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Abstract.

Paleoclimate proxy data span seasonal to millennial time scales, and Earth’s climate system has

both high- and low-frequency components. Yet it is currently unclear how best to incorporate multi-

ple time scales of proxy data into a single reconstruction framework and to also capture both high-

and low-frequency components of reconstructed variables. Here we present a data assimilation ap-5

proach that can explicitly incorporate proxy data at arbitrary time scales. The principal advantage

of using such an approach is that it allows much more proxy data to inform a climate reconstruc-

tion, though there can be additional benefits. Through a series of off-line data assimilation-based

pseudoproxy experiments, we find that atmosphere–ocean states are most skilfully reconstructed by

incorporating proxies across multiple time scales compared to using proxies at short (annual) or long10

(∼ decadal) time scales alone. Additionally, reconstructions that incorporate long time-scale pseu-

doproxies improve the low-frequency components of the reconstructions relative to using only high-

resolution pseudoproxies. We argue that this is because time averaging high-resolution observations

improves their covariance relationship with the slowly-varying components of the coupled-climate

system, which the data assimilation algorithm can exploit. These results are consistent across the15

climate models considered, despite the model variables having very different spectral characteris-

tics. Our results also suggest that it may be possible to reconstruct features of the oceanic meridional

overturning circulation based on atmospheric surface temperature proxies, though here we find such

reconstructions lack spectral power over a broad range of frequencies.

1 Introduction20

Paleoclimate proxies sample widely different time scales. High resolution paleoclimate proxies such

as tree rings or corals have annual or seasonal resolution, whereas lower resolution proxies such as

sediment cores can provide anywhere from annual- to millennial-scale information depending on the

core and its location (Bradley, 2014). Additionally, high-resolution proxies tend to be short, and are

mostly limited to the past two millennia, whereas some low-resolution proxies can reach the Ceno-25
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zoic (e.g., Zachos et al., 2008). In addition to the many time scales of proxies, the climate system

itself varies across a large range of time scales: from atmospheric blocking to ocean overturning

circulation to ice-age cycles. Thus any faithful reconstruction of past climate must account for as

many of these time scales, captured by both proxies and climate models, as possible.

Few paleoclimate reconstruction methods have been created that specifically incorporate multiple30

proxy time scales. Most reconstructions use either low or high resolution proxies alone. If multiple

scales of proxy data are used together, researchers often resort to coarsening high resolution proxies

(e.g., PAGES 2k Consortium, 2013) or linearly interpolating low-resolution proxies to a “higher

resolution” (e.g., Mann et al., 2008). One major reason for this is that many traditional multivariate

regression methods are not constructed to easily calibrate in both low and high frequency domains;35

Mann et al. (2005), for example, present a such a modified method and discuss these and related

challenges. Additionally, including multiple time scales is not entirely a methodological problem

but partly a temporal sampling issue: given that instrumental temperature data only span the past

150 years or so, low-frequency reconstruction techniques have few degrees of freedom on which

to be calibrated and validated if the time scale is longer than about a decade. Specific methods40

that have been developed with multiple time scales in mind include the time-series reconstruction

methods of Li et al. (2010) and Hanhijärvi et al. (2013). Li et al. (2010) use a Bayesian hierarchical

model approach while Hanhijärvi et al. (2013) use an approach based on pairwise comparisons that

is particularly flexible and was used extensively, for example, in a recent high-profile paper that

reconstructed continental-scale temperatures over the common era (PAGES 2k Consortium, 2013).45

Space-time reconstruction methods include Guiot et al. (2010) and Carro-Calvo et al. (2013). Guiot

et al. (2010) developed a spectral analog approach, where analogs are drawn from an instrumental

temperature data product, that they used to reconstruct European April–September temperatures over

the past 1400 years. Carro-Calvo et al. (2013) developed a generalized neural network approach and

used it to reconstruct winter precipitation in the Mediterranean over the past 300 years.50

Data assimilation (DA) provides a flexible framework for combining information from paleo-

climate proxies with the dynamical constraints of climate models. In principle, DA can provide

reconstructions of any model variable, from surface temperature to sea water salinity to atmospheric

geopotential height. Among DA techniques, we are unaware of any method specifically designed

for the challenges of paleoclimate reconstructions that incorporates proxies across an arbitrary range55

of time scales. DA-based reconstructions have so far used only a single uniform time scale (e.g.,

Goosse et al., 2012) or have performed separate reconstructions at different uniform time scales

(Mathiot et al., 2013). Traditional DA adjoint methods as applied in weather forecasting can and do

include multiple time scales (Kalnay, 2003, pp. 181–184), but these time scales are very short by

comparison to the time scales involved in paleoclimate. Here we develop a DA-based algorithm for60

space-time climate reconstructions that can assimilate proxies at any time resolution. Because of the

limited time span of observational data sets, we explore the features and skill of this technique within
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a synthetic, pseudoproxy framework. The ensuing pseudoproxy experiments use an “off-line” DA

implementation, wherein prior ensembles are drawn from a previously run climate model simulation

and are not integrated forward in time after each DA update step. This allows us to test the algorithm65

over long time spans, perform carefully controlled experiments, and unambiguously define errors.

