and Frerichs, 1976ridsen et al., 2007). Such lateral inputs of organi
matter thus result in (partial) decoupling betwélkea food supply to the benthos and local primary
productivity (e.g., Fontanier et al., 2005; Arntiag, 2013).

At Forada, there is neither geochemical nor sediobegical evidence for persistent suboxic
conditions at the sea-floor (Giusberti et al., 20@hd the high benthic foraminiferal faunal divrs
likewise does not indicate low oxygen conditiondieTupper Paleocene calcareous plankton is
dominated by morozovellidadicating oligotrophic surface water conditionsi¢iani et al., 2007; Fig.
8). The calcareous nannofossil assemblage is doedindy the generalist taxaoweius and
Coccaolithus, with high percentages @&phenolithus and Fasciculithus (Agnini et al., 2007; Fig. 8),
supporting that surface waters were oligotrophiee Wus think that environments in the Belluno
Basin, close to a continental margin (Agnini ef 2007), were characterized by the “delta depressio
effect”, in which hemipelagic sedimentation incaigted significant laterally transported terrigenous
organic matter to serve as food for the benthag,(Eontanier et al., 2008; Arndt et al., 2013).

The occurrence of large, epifaunal (> 500 um) ggefhssemblage A and B), has been related to an
optimum food supply, but also to very low food slypsince a lack of food keeps individuals from
reproducing successfully and leads to continuettigresvth (Boltovskoy et al., 1991; Thomas and
Gooday, 1996).

Overall, Assemblage A, indicates oligo-mesotropsicface waters, with bolivinids probably
exploiting refractory, laterally advected organiatter. The high faunal diversity suggests that@eals
to periodical increases in primary productivity nfegve occurred (e.g., Gooday, 2003; Fontanier. gt al
2006a, 2006b, 2014), allowing a species-rich, lyighVerse infauna and epifauna to inhabit the sea-
floor, and co-occur with the bolivinids in the seéintary record.

At Forada, the relative abundance of Paleocene Qoalitan Extinction Taxa (CET) is low
(average <10%; Fig. 6), due to the large numbéadivinacea dominating the fine size fraction used
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for this study (>63um). Many CET (Plate 1) are epifaunal morphotypesnmonly larger than 125
um, as also noted elsewhere (e.g., Giusberti e2@09). Similarly low percentages (12-15%) of CET
have been recorded in Scaglia sediments of theeGsatsection (Giusberti et al., 2009) and at ODP
Site 690 by Thomas (2003), where infaunal morphedyuliminids and uniserial calcareous taxa) are
abundant in the >63m fraction.

4.2.2 The precursor warming event (Assemblage B)

The onset of Assemblage B, about 34 kyr beforeotiget of the CIE (~-30 cm), is marked by
increase in relative abundance of opportunisticataguch as Tappanina selmensis and
Sphogenerinoides brevispinosa (Figs. 6, 7; Table 1). The arrival dkppanina selmensis, an upper
bathyal to outer shelf species in the Maastrich{larenzel, 2000), at greater depths might indicate
warming of deep waters before the beginning ofRE&M, as also reflected in the migration of warm-
water planktonic species to high southern latitufl#somas and Shackleton, 1996; Table 1). The
benthic foraminiferal changes roughly coincidedwatsignificant increase in acarininids% (planktoni
foraminifera, >50%), likely indicating warming otigace waters (Luciani et al., 2007; Fig. 8). The
foraminiferal assemblages hence suggest warmimgigiwout the water column, and increased surface
nutrient availability and deep-water food availapilwhereas no changes in productivity in calcaseo
nannofossils are recorded (Agnini et al., 2007;i&nicet al., 2007; Fig. 8). The foraminiferal evide
for warming is associated with an increaséi.akanesand TEXgs Values (Fig. 9), suggesting increased

aridity and sea surface temperature prior to tteebaf the CIE (Tipple et al., 2011).

Multiple proxies thus indicate that climatic andeanographic conditions started to change ~30
kyr before the onset of the CIE, pointing to a PEPpkcursor event, reflected by a <5-cm thick
dissolution interval at ~-22 cm, coinciding wittagative shift in bulls®*C (-1%o; Figs. 2, 3). Within
this interval dissolution-sensitive benthic foraifera (e.g.,S. brevispinosa and small bolivinids)
markedly decrease in abundance, while more robus$tagglutinated taxa increase (Figs. 2, 5-8), as
does the F-Index of planktic foraminifera (to ~ 8%%; Luciani et al., 2007; Fig. 3). This dissolatio
level may thus reflect a brief episode of risingdgline/CCD (<5 kyr) in response to a precursory
emission of isotopically light carbon (Bowen et @015). Similar precursor events have been obderve

worldwide (e.g., Sluijs et al., 2007b; 2011; Secetdl., 2010; Kraus et al., 2013; Garel et al130
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Bornemann et al., 2014; Bowen et al., 2015), indigathat disturbance of the global carbon cycle
started before the PETM, as potentially also ré&diécin the occurrence of hyperthermals in the
Paleocene (Thomas et al., 2000; Cramer et al.,;Z08&ioni et al., 2012).

