

1 **Reconstruction of MIS-5 climate in central Levant using a**
2 **stalagmite from Kanaan Cave, Lebanon**

4 **C. Nehme^{1,2}, S. Verheyden^{1,2}, S.R Noble³, A.R Farrant⁴, D. Sahy⁴, J. Hellstrom⁵,**
5 **Delannoy J.J.⁶, Ph. Claeys²**

6 [1] Department of Earth and History of Life. Royal Institute of Natural Sciences (RBINS),
7 Brussels, Belgium.

8 [2] Analytical, Environmental & Geo-Chemistry, Department of Chemistry, Faculty of
9 Sciences, Vrije Universiteit Brussels, Belgium.

10 [3] NERC Isotope Geosciences Laboratory, Keyworth, Nottingham, NG12 5GG, United
11 Kingdom.

12 [4] British Geological Survey, Keyworth, Nottingham, NG12 5GG, United Kingdom.

13 [5] Geochemistry Laboratory, Earth Science Department, University of Melbourne, Australia

14 [6] Laboratoire EDYTEM UMR 5204 CNRS, Université de Savoie, Bourget-du-Lac, France

15 Correspondence to: C. Nehme (carole.nehme@naturalsciences.be)

18 **1 Introduction**

20 Located at the interface between mid and high latitude climate systems, and affected by both
21 the North Atlantic Oscillation and the monsoonal system over Africa, the Levant region (East
22 Mediterranean Basin) has the unique potential to record the occurrence of climatic changes in
23 both systems. Known for its long record of prehistoric human settlements, the Levant
24 straddles the transition zone between the more humid Mediterranean climate in the north and
25 the arid Saharo-Arabian desert climate regime in the south. This transition zone is
26 characterised by steep precipitation and temperature gradients. Over the past decade, several
27 studies have attempted to understand the palaeoclimate of this critical region (Fig. 1a) using
28 both marine (Kallel et al., 1997; Rossignol-Strick and Paterne, 1999; Emeis et al., 2003) and
29 continental paleoclimate records (Frumkin et al., 2000; Bar-Matthews et al., 2003; Kolodny et
30 al., 2005; Develle et al., 2011; Ayalon et al., 2013; Vaks et al., 2010; Gasse et al., 2015). A
31 key period for understanding the climate system in the Levant is the last interglacial: Marine
32 Isotope Stage (MIS) 5. This is generally considered to be a warm period, comparable to the

1 present-day climate, although this is still under considerable debate (Vaks et al., 2003; Lisker
2 et al., 2010; Ayalon et al., 2011; 2013; Bar-Matthews, 2014). However, discrepancies
3 between different palaeoclimate archives exist, particularly between speleothem and
4 lacustrine archives. In particular, inconsistencies between records from Negev desert (Vaks et
5 al., 2003; 2006), central Israel/Palestine (Bar-Matthews et al., 2000; 2003; Frumkin et al.,
6 2000) and Lebanon (Develle et al., 2011; Gasse et al., 2011; 2015); and between the eastern
7 Mediterranean coastline (Ayalon et al., 2013) and inner basins (e.g. Dead Sea Basin)
8 (Kolodny et al., 2005, Enzel et al., 2008; Lisker et al., 2010) are evident. In particular,
9 speleothem isotopic records of Soreq, Peqiin and West Jerusalem caves suggest the
10 interglacial optimum was wet, but low lake levels in the Dead Sea basin are indicative of drier
11 conditions during the same period.

12 Whereas these different continental records reflect changes in atmospheric circulation,
13 regional topographic patterns and/or site-specific climatic and hydrological factors, the lack of
14 detailed, accurately dated long-term records from the northern Levant, especially from
15 different continental archives, limits our understanding of the regional response to climatic
16 conditions during MIS 5. This lack of data restricts the opportunities to resolve the
17 inconsistencies between paleoclimate records across the region. This study attempts to resolve
18 this by providing a new high-resolution record obtained from a speleothem from a cave in the
19 northern Levant. Speleothems are secondary chemical cave deposits, which provide high-
20 resolution proxy tools for paleoclimate reconstruction (Genty et al., 2001; Drysdale et al.,
21 2007; 2009). Recent studies highlight the significance of speleothem records, in particular for
22 achieving precise chronologies of continental climate changes (Wang et al., 2001; Genty et
23 al., 2003, 2006; Fairchild et al., 2006; Verheyden et al., 2008; 2015; Cheng et al., 2009;
24 2015;). In this paper, we examine the petrography, growth history and stable isotope
25 geochemistry of a stalagmite from Kanaan cave, situated close to the Mediterranean coast on
26 the western flank of Mount Lebanon near Beirut, Lebanon. This speleothem provides a
27 precise U-Th dated continental record of climate history from the northern Levant spanning
28 the last interglacial and the glacial inception of this region.