Multiproxy reconstructions can potentially overcome some limitations of single proxy reconstruc-

tions, such as filling in for the missing frequency components of a particular proxy (Li et al., 2010).

However, the primary, pragmatic benefit to incorporating proxies at multiple temporal resolutions

is that more information can inform the reconstruction. By comparison with current weather ob-70

servations, paleoclimate proxies are more expensive and time-consuming to gather and their spatial

distribution is far less extensive. Therefore, including any additional unbiased information should

meaningfully improve the reconstructions. In addition, it is possible that particular reconstruction

methods could benefit from multi-scale proxy data. Within a coupled atmosphere-ocean DA frame-

work, Tardif et al. (2014) suggest that assimilating time-averaged observations of atmospheric vari-75

ables may improve present-day estimates of ocean circulation. They argue that these improvements

arise from the fact that time averaging high-frequency observations improves the signal over noise in

the covariance relationship between the atmosphere and the slowly-varying ocean overturning circu-

lation. We test this hypothesis within a paleoclimate context and assesses whether or not atmosphere–

ocean state estimates can be improved by including proxies and climate states at multiple time scales.80

Therefore this test goes beyond the benefit of simply being able to include more proxies in climate

reconstructions.

2 Assimilation technique

Data assimilation refers to a mathematical technique of optimally combining observations (or within

this context, proxy data) with prior information, typically from a model. The model, in this case a85

climate model, provides an initial, or prior, state estimate that one can update in a Bayesian sense

based on the observations and an estimate of the errors in both the observations and the prior. The

prior contains any climate model variables of interest and the updated prior, called the posterior, is

the best estimate of the climate state given the observations and the error estimates. The basic state

update equations of DA (e.g., Kalnay, 2003) are given by90

xa = xb +K[y−H(xb)] , (1)

where K can be written as

K = cov(xb,H(xb))[cov(H(xb),H(xb)) +R]−1 , (2)

and cov represents a covariance expectation. xb is the prior (or “background”) estimate of the state

vector and xa is the posterior (or “analysis”) state vector. Observations (or proxies) are contained95

in vector y. The true value of the observations are estimated by the prior through H(xb), which
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is, in general, a nonlinear vector-valued observation operator that maps xb from the state space to

the observation space. For example, tree-ring width may be estimated from grid-point values of

temperature and moisture in the prior. Matrix K, the Kalman gain, weights y−H(xb) (which is

called the innovation) and transforms it into state space. Matrix R is the error covariance matrix for100

the observations. We note that Eq. (1) assumes that xb and H(xb) are Gaussian distributed and that

their errors are unbiased. The DA update process involves computing Eq. (1) to arrive at the posterior

state; within the context of the climate reconstruction problem, the posterior state is the reconstructed

state for a given time. Space-time reconstructions are obtained by iteratively estimating the posterior

state for each year or time segment of the reconstruction.105

From the first covariance term of Eq. (2), we can interpret K as “spreading” the information

contained in the observations through the covariance between the prior and the prior-estimated ob-

servations. This implies that, other things being equal, larger values of cov(xb,H(xb)) will weight

the innovation more heavily; thus this new information not contained in the prior has a bigger in-

fluence. One way to improve this covariance relationship may be to use time-averaged observations,110

particularly if the model or climate system has better covariance relationships at longer time scales.

For the update calculations we employ an ensemble square-root Kalman filter with serial observa-

tion processing, applied to time averages (see Steiger et al. (2014) for a detailed DA algorithm and

fuller discussion of DA terminology). We extend the technique of Dirren and Hakim (2005), Huntley

and Hakim (2010), and Steiger et al. (2014) by iteratively applying the state-update equations across115

multiple time scales by leveraging the serial observation processing approach to the Kalman filter

(Houtekamer and Mitchell, 2001). The previous related approaches have only considered annual

time scales or less and cannot be trivially applied to proxies of arbitrary time scales: the prior must

be constructed so as to provide meaningful time averages and the algorithm must be able to handle

irregular proxy time scales.120

The following general algorithm allows one to assimilate any collection of observation or proxy

data, including time averages with irregular duration:

1. Construct a prior (“background”) ensemble xb at the highest temporal resolution of interest

(e.g., monthly or annual), or a collection of them with one for each time step (e.g., monthly or

annual ensembles assigned to particular months or years).125

2. Loop over observations and assimilate each at their own time scale:

(a) Decompose the prior ensemble(s) that overlap in time with the observation y into time

averages (overbar) and deviations from this average (prime) via xb = xb +x′b, such that

the time-average of xb matches the time scale of y.