At the top of Assemblage B (uppermost 4.5 cm), jusdr to the onset of the CIE, carbonate
preservation declined markedly, as reflected imdek, CaC@%, and foraminiferal preservation. In
this interval, representing the “burndown” layer (E.g., Thomas and Shackleton, 1996; Thomas et
al., 1999; Giusberti et al., 2007; Figs. 4, 7, @ET remained present. Dissolution in the upper BL
removed most thin, dissolution-prone calcareouts tgsg., S phogenerinoides brevispinosa and small
bolivinids), concentrating the more heavily cakediand the agglutinated taxa (included CET; Fig. 5-
7). Benthic foraminiferal assemblages in the tognitedeocene at Forada thus cannot be interpreted

with confidence due to the severe dissolution.
4.3 Climate and marine life during the PETM
4.3.1 The black clay: a desert below the CCD

This very thin, carbonate-free interval is somewdragmatic. The virtually barren sediment may
have been deposited during the maximum rise of G@&D, under environmental conditions so
unfavorable that benthic life was excluded, a "deage” €ensu Harries and Kauffman, 1990) during
the earliest phase of the PETM. Geochemical reddicés in the black clay and the underlying and
overlying samples suggest persistently oxygenatatbim waters (Giusberti et al., 2007), but may
reflect diagenesis during re-oxygenation of bottwaters after a short period of anoxia, as commonly
observed for Mediterrean sapropels (Higgs et 8B41ivan Santvoort et al., 1996). The presenchef t
thin black clay without microfossils thus is higldyggestive of a brief pulse of anoxia, as supddrte
a single peak value of organic carbon (0.6 wt %sBerti et al., 2007). The high value of biogenic
barium (3151 ppm) in the black clay (Fig. 3), désghe fact that barite is generally not preserved
under anoxic conditions (Paytan and Griffith, 20B@ytan et al, 2007) may represent reprecipitatton
the oxic/anoxic sediment interface after dissolutimder anoxic conditions (Giusberti et al., 2007),
and/or high rates of organic remineralization ie Water column,during which the barite forms (Ma et
al., 2014).

4.3.2 The early peak PETM (Assemblages C and D)
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469 The 10 cm of sediment directly overlying the PatsmEocene boundary (i.e. the base of the CIE;
470  Figs. 7, 8) was deposited in strongly CaC&orrosive waters, below the lysocline and clasert
471  below the CCD. The rapid rise of the CCD/lysoclaheing the PETM is a predicted consequence of
472  massive input of carbon (G@r CH,) in the ocean-atmosphere system on a millenmatgcale (e.g.,
473  Dickens et al., 1997; Thomas, 1998; Zachos et2805; Zeebe et al., 2009, 2014; Hoenisch et al.,
474  2012). The carbonate dissolution at Forada is sterdi with observations at many other deep-ses site
475  (e.g., Schmitz et al., 1997, Thomas, 1998; Zachosl.e 2005; Kelly et al., 2010). The benthic
476  foraminiferal extinction event (BEE) at Forada.(i@rresponding to the the BB1/BB2 zonal boundary
477  of Berggren and Miller, 1989) occurs within this &@-thick interval, between the top of the CET-
478  bearing burndown layer and the base of Assemblggehiere benthic calcareous taxa reappear (Figs.
479 4,7, 8). The concentration of CET in the burnddayer, and the reappearance of calcareous hyaline
480 taxa only 10 cm above the onset of the PETM at d&raonfirms that the CET extinction occurred
481  over 3.5 kyr or less in the central western Tetlsysiilar to evaluations of this timing from carbon
482  cycle modeling (Zeebe et al., 2014).

483 Sediment just above the black clay, reflectingrst fslight deepening of the CCD, contains a low
484  diversity, fauna of mostly agglutinated, dwarfetbge to 63 pm in diameter) benthic foraminiferad an
485  calcareous nannofossils with signs of dissolutwith planktic foraminifera virtually absent (Agniet

486 al., 2007; Luciani et al., 2007; Fig. 8). This figave of benthic pioneers recolonized the searfloo
487 during the peak-CIE, in CaG@indersaturated waters, and reflects a highly stcesenvironment
488 (Assemblage C; Figs. 6-8). Among the pione&ahigenerina variabilis is peculiar of the PETM of
489 the Forada section (Figs. 6, Bobigenerina is a recently erected genus in the Textulariogsida
490 including non-calcareous species previously assigoeBigenerina (Cetean et al., 2011), and it is
491  known to behave opportunistically during Cretace@eganic Anoxic Event 2 (OAE2; Table 1). A
492  major component of the upper part of Assemblages Karrerulina conversa (Fig. 7). The species
493  dominates the lowermost Eocene deposits in thelP@arpatians (@, 2004), commonly occurring in
494  the Paleocene-Eocene of the Central North Sea ahchtor margin, and in Morocco (Kaminski and
495  Gradstein, 2005). ModerKarrerulina (e.g., K. apicularis=K. conversa) live in oligotrophic abyssal
496  plains, with well-oxygenated bottom and interskitiaters (Table 1). However, the test morphology of
497  Karrerulina, combined with its abundant occurrence in the tleab stressed environment of the basal
498 PETM at Forada and Zumaia (Table 1), suggestshisagenus may also act opportunistically.
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After ca. 4 kyr, a further deepening of CCD allowsedonsistent increase in abundance of benthic
calcareous taxa (ca. 50%; Assemblage D; Fig. dpcmbng with the lowermost recovery of bulk
carbonate5'®C values, from -2%o to -1%o (Giusberti et al., 2007pple et al., 2011; Fig. 7). These
calcareous recolonizers included dwarfed and thafled forms of G. subglobosa, Tappanina
selmensis, Osangularia spp. andOridorsalis umbonatus (Figs. 6, 7). A similar peak in small
Osangularia also occurs in the basal PETM at Contessa Secetdpcumented for the first time in the
present paper (Fig. S2). Representatives of theigg@sangularia (Osangularia spp.) behaved
opportunistically in the PETM of the Tethyan Alamikedsection (Alegret et al., 2009a). Moreover,
Boscolo Galazzo et al. (2013) found small-s2sangularia within organic-rich levels immediately
following the Middle Eocene Climatic Optimum in tAéano section (in northeastern Italy). During the
Cretaceous OAE®sangularia spp. opportunistically repopulated the sea flogrirdy short-term re-
oxygenation phases (see references in Table 1hoédth Osangularia is generally referred to as
preferring stable well oxygenated environments.{éMyirray, 2006; Alegret et al., 2003), we suggest
that some extinct species of this genus could Hgthh@have as opportunist and recolonizer.

