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Abstract.

One of the main controversial items in palaeoclimatology is to elucidate if climate
during the Jurassic was warmer than present day, with no ice caps, or if ice caps were
present in some specific intervals. The Pliensbachian Cooling event (Early Jurassic) has
been pointed out as one of the main candidates to have developed ice caps on the
poles. To constrain the timing of this cooling event, including the palaeoclimatic
evolution before and after cooling, as well as the calculation of the seawater
palaeotemperatures are of primary importance to find arguments on this subject. For
this purpose, the Rodiles section of the Asturian Basin (Northern Spain), a well exposed
succession of the uppermost Sinemurian, Pliensbachian and Lower Toarcian deposits,
has been studied. A total of 562 beds were measured and sampled for ammonites, for
biochronostratigraphical purposes and for belemnites, to determine the palaeoclimatic
evolution through stable isotope studies. Comparison of the recorded latest
Sinemurian, Pliensbachian and Early Toarcian changes in seawater palaeotemperature
with other European sections allows characterization of several climatic changes of
probable global extent. A warming interval which partly coincides with a 6*Cpe
negative excursion was recorded at the Late Sinemurian. After a “normal” temperature
interval, a new warming interval that contains a short lived positive 613Cbe| peak, was
developed at the Early—Late Pliensbachian transition. The Late Pliensbachian
represents an outstanding cooling interval containing a 53Chel positive excursion
interrupted by a small negative 62Cpel peak. Finally, the Early Toarcian represented an
exceptional warming period pointed as the main responsible for the prominent Early
Toarcian mass extinction.

1 Introduction



39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78
79
80

81

82

The idea of an equable Jurassic greenhouse climate, 5-102 C warmer than present day,
with no ice caps and low pole-equator temperature gradient, has been proposed by
several studies (i.e. Hallam, 1975, 1993; Chandler et al., 1992; Frakes et al., 1992; Rees
et al., 1999; Sellwood and Valdes, 2008). Nevertheless, this hypothesis has been
challenged by numerous palaeoclimatic studies, mainly based on palaeotemperature
calculations using the oxygen isotope data from belemnite and brachiopod calcite as a
proxy. Especially relevant are the latest Pliensbachian—Early Toarcian climate changes,
which have been documented in many sections from Western Europe (i. e. Selen et
al., 1996; McArthur et al., 2000; Rohl et al., 2001; Schmidt-R6hl et al., 2002; Bailey et
al., 2003; Jenkyns, 2003; Rosales et al., 2004; Gémez et al., 2008; Metodiev and Koleva-
Rekalova, 2008; Suan et al., 2008, 2010; Dera et al., 2009, 2010, 2011; Gédmez and
Arias, 2010; Garcia Joral et al., 2011; Gémez and Goy, 2011; Fraguas et al., 2012), as
well as in Northern Siberia and in the Artic Region (Zakharov et al., 2006; Nikitenko,
2008; Suan et al., 2011). The close correlation between the severe Late Pliensbachian
Cooling and the Early Toarcian Warming events, and the major Early Toarcian mass
extinction indicates that warming was one of the main causes of the faunal turnover
(Kemp et al., 2005; Gomez et al., 2008; Gémez and Arias, 2010; Garcia Joral et al.,
2011; Gomez and Goy, 2011; Fraguas et al., 2012; Clémence, 2014; Clémence et al.,
2015; Baeza-Carratald et al., 2015).

Comparison between the §'®0-derived palaeotemperature curves obtained from
belemnite calcite in the European sections shows a close relationship in the evolution
of seawater palaeotemperature across Europe, indicating that the Late Pliensbachian
cooling and the Early Toarcian warming intervals could probably be global in extent. At
the Late Pliensbachian Cooling event, palaeotemperatures of around 102C have been
calculated for the Paris Basin (Dera et al., 2009) and in the order of 122C for Northern
Spain (Gomez et al., 2008; Gémez and Goy, 2011). These temperatures are
considerably low for a palaeolatitude of Iberia of around 30-352 N (Osete et al., 2010).
Nevertheless, except for a few sections (Rosales et al., 2004; Korte and Hesselbo, 2011;
Armendariz et al., 2012), little data on the evolution of seawater palaeotemperatures
during the latest Sinemurian and the Pliensbachian, which culminated in the
prominent Late Pliensbachian Cooling and the Early Toarcian Warming events, have
been documented.

The objective of this paper is to provide data on the evolution of the seawater
palaeotemperatures and the changes in the carbon isotopes through the Early Jurassic
Late Sinemurian, Pliensbachian and Early Toarcian, to constrain the timing of the
recorded changes through ammonite-based chronostratigraphy. The dataset has been
obtained from the particularly well exposed Rodiles section, located in the Asturias
community in Northern Spain (Fig. 1). Presented data from the Spanish section reveals
the presence of several relevant climate changes which have been correlated with the
results obtained in different sections of Europe, showing that these climatic changes,
as well as the documented perturbations of the carbon cycle, could be of global, or at
least of regional extent at the European scale.

2 Materials and methods
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The 110 m thick studied section composed of 562 beds has been studied bed by bed.
Collected ammonites were prepared and studied following the usual palaeontological
methods. The obtained biochronostratigraphy allowed characterization of the
standard chronozones and subchronozones established by Elmi et al. (1997) and Page
(2003), which are used in this work.

A total of 191 analyses of stable isotopes were performed on 163 belemnite calcite
samples, in order to obtain the primary Late Sinemurian, Pliensbachian and Early
Toarcian seawater stable isotope signal, and hence to determine palaeotemperature
changes, as well as the variation pattern of the carbon isotope in the studied time
interval. For the assessment of possible burial diagenetic alteration of the belemnites,
polished samples and thick sections of each belemnite rostrum were prepared. The
thick sections were studied under the petrographic and the cathodoluminescence
microscope, and only the non-luminescent, diagenetically unaltered portions of the
belemnite rostrum, were sampled using a microscope-mounted dental drill.
Belemnites in the Rodiles section generally show an excellent degree of preservation
(Fig. 2) and none of the prepared samples were rejected, as only the parts of the
belemnite rostrum not affected by diagenesis were selected. Sampling of the
luminescent parts such as the apical line and the outer and inner rostrum wall,
fractures, stylolites and borings were avoided. Belemnite calcite was processed in the
stable isotope labs of the Michigan University (USA), using a Finnigan MAT 253 triple
collector isotope ratio mass spectrometer. The procedure followed in the stable
isotope analysis has been described in Gdmez and Goy (2011). Isotope ratios are
reported in per mil relative to the standard Peedee belemnite (PDB), having a
reproducibility better than 0.02 %o PDB for §*C and better than 0.06 %o PDB for §'20.