(b) Estimate the observation via the forward model, or “proxy system model” (Evans et al.,130

2013) H(xb), and update the time averaged ensemble(s) xb
DA−−→ xa, with xa as the

posterior (or “analysis”) time-mean ensemble(s).
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(c) Add back the time-deviations, xb = xa +x′b, which can serve as the prior(s) for another

observation.

Note that if y shares the same time scale as xb, then the method is the same, but with135

x′b = 0.

3. After all observations have been assimilated, the ensemble mean of xb provides the best esti-

mate of the state for each analysis time.

We now discuss an illustrative implementation of this general algorithm that we employ for the

experiments in this paper. Consider a paleoclimatic situation where the observations are a collection140

of annual proxy data and also proxy data representing irregularly averaged climatic information. Let

the prior ensembles be constructed, as we do in our experiments, by a random sample of annually

averaged climate states from a long climate simulation and initially assigned to each year of a re-

construction, Fig. 1. Following the steps outlined above, proxies representing differently averaged

time intervals can be assimilated by averaging over the prior ensembles for the time intervals defined145

by the proxy. For example, a proxy value representing information over the years 1700-1720 would

update the prior ensembles averaged in time over that same interval. Annual proxies can simply be

assimilated by updating the ensembles for each year of available proxy data, Fig. 1. This approach

proceeds by assimilating each proxy over its full time extent and after every proxy is assimilated, one

is left with an updated version of what one started with: a time sequence of ensemble state estimates150

at annual resolution.

In the example above and all of the experiments shown here we use a “no-cycling” or “off-line”

DA approach, where the prior ensembles are drawn from existing climate model simulations. This

approach has vast computational benefits over a “cycling” or “on-line” approach where one must

integrate an ensemble of climate model simulations forward in time after each DA update step.155

Indeed, for the paleoclimate reconstruction problem, it is infeasible to cycle an ensemble of tens

to hundreds of CMIP5-class coupled climate models (as used here) for hundreds or thousands of

years. Moreover, in the off-line case one may use hundreds to thousands of ensemble members from

multiple models and simulations, reducing the potential for model bias and sampling error. It is also

advantageous to use an off-line approach when the predictability time limit of the model is shorter160

than the time scale of the observations: for example, if observations are only available at annual

resolution yet the model cannot skilfully forecast the climate state a year into the future, then no

useful information is gained by cycling the model. Matsikaris et al. (2015) recently compared on-

line and off-line approaches to paleoclimate DA with a fully-coupled earth system model and found

no improvement with the on-line method, suggesting that the model was unable to provide useful165

information at analysis times. Nevertheless, one way the approach outlined here can generalize to

the on-line approach is by cycling on the shortest time scale (e.g., annual or seasonal) and updating

longer time scales at the end of the appropriate interval without cycling.
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Also note that for the sake of simplicity in the illustrative example and throughout the paper, we

are assuming that an irregular, long-time-scale proxy is just an average of some climate variable170

over a given time interval. Real proxies are nearly always more complex than this and would neces-

sitate a more sophisticated proxy system model (H(xb) in Eqs. (1) and (2)); however, the algorithm

described above is general and covers the case when such models are available.

One key point about the method outlined above is that if a reconstruction uses the off-line ap-

proach together with multiple time scales, then a random sample of annually averaged climate states175

will not have meaningful multi-year averages. Temporal consistency of the priors will need to be

ensured in order to have coherent long-time-scale covariance relationships. One way to account for

this is to draw priors in random blocks of consecutive years from the employed climate model sim-

ulation, see Fig. 1. The length of these blocks can be determined based on the needs of the specific

reconstruction problem (e.g., the length of the longest proxy time scale) and the length of avail-180

able model simulations. If multiple long simulations are available (they need not be from the same

model), different rows in Fig. 1 could be different model simulations and the block length could be

the length of the reconstruction; this option avoids any discontinuities in time that result from small

block lengths.

The DA technique of state space augmentation (as discussed in, for example, Anderson (2001))185

has long been used for handling arbitrary observation operators and can also be used for updating

time averaged quantities or parameter estimation (e.g., Annan et al., 2005). Such an approach does

have some important similarities to what we present here, particularly the ability to update time-

averaged information. However because our algorithm incorporates observations at multiple time

scales, these observations can affect the states at all time scales instead of just having short time190

scale observation information inform longer time averages if the state was simply augmented with

time-averaged variables.