Assemblage D contains almost equal abundancesladreaus and agglutinated taxa, indicating
that factors other than bottom water Ca@0ncentration were controlling faunal variabiltthin this
assemblage (Figs. 6, 7). Possibly, strongly enlthmgaoff and sediment delivery can explain the
abundance of agglutinated taxa (40-60%), suclslasospira spp. (e.g., Arreguin-Rodriguez et al.,
2013, 2014), above the first 10 cm of the CMU. \Westrecognize a rapid succession of recolonizer
taxa during the first 12 kyr of the CIE (Assemblag&D). The small size of both the agglutinated and
hyaline recolonizers is indicative of r-strategpecies which reproduce quickly and can thus quickl
repopulate stressed environments, as soon as icorgditnprove slightly (e.g., Koutsoukos et al., @99
Thomas, 2003). The rapid pace at which differergutations of recolonizers succeeded each other
indicates a highly unstable environment, with mdrkactuations in the amount, timing and quality of
the food reaching the sea floor. Sediment depasitiaring this interval may have occurred in rapid
pulses, e.g., following intense rainstorms, cagyirefractory organic matter to the deep-sea
environment. Pauses between events may have alltheedenthic foraminifera to recolonize the
sediment, profiting of the abundance of food. TIss consistent with calcareous nannofossil
assemblages showing an increasé&ritsonia and declines in abundance Sghenolithus, Octolithus,

Zygrablithus andFasciculithus, indicating an unstable and nutrient rich uppetewaolumn (Agnini et

18



529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

545
546
547
548
549
550
551
552
553
554
555
556
557
558

al., 2007; Fig. 8). Archaeal biomarkers show adairgflux of terrestrial, soil-derived organic maitte
(Branched and Isoprenoid Tetraethers or BIT Indesin the onset of the PETM up to ~+10 cm
(Tipple et al., 2011). Higher plamtalkane average chain length (ACL) decreased imabelgi after
the onset of the CIE, consistent with increasedidliyn(Fig. 9; Tipple et al., 2011). The abundamde
the clay mineral chlorite indicates enhanced playserosion (Robert and Kennett, 1994) during
deposition of the lower 50 cm of the CMU, rapidcdeasing upward (Fig. S3).

The greenish marly clays containing Assemblagesi 2 show primary lamination, indicating
that macrobenthic invertebrates were absent, d3eat and Mead Stream sections (New Zealand;
Nicolo et al., 2010), and Zumaya (Spain; Rodrigliezar et al., 2011). The presence of benthic
foraminifera, however, indicates that bottom ancep@aters were not permanently anoxic. Pore waters
may have become dysoxic periodically due to highperatures, decomposing organic matter and
possibly enhanced water column stratification, ilegdo the absence of metazoans and stressed
benthic foraminiferal assemblages. Low-pH sea-floonditions may have also played a significant
role in excluding macrobenthic fauna in this egshase of PETM at Forada. Deep-sea animals are
highly sensistive to even modest but rapid pH ckan@eibel and Walsh, 2001), which are harmful

even for infaunal deep-sea communities (Barry.ea04).

4.3.3 The core of the CIE and Recovery (Assemblages E, F)

The benthic foraminiferal assemblage changes stgnifly from Assemblage D to assemblage E,
coinciding with the gradual reappearing of mottlifag thin reddish “flames” in the green sediment).
Bolivinids return as a major faunal component (5086)d agglutinated taxa decrease in abundance.
Peaks of tapered elongate calcareous forms, imgudiphogenerinoides brevispinosa, "other
buliminids" group, pleurostomellids and stilostohas, replace the recolonizers (Figs. 5, 6). These
groups could have been functioned as opportuntsti@, able to flourish when food supply was
periodically high (e.g., Table 1). Coinciding wissemblage E, planktic foraminifera return to be a
significant component of the microfossil assembldgey., Luciani et al.,, 2007; Fig. 8), while
radiolarians remain abundant throughout the CMWg6Gerti et al, 2007; Luciani et al., 2007). The
planktic foraminiferal assemblage is dominated bgrimininids, with a double peak of the excursion
speciesAcarinina sibaiyaensis and A. africana, which, combined with the high percentages of the
nannofossiEricsonia, indicate warm and eutrophic surface waters (st et al., 2006; Guasti and
Speijer, 2007; Agnini et al., 2007; Luciani et &2007; Fig. 8).
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Detrital hematite sharply increased in concentraibthe onset of Assemblage E (Giusberti et al,
2007; Dallanave et al., 2010; 2012; Fig. 3). Hetadtirms in soils under warm and dry conditiong] an
an increase of hematite in marine sediments isidered indicative of an arid climate over the
adjoining land, with increased wind strength (Laoaa et al., 2003; Zhang et al., 2007; Itambl.et a
2009), or humid to subhumid climates with seasamghg (Torrent et al., 2006). It is delivered teet
deep-sea environment through river runoff or adiaealust (e.g., Zhang et al., 2007; Itambi et al.,
2009). Within the CMU, hematite shows cyclical tiwations with a ~21 kyr periodicity, but other
terrigenous components (quartz and phyllosilicatieshot co-vary in abundance after a ~15% increase
at the onset of the CMU (Fig. 3). To explain th#edlent abundance patterns, we interpret hemadite a
wind-delivered, silicate minerals as runoff-deleer

The hematite% peaks may be indicative of cycliaiability in wind-delivered material, rather
than the earlier prevailing consistently humid @ten The lithological anomaly of the CMU, the
fivefold increase in sedimentation rates and irgeeia reworked Cretaceous nannofossils (Agnini et
al., 2007; Fig. 8), as well as the silicate minanadl hematite% records all indicate marked fluobunast
in the hydrological regime throughout this intervdigh hematite% may reflect the presence of high-
pressure cells over land, during an overall drynate phase, with increased wind strength and dust
delivery to the sea (Larrasoana et al., 2003; Zretng., 2007; Itambi et al., 2009). In contrasty |
values of hematite% may indicate periods of greatemidity and enhanced precipitation. Such
alternation of wet and arid phases favored deegikession on the continental areas surroundirgg th
Belluno basin (Thiry, 2000; Schmitz and PujalteQ2)) causing major washouts during the wet phases,
which may explain the fivefold increase in sedina¢ioh rates and 15% increase in phyllosilicate
abundance in the CMU (Fig. 3).