29

30 **2. Climate and paleoclimatic setting**

31 Lebanon is located in the northern Levant between latitudes 33°03'N and 34°41'N (Fig. 1).
32 The western side of the country is characterized by a Mediterranean climate with an annual

1 precipitation varying between 880 and 1100 mm along the coastline (Republic of Lebanon,
2 2003 - Official Report No. 28766-LE). The climate is seasonal; with wet winters (between
3 November and February) and dry, hot summers (from May to October). The present climate is
4 influenced by the Atlantic Westerlies, which bring in moist winds associated with extra-
5 tropical cyclones. These originate in the Atlantic and track east across the Mediterranean Sea,
6 forming a series of subsynoptic low pressure systems. In winter, outbreaks of cold air
7 plunging south over the relatively warm Mediterranean enhance cyclogenesis, creating the
8 Cyprus Low (Fig. 1). These low-pressure systems drive moist air onshore generating intense
9 orographic rainfall across the mountains of the northern Levant. The duration, intensity and
10 track of these storm systems strongly influence the amount of rainfall in this region.

11 Conditions during the Last Interglacial Period (LIG) are thought to have been similar to that
12 of today. Marine Isotope Stage 5 is generally known as a period of minimum ice volume
13 between 130 to 75 kyr (Emiliani, 1955). The Last Interglacial Period (LIG), often defined as
14 being equivalent to MIS 5e (Shackleton et al., 2002), was characterized by a global mean
15 surface temperature less than 2°C than present (Otto-Bliesner et al, 2013), caused by the
16 orbital forcing of insolation (Berger and Loutre, 1991). The mean sea-level stood 4 to 6 m
17 higher than present (Kopp et al., 2009), with an important contribution from the Greenland ice
18 sheet (Cuffey and Marshall, 2000). The warmest interval, MIS 5e, was followed by two cold
19 episodes in the ocean (MIS 5d and MIS 5b), alternating with two warmer periods (MIS 5c and
20 MIS 5a).

21 In the eastern Mediterranean basin, periods of anoxic conditions associated with the formation
22 of sapropels during MIS 5 are generally related to wet conditions. These horizons are
23 considered to have formed during periods of increased discharge down the River Nile
24 (Rohling et al. 2002; 2004; Scrivner et al., 2004), linked to enhanced low-latitude
25 hydrological activity in the Nile headwaters. This peak in rainfall corresponds closely with
26 high summer insolation (Rohling et al., 2002; Moller et al., 2012) and with minima in the
27 precession cycle (Lourens et al., 1996). At that time, the East Mediterranean region also
28 experienced enhanced pluvial conditions (Cheddadi and Rossignol-Strick, 1995; Rossignol-
29 Strick and Paterne, 1999; Kallel et al., 2000). Wet conditions are demonstrated by pollen
30 assemblages found within sapropel S5 from the northeastern Mediterranean basin (Cheddadi
31 and Rossignol-Strick, 1995).