The seawater palaeotemperature recorded in the oxygen isotopes of the studied
belemnite rostra have been calculated using the Anderson and Arthur (1983) equation:
T(2C) = 16.0 - 4.14 (8.-84) + 0.13 (6.-64)> where 8= 620 PDB is the composition of the
sample, and &,,= 680 SMOW the composition of ambient seawater. According to the
recommendations of Shackleton and Kennett (1975), the standard value of §,=—1%o
was used for palaeotemperature calculations under non-glacial ocean water
conditions. If the presence of permanent ice caps in the poles is demonstrated for
some of the studied intervals, value of §,=0%. would be used and consequently
calculated palaeotemperatures would increase in the order of 49C.

Discussion on the palaeoecology of belemnites and the validity of the isotopic data
obtained from belemnite calcite for the calculation of palaeotemperatures is beyond
the scope of this paper. The use of belemnite calcite as a proxy is generally accepted
and widely used as a reliable tool for palaeothermometry in most of the Mesozoic.
However, palaeoecology of belemnites is a source of discrepancies because, as extinct
organisms, there is a complete lack of understanding of fossil belemnite ecology
(Rexfort and Mutterlose, 2009). Belemnite lived as active predators with a swimming
mode of life. Nevertheless, several authors (Anderson et al., 1994; Mitchell, 2005;
Wierzbowski and Joachimiski, 2007) proposed a bottom-dwelling mode of life on the
basis of oxygen isotope thermometry, similar to modern sepiids which show a
necktobenthic mode of life. This is contradicted by the occurrence of various
belemnite genera in black shales that lack any benthic or necktobenthic organisms due
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to anoxic bottom waters (i.e. the Lower Jurassic Posidonienschiefer, see Rexfort and
Mutterlose, 2009), indicating that belemnites had a necktonic rather than a
necktobenthic mode of life (Mutterlose et al., 2010). As Rexfort and Mutterlose (2009)
stated, It is unclear whether isotopic data from belemnites reflect a surface or a
deeper water signal and we do not know if the belemnites mode of life changed during
ontogeny. Similarly, Li et al., (2012) concluded that belemnites were mobile and
experienced a range of environmental conditions during growth. Some belemnite
species inhabited environmental niches that remain unchanged, while other species
had a more cosmopolitan lifestyle inhabiting wider environments. To complete the
scenario, Mutterlose et al. (2010) suggested different lifestyles (nektonic versus
necktobenthic) of belemnites genera as indicated by different shaped guards. Short,
thick guards could indicate necktobentic lifestyle, elongated forms fast swimmers, and
extremely flattened guards benthic lifestyle.

The Ullmann et al. (2014) work hypothesises that belemnites (Passaloteuthis) of the
Lower Toarcian Tenuicostatum Zone had a necktobenthic lifestyle and once became
extinct (as many organisms in the Early Toarcian mass extinction) were substituted by
belemnites of the genus Acrocoelites supposedly of nektonic lifestyle that these
authors impute as due to anoxia.

On the other hand, the isotopic studies performed on present-day cuttlefish (Sepia
sp.), which are assumed to be the most similar group equivalent to belemnites, reveals
that all the analyzed specimens (through their 8'20 signal) reflect the temperature-
characteristics of their habitat perfectly (Rexfort and Mutterlose, 2009). Also the
studies of Bettencourt and Guerra (1999), performed in cuttlebone of Sepia officinalis
conclude that the obtained 620 temperature agreed with changes in temperature of
seawater, supporting the use of belemnites as excellent tools for calculation of
palaeotemperatures.

It seems that at least some belemnites could swim through the water column,
reflecting the average temperature and not necessarily only the temperature of the
bottom water or of the surface water. In any case, instead of single specific values,
comparisons of average temperatures to define the different episodes of temperature
changes are used in this work.

For palaeotemperature calculation, it has been assumed that the 50 values, and
consequently the resultant curve, essentially reflects changes in environmental
parameters (Saxlen et al., 1996; Bettencourt and Guerra, 1999; McArthur et al., 2007,
Price et al., 2009; Rexfort and Mutterlose, 2009; Benito and Reolid, 2012; Li et al.,
2012; Harazim et al., 2013; Ullmann et al., 2014, Ullmann and Korte, 2015), as the
sampled non-luminescent biogenic calcite of the studied belemnite rostra precipitated
in equilibrium with the seawater. It has also being assumed that the biogenic calcite
retains the primary isotopic composition of the seawater and that the belemnite
migration, skeletal growth, the sampling bias, and the vital effects are not the main
factors responsible for the obtained variations. Cross-plot of the §'20 against the §"*C
values (Fig. 3) reveals a cluster type of distribution, showing a negative correlation
coefficient (-0.2) and very low covariance (R*=0.04), supporting the lack of digenetic
overprints in the analyzed diagenetically screened belemnite calcite.
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3 Results

In the coastal cliffs located northeast of the Villaviciosa village, in the eastern part of
the Asturias community (Northern Spain) (Fig. 1), the well exposed Upper Sinemurian,
Pliensbachian and Lower Toarcian deposits are represented by a succession of
alternating lime mudstone to bioclastic wackestone and marls with interbedded black
shales belonging to the Santa Mera Member of the Rodiles Formation (Valenzuela,
1988) (Fig. 4). The uppermost Sinemurian and Pliensbachian deposits have been
studied in the eastern part of the Rodiles Cape and the uppermost Pliensbachian and
Lower Toarcian in the western part of the Rodiles Cape (West Rodiles section of Gémez
et al., 2008; Gomez and Goy 2011). Both fragments of the section are referred here as
the Rodiles section (lat. 43232'22” long.5222'22"). Palaeogeographical reconstruction
based on comprehensive palaeomagnetic data, carried out by Osete et al. (2010),
locates the studied Rodiles section at a latitude of about 322 N for the
Hettangian—Sinemurian interval and at a latitude of almost 402 N (the current latitude
of Madrid) for the Toarcian—Aalenian interval.

Ammonite taxa distribution and profiles of the 6180be|, 613Cbe| and 613Cbu|k values
obtained from belemnite calcite have been plotted against the 562 measured beds of
the Rodiles section (Fig. 5).