The hematite% cycles are in phase with cycles iI€@&b, radiolarian abundance, and bulk
carbonate5™*C, slightly preceding the others stratigraphicgjg. 3). During the arid climate phase,
enhanced wind strength may have generated intamsace water mixing and offshore nutrient
upwelling, inducing increases in primary produdsivand phytoplankton blooms. The blooms in
primary productivity resulted in deposition of ablant algal biomass, leading to the occurrence of
peaks of pleurostomellids, stilostomellids aBgbhogenerinoides brevispinosa in Assemblage E.
Productivity may have remained fairly high durirg twet periods, as indicated by consistently high
biogenic barium throughout the CMU (Giusberti et @D07; Paytan et al., 2007). During the rainy
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periods, upwelling rates may have been lower, wittrients mostly supplied in river runoff. The
delivery of food to the seafloor may have been nmmetinuous, but with more important input of
refractory organic matter from land.

In contrast to these proxies, which show cyclitypatcessional periods throughout the CMU,
higher planin-alkane average chain length (ACL) a3 vary only in its lowermost 50 cm (Tipple et
al., 2011; Fig. 9). Possibly, the sedimentarglkanes were derived from a pool of plant material
produced during subsequent wet and dry phasetas®CL anddD may represent averaged records
of leaf waxn-alkanes produced during different mean climatéestan the upper CMU. Even so, the
oD values within the CMU are on average ~15%. loviiantabove and below (Fig. 9), as reported for
the Cicogna section (10 km away; Krishnan et aD15), possibly reflecting more humid
conditions/higher precipitation during the PETM weéhes (e.g., Sachse et al.,, 2006; Smith and
Freeman, 2006), or greater productivity of planterial during the wet phases. Alternatively, it may
reflect a primary change in the isotopic compositsd meteoric waters (Krishnan et al., 2015).

In the following benthic foraminiferal Assemblage @pper CMU, recovery phase),
Sphogenerinoides brevispinosa and Tappanina selmensis are less abundant, where&slimina
tuxpamensis, Abyssammina spp., and\uttallides truempyi increase in relative abundangegs. 6, 7).
These are typical deep-sea, open-ocean taxa whiclre tunder more oligotrophic conditions (e.qg.,
Thomas, 1998), and might indicate progressivelg latense or shorter primary productivity blooms
during the arid phases, and/or mark the returulty bxygenated sea-floor and pore water conditions
Less intense eutrophy at the transition from Asdag®bE to F is further supported by calcareous
plankton data, showing a decrease in the plankdr@aniiniferal excursion species, and among
nannofossils, a decreaseBknicsonia (Agnini et al., 2007; Luciani et al., 2007; Fig. 8onciding with
the top of the CMU, there were marked changes ltacaous plankton assemblages, although benthic
foraminiferal Assemblage F persisted. Among calmasenannofossils the abundanceZggrablithus,
Sohenolithus and Octolithus increased, whereas that of reworked taxa decrefSegd 8). In the
planktic foraminiferal assemblag@carinina species declined in abundance, and the fauna leecam
more diverse, with fluctuations modulated by lithgy in the marl-limestone couplets overlying the
CMU (Fig. 8).

The lithological unit above the CMU consists of alternation of limestones and marls at

precessional frequencies (~21 kyrs; Fig. 2). THesestone-marl couplets persist for up to 8 meters
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above the CMU (well beyond the top of the studieténval, Giusberti et al., 2007; Luciani et al.,
2007), then gradually become less clearly expregadihg upwards. The marl-limestone couplets may
reflect the persistence of wet (marl)-arid (limesp cycles for ~ 800 kyr after the end of the CMU
deposition, though at an amplitude declining owaet This persistence resembles the extended (650
kyr) humid period, starting at the onset of PETKcagnized in the sediment record at Site 401 of
eastern North Atlantic (Bornemann et al., 2014).r @enthic foraminiferal data agree with this
interpretation, showing substantially unchangedfkea conditions up to +650 cm (uppermost sample

analyzed).

4.4 Clues from Forada on PETM climate change

The integrated dataset collected at Forada supfieeteccurrence of enhanced climatic contrasts
and productivity changes in the western Tethysmduthe PETM, and agrees with previous studies
suggesting intense weather extremes at mid tocuib#d latitudes (Fig. 10; Table S3). At the onsket
the PETM, middle to subtropical latitudes may h&een characterized by intense, monsoonal-type
rainfall, followed by a succession of wet and auifichses, possibly precessionally paced, duringdhe c
of the PETM (e.g., Collinson et al., 2007; Kraus &igging, 2007; Egger et al., 2009; Foreman et al.
2014; Stassen et al.,, 2012a,b; 2015; Fig. 10 ardeT&3). The Forada record allows to distinctly
recognize the temporal successions among theseatlislimatic phases up to 800 kyr after the ommset
the PETM, and to directly relate them to the pregi@n of the CIE, its recovery and termination. The
climatic conditions inferred from the Forada sectand other records at similar latitudes diffemiro
those derived from the subtropical net evaporatmme (15°-35°N), (e.g., from the Tremp-Graus Basin
- Pyrenees), which document a generally much drignate with a brief interval of increased
storminess and intense flash flood events at tteetoof the PETM (Schmitz and Pujalte, 2007).
Records from subtropical to mid-latitudes alsoatifirom records within the northern rain belt antbi
the Arctic basin (>50°N), which suggest that hurmahditions may have been more persistent there,
with increased rates of precipitation, and on ayermaoister conditions during the PETM (Pagani gt al
2006b; Sluijs et al., 2006; Harding et al., 201¥plik et al., 2011; Kender et al., 2012; Wieczoetk
al., 2013; Fig. 10; Table S3).