32 Onshore, the climate in the Levant region during MIS 5 has been reconstructed from

1 lacustrine records from interior lake basins such as the Dead Sea and Yammouneh (Kolodny
2 et al., 2005; Gasse et al., 2011, 2015) and speleothem records from central and southern Israel
3 (Frumkin et al., 1999; 2000; Bar-Matthews et al., 1999; 2000; 2003; Ayalon et al., 2013, Vaks
4 et al., 2006; 2010). These archives suggest that climate was generally wet and cold during
5 Termination II (~140-130 ka). After Termination II, the region experienced an intense warm
6 period coinciding with the development of Sapropel 5 (S5) in the Eastern Mediterranean
7 (Rossignol-Strick and Paterne, 1999; Emeis et al., 2003, Rohling et al., 2002; Ziegler et al.,
8 2010). From ~130-120 ka, speleothem records from the Peqiin, Soreq and West Jerusalem
9 caves show periods of rapid growth and decrease in $\delta^{18}\text{O}$ values mainly attributed to higher
10 rainfall, suggesting conditions were wetter than during Early Holocene period (Bar-Matthews
11 et al., 2000; 2003). Corresponding high $\delta^{13}\text{C}$ records (~0‰) approaching those of the host
12 carbonate were interpreted as a consequence of soil denudation due to high surface runoff in
13 Soreq cave (Bar-Matthews et al., 2003). However relatively high (~-5‰) and fluctuating $\delta^{13}\text{C}$
14 in the West Jerusalem cave suggest extremely dry and unstable conditions during which a C4
15 vegetation type was introduced in this area (Frumkin et al., 2000). Gasse et al. (2011; 2015)
16 suggest wet conditions (~125-117 ka) as shown in the pollen assemblages and oxygen
17 isotopes from the Yammouneh paleolake, in northern Lebanon. In contrast, the Dead Sea
18 Basin located southwards (Fig.1), remained dry during this period (Kolodny et al., 2005). The
19 Samra, Amora, and Lisan lakes, precursors of the Dead Sea, showed lower stands than during
20 the Holocene, even though a slight rise occurred during the last Interglacial Maximum
21 (Waldmann et al., 2009).

22 The return to slightly drier conditions, as suggested by an increase in $\delta^{18}\text{O}$ in speleothems
23 from the Soreq and Peqiin caves is dated at ~118 -120 ka (Bar-Matthews et al., 2000; 2003).
24 Lower rainfall amounts prevailed until 110 ka. But the decrease in $\delta^{13}\text{C}$ in speleothems from
25 these caves (Fig.1) evidence a reintroduction of a C3 vegetation cover, indicative of wet
26 conditions (Frumkin et al., 2000). In northern Lebanon the Yammouneh paleolake records
27 (Develle et al., 2011) located at higher altitude suggest seasonal changes with wet winters, dry
28 summers and expanded steppe vegetation cover.

29 From ~110 ka to ~100 ka, a moderate wet period is suggested by depleted $\delta^{18}\text{O}$ values in
30 speleothems from Soreq and Peqiin Caves and by an increase in arboreal pollen taxa in
31 northern Lebanon (Develle et al., 2011). This coincides with anoxic conditions (S4) in the
32 eastern Mediterranean (Emeis et al., 2003). Between ~100 and ~85 ka, a return to a slightly

1 drier climate is suggested by speleothem deposition in both the Soreq and Peqiin caves with
2 an increase in $\delta^{18}\text{O}$ values. However, the continued and more stable C3 vegetation cover
3 (Frumkin et al., 2000) in West Jerusalem cave and the minor lake level increase in the Dead
4 Sea Basin suggest that the climate was probably wetter in the Dead Sea basin (Waldmann et
5 al., 2009). In northern Lebanon, the high altitude Yammouneh paleolake records suggest
6 seasonal variations with steppe vegetation cover similar to the MIS 5d period.

7 From \sim 85.0 to \sim 75.0 ka, the last wet and warm phase of MIS 5 occurred in the Levant,
8 corresponding with Sapropel (S3) in the eastern Mediterranean. In Soreq, Peqiin (Bar-
9 Matthews et al., 1999; 2003) and Ma'ale Effrayim caves (Vaks et al., 2003; 2006), depleted
10 speleothem $\delta^{18}\text{O}$ values suggest a moderate wet period at this time in agreement with the
11 increase in arboreal pollen taxa in the Yammouneh lacustrine record (Develle et al., 2011).
12 However, the level of Lake Samra in the Dead Sea Basin decreased significantly (Waldmann
13 et al., 2009) and little speleothem deposition occurred in caves situated in the Negev desert
14 (Fig. 1) after MIS 5c (Vaks et al., 2006; 2010), both suggesting a drier climate during MIS 5a
15 in the south of the region.

16 It is clear that there are significant discrepancies between the climatic records between
17 northern (Lebanon, northern Syria and SE Turkey) and southern Levant (Jordan,
18 Israel/Palestine), possibly driven by a strong north-south palaeoclimatic gradient that varied
19 dramatically in amplitude over short distances and different climatic trends (wet/dry)
20 especially during MIS 5e. In the northern Levant, few records span the MIS 5 period (Gasse
21 et al., 2011, 2015; Develle et al., 2011). New well-dated speleothem records are needed from
22 this area to decipher if and when the climatic changes that are well recorded in the southern
23 Levant (Dead Sea basin, Soreq Cave and Peqiin Caves on the Judean plateau) also affected
24 the northern Levant (Yammouneh, Western Mount-Lebanon). What is still unclear is how the
25 entire region has responded to the North Atlantic/Mediterranean system versus the southern
26 influences linked to the monsoon system (Arz et al., 2003; Waldmann et al., 2009; Vaks et al.,
27 2010). The K1-2010 speleothem from Kanaan Cave, Lebanon partly fills the disparity in
28 spatial data coverage in the Levant, and may help understand the spatial climate
29 heterogeneity, if any, of the paleoclimatic patterns.