3.1 Lithology

The Upper Sinemurian, Pliensbachian and Lower Toarcian deposits of the Rodiles
section are constituted by couplets of bioclastic lime mudstone to wackestone
limestone and marls. Occasionally the limestones contain bioclastic packstone facies
concentrated in rills. Limestones, generally recrystallized to microsparite, are
commonly well stratified in beds whose continuity can be followed at the outcrop
scale, as well as in outcrops several kilometres apart. However, nodular limestone
layers, discontinuous at the outcrop scale, are also present. The base of some
carbonates can be slightly erosive, and they are commonly bioturbated, to reach the
homogenization stage. Ichnofossils, specially Thalassinoides, Chondrites and
Phymatoderma, are also present. Marls, with CaCOs content generally lower than 20%
(Badenas et al., 2009, 2012), are frequently gray coloured, occasionally light gray due
to the higher proportion of carbonates, with interbedded black intervals. Locally brown
coloured sediments, more often in the Upper Sinemurian, are present.

3.2 Biochronostratigraphy

The ammonite-based biochronostratigraphy of these deposits in Asturias have been
carried out by Sudrez-Vega (1974), and the uppermost Pliensbachian and Toarcian
ammonites by Gdmez et al. (2008), and by Goy et al. (2010 a, b). Preliminary
biochronostratigraphy of the Late Sinemurian and the Pliensbachian in some sections
of the Asturian Basin has been reported by Comas-Rengifo and Goy (2010), and the
result of more than ten years of bed by bed sampling of ammonites in the Rodiles
section, which allowed precise time constrain for the climatic events described in this
work, are here summarized.

Collected ammonites allowed the recognition of all the standard Late Sinemurian,
Pliensbachian and Early Toarcian chronozones and subchronozones defined by Elmi et

5
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al. (1997) and Page (2003) for Europe. Section is generally expanded and ammonites
are common enough as to constrain the boundaries of the biochronostratigraphical
units. Exceptions are the Taylori-Polymorphus subchronozones that could not be
separated, and the Capricornus-Figulinum subchronozones of the Davoei Chronozone,
partly due to the relatively condensed character of this Chronozone. Most of the
recorded species belong to the NW Europe province but some representatives of the
Tethysian Realm are also present.

3.3 Carbon isotopes

The carbon isotopes curve reflects several oscillations through the studied section (Fig.
5). A positive §"3Cpe shift, showing average values of 1.6%o is recorded in the Late
Sinemurian Densinodulum to part of the Macdonnelli subchronozones. From the latest
Sinemurian Aplanatum Subchronozone (Raricostatum Chronozone) up to the Early
Pliensbachian Valdani Subchronozone of the Ibex Chronozone, average 613Cbe| values
are —0.1%o, delineating an about 1-1.5%o relatively well marked negative excursion. In
the late Ibex and in the Davoei chronozones, the 613Cbe| curve records background
values of about 1%o, with a positive peak at the latest Ibex Chronozone and the earliest
Davoei Chronozone.

At the Late Pliensbachian the 8*3C,. values tend to outline a slightly positive excursion,
interrupted by a small negative peak in the latest Spinatum Chronozone. The Early
Toarcian curve reflects the presence of a positive 8%3C,e trend which develops above
the here represented stratigraphical levels, up to the Middle Toarcian Bifrons
Chronozone (GOmez et al., 2008) and a negative excursion recorded in bulk carbonates
samples.

3.4 Oxygen isotopes

The 60y values show the presence of several excursions through the Late
Sinemurian to the Early Toarcian (Fig. 5). In the Late Sinemurian to the earliest
Pliensbachian interval, an about 1%o negative excursion, showing values generally
below -1%o. with peak values up to —3%o. has been recorded in Sinemurian samples
located immediately below the stratigraphic column represented in Fig. 5. In most of
the Early Pliensbachian Jamesoni and the earliest part of the Ibex chronozones, §'®0p.
values are quite stable, around -1%., but another about 1-1.5%. negative excursion,
with peak values up to -1.9%., develops along most of the Early Pliensbachian lbex and
Davoei chronozones, extending up to the base of the Late Pliensbachian Margaritatus
Chronozone. Most of the Late Pliensbachian and the earliest Toarcian are
characterized by the presence of an important change. A well-marked in the order of
1.5%0 8 80pe positive excursion, with frequent values around 0%o, and positive values
up to 0.7%e., were assayed in this interval. The oxygen isotopes recorded a new change
on its tendency in the Early Toarcian, where a prominent 20, negative excursion,
about 1.5-2%o. with values up to -3%o., has been verified.

4 Discussion

The isotope curves obtained in the Upper Sinemurian, Pliensbachian and Lower
Toarcian section of the Asturian Basin has been correlated with other successions of
similar age, in order to evaluate if the recorded environmental features have a local or

6
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a possible global extent. In order to correlate a more homogeneous dataset, only the
isotopic results obtained by other authors from belemnite calcite and exceptionally
from brachiopod calcite, have been used for the correlation of the stable isotopic data.

4.1 Carbon isotope curve

The 8C, carbon isotope excursions (CIEs) found in the Asturian Basin, can be
followed in other sections across Western Europe (Fig. 6). The Late Sinemurian positive
CIE has also been recorded in the Cleveland Basin of the UK by Korte and Hesselbo
(2011) and in the 513Corg data of the Wessex Basin of southern UK by Jenkyns and
Weedon (2013).

The Early Pliensbachian 55 Crel negative excursion that extends from the Raricostatum
Chronozone of the latest Sinemurian to the Early Pliensbachian Jamesoni and part of
the Ibex chronozones (Fig. 6), correlates with the lower part of the §*Cye negative
excursion reported by Armendariz et al. (2012) in another section of the Asturian
Basin. Similarly, the §Cyel curve obtained by Quesada et al. (2005) in the neighbouring
Basque—Cantabrian Basin, shows the presence of a negative CIE in similar
stratigraphical position. In the Cleveland Basin of the UK, the studies on the
Sinemurian—Pliensbachian deposits carried out by Hesselbo et al. (2000), Jenkyns et al.
(2002) and Korte and Hesselbo (2011) reflect the presence of this Early Pliensbachian
83Chel negative excursion. In the Peniche section of the Lusitanian Basin of Portugal,
this negative CIE has also been recorded by Suan et al. (2010) in brachiopod calcite,
and in bulk carbonates in Italy (Woodfine et al., 2008; Francheschi et al., 2014). The
about 1.5-2%0 magnitude of this negative excursion seems to be quite consistent
across the different European localities.