The combination of all these climatic records (Fi§; Table S3) suggests that the net result of
increased weather extremes during peak-PETM mighé been to decrease rainout at subtropical to

mid latitudes, and increase moisture transport tdwhe high latitudes, as originally suggested by
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Pagani et al. (2006b). Few tropical records exetthat precipitation changes here are less clear.
Rainfall in coastal Tanzania may have decreasenhgitine early PETM, but combined with violent
precipitation events and floodings (Handley et2808; 2012; Aze et al., 2014; Table S3). In Central
America, conditions during the PETM may have sHifte more continuously humid (Jaramillo et al.,
2010).

The long-lasting cyclity and precise chronologyFatrada suggest that this enhanced climate
variability at subtropical to mid latitudes may lalasted for several hundred of thousand years afte
the onset of the CIE. Despite the possible decrefset rainout, these weather extremes persisting
over several 10kyrs may have significantly enhanced the raterosien and weathering, through the
occurrence of alternating wet-dry periods. The Wweahg may have led to a decrease in atmospheric
CO; levels, by consumption of GQduring weathering reactions. The increased supplgations
through enhanced weathering-erosion would haveedrivcean pH up, and atmospheric,Gfdwn
(Broecker and Peng, 1982; Raymo et al., 1988; Zadhoal., 2005). Enhanced seasonal extremes
across large geographical areas (the subtropigalddatitudinal belt) thus might have been a remsgo
to the large CQinput at the Paleocene-Eocene transition, andimagg had a primary role in restoring

the carbon cycle to steady state.

6 Conclusions

The continuous and expanded record of benthic fimiésrma across the PETM at Forada,
integrated with the extensive datasets previoushegated across this interval, may provide the most
complete reconstruction of ecological and climatitanges during the Paleocene/Eocene thermal
maximum in Europe. Coupled sedimentological, mdicand micropaleontological records highlight

a complex sequence of environmental and climatanghs during the time period across the CIE:

- Climatic and oceanographic conditions startediange ~30 kyr before the onset of the PETM, with
a possible precursor event.

- Our high-resolution benthic foraminiferal recazdmbined with the established chronology lets us
infer that the BEE in the central-western Tethysuned over a time interval of not more than 4 kyr.
At the onset of the PETM, combined de-oxygenatamidification and environmental instability may

have synergistically impacted deep sea life.
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-Four benthic foraminiferal assemblages occur (&a# lower F) within the CMU (coinciding with the
main phase of CIE). Assemblage C is characterizedurcessive peaks of different agglutinated
recolonizers. Calcareous recolonizers return inftllewing Assemblage D, after calcium carbonate
saturation increased. The complex succession éspEaagglutinated and hyaline recolonizers in ¢hes
two assemblages (C, D; 12.5 kyr), suggests multgg®pulation episodes. The benthic foraminiferal
data integrated with molecular and mineralogicaladaoint to increased precipitation and strong
continental erosion during this short initial stagehe PETM.

- Within the core of the CIE*C and mineralogical properties such as hematitecalmium carbonate
wt % vary at precessional periodicity. Combinedhwitata on radiolarian abundance and benthic
foraminiferal assemblage composition this vari@psiuggests an alternation of overall wetter anelrdr
periods. Enhanced weather extremes during mosteofPETM may have lecbta decrease in total
precipitation over the central western Tethys.

- The benthic foraminiferal assemblage at Foradiandit significantly change with the onset of the
deposition of marl-limestone couplets unit above @MU (mid and upper third of Assemblage F).
This suggests that the enhanced climatic varigtalitprecessional timescales persisted well after t
end of the CIE recovery. We argue that enhancesbsahextremes at mid-latitudes might have been a
direct climate response to the huge Gput at the Paleocene-Eocene transition, and imag had a
primary role in restoring carbon cycle steady sthteugh links witithe water cycle and weathering

rates.
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Figures captions

Figure 1. Location of the Forada section in thetewnof the Piave River Valley in the Belluno

Province (the “Valbelluna”), northeastern Italy.

Figure 2. Faunal and geochemical variations actbesPETM at Forada section plotted against
chronostratigraphy, precessional cycles, litholaggognized benthic foraminiferal assemblages (A to
G) and isotopic intervals. % agglutinated=agglutdao agglutinated and calcareous hyaline ratio; %
infaunal taxa=infaunal to infaunal and epifaundlosasimple diversity and Fisher-diversity index;
N/g=number of benthic foraminifera per gram (faudehsity) in the >63 mm size fraction; coarse
fraction (CF) calculated according to Hancock amckBns (2005) as the weight percent of the g68
size fraction relative to the weight of the bulkrgde; Fragmentation index (F-Index) is from Luciani
et al. (2007). The gray bands indicate intervalscafbonate dissolutioru= pre-CIE dissolution,
B=burndown layer, BFDI=benthic foraminiferal dissidun interval. Modified from Giusberti et al.
(2007).

Figure 3. Summary of the main mineralogical, geaubal and cyclostratigraphic features recognized
across the Paleocene-Eocene boundary and in tiiemdd unit (CMU) of the Forada section and
radiolarian abundance plotted against isotopic rnrale and recognized benthic foraminiferal
assemblages (A to F). N/g for the radiolariansreefe the number of radiolarians (>12& fraction)
per gram of dry sediment. F-Index from Luciani &t (@007). VPDB—Vienna Peedee belemnite
standard. Modified from Giusberti et al. (2007).

Fig. 4. Stratigraphic distribution of benthic foraiferal extinction taxa (CET) across the
Paleocene/Eocene boundary in the Forada sectidteghlagainst lithologys**C bulk record, CaC®
percentage, isotopic intervals and recognized lefdhaminiferal assemblages (A to F), based oa dat
from the >63um size fraction integrated with data from >125 micfraction. The gray bands indicate
intervals of carbonate dissolution. Question mar#teubtful identification. Triangle: post BEE
occurrence of one specimen @bryphostoma midwayensis has been recorded in the sample BRI 300
(295 cm above the base of CMU).