30 **3. Location of Kanaan Cave**

31 Kanaan Cave is located on the western flank of central Mount Lebanon, 15 km northeast of
32 Beirut at N $33^{\circ}54'25''$; E $35^{\circ}36'25''$. The cave has developed in the Middle Jurassic Kesrouane

1 Formation, a thick predominantly micritic limestone and dolomite sequence with an average
2 stratigraphic thickness of 1000 m (Fig. 2-A). Being located only 2.5 km from the
3 Mediterranean coast and at just 98 m above sea level (a.s.l.), the cave is strongly influenced
4 by the maritime Mediterranean climate.

5 Kanaan Cave is a 162 m long relict conduit discovered during quarrying in 1997. A 23 cm
6 long stalagmite, sample K1-2010 was collected from the top of a fallen limestone block in the
7 center part of the Collapse I chamber, approximately 20 m from the (formerly closed) cave
8 entrance (Fig. 2 B-C). The fallen block rests on an unknown thickness of sediment. The
9 passage height at this location is 2.4 m with approximately 50 m of limestone overburden.
10 Presently, the stalagmite receives no dripping water, although some drip water occurs in other
11 parts of the Collapse I chamber during winter and spring seasons. The cave is generally dry
12 during the summer months. The air temperature in Collapse I chamber is $20^{\circ}\text{C} \pm 1^{\circ}\text{C}$.

13

14 **4. Methods**

15 The stalagmite (sample K1-2010) was cut along its growth axis after retrieval from the cave,
16 and polished using 120-4000 μm silicon carbide (SiC) paper. Petrographic observations were
17 performed with an optical binocular microscope NEOC.

18 The first ten U-series dating was carried out at the NERC Isotope Geosciences Laboratory
19 (NIGL), British Geological Survey, Keyworth, UK. Seven new ages were recently completed
20 by the NIGL geochemistry laboratory and the Geochemistry Laboratory, Earth Science
21 Department, University of Melbourne, Australia. Powdered 100 to 400 mg calcite samples
22 were collected with a dental drill from eleven levels along the growth axis of the speleothem,
23 taking care to sample along growth horizons. Chemical separation and purification of uranium
24 and thorium were performed following the procedures of Edwards et al., (1988) with
25 modifications. Data were obtained on a Thermo Neptune Plus multicollector inductively
26 coupled plasma mass spectrometer (MC-ICP-MS) following procedures modified from
27 Anderson et al., (2008), Heiss et al. (2012) and Hellstrom (2006). Mass bias and SEM gain
28 for Th measurements were corrected using an in-house ^{229}Th – ^{230}Th – ^{232}Th reference solution
29 calibrated against CRM 112a. Quoted uncertainties for activity ratios, initial ^{234}U / ^{238}U , and
30 ages include a ca. 0.2% uncertainty calculated from the combined ^{236}U / ^{229}Th tracer calibration
31 uncertainty and measurement reproducibility of reference materials (HU-1, CRM 112a, in-
32 house Th reference solution) as well as the measured isotope ratio uncertainty. Ages are

1 calculated from time of analysis (2014) and also in years before 1950 with an uncertainty at
2 the 2σ level, typically of between 500 and 1000 years (see table 1).

3 Samples for $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ measurements were drilled along the speleothem central axis using
4 a 1 mm dental drill. Ethanol was used to clean the speleothem surface and drill bit prior to
5 sampling. Sample resolution was 1 to 1.2 mm. A total of 206 samples were analyzed using the
6 Nu-carb carbonate device coupled to a Nu Perspective MS at the Vrije Universiteit Brussel
7 with analytical uncertainties less than 0.1% (2s) for Oxygen and 0.05% (2s) for Carbon.
8 Isotopic equilibrium analyses were carried out using six recent calcite samples collected in the
9 cave and Hendy tests (Hendy, 1971) were carried out at five different locations along the
10 speleothem growth axis. No evidence for severe out-of-equilibrium deposition was detected
11 along the growth axis of the stalagmite.