Korte and Hesselbo (2011) pointed out that the Early Pliensbachian §3C negative
excursion seems to be global in character and the result of the injection of isotopically
light carbon from some remote source, such as methane from clathrates, wetlands, or
thermal decomposition or thermal metamorphism or decomposition of older organic-
rich deposits. However none of these possibilities have been documented yet.

Higher in the section, the 6'°C values are relatively uniform, except for a thin interval,
around the Early Pliensbachian Ibex—Davoei zonal boundary, where a small positive
peak (the Ibex—Davoei positive peak, previously mentioned by Rosales et al., 2001 and
by Jenkyns et al., 2002) can be observed in most of the §"3C curves summarized in Fig.
6, as well as in the carbonates of the Portuguese Lusitanian Basin (Silva et al., 2011).

The next CIE is a positive excursion about 1.5-2%., well recorded in all the correlated
Upper Pliensbachian sections (the Late Pliensbachian positive excursion in Fig. 6) and
in bulk carbonates of the Lusitanian Basin (Silva et al., 2011). Around the
Pliensbachian-Toarcian boundary, a negative 8§">C peak is again recorded (Fig. 6). This
narrow excursion was described by Hesselbo et al. (2007) in bulk rock samples in
Portugal, and tested by Suan et al. (2010) in the same basin and extended to the
Yorkshire (UK) by Littler et al. (2010) and by Korte and Hesselbo (2011). If this
perturbation of the carbon cycle is global, as Korte and Hesselbo (2011) pointed out, it
could correspond with the negative 6'°C peak recorded in the upper part of the
Spinatum Chronozone in the Asturian Basin (this work); with the negative 6°C peak
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reported by Quesada et al. (2005) in the same stratigraphical position in the
Basque—Cantabrian Basin, and with the e negative peak reported by van de
Schootbrugge et al. (2010) and Harazim et al. (2013) in the French Grand Causses
Basin.

Finally, the Early Toarcian is characterized by a prominent 8¢ positive excursion that
has been detected in all the here considered sections, as well as in some South
American (Al-Suwaidi et al., 2010) and Northern African (Bodin et al., 2010) sections,
which is interrupted by an about 1%e. 613Cbu|k negative excursion located around the
Tenuicostatum-Serpentinum zonal boundary.

The origin of the positive excursion has been interpreted by some authors as the
response of water masses to excess and rapid burial of large amounts of organic
carbon rich in *?C, which led to enrichment in *C of the sediments (Jenkyns and
Clayton, 1997; Schouten et al., 2000). Other authors ascribe the origin of this positive
excursion to the removal from the oceans of large amounts of isotopically light carbon
as organic matter into black shales or methane hydrates, resulting from ebullition of
isotopically heavy CO,, generated by methanogenesis of organic-rich sediments
(McArthur et al., 2000).

Although 83C positive excursions are difficult to account for (Payne and Kump, 2007),
it seems that this §">C positive shift cannot necessarily be the consequence of the
widespread preservation of organic-rich facies under anoxic waters, as no anoxic facies
are present in the Spanish Lower Toarcian sections (Gomez and Goy, 2011). Modelling
of the CIEs performed by Kump and Arthur (1999) shows that 8¢ positive excursions
can also be due to an increase in the rate of phosphate or phosphate and inorganic
carbon delivery to the ocean, and that large positive excursions in the isotopic
composition of the ocean can also be due to an increase in the proportion of
carbonate weathering relative to organic carbon and silicate weathering. Other
authors argue that increase of 8%3Cin bulk organic carbon may reflect a massive
expansion of marine archaea bacteria that do not isotopically discriminate in the type
of carbon they use, leading to positive 83C shifts (Kidder and Worsley, 2010).

The origin of the Early Toarcian §3C negative excursion has been explained by several
papers as due to the massive release of large amounts of isotopically light CH4 from
the thermal dissociation of gas hydrates Hesselbo et al. (2000, 2007), Cohen et al.
(2004) and Kemp et al. (2005), with the massive release of gas methane linked with the
intrusion of the Karoo-Ferrar large igneous province onto coalfields, as proposed by
McElwain et al. (2005) or with the contact metamorphism by dykes and sills related to
the Karoo-Ferrar igneous activity into organic-rich sediments (Svensen et al., 2007).

4.2. Oxygen isotope curves and seawater palaeotemperature oscillations

Seawater palaeotemperature calculation from the obtained 50 values reveals the
occurrence of several isotopic events corresponding with relevant climatic oscillations
across the latest Sinemurian, the Pliensbachian and the Early Toarcian (Fig. 7). Some of
these climatic changes could be of global extent. In terms of seawater
palaeotemperature, five intervals can be distinguished. The earliest interval
corresponds with a warming period developed during the Late Sinemurian up to the
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earliest Pliensbachian. Most of the Early Pliensbachian is represented by a period of
“normal” temperature, close to the average palaeotemperatures of the studied
interval. A new warming period is recorded at the Early—Late Pliensbachian transition,
and the Late Pliensbachian is represented by an important cooling interval. Finally the
Early Toarcian coincides with a severe (super)warming interval, linked to the important
Early Toarcian mass extinction (Gémez and Arias, 2010; Garcia Joral et al., 2011;
Gdémez and Goy, 2011; Fraguas et al., 2012; Clémence, 2014; Clémence et al., 2015;
Baeza-Carratala et al., 2015).

The average palaeotemperature of the latest Sinemurian, Pliensbachian
(palaeolatitude of 322N) and Early Toarcian (palaeolatitude of 402N), calculated from
the §'0 values obtained from belemnite calcite in this work, is 15.62C.

4.2.1 The Late Sinemurian Warming

The earliest isotopic event is a §'%0 negative excursion that develops in the Late
Sinemurian Raricostatum Chronozone, up to the earliest Pliensbachian Jamesoni
Chronozone. Average palaeotemperatures calculated from the 60 belemnite samples
collected below the part of the Late Sinemurian Raricostatum Chronozone represented
in figure 5 were 19.62C. This temperature increases to 21.52C in the lower part of the
Raricostatum Chronozone (Densinodulum Subchronozone), and temperature
progressively decreases through the latest Sinemurian and earliest Pliensbachian. In
the Raricostaum Subchronozone, the average calculated temperature is 18.72C; in the
Macdonnelli Subchronozone average temperature is 17.52C and average values of
16.79C, closer to the average temperatures of the studied interval, are not reached
until the latest Sinemurian Aplanatum Subchronozone and the earliest Pliensbachian
Taylori—-Polymorphus subchronozones. All these values delineate a warming interval
mainly developed in the Late Sinemurian (Figs. 7, 8).