Figure 5. Relative abundance of the most abundanthix foraminiferal taxa across the PETM at

Forada plotted against biostratigraphy, precessiopeles, lithology,3**C bulk record, recognized
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benthic foraminiferal assemblages (A to F) andopmt intervals. Benthic foraminiferal biozonation
after Berggren and Miller (1989). The gray band#idate intervals of carbonate dissolutios. pre-
CIE dissolution, p=burndown layer, BFDI=benthic foraminiferal dissidm interval. "Other
buliminids" group includes only representatives tbé families Buliminidae, Buliminellidae and
Turrilinidae Bulimina, Bulimingla, Quadratobuliminella, Stella andTurrilina).

Figure 6. Relative abundance of selected benthianimifera across the PETM at Forada plotted
against biostratigraphy, precessional cycles, Ity 3°C bulk record, recognized benthic
foraminiferal assemblages (A to F) and isotopienvals. Benthic foraminiferal biozonation after
Berggren and Miller (1989). The gray bands indidatervals of carbonate dissolution= pre-CIE

dissolution f=burndown layer, BFDI=benthic foraminiferal dissidum interval.

Figure 7. Enlargement of the interval from -1m &mtacross the P/E boundary at Forada showing the
relative abundance of selected benthic foraminifgdoted against biostratigraphy, precessionalesycl
lithology, 3°C bulk record, recognized benthic foraminiferal emsblages (A to F) and isotopic
intervals. Benthic foraminiferal biozonation aftéerggren and Miller (1989). The gray bands indicate
intervals of carbonate dissolutioa=Pre-CIE dissolution interval}=burndown layer, BFDI=benthic

foraminiferal dissolution interval.

Figure 8. Summary of main calcareous plankton éalous nannofossils and planktonic foraminifera)
and benthic foraminiferal events and inferred emwmental conditions (from Agnini et al., 2007;
Luciani et al., 2007 and present work), isotopiteiivals, thickness, precessional cycles and benthic
foraminiferal assemblages (A to F) recognized iis thork. The stratigraphic intervals containing
assemblages A and B, C and D to F are considerguteasxtinction, extinction and repopulation

intervals, respectively. Benthic foraminiferal ztioa after Berggren and Miller (1989).

Figure 9. Stable carbon isotope ratios of highanph-alkanes (a), stable hydrogen isotope ratios o
higher plant n-alkanes (b) with higher plant averabain length values (c) for Forada PETM plotted
against isotopic intervals and recognized benthiarhiniferal assemblages (A to F). Terrestrial bigh
plant n-C27, n-C29, and n-C3dD values are shown as crosses, closed circles, taaugles,

respectively. Redrawn from data of Tipple et ad1(P).
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Figure 10. Paleogeographic map (from http://wwwmode/odsn/services/paleomap/paleomap hanl

55 Ma showing sites where paleohydrological regotibns for the PETM are available. Numbers
follow a north to south paleolatitudinal order. Blwots indicate areas where an increase in
precipitation has been inferred; Green dots indieaeas where an increase in climatic contrasts or
fluctuating precipitation regime have been inferr€iange dots indicate areas where an increase in
aridity has been inferred; Purple dots indicat@aamehere hydrological changes have been inferred bu
the pattern not specified. 1. Lomonosov Ridge, iBr8ea; 2, 3. Spitsbergen Central Basin and
Svalbard archipelago; 4. Central North Sea BasinEdstern North Sea Basin; 6. Williston Basin,
western North Dakota, (USA) 7. Bighorn Basin, Wyam{USA); 8. Rhenodanubian Basin, Austria; 9.
Belluno Basin, northeastern Italy; 10. Aktumsuk &adirtakapy sections, Uzbekistan and Kazakhstan;
11. Dieppe-Hampshire Basin, France; 12. LondonrB&k3. DSDP Site 401 Bay of Biscay, North-
eastern Atlantic Ocean; 14. Western Colorado (U3B);New Jersey Coastal Plain (USA); 16. Central
Valley of California (USA); 17. Basque Basin, nath Spain; 18. Tremp Basin, northern Spain; 19.
Alamedilla section, southern Spain; 20. TornillosBa Texas (USA); 21. Salisbury embayment, mid-
Atlantic coastal plain (USA); 22. Gafsa Basin, Taiaj 23. Zin Valley of Negev, Israel; 24. Dababiya
section, Egypt; 25. Northern Neotropics, (Colomaim Venezuela); 26. TDP Site 14, Tanzania; 27.
Tawanui section, North Island (New Zealand); 2&r&hce River valley, South Island (New Zealand);
29. Central Westland, South Island (New Zealan@);C3DP Site 1172, East Tasman Plateau; 31. ODP
Site 690 Weddell Sea, Southern Ocean. See Supplehaate S3 for references and additional

information.
Table caption

Table 1. Summary of the known ecological prefersrmafeselected benthic foraminifera, as evaluated

from the literature, common at Forada.
Plates captions

Plate 1. SEM micrographs of the most represent&®asleocene cosmopolitan extinction taxa (CET)
occurring at Forada. JAngulogavelinella avnimelechi, spiral view (BRI-25.5); 2Angulogavelinella
avnimelechi, lateral view (BRI-185.5); 3Gavelinella beccariiformis, umbilical view (BRI-75); 4.
Osangularia velascoensis, spiral view (BRI-50,5); 5.Anomalinoides rubiginosus (BRI-9); 6.