3 Experimental framework

3.1 Models and variable characterizations

For the experiments presented here, we are interested in (1) how the reconstruction methodology195

proposed in Sec. 2 performs in both the atmosphere and ocean; (2) how the differing time scales of

the atmosphere and ocean may be leveraged in the reconstruction process; and (3) how these results

vary with two different models having quite different spectral characteristics in their coupled-climate

systems. To this end we choose two long pre-industrial control simulations (part of the Coupled

Model Intercomparison Project Phase 5 available for download at http://www.earthsystemgrid.org/),200

one from the climate model GFDL-CM3 (800 years in length) and the other from CCSM4 (1051

years in length). We also choose two illustrative reconstruction variables, global-mean 2-m air tem-

perature and the Atlantic meridional overturning circulation (AMOC). Figures 2 and 3 characterize
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the global-mean temperature and an AMOC index for each simulation (defined here as the maxi-

mum value of the overturning streamfunction in the North Atlantic between 25◦N and 70◦N and205

between depths of 500 m and 2000 m), respectively. In these reconstructions the state vector, xb,

only contains global latitude-longitude gridded values of 2-m air temperature together with global-

mean temperature and the AMOC index as single-dimension appended state variables (rather than

deriving them from the state vector itself). H(xb) simply uses the surface temperature values of the

state vector at the proxy locations. Note that even though these are only single-dimension variables,210

the DA framework proposed here can trivially reconstruct spatial variables as well (Steiger et al.,

2014). From Figs. 2 and 3 we see that these two models display different spectral characteristics for

both global-mean temperature and the AMOC index.

We next assess whether there are strong covariance relationships between the observation vari-

ables and the reconstruction variables at different time averages. Recall that the key covariance215

relationship in the DA update equations is between the prior variables and the prior estimate of the

observations, Eq. (2). A simple assessment of this is shown in Fig. 4, which shows the correlation

between the prior variables and the surface temperature time series at every grid point for both cli-

mate simulations at a range of time averages. (Note that the correlation of two time series is simply

the covariance normalized by the product of the standard deviations of the two time series.) Figure220

4 indicates that there is increased covariance information (or more locations with higher correla-

tions) between surface temperature and the prior variables at longer time scales. This information is

leveraged by the equations of DA to potentially improve the low-frequency components of the re-

constructed variables. An important point about computing correlations at increasing time averages

is that the number of degrees of freedom in the time series are also reduced, potentially spuriously225

inflating the correlations in Fig. 4. Accounting for these reduced degrees of freedom by performing

a test of statistical significance would not, however, be particularly germane: the DA equations do

not “know” about 95% confidence intervals, just the covariance information. If, after performing the

reconstructions and computing several different skill metrics, we see an increase in reconstruction

skill, then we can infer that the information was in fact useful for the reconstructions.230

3.2 Pseudoproxy construction

The pseudoproxy experiments employed here follow the general framework of many previous stud-

ies (see Smerdon (2012) for a summary and review) but with some important modifications. Gen-

erally, after one or more climate model simulations are chosen to represent nature, a pseudoproxy

network is chosen that mimics real-world proxy availability, similar to the network chosen here and235

shown in Fig. 5(a); this particular network is composed of a spatially thinned version of the proxy

collection of PAGES 2k Consortium (2013) (thinned over Asia and North America where the proxy

density is high) and all of the proxy locations in Shakun et al. (2012) and Marcott et al. (2013).

Pseudoproxies are typically generated by adding random white noise to the chosen network of cli-
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mate model temperature series. We note that the choice of white noise (as opposed to “red noise” for240

instance) is a simplification of the “real” noise in proxies. However we consider this to be a reason-

able choice because the purpose of the present work is primarily to illustrate a new reconstruction

method. The added noise is usually assumed to be the same value for all proxy locations, with a

common signal-to-noise ratio (SNR) being 0.5 (where SNR≡
√
var(X)/var(N), and where X is

a grid-point temperature series drawn from the true state and N is an additive noise series, and var245

is the variance.). Following recent work by Wang et al. (2014), we instead randomly draw SNR val-

ues from a distribution characteristic of real proxy networks, Fig. 5(b). This distribution is a shifted

Gamma distribution (shape parameter = 1.667, scale parameter = 0.18, shifted by 0.15) with a mean

SNR of 0.45 and is modelled after Fig. 3 from Wang et al. (2014).

Also in contrast to nearly all pseudoproxy experiments, we use pseudoproxies at two different250

time scales for each model. Importantly, we use the same SNR distribution for both time scales and

add the noise to the time series after averaging. Within the DA framework, the additive error for each

proxy is accounted for in the entries of the diagonal matrix R. The SNR equation above is related to

R in that each of these entries is equal to var(N) for a given proxy. The process of adding the noise

after averaging ensures that R is statistically identical for each reconstruction. This process isolates255

the role of the covariance relationships in Eq. (2). By drawing from the same SNR distribution for all

pseudoproxy time scales we are also assuming that the distribution is an appropriate characterization

of the error in long time scale proxies; we assume this for simplicity and also because we are not

aware of a systematic assessment of SNR values for low-resolution proxies as Wang et al. (2014)

have done for annual-resolution proxies.260

We also note an important idealization of the present pseudoproxy experiments, which we share

with all pseudoproxy experiments heretofore published, is that we use a perfect model approximation

where the pseudoproxies from one model simulation are used to reconstruct that same simulation; for

example, pseudoproxies from the CCSM4 simulation are used to reconstruct the CCSM4 simulation.