The Late Sinemurian Warming interval is also recorded in the Cleveland Basin of the UK
(Hesselbo et al., 2000; Korte and Hesselbo, 2011). The belemnite-based 50 values
obtained by these authors are in the order of =1%o to —3%o, with peak values lower
than —4%o.. That represents a range of palaeotemperatures normally between 16 and
242°C with peak values up to 292C, which are not compatible with a cooling, but with a
warming interval.

The Late Sinemurian warming coincides only partly with the Early Pliensbachian 85c
negative excursion, located near the stage boundary (Fig. 6). Consequently, this
warming cannot be fully interpreted as the consequence of the release of methane
from clathrates, wetlands or decomposition of older organic-rich sediments, as
interpreted by Korte and Hesselbo (2011) because only a small portion of both
excursions are coincident.

4.2.2 The “normal” temperature Early Pliensbachian Jamesoni Chronozone interval

After the Late Sinemurian Warming, §'20 values are around —1%o reflecting average
palaeotemperatures of about 162C (Fig. 7). This Early Pliensbachian interval of
“normal” (average) temperature develops in most of the Jamesoni Chronozone and
the base of the Ibex Chronozone (Fig. 8). In the Taylori-Polymorphus chronozones,
average temperature is 15.72C, in the Brevispina Subchronozone is 16.49C, and in the
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Jamesoni Subchronozone 17.29C. Despite showing more variable data, this interval has
also been recorded in other sections of the Asturian Basin (Fig. 8) by Armendariz et al.
(2012), and relatively uniform values are also recorded in the Basque—Cantabrian Basin
of Northern Spain (Rosales et al., 2004) and in the Peniche section of the Portuguese
Lusitanian Basin (Suan et al., 2008, 2010). Belemnite calcite-based 8§20 values
published by Korte and Hesselbo (2011) are quite scattered, oscillating between ~1%o
and ~-4.5%o (Fig. 8).

4.2.3 The Early Pliensbachian Warming interval

Most of the Early Pliensbachian Ibex Chronozone and the base of the Late
Pliensbachian are dominated by a 1 to 1.5%. 6"20 negative excursion, representing an
increase in palaeotemperature, which marks a new warming interval. Average values
of 18.2 °C with peak values of 19.72C were reached in the Rodiles section (Fig. 7). This
increase in temperature partly co-occurs with the latest part of the Early Pliensbachian
e negative excursion.

The Early Pliensbachian Warming interval is also well marked in other sections of
Northern Spain (Fig. 8) like in the Asturian Basin (Armendariz et al., 2012) and the
Basque—Cantabrian Basin (Rosales et al., 2004), where peak values around 252C were
reached. The increase in seawater temperature is also registered in the Southern
France Grand Causses Basin (van de Schootbrugge et al., 2010), where temperatures
averaging around 182C have been calculated. This warming interval is not so clearly
marked in the brachiopod calcite of the Peniche section in Portugal (Suan et al., 2008,
2010), but even very scattered 620 values, peak palaeotemperature near 302C were
frequently reported in the Cleveland Basin (Korte and Hesselbo, 2011). In the
compilation performed by Dera et al. (2009, 2011), 50 values are quite scattered, but
this Early Pliensbachian Warming interval is also well marked, supporting a possible
global extent for this climatic event.

4.2.4 The Late Pliensbachian Cooling interval

One of the most important Jurassic §'20 positive excursions is recorded at the Late
Pliensbachian and the earliest Toarcian in all the correlated localities (Figs. 5, 7, 8). This
represents an important climate change towards cooler temperatures that begins at
the base of the Late Pliensbachian and extends up to the earliest Toarcian
Tenuicostatum Chronozone, representing an about 4 Myrs major cooling interval.
Average palaeotemperatures of 12.79C for this period in the Rodiles section have been
calculated, and peak temperatures as low as 9.52C were recorded in several samples
from the Gibbosus and the Apyrenum subchronozones (Fig. 7).

This major cooling event has been recorded in many parts of the World. In Europe, the
onset and the end of the cooling interval seems to be synchronous at the scale of
ammonites subchronozone (Fig. 8). It starts at the Stokesi Subchronozone of the
Margaritatus Chronozone (near the onset of the Late Pliensbachian), and extends up to
the Early Toarcian Semicelatum Subchronozone of the Tenuicostatum Chronozone. In
addition to the Asturian Basin (Gomez et al., 2008; Gdmez and Goy, 2011; this work), it
has clearly been recorded in the Basque—Cantabrian Basin (Rosales et al., 2004; Gémez
and Goy, 2011; Garcia Joral et al., 2011) and in the Iberian Basin of Central Spain
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(Gémez et al., 2008; Gomez and Arias, 2010; Gémez and Goy, 2011), in the Cleveland
Basin of the UK (McArthur et al., 2000; Korte and Hesselbo, 2011), in the Lusitanian
Basin (Suan et al., 2008, 2010), in the French Grand Causses Basin (van de
Schootbrugge et al., 2010), and in the data compiled by Dera et al. (2009, 2011).

As for many of the major cooling periods recorded in the Phanerozoic, low levels of
atmospheric pCO,, and/or variations in oceanic currents related to the break-up of
Pangea could explain these changes in seawater (Dera et al., 2009; 2011). The
presence of relatively low pCO; levels in the Late Pliensbachian atmosphere is
supported by the value of ~900 ppm obtained from Pliensbachian araucariacean leaf
fossils of southeastern Australia (Steinthorsdottir and Vajda, 2015). These values are
much higher than the measured Quaternary preindustrial 280 ppm CO, (i.e. Wigley et
al., 1996), but lower than the ~1000 ppm average estimated for the Early Jurassic. The
recorded Pliensbachian values represent the minimum values of the Jurassic and of
most of the Mesozoic, as documented by the GEOCARB Il (Berner, 1994), and the
GEOCARB Il (Berner and Kothavala, 2001) curves, confirmed for the Early Jurassic by
Steinthorsdottir and Vajda (2015). Causes of this lowering of atmospheric pCO,; are
unknown but they could be favoured by elevated silicate weathering rates, nutrient
influx, high primary productivity, and organic matter burial (Dromart et al., 2003).