Cibicidoides dayi (BRI-37); 7. Cibicidoides velascoensis, spiral view (BRI-75,5); 8.Cibicidoides
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1477  velascoensis, lateral view (BRI-135.5); 9Cibicidoides hyphalus (BRI-50,5); 10. Neoeponides'
1478  megastoma (BRI-135); 11.Gyroidinoides globosus (BRI-50.5); 12.Gyroidinoides quadratus (BRI-
1479  185,5); 13. Coryphostoma midwayensis (BRI-50,5); 14. Aragonia velascoensis (BRI-50.5); 15.
1480  Bolivinoides delicatulus (BRI-135.5); 16 Neoflabellina semireticulata (BRI-365); 17.Pullenia coryelli
1481 (BRI-50,5); 18. Remesella varians (BRI-310.5); 19. Clawulinoides globulifera (BRI-25.5); 20.
1482  Clawulinoides trilatera (BRI-33); 21.Clavulinoides amorpha; 22. Marssonella indentata (BRI-25.5);
1483  23.Dorothia beloides (BRI-260); 24.Dorothia pupa (BRI-105).

1484 Plate 2. SEM micrographs of the most representapecies of the Eocene postextinction faunas
1485  occurring at Forada. Ammobaculites agglutinans (BRI+10); 2.Eobigenerina variabilis (BRI+50); 3.
1486  Eobigenerina variabilis (BRI+50); 4.Karrerulina conversa (BRI+50); 5.Karrerulina horrida (BRI-
1487  25.5); 6. Spiroplectammina navarroana (BRI-33/7); 7. Spiroplectammina spectabilis (BRI+50); 8.
1488 Rashnovammina munda (BRI-50,5); 9. Haplophragmoides cf. kirki. (BRI+5); 10. Saccammina
1489  placenta (BRI-25.5); 11.Glomospira irregularis (BRI+35); 12.Glomospira charoides (BRI-75.5); 13.
1490 Osangularia sp. (BRI+15); 14.Globocassidulina subglobosa (BRI+15); 15. Tappanina selmensis
1491  (BRI+15); 16. Tappanina selmensis (BRI-9); 17. Sphogenerinoides brevispinosa (BRI-11); 18.
1492  Sphogenerinoides brevispinosa (BRI-365); 19. Bulimina tuxpamensis (BRI+150); 20. Bulimina
1493  tuxpamensis (BRI+150); 21.Pleurostomella sp. (BRI+150); 22Bolivina sp. costate (BRI+385); 23.
1494  Nuttallides truempyi (BRI+150); 24.Oridorsalis umbonatus (BRI-135.5); 25.Aragonia aragonensis
1495  (BRI-105); 26.Abyssammina poagi (TAL7B).

1496 Plate 3. SEM micrographs of the most representdtiva of the upper Paleocene-lower Eocene of
1497  Forada section. 1Quadratobuliminella pyramidalis (BRI-75.5); 2 Buliminella grata (BRI-591); 3.
1498  Bulimina midwayensis (BRI+35); 4. Bulimina alazanensis (BRI +150); 5,6.Bulimina trinitatensis
1499  (BRI-9); 7. Bolivinoides crenulata (BRI-9); 8. Bolivinoides crenulata (BRI-25.5); 9. Bolivinoides
1500 floridana (BRI-410); 10Boalivina sp. smooth (BRI-410); 11Bolivina sp. smooth (BRI-410); 12.
1501  Reussella sp. (BRI-365); 13Angulogerina muralis (BRI-75.5); 14.Angulogerina muralis (BRI-75.5);
1502  15. Angulogerina? sp. (BRI-9); 16.Angulogerina? sp.(BRI-35.5); 17Rectobulimina carpentierae
1503  (BRI-466); 18. Allomorphina trochoides (BRI-25.5); 19.Quadrimorphina allomorphinoides (TAL
1504  7B); 20.Cibicidoides eocaenus (BRI-9); 21.Anomalinoides sp. 2 (BRI-135); 22Cibicides sp. (BRI-
1505  591); 23.Cibicidoides praemundulus (BRI+150); 24 Nonion havanense (BRI-591).
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Plate 4. SEM micrographs of some taxa of the upaeocene-lower Eocene of Forada section. 1.
Ammodiscus cretaceus (BRI-29.5); 2.Ammodiscus peruvianus (BRI-9); 3. Haplophragmoides walteri
(BRI-75.5); 4. Haplophragmoides horridus (BRI +35); 5. Recurvoides sp. (BRI -33/-37); 6.
Glomospira serpens (BRI-260); 7. Trochamminoides proteus (BRI-25.5); 8. Paratrochamminoides
heteromorphus (BRI+40); 9.Glomospira cf. gordialis (BRI +35); 10.Gaudryina sp. (BRI +15); 11.
Karrerulina coniformis (BRI -135); 12.Caudammina ovuloides (BRI-260); 13.Gaudryina pyramidata
(BRI-17.5); 14. Big-sized lituolid, apertural vie(BRI-9); 15. Hormosina velascoensis (BRI-33/37);

16. Pseudonodosinella troyeri (BRI-260); 17. Pseudobolivina® sp. 2 in Galeotti et al. (2004)
(BRI+35); 18.Pseudoclavulina trinitatensis (BRI+150); 19.Spiroplectammina spectabilis (BRI-50.5);

20. Big-sized lituolid, lateral view (BRI-9).
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Stratified water column.

(<10%) decreasing upwards with marked fluctuations.
Oligo-mesotrophy in the upper water column.
Significant supply of degraded organic matter

to the sea floor.
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Table 1.

Ammobaculites agglutinans

Deep-infaunal recoloniser within the K/Pg boundary clay at Sopelana section (Spain). Adapted to
low carbonate availability with high capability for dispersal and colonisation of abiotic substrates.
Reported in present day slope high productivity areas.

Gooday, 2003; Gooday et al., 2001; Kuhnt and Kaminski, 1993.

Eobigenerina variabilis

Opportunist, able to live under low oxygen conditions. Dominant in the recovery faunas after the
Cretaceous OAE2.

Cetean et al., 2008a,b. See also text.