In a real DA-based reconstruction the climate model will never be a perfect description of the real265

climate system from which the assimilated observations are derived. Since the purpose of the present

work is to illustrate a new algorithm, we have not considered this additional layer of complexity. This

additional aspect could only be fully assessed within a study of real proxy climate reconstructions;

using one simulation to reconstruct another can assess inter-model differences, but it is unclear how

these results would relate to model–nature differences.270

3.3 Pseudoproxy experiments

The primary results of this paper are presented in a series of 12 experiments using only atmospheric

surface temperature pseudoproxies to reconstruct the global-mean temperature and AMOC index of

the two climate model simulations discussed previously. For each variable, and each model, three

experiments are performed: (1) short (annual) pseudoproxies only, (2) long (5 or 20 year time aver-275
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ages) pseudoproxies only, and (3) both short and long time-averaged pseudoproxies. We have chosen

the long time-scale for the CCSM4 simulation to be 20 years, and we note that an alternative choice

of one to several decades gives similar results (not shown). The situation is more complex with the

GFDL-CM3 simulation because of the presence of an approximate 22 year periodic signal in the

AMOC, Fig. 3(a) and (c). A choice of 20 years for GFDL-CM3 would effectively undersample the280

AMOC variability and so we have chosen a long time scale of 5 years for GFDL-CM3. Unfortu-

nately, a long time scale of 5 years for CCSM4, shows little difference in the results over the annual

time scale reconstructions (not shown), as would be suggested by the small difference in correlation

(covariance) between 1 and 5 years, Fig. 4(b).

Both the short-only and long-only reconstructions use 100 pseudoproxies randomly drawn from285

the network of 274 proxy locations shown in Fig. 5(a). For the mixed-resolution reconstructions,

100 pseudoproxies are randomly drawn from the network for each time scale, giving a total of 200.

This is an approximation of the real world setting where one usually has proxies at multiple time

scales and would like to use all of them. Following the algorithm outlined in Sec. 2, for the multi-

scale reconstructions, we assimilate the long time-scale pseudoproxies first, followed by the annual290

time-scale pseudoproxies; we also performed these reconstructions by swapping which time scale

was assimilated first and found statistically identical results (not shown), as would be expected from

the linearity of this approach. For these mixed resolution reconstructions, we have also ensured that

there is no overlap between locations associated with the two time scales.

We have reconstructed the first 400 years of each simulation while drawing the priors from the fol-295

lowing 400 years of the simulations. Each year had a prior size of 1000 (e.g., from Fig. 1,m= 1000)

while the blocks were randomly drawn in 20 year continuous segments. This uniform block length

was chosen because it was the longest time scale of the pseudoproxies and because the pseudoprox-

ies were constructed over regular long intervals and thus discontinuities at block edges were not a

concern (see Fig. 1 and the discussion in Sec. 2). Because the prior ensemble size was 1000, we did300

not employ covariance localization, a common DA practice for controlling sampling error. Each of

the 12 reconstructions are repeated 100 times in a Monte Carlo fashion where new proxy networks

and SNR values are randomly chosen each iteration; the new pseudoproxy networks are randomly

drawn from the network shown in Fig. 5(a) and the SNR values are randomly drawn from the distri-

bution shown in Fig. 5(b). All the reconstruction figures show the mean of 100 of these Monte Carlo305

reconstruction iterations along with error bars indicating ±2σ of the “grand ensemble” of analysis

ensembles for all the Monte Carlo iterations (with an ensemble size of 1000 and 100 iterations, the

grand ensemble has 1× 105 members).
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4 Reconstruction results

The reconstructions of global-mean temperature are shown in Fig. 6 along with their associated±2σ

error estimates. The top panels of (a) and (b) show the reconstructions with the annual pseudoproxies,

the middle panels show the reconstructions with the long time-scale proxies, and the bottom panels

show the reconstructions for both time scales. Skill metrics, computed at annual resolution, are

shown for each reconstruction: correlation (r), coefficient of efficiency (CE), and mean continuous

ranked probability score (CRPS). The coefficient of efficiency for a data series comparison of length