It seems that the Late Pliensbachian represents a time interval of major cooling,
probably of global extent. This fact has conditioned that many authors point to this
period as one of the main candidates for the development of polar ice caps in the
Mesozoic (Price, 1999; Guex et al., 2001; Dera et al., 2011; Suan et al., 2011; Gdmez
and Goy, 2011; Fraguas et al., 2012). This idea is based on the presence, in the Upper
Pliensbachian deposits of different parts of the World, of: 1) glendonites; 2) exotic
pebble to boulder-size clasts; 3) the presence in some localities of a hiatus in the Late
Pliensbachian—-earliest Toarcian; 4) the results obtained in the General Circulation
Models, and 5) the calculated Late Pliensbachian palaeotemperatures and the
assumed pole-to-equator temperature gradient.

4.2.5 The presence of glendonites of Pliensbachian age

It is assumed that glendonite, a calcite pseudomorph after the metastable mineral
ikaite, grows in marine deposits under near-freezing temperatures (0—42C), at or just
below the sediment—water interface. This mineral is commonly associated with
organic-rich sediments, where methane oxidation is occurring, and is favoured by high
alkalinity and elevated concentrations of dissolved orthophosphate (e.g. De Lurio and
Frakes, 1999; Selleck et al., 2007). Based on these features, glendonites have been
extensively used as a robust indicator of cold water palaeotemperature in organic-rich
environments during the periods of ikaite growth. Oxygen isotope data of modern
ikaite suggests that carbonate precipitation is in equilibrium with ambient seawater,
but carbon isotope signatures are normally very negative, up to —33.9%o in the Recent
deep marine deposits of the Zaire Fan (Jansen et al., 1987) consistent with derivation
of carbonate from methane oxidation.

The presence of glendonite in deposits of Pliensbachian age has been reported from
Northern Siberia (Kaplan, 1978; Rogov and Zakharov, 2010; Devyatov, et al., 2010;
Suan et al., 2011), and the occurrence of this pseudomorph in Pliensbachian deposits
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of circum polar palaeolatitudes has been considered as a strong support for the
interpretation of near-freezing to glacial climate conditions (Price, 1999; Suan et al.,
2011). However, Teichert and Luppold (2013) reported the presence of three horizons
with glendonites in Upper Pliensbachian (Margaritatus to Spinatum zones) methane
seeps in Germany, where belemnite and ostracod-based calculated bottom water
palaeotemperature were ca. 102C, which was well above the previously observed near
freezing range of ikaite stability. As a consequence, these authors raised the question if
methane seeps are geochemical sites where ikaite can be formed at higher
temperatures due to methanotrophic sulphate reduction as the triggering geochemical
process for ikaite formation at the sulphate-methane interface. The possibility of ikaite
formation at higher than previously expected temperatures needs experimental
confirmation, but until these data are available, the use of glendonite as unequivocal
indicator of near-freezing palaeotemperature should be cautioned.

4.2.6 Exotic clasts rafted by ice

Exotic pebble to boulder-size clasts of Pliensbachian age, have been described in
Northern Siberia by several papers (Kaplan, 1978; Rogov and Zakharov, 2010; Devyatov
et al., 2010; Suan et al., 2011). They are composed of limestone, marly limestone and
basalt clasts, included in a succession of interbedded sandstone, siltstone and silty
clay. These deposits have been interpreted as ice-rafted dropstones and have been
taken as an evidence of near-freezing climatic conditions in the Artic region (Price,
1999; Suan et al., 2011).

4.2.7 Short-lived regression forced by cooling and glaciations

The presence of a hiatus around the Pliensbachian—-Toarcian boundary in some (but
not all) European, North African, South American and Siberian sections (Guex, 1973;
Guex et al., 2001, 2012; Suan et al., 2011) has been interpreted as the result of a major
short-lived regression, forced by cooling that reached near freezing to glacial
conditions, derived from increased volcanic activity (Guex et al., 2001, 2012).

From the here presented data, the interval of cooling development can now be
precisely constrained. Low seawater temperatures started at the Late Pliensbachian
Stokesi Subchronozone of the Margaritatus Chronozone and ended at the earliest
Toarcian Semicelatum Subchronozone of the Tenuicostatum Chronozone, spanning
virtually along all the Late Pliensbachian and the base of the Early Toarcian. In terms of
time, the duration of the cooling interval spans for about 4 Myr (Ogg, 2004; Ogg and
Hinnov, 2012). Even it cannot be fully discarded, it seems quite inconsistent to
attribute the end-Pliensbachian—earliest Toarcian regression to the presence of glacial
conditions right at the end of the cold climatic interval. If cooling was able to produce
enough ice volume in the pole caps as to generate a generalized lowstand period,
important enough as to provoke a generalized hiatus, the amplitude of this hiatus
would virtually affect the whole Late Pliensbachian, whilst in reality only affects in
some places, not in all areas, to a few ammonite chronozones, and mainly of the
earliest Toarcian.

On the other hand, no major volcanic activity responsible for the climatic change was
recorded at the Late Pliensbachian. The Karoo-Ferrar volcanism did not start until the
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Early Toarcian (Svensen et al., 2007; Jourdan et al., 2007, 2008; Moulin et al., 2011;
Dera et al., 2011; Ogg and Hinnov, 2012; Sell et al., 2014; Burgess et al., 2015; Percival
et al., 2015), and only minor Pliensbachian volcanism has been reported in the North
Sea and in the Patagonia (Dera et al., 2011) as well as in the Iberian Range of Central
Spain (Cortés, 2015). The recorded volcanism does not seem to be important enough
as to release the huge amount of SO, needed to change the climate of the Earth, as
Guex et al. (2012) proposed.

4.2.8 Late Pliensbachian palaeotemperatures and the pole-to-equator temperature
gradient.

The idea of a Jurassic latitudinal climate gradient in Eurasia significantly lower than
today, with winter temperatures in Siberia probably never falling below 02C (Frakes et
al., 1992) as well as warmer, more equable conditions compared to the present day,
with no ice caps in the polar region (Hallam, 1975) has been the dominant opinion for
many years.

This assumption is mainly based on the supposed wide distribution of part of the
Jurassic flora, like the absence of the vascular plants of the genus Xenoxylon at high
latitudes (Philippe and Thevenard, 1996), and the distribution of fauna and of
sedimentary facies (Hallam, 1975). This opinion was maintained against the incipient
studies of §'0-based palaeotemperature that already indicated the presence of
significant climate changes during the Jurassic (Stevens and Clayton, 1971).