Globocassidulina subglobosa

Cosmopolitan, highly adaptable, long-ranging opportunistic species. Modern representatives of this
species described from a wide variety of environmental settings, including hydrate mounds.
Possibly feeding on phytodetritus and reflecting pulsed food supply to the sea floor in oxygenated
deepwater settings. Abundant at high southern latitudes where seasonality is extreme. At many
sites it appears after the BEE and blooms as an opportunist.

Ernst et al., 2006; Gooday, 1993, 1994; Gupta and Thomas,
2003; Gooday et al., 2008; Ishman and Domack, 1994; Jorissen
et al., 2007; Mohan et al., 2011; Murray and Pudsey, 2004;
Nomura, 1995; Panieri and Sen Gupta, 2007; Sgarrella et al.,
1997; Singh and Gupta, 2004; Suhr et al., 2003; Takata et al.,
2010; Takeda and Kahio, 2007.

Glomospira spp.

Very abundant in the lowermost Eocene at several deep-water locations (the “Glomospira acme”).
Generally oligotrophic indicators, they though could be indicative of an abundant supply of
terrigenous, refractory organic matter, independent from local primary productivity. Resistant to
carbonate dissolution and able to live in environments with low carbonate supply. High ecological
tolerance: occur in environments subjected to rapid changes with fluctuating ecological conditions.

Arreguin-Rodriguez et al., 2013, 2014; Galeotti et al., 2004;
Kaminski and Gradstein, 2005; Kaminski et al., 1996; Kuhnt and
Collins, 1996; Ortiz, 1995; Waskowska, 2011.

Haplophragmoides spp.

Representatives of the genus pioneer sediments just above anoxic OAE2 black shales in the
abyssal North Atlantic that contain no benthic foraminifera. Commonly documented in the basal
PETM dissolution interval of shelfal and bathyal Tethyan sections.

Alegret et al., 2005; Ernst et al., 2006; Friedrich, 2009; Kuhnt,
1992; Ortiz, 1995.

Karrrerulina conversa

Deep infaunal taxon peaking in the basal PETM at Zumaya (Spain). Resistant to carbonate
dissolution and able to live in environments with low carbonate supply. Modern representatives are
part of the oligotrophic biofacies on abyssal plains with well-oxygenated bottom and interstitial
waters. Recognized in the lowermost Eocene of the Iberia Abyssal Plain.

Bak, 2004; Kaminski and Gradstein, 2005; Kuhnt and Collins,
1996; Kuhnt et al. 2000; Ortiz, 1995; See text.

Oridorsalis umbonatus

Very long-ranging, extant taxon (since the Turonian-Coniacian). Opportunistic lifestyle. Reported
both in oligotrophic and eutrophic environments. It may feed on phytodetritus. Shallow infaunal
dweller, with very small tests but increased calcification just above the base of the PETM at Site
1263 (Walvis Ridge, SE Atlantic), where it dominates the assemblage.

Foster et al., 2013; Kaiho, 1998; Katz et al., 2003; Gooday, 1993,
1994; Gupta and Thomas, 1999; Gupta et al., 2008; Schmiedl,
1995; Schmiedl and Mackensen, 1997; Thomas and Shackleton,
1996; Wendler et al., 2013.

Osangularia spp.

Opportunistically repopulate the sea floor during short-term re-oxygenation phases of Cretaceous
OAEs. Opportunistic phytodetritus feeders during OAEL1b, thriving on an enhanced carbon flux to
the sea floor and tolerating some degree of oxygen depletion. Peak of Osangularia spp. are
reported across the PETM of the Alamedilla section (Spain).

Alegret et al., 2009a; Friedrich, 2009; Friedrich et al., 2005;
Holbourn and Kuhnt, 2001; Holbourn et al., 2001. See also text.

Saccammina spp.

Recolonizer within the K/Pg boundary clay of the Sopelana section (Spain). Adapted to low
carbonate availability with high capability for dispersal and colonisation of abiotic substrates.
Common on modern productive continental margins.

Gooday et al., 2008; Kuhnt and Kaminski, 1993.

Siphogenerinoides brevispinosa

Typical of many open ocean sites in the aftermath of the peak CIE. Opportunist capable to rapidly
colonize the sediment when productivity increases during environmental instability. At some
locations it bloomed during the PETM and other hyperthermals, at others it had its highest
occurrence in the lowermost part of the PETM.

Giusberti et al., 2009; Thomas, 1998, 2003, 2007; Thomas and
Shackleton, 1996.

Spiroplectammina navarroana

Minor component of PETM postextinction faunas. At some locations common just after the K/Pg
boundary.

Alegret et al., 2003; Alegret et al., 2009b; Ortiz, 1995.

Stilostomellids and
pleurostomellids

Infaunal taxa widely distributed in oligotrophic and eutrophic regions with sustained or highly
seasonal phytoplankton productivity. Tolerated warm, locally oxygen-depleted, carbonate-corrosive
bottom waters, as demonstrated by their survival across the PETM. Across Cretaceous OAEs,
pleurostomellids were found within black- shales. Possibly adapted to low-oxygen conditions, or
able to rapidly recolonize the sea-floor during brief intervals of reoxygenation.

Coccioni and Galeotti, 1993; Friedrich, 2009; Friedrich et al.,
2005; Hayward et al., 2010a,b, 2012; Holbourn and Kuhnt, 2001;
Mancin et al., 2013.

Tappanina selmensis

Upper bathyal to outer shelf species in the Campanian and throughout the Paleocene. High-
productivity, stress-tolerant and opportunistic species possibly thriving in continuously stressed,
dysoxic sea bottom conditions. Common in the deep-sea only just before and especially following
the BEE.

Alegret et al., 2009a; Boersma, 1984; D'haenens et al., 2012;
Frenzel, 2000; Giusberti et al., 2009; Kuhnt, 1996; Kuhnt and
Kaminski, 1996; Stassen et al., 2012a,b, 2015; Steineck and
Thomas, 1996; Thomas, 1989, 1990, 1998; Thomas and
Shackleton, 1996; van Morkhoven et al., 1986.
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