N is defined as

CE = 1−
∑N

i=1(xi− x̂i)2∑N
i=1(xi−x)2

,

where x is the “true” time series, x is the true time-series mean, and x̂ is the reconstructed time310

series. The metric CE has the range −∞< CE≤ 1, where CE = 1 corresponds to a perfect match

and CE< 0 generally indicates no reconstruction skill or a bias in the reconstruction. The CRPS

is a “strictly proper” scoring metric that accounts for the skill of both the mean and the spread of

an ensemble forecast or state estimate (Gneiting and Raftery, 2007). The CRPS measures the area

of the squared difference between the cumulative distribution functions of the posterior ensemble315

state estimate and the true state (a Heaviside function centered on the true value). A smaller area

would indicate a more skillful reconstruction, so smaller values of CRPS are better. All CRPS values

shown in the figures are temporal means of CRPS over the reconstruction interval. Comparing the

reconstructions in Fig. 6 we see that the bottom panels with both time scales have the best skill and

the smallest error bars, indicating greater confidence. For GFDL-CM3, there is a 25% reduction in320

the mean standard deviation over the annual-only experiment and a 17% reduction over the long

time-scale only; for CCSM4, there is a 2% reduction in the mean standard deviation over the annual

time-scale only and a 28% reduction over the long time-scale only.

Note that the long-time scale reconstructions in the middle panels of Fig. 6(a) and (b) have sharp

edges at 5 (for GFDL-CM3) or 20 year (for CCSM4) intervals. This is due to the simplified exper-325

imental design we have employed where all the long-time scale pseudoproxies are averages over a

given 5 or 20 year period. As discussed in Sec. 2, this experimental design is only a single illustrative

example of the general algorithm. The data from real proxies are not always apportioned into specific

time frames, but can be scattered irregularly in time (e.g., fossil coral records). Using many irregular

proxies will act to smooth the long time-scale reconstructions. As long as the time scales can be330

estimated and an appropriate proxy system model is used, the algorithm of Sec. 2 can handle any

real proxy data. While not dealt with explicitly here, real long time-scale (low resolution) proxies

also have dating uncertainty, which will also tend to smooth the reconstructions. The algorithm can

account for dating uncertainty through the Monte Carlo framework by repeating the reconstructions

many times and sampling from an age model for a given proxy.335
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One assessment of skill as a function of time scale is to compute the cross spectrum of the re-

constructed time series with the true time series (Fig. 7). The cross spectra in this case reveal the

relationship between the two time series as a function of frequency or period. As a point of refer-

ence, the dashed gray lines in this figure indicate the cross spectra of the true time series with itself,

which is the same as its own power spectrum.1 Considering Fig. 7(b) we see that the annual-only340

reconstruction does a better job of matching the power at short periods than the 20-year-only re-

construction; however, the 20-year-only reconstruction performs better at longer periods. The mixed

time-scale reconstruction, 20+1, does better or just as well as the single time-scale reconstructions at

both short and long periods. This same general result holds for Fig. 7(a), though it is more difficult

to see because of the much larger power at longer periods in the GFDL-CM3 simulation.345

Figure 8 shows three time scale reconstructions of the AMOC index for the two model simulations,

similar to Fig. 6. In these AMOC index reconstructions, we see the same general patterns as with

the global-mean temperature reconstructions, where the multi-scale reconstructions provide the most

skill (r, CE, CRPS) as well as the smallest error bars. However, while the multi-scale improvements

in skill for the AMOC reconstructions are significant, these are generally smaller than for the global350

mean temperature reconstructions. For GFDL-CM3 there is a 3% reduction in the mean standard

deviation of the error bars over the annual-only experiment and a 1% reduction over the long time-

scale only; for CCSM4, there is a 2% reduction in the mean standard deviation over the annual

time-scale only and a 4% reduction over the long time-scale only. Figure 9 shows the corresponding

cross spectra for the reconstructions shown in Fig. 8. Given that the pseudoproxies are of surface355

air temperature, it is not surprising that the absolute skill values of the AMOC reconstructions are

reduced relative to the reconstructions of global-mean temperature. Though it is striking how much

power is lost in the reconstructions (Fig. 9) considering that these are “perfect model” experiments.

This result is most likely due to the fact that the covariances between surface temperatures and

the AMOC index are quite small, Fig. 4(c) and (d). Thus surface temperatures in most locations360

across the globe are relatively uninformative about the AMOC. An additional result from Fig. 9 is

the improved low-frequency components of the AMOC reconstructions when time-averaged surface

temperature pseudoproxies are used. We argue that this result follows from the fact that the annual

observations of atmospheric surface temperature are essentially noise to the slowly varying ocean.

One may improve the information content relevant to the ocean by averaging over the atmospheric365

noise. This interpretation may also be seen in Fig. 4, where the correlation (covariance) information

between the atmosphere and the ocean is particularly low at annual averages but improves at longer

time averages (as also seen in Tardif et al. (2014)).