The presence of a marked pole-to-equator climate and particularly temperature
gradient during the Jurassic times has been evidenced by several studies. As an
example, the manifest bipolarity in the distribution of certain bivalves has been
documented by Crame (1993), particularly for the Pliensbachian and the Tithonian.
Also Hallam (1972) denoted an increasing diversity gradient in the Pliensbachian and
Toarcian from the Tethyan to the Boreal domains and Liu et al. (1998) reported that
temperature gradients were one of the main factors for Jurassic bivalve’s
provincialism. More recently, Damborenea et al., (2013) documented the latitudinal
gradient and bipolar distribution patterns at a regional and global scale shown by
marine bivalves during the Triassic and the Jurassic.

Provinciality among Ammonoids has been classically recognized (i.e. Dommergues et
al., 1997; Enay and Cariou, 1997; Cecca, 1999; Page, 2003, 2008; Dera et al., 2010),
including seawater temperature as one of the major factors controlling their latitudinal
distribution. Jurassic brachiopods show also good examples of latitudinal distribution,
where temperature has been considered one of the most important factors (i.e. Garcia
Joral et al., 2011).

The presence of pole-to-equator temperature gradient, shown by several fossil groups,
lends support to the presence of cold or even freezing conditions at the poles (Price,
1999). In addition, the Chandler et al. (1992) general circulation model (GCM)
simulation for the Early Jurassic, concluded that winter temperatures within the
continental interiors dropped to about -322C, and seasonal range over high latitude
mountains surpass 452C, similar to the current seasonality of Siberia. These conditions
are compatible with the formation of permanent or seasonal ice in the Polar Regions.
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4.2.9 The Early Toarcian Warming interval

Seawater temperature started to increase at the earliest Toarcian. From an average
temperature of 12.79C during the Late Pliensbachian Cooling interval, average
temperature rose to 152C in the upper part of the earliest Toarcian Tenuicostatum
Chronozone (Semicelatum Subchronozone), which represents a progressive increase
on seawater temperature in the order of 2—32C. Atmospheric CO, concentration during
the Early Toarcian seems to be doubled from ~1000 ppm to ~2000 ppm (i.e. Berner,
2006; Retallack, 2009; Steinthorsdottir and Vajda, 2015), causing this important and
rapid warming.

Comparison of the evolution of palaeotemperature with the evolution of the number
of taxa reveals that progressive warming coincides first with a progressive loss in the
taxa of several groups (Gémez and Arias, 2010; Gédmez and Goy, 2011; Garcia Joral et
al., 2011; Fraguas et al., 2012; Baeza-Carratala et al., 2015) marking the prominent
Early Toarcian extinction interval. Seawater palaeotemperature rapidly increased
around the Tenuicostatum-Serpentinum zonal boundary, where average values of
about 212C, with peak temperatures of 242C were reached (Fig. 7). This important
warming, which represents a AT of about 89C respect to the average temperatures of
the Late Pliensbachian Cooling interval, coincides with the turnover of numerous
groups (Gomez and Goy, 2011) the total disappearance of the brachiopods (Garcia
Joral et al., 2011; Baeza-Carratald et al., 2015), the extinction of numerous species of
ostracods (Gomez and Arias, 2010), and a crisis of the nannoplankton (Fraguas, 2010;
Fraguas et al., 2012; Clémence et al., 2015). Temperatures remain high and relatively
constant through the Serpentinum and Bifrons chronozones, and the platforms were
repopulated by opportunistic immigrant species that thrived in the warmer
Mediterranean waters (Gémez and Goy, 2011).

5. Conclusions

Several relevant climatic oscillations across the Late Sinemurian, the Pliensbachian and
the Early Toarcian have been documented in the Asturian Basin. Correlation of these
climatic changes with other European records points out that some of them could be
of global extent. In the Late Sinemurian, a warm interval showing average temperature
of 18.52C was recorded. The end of this warming interval coincides with the onset of a
8¢ negative excursion that develops through the latest Sinemurian and part of the
Early Pliensbachian.

III

The Late Sinemurian Warming interval is followed by an interval of “norma
temperature averaging 162C, which develops through most of the Early Pliensbachian
Jamesoni Chronozone and the base of the Ibex Chronozone.

The latest part of the Early Pliensbachian is dominated by an increase in temperature,
marking another warming interval which extends to the base of the Late Pliensbachian,
where average temperature of 18.2 2C was calculated. Within this warming interval, a
8'3C positive peak occurs at the transition between the Early Pliensbachian Ibex and
Davoei chronozones.

One of the most important climatic changes was recorded through the Late
Pliensbachian. Average palaeotemperature of 12.72C for this interval in the Rodiles
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section delineated an about 4 Myrs major Late Pliensbachian Cooling event that was
recorded in many parts of the World. At least in Europe, the onset and the end of this
cooling interval is synchronous at the scale of ammonites subchronozone. The cooling
interval coincides with a '3C slightly positive excursion, interrupted by a small
negative 8¢ peak in the latest Pliensbachian Hawskerense Chronozone.

This prominent cooling event has been pointed as one of the main candidates for the
development of polar ice caps in the Jurassic. Even some of the exposed data need
additional studies, like the meaning of the glendonite, and that more updated GMC
studies are required; most of the available data support the hypothesis that ice caps
were developed during the Late Pliensbachian Cooling interval.

Seawater temperature started to increase at the earliest Toarcian, rising to 152C in the
latest Tenuicostatum Chronozone (Semicelatum Subchronozone), and seawater
palaeotemperature considerably increased around the Tenuicostatum-Serpentinum
zonal boundary, reaching average values in the order of 219C, with peak intervals of
242C, which coincides with the Early Toarcian major extinction, pointing warming as
the main cause of the faunal turnover.
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FIGURE CAPTIONS

Fig. 1. Location maps of the Rodiles section. (a): Sketched geological map of Iberia
showing the position of the Asturian Basin. (b): Outcrops of the Jurassic deposits in the
Asturian and the western part of the Basque—Cantabrian basins, and the position of
the Rodiles section. (c): Geological map of the Asturian Basin showing the distribution
of the different geological units and the location of the Rodiles section.