12 Three seepage water samples and three water pool samples from Kanaan Cave were collected
13 for $\delta^{18}\text{O}$ measurements in hermetically sealed glass bottles. Measurements were performed at
14 the Vrije Universiteit Brussel on a Picarro L2130-i analyzer using the cavity-ring down
15 spectroscopy (CRDS) technique (Van Geldern & Barth Johannes, 2012). All values are
16 reported in per mille (‰) relative to Vienna Standard Mean Ocean Water (V-SMOW2).
17 Analytical uncertainties (2σ) were less than 0.10 ‰.

18

19 **5. Results**

20

21 **5.1. Petrography**

22 The speleothem collected from Kanaan Cave is 23 cm long and up to 10 cm wide (Fig. 2). In
23 section it displays regular layers of dense calcite ranging in colour from dark brown to light
24 yellow with a regular thin (< 0.2 mm) lamination in places. The speleothem has two clearly
25 defined growth phases, characterized by an abrupt hiatus where the stalagmite was tilted
26 around 45° and then recommenced growing.

27 The lower segment (Segment 1) is 8.2 cm long and 8.5 cm wide (Fig. 3) and displays a
28 general growth axis tilted at a 45° angle (clockwise) relative to upper segment. The regular
29 deposition of translucent columnar crystals is interrupted by clayey layers (discontinuities)
30 mostly at 17 cm, from 15.6 to 15.2 cm and at 14.2 cm. Between 12.2 and 14.2 cm, the lamina
31 in the central axial part of the speleothem show continuous clear and translucent layering, but
32 which becomes increasingly clayey towards the outer edge of the sample. The higher segment

1 (Segment 2) is 12.3 cm long and 4-6 cm wide. At the base, the general growth axis is tilted at
2 16° (counter clockwise) to the azimuth axis, gradually becoming more vertical towards the
3 top. The general structure of this section is characterized by uniform yellow translucent
4 columnar crystals interrupted by marked opaque yellow layers, respectively at 9, 8, 5.6, 3.2
5 and 2.8 cm.

6

7 **5.2. Uranium series (U-Th) dating**

8 A rectified age model is proposed here based on the new ages recently completed: the
9 stalagmite grew from 127.2 ± 1.3 ka (2σ) to 85.4 ± 0.8 ka (2σ). An extrapolated age of 83.1
10 ka for the top of the stalagmite was calculated from the age-depth model in Fig. 4 obtained
11 using the P_Sequence function of the OxCal geochronology application, which is based on
12 Bayesian statistics (Bronk Ramsey, 2008). All ages in Table 1 are calculated with two
13 different possible detrital U-Th compositions, as no data from the Kanaan cave is presently
14 available to better constrain the corrections. The first correction is the typical continental
15 detritus composition as used by Verheyden et al., 2008 and the second is that used determined
16 by Kauffman et al. (1998) for the Soreq caves which might better reflect the prevalent detritus
17 composition in a carbonate-dominated terrain.

18 Basically the age uncertainties and $^{230}\text{Th}/^{232}\text{Th}$ activity ratios in the dataset are such that both
19 options (i.e. Soreq Cave vs. average continental detritus) result in statistically equivalent dates
20 (e.i. Sample 10: 99.94 ± 0.69 ka calculated with the average continental detritus and $99.40 \pm$
21 0.94 ka calculated using Soreq cave detritus).

22 The greater number of disturbed ages in the lower segment of the stalagmite, which has
23 comparatively high initial thorium concentrations ($^{230}\text{Th}/^{232}\text{Th}$ activity ratios as low as 34) are
24 most likely due to contamination of the U-Th subsamples with organic material, or Fe oxydes
25 from mud layers that are common in this part of the record. The basal age of 223.2 ± 4.8 is
26 clearly out of sequence probably due to accidental inclusion of host rock in the analyzed
27 sample. Consequently, the oldest valid U-Th date is 127.2 ± 1.3 ka from a sample located 7
28 mm above the base of the stalagmite, and extrapolation of the age model places the beginning
29 of growth at ~ 128.8 ka. However as no other coeval stalagmites from the Kanaan cave have
30 yet been dated, it is unclear whether the base of our record corresponds to the onset of the
31 LIG optimum. In general, U-Th dates from the upper segment of the stalagmite were more
32 consistent with only one out of seven dates (80.6 ± 0.5 ka) clearly out of sequence.