1Following a common technique to reduce noise in the cross spectra, they are computed using Welch’s averaged peri-

odogram method, which samples segments of the time series and averages the power spectra of these samples to arrive at the

cross power spectral densities. As a result, the gray line spectra in Figs. 7 and 9 should not be expected to precisely match up

with Figs. 2 and 3
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We note that all the cross spectra of the reconstructions shown in Figs. 7 and 9 show a decrease in

power relative to the true state, though this need not always be the case. In additional experiments we370

performed using global ocean heat content, we found that this reconstructed variable tended to have

more power than the true state and was thus higher than the respective dashed gray lines (not shown).

Therefore the reduced power relative to the true state in Figs. 7 and 9 should not be interpreted as

saying something general about the nature of DA-based reconstructions or the particular approach

employed here.375

As an approximation of a real reconstruction scenario, the experiments shown in Figs. 6 and 8

with two time scales use twice as many pseudoproxies as the single time scale experiments (200

vs. 100). Therefore the improved skill might simply be a consequence of having more observation

information. We tested this idea by repeating all the experiments shown here but instead increasing

the number of observations to 200 for each experiment: the single time scale reconstructions used380

200 randomly drawn pseudoproxies and the multi-scale reconstructions used 100 randomly drawn

pseudoproxies each for the two time scales (the same as in the previous multi-scale reconstructions).

Figure 10 is a characteristic example of the results of these additional tests. Figure 10(a) shows the

reconstructions of the AMOC index with the CCSM4 model output and Fig. 10(b) shows the re-

spective cross spectra. In (a), the skill is best for the multi-scale reconstructions and in (b) the cross385

spectra shows the same general result of improved low-frequency power for the time-averaged pseu-

doproxies. However, the cross spectra for the 20+1 reconstruction is not always closest to the true

spectrum, suggesting that the number of pseudoproxies does play a role in improving the spectrum

of the reconstructions. Indeed it should be the case that as long as the proxies are unbiased, adding

more of them will improve a data assimilation-based reconstruction.390

5 Conclusions

This paper presents a data assimilation approach for paleoclimate reconstructions that can explicitly

incorporate proxy data on arbitrary time scales. This approach generalizes previous data assimilation

techniques in the sense that many scales of both proxies and climate states can be included explic-

itly in a single reconstruction framework. The primary interest in such a reconstruction technique395

is that it allows for the inclusion of much more proxy data in climate reconstructions. Given the

spatially sparse and noisy nature of proxies, more information will tend to improve the quality of the

reconstructions. Besides this benefit, using multi-scale proxy data may be particularly useful given

the many inherent time scales of the climate system, such as the fast time scales of the atmosphere

and the slow time scales of the ocean. We performed three types of realistic atmosphere–ocean400

pseudoproxy reconstructions to assess the impact of using observations at multiple time scales: (1)

short (annual) pseudoproxies only, (2) long (∼ decadal) pseudoproxies only, and (3) both short and

long time-averaged pseudoproxies. We found that for both global-mean temperature and an index of
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the Atlantic meridional overturning circulation, the reconstructions that incorporated proxies across

both short and long time scales were more skilful than reconstructions that used short or long time405

scales alone (Figs. 6 and 8). This result holds even when the number of pseudoproxies for the single

time-scale reconstructions are doubled, Fig. 10(a). Multi-scale reconstructions would be expected

to perform better than single-scale reconstructions because they can include information at multiple

time scales and because the prior can be better conditioned as it’s used from one time scale to the

next.410

We found that reconstructions incorporating long time scale pseudoproxies improve the low-

frequency components of the reconstructions over reconstructions that only use annual time-scale

pseudoproxies, Figs. 7, 9, and 10(b). This result may at first seem surprising because the annual

pseudoproxies should contain the low-frequency information. It is helpful to recall that the data as-

similation algorithm outlined here proceeds by sequentially finding the optimal state at each time415

segment of interest given the prior, the observations, and their respective errors. This state update

critically relies on the covariance between the prior and the model estimate of the observations, Eq.

(2). If, for example, surface temperature observations do not covary well with the AMOC at annual

resolution, then the posterior AMOC estimate will be little changed compared to the prior (Tardif

et al., 2014). But if the time average of surface temperatures has a large covariance with the AMOC,420

the posterior will be more influenced by the observations. This result is not controlled by the noise

added to the pseudoproxies because, as noted in Sect. 3.2, we ensured that R from Eq. (2) remains

fixed for both time scales.

These results indicate that data assimilation-based atmosphere–ocean state estimates may be im-

proved by including proxies and climate states from multiple time scales. The general results outlined425

above are consistent across the employed climate models. These results also show, as suggested by

Kurahashi-Nakamura et al. (2014), that given a representative prior ensemble, features of the Atlantic

meridional overturning circulation may be reconstructed using observations of surface variables.