Fig. 2. Thick sections photomicrographs of some of the belemnites sampled for stable
isotope analysis from the Upper Sinemurian and Pliensbachian of the Rodiles section.
The unaltered by diagenesis non luminescent sampling areas (SA), where the samples
have been collected, are indicated. A and B Sample ER 351, Late Sinemurian
Raricostatum Chronozone, Aplanatum Subchronozone. A: optical transmitted light
microscope, showing the carbonate deposit filling the alveolous (Cf), the outer rostrum
cavum wall (Cw) and fractures (Fr). B: cathodoluminescence microscope
photomicrograph, showing luminescence in the carbonate deposit filling the alveolous
(Cf), in the outer rostrum cavum wall (Cw) and in the fractures (Fr). SA represents the
unaltered sampling area. C and D: Sample ER 337, Early Pliensbachian Jamesoni
Chronozone, Taylori-Polymorphus Subchronozones. C: optical transmitted light
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microscope, showing fractures (Fr). D: cathodoluminescence microscope
photomicrograph, showing luminescence in stylolites (St). SA is the unaltered sampling
area. E and F: Sample ER 589a Early Pliensbachian Margaritatus Chronozone,
Subnodosus Subchronozone. E: cathodoluminescence microscope, showing
luminescence in the apical line (Ap), fractures (Fr) and stylolites (St). This area of the
section was not suitable for sampling. F: another field of the same sample as H
showing scarce fractures (Fr) and the unaltered not luminescent sampled area (SA). G
and H: Sample ER 5493, Late Pliensbachian Margaritatus Chronozone, Stokesi
Subchronozone. G: cathodoluminescence microscope showing luminescent growth
rings (Gr) and stylolites (St). Area not suitable for sampling. H: cathodoluminescence
microscope photomicrograph, of the same sample as G, showing luminescent growth
rings (Gr) and fractures (Fr), with unaltered sampling area (SA). I: Sample ER 555 Late
Pliensbachian Margaritatus Chronozone, Stokesi Subchronozone.
Cathodoluminescence microscope photomicrograph showing luminescent growth rings
(Gr) and the unaltered sampling area (SA). J and K: Sample ER 623 Late Pliensbachian
Spinatum Chronozone, Apyrenum Subchronozone. J: cathodoluminescence
microscope photomicrograph showing luminescent stylolites (St). K: Another field of
the same sample as J showing luminescence in the apical line (Ap) and fractures (Fr) as
well as the non luminescent unaltered sampling area (SA). L: Sample ER 597, Late
Pliensbachian Margaritatus Chronozone, Gibbosus Subchronozone.
Cathodoluminescence microscope photomicrograph showing luminescent carbonate
deposit filling the alveolous (Cf), the outer and inner rostrum cavum wall (Cw), the
fractures (Fr) and the non luminescent sampling area (SA). Scale in bar for all the
photomicrographs: Imm.

Fig. 3. Cross-plot of the 5%0pel against the 8C,e values obtained in the Rodiles section
showing a cluster type of distribution. All the assayed values are within the rank of
normal marine values, and the correlation coefficient between both stable isotope
values is negative, supporting the lack of diagenetic overprints in the sampled
belemnite calcite. §0pe and 8"Cpe in PDB.

Fig 4. Sketch of the stratigraphical succession of the uppermost Triassic and the
Jurassic deposits of the Asturian Basin. The studied interval corresponds to the lower
part of the Santa Mera Member of the Rodiles Formation. Pli.=Pliensbachian, Toar.=
Toarcian. Aal.= Aalenian. Baj.=Bajocian.

Fig. 5. Stratigraphical succession of the Upper Sinemurian, the Pliensbachian and the
Lower Toarcian deposits of the Rodiles section, showing the lithological succession, the
ammonite taxa distribution, as well as the profiles of the 8*0pe and 63Cpe values
obtained from belemnite calcite. 6*30,¢ and 8*3Cye in PDB. Chronozones
abbreviations: TEN: Tenuicostatum. Subchronozones abbreviations: RA: Raricostatum.
MC: Macdonnelli. AP: Aplanatum. BR: Brevispina. JA: Jamesoni. MA: Masseanum. LU:
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Luridum. MU: Maculatum. CA: Capricornus. Fl: Figulinum. ST: Stokesi. HA:
Hawskerense. PA: Paltum. SE: Semicelatum. EL: Elegantulum. FA: Falciferum.

Fig. 6. Correlation chart of the belemnite calcite-based 6*°C sketched curves across
Western Europe. The earliest isotopic event is the Late Sinemurian §3C positive
excursion, followed by the Early Pliensbachian negative excursion and the Ibex—Davoei
positive peak. The Late Pliensbachian 6*3C positive excursion is bounded by a §*3C
negative peak, located around the Pliensbachian-Toarcian boundary. A significant §*3C
positive excursion is recorded in the Early Toarcian. 8%3C,e values in PDB. .
Chronozones abbreviations: TEN: Tenuicostatum. SER: Serpentinum.

Fig. 7. Curve of seawater palaeotemperatrures of the Late Sinemurian, Pliensbachian
and Early Toarcian, obtained from belemnite calcite in the Rodiles section of Northern
Spain. Two warming intervals corresponding to the Late Sinemurian and the Early
Pliensbachian are followed by an important cooling interval, developed at the Late
Pliensbachian, as well as a (super)warming event recorded in the Early Toarcian.
Chronozones abbreviations: RAR: Raricostatum. D: Davoei. TENUICOSTA.:
Tenuicostatum. Subchronozones abbreviations: DS: Densinodulum. RA: Raricostatum.
MC: Macdonelli. AP: Aplanatum. BR: Bevispina. JA: Jamesoni. VA: Valdani. LU: Luridum.
CA: Capricornus. FI: Figulinum. SU: Subnodosus. PA: Paltum. SE: Semicelatum. FA:
Falciferum.

Fig. 8. Correlation chart of the belemnite calcite-based 680 sketched curves obtained
in different areas of Western Europe. Several isotopic events along the latest
Sinemurian, Pliensbachian and Early Toarcian can be recognized. The earliest event is a
50 negative excursion corresponding to the Late Sinemurian Warming. After an
interval of “normal” 6*20 values developed in most of the Jamesoni Chronozone and
the earliest part of the Ibex Chronozone, another 50 negative excursion was
developed in the Ibex, Davoei and earliest Margaritatus chronozones, representing the
Early Pliensbachian Warming interval. A main 620 positive excursion is recorded at the
Late Pliensbachian and the earliest Toarcian in all the correlated localities,
representing the important Late Pliensbachian Cooling interval. Another prominent
520 negative shift is recorded in the Early Toarcian. Values are progressively more
negative in the Tenuicostatum Chronozone and suddenly decrease around the
Tenuicostatum—Serpentinum zonal boundary, delineating the Early Toarcian 6'%0
negative excursion which represents the Early Toarcian (super)Warming interval.
50y values in PDB.
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