However, the reconstructions lack spectral power across all frequencies, which we attribute to the

relatively small covariances between surface temperatures and the Atlantic meridional overturning430

circulation in the models we employed, Fig. 4(c) and (d). Therefore observations of ocean quantities

such as salinity or indirect measures of ocean circulation may be better suited to reconstructing the

Atlantic meridional overturning circulation.
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Figure 1. Schematic of the general reconstruction method using an off-line approach. Prior ensembles of m

state vectors, χ, are assigned to each of the n years. To retain some temporal coherency, the rows are composed

of time-coherent blocks drawn from a climate model simulation (arbitrarily illustrated here as a 3 year block,

or 3 consecutive annual states). The method updates prior ensembles for specific years corresponding to annual

proxy data points, while for long time-scale proxies prior ensembles are computed by time averaging across the

rows corresponding to the years of a proxy data point.
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Figure 2. Characterization of the global-mean 2-m air temperature variables used in this paper. Panels (a) and

(b) show the global-mean temperature time series for the pre-industrial control simulations of GFDL-CM3 and

CCSM4, respectively. Panels (c) and (d) show their respective power spectra (GMT) with a best-fit red noise

(RN) spectrum (computed as in Schneider and Neumaier (2001)) and an estimated 95% confidence interval.
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Figure 3. Characterization of the Atlantic meridional overturning circulation (AMOC) index variables used in

this paper. Panels (a) and (b) show the AMOC index time series (defined in the text) for the pre-industrial control

simulations of GFDL-CM3 and CCSM4, respectively. Panels (c) and (d) show their respective power spectra

with a best-fit red noise (RN) spectrum (computed as in Schneider and Neumaier (2001)) and an estimated 95%

confidence interval.
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Figure 4. (a) and (b) show the distribution of correlation values between the global-mean 2-m air tempera-

ture (GMT) and the spatial 2-m air surface temperatures (T2m) for GFDL-CM3 and CCSM4 at a range of

time-averages. (c) and (d) show similar correlation distributions but for the correlation between the Atlantic

meridional overturning circulation (AMOC) index and the spatial 2-m air surface temperatures. The correla-

tions are computed for each spatial grid point at a given time-average, with the spatial correlation information

summarized with box plots (outliers have been omitted for clarity).
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Figure 5. (a) Pseudoproxy locations used in this study (n = 274), drawn from the predominantly high-resolution

(annual) proxy collection of PAGES 2k Consortium (2013) and all the comparatively low-resolution (decadal

to centennial) proxy locations in Shakun et al. (2012) and Marcott et al. (2013). (b) The signal-to-noise ratio

(SNR) distribution for the pseudoproxies, based on a real-world estimate of Wang et al. (2014). For a given

Monte Carlo experiment, the SNR for each pseudoproxy was randomly drawn from this distribution.
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Figure 6. Global-mean temperature reconstructions (mean of 100 Monte Carlo iterations, with error bars indi-

cating ±2σ of the iterations and analysis ensembles) for the three types of experiments discussed in the text

and for each climate model simulation. Black lines indicate the true time series while red lines indicate the

reconstructed time series for only short time scale (annual) pseudoproxies, only long time scale (5 or 20 years)

pseudoproxies, and both long and short time scale pseudoproxies. Skill metrics of the reconstructions, correla-

tion (r), coefficient of efficiency (CE), and mean continuous ranked probability score (CRPS), are shown at the

top of each subpanel.
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Figure 7. Cross spectra of the reconstructed global-mean temperature time series with the true global-mean

temperature time series, for the reconstructions shown in Fig. 6. For reference, the dashed gray line indicates

the cross spectra of the true time series with itself, or equivalently its own power spectrum.
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Figure 8. AMOC index reconstructions (mean of 100 Monte Carlo iterations, with error bars indicating ±2σ

of the iterations and analysis ensembles) for the three types of experiments discussed in the text and for each

climate model simulation. Black lines indicate the true time series while red lines indicate the reconstructed time

series for only short time scale (annual) pseudoproxies, only long time scale (5 or 20 years) pseudoproxies, and

both long and short time scale pseudoproxies. Skill metrics of the reconstructions, correlation (r), coefficient of

efficiency (CE), and mean continuous ranked probability score (CRPS), are shown at the top of each subpanel.
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Figure 9. Cross spectra of the reconstructed AMOC index time series with the true AMOC index time series,

for the reconstructions shown in Fig. 8. For reference, the dashed gray line indicates the cross spectra of the

true time series with itself, or equivalently its own power spectrum.
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Figure 10. AMOC index reconstructions (mean of 100 Monte Carlo iterations, with error bars indicating ±2σ

of the iterations and analysis ensembles) and corresponding cross-spectra similar to those shown in Figs. 8(b)

and 9(b) but for the case where each experiment uses 200 pseudoproxies: the single time scale reconstructions

use 200 pseudoproxies each, while the multi-time scale reconstructions use 100 pseudoproxies for the short

time scale and 100 pseudoproxies for the long time scale.
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