1 Following the exclusion of obvious outliers, the remaining U-Th dataset showed a number of
2 age reversals. For the purposes of age-depth modelling, where age reversals were resolvable
3 at the 3-sigma level, the younger date was assumed to represent the correct age progression
4 and the older dates were excluded such as the basal age in the previous age model (Verheyden
5 et al., 2015). Age models obtained using linear interpolation, and the OxCal package were
6 statistically equivalent at the 95% confidence level, with the latter chosen as the basis for
7 stable isotope proxy data interpretation, owing to its more robust treatment of uncertainty
8 propagation.

9

10 **5.3. Modern cave water and calcite isotopic compositions.**

11 Recent cave water (a proxy for rainfall $\delta^{18}\text{O}$) sampled from the cave shows an average $\delta^{18}\text{O}$
12 value of $-5.43 \pm 0.06 \text{‰}$. $\delta^{18}\text{O}$ and δD seepage water values in Kanaan Cave falls on the
13 lebanese meteoric waterline (Saad et al., 2000) indicating that no severe evaporation
14 processes occur in the epikarst before precipitating the speleothem (see supplementary file).
15 Recent calcite analyses in the cave (soda straw, recent calcite deposition) display an average
16 $\delta^{13}\text{C}$ value of $-11.6\text{‰} \pm 0.4$ and $\delta^{18}\text{O}$ value of $-4.9\text{‰} \pm 0.7$. (see supplementary material). The
17 average $\delta^{18}\text{O}$ value for the recent calcite is close to the theoretical calcite precipitation value
18 of -4.4‰ (20°C) - present temperature in the cave - using Kim and O'Neil (1997) equilibrium
19 equation.

20

21 **5.4. Oxygen and Carbon isotope series**

22 If precipitation occurs at isotopic equilibrium, the calcite $\delta^{18}\text{O}$ should not show any
23 significant enrichment along a single lamina away from the growth axis and no covariation
24 between $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ should occur. As indicated by several of these so-called Hendy tests
25 (Hendy, 1971) performed along growth layers, no severe out-of-equilibrium processes during
26 precipitation of the calcite seem to have occurred (see supplementary data).

27 The $\delta^{18}\text{O}$ values from K1-2010 (Fig. 4) ranged from -3.5 to -7.8‰ , with an overall mean of $-$
28 5.1‰ . Lower values ($\sim -7.5\text{‰}$) are observed at the basal part of the stalagmite. Values
29 enrichment begin at ~ 126 ka and increase rapidly to $\sim -4.45\text{‰}$ until ~ 120 ka. High $\delta^{18}\text{O}$
30 values (generally between -4.4 and -4‰) are observed until the top of the stalagmite at ~ 84
31 ka, except for two periods with relatively lower $\delta^{18}\text{O}$. From 102.8 to 100.8 ka (interpolated),
32 the $\delta^{18}\text{O}$ values decrease from -4.6‰ , to -6.18‰ in ~ 2.0 ka. At ~ 94 ka, a rapid decrease of

1 $\delta^{18}\text{O}$ values leads to a peak of -5.5‰ at ~92.3 ka (interpolated). The top of the stalagmite at
2 ~84 ka exhibit the highest $\delta^{18}\text{O}$ values of -3.5‰. The $\delta^{13}\text{C}$ V-PDB values range between -
3 10.0‰ and -12.4‰ with an overall mean of -11.3‰ as shown in Fig. 5. The $\delta^{13}\text{C}$ curve shows
4 relatively minor variations. However, the most depleted values (-12‰) are observed at the
5 base of the speleothem, from ~129 ka to ~125.6 ka (interpolated), followed by a $\delta^{13}\text{C}$
6 enrichment of ~2‰ from 125.6 (interpolated) to ~122 ka and stays around -11‰ between
7 ~120 ka and ~110 ka. After ~110 ka, generally lower $\delta^{13}\text{C}$ values prevail with a surprising
8 stable period between ~103 and ~91 ka. From ~91 ka to ~87 ka, a 1.1 ‰ enrichment of
9 carbon isotopic values lead to highest $\delta^{13}\text{C}$ values of the time series. Consequently, the
10 stalagmite shows a tripartite partition as shown in the $\delta^{18}\text{O}$ V-PDB versus $\delta^{13}\text{C}$ V-PDB
11 diagram (Fig. 6) with the base featuring the most depleted $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ values before ~126
12 ka. A rapid shift towards higher isotopic values between ~126 and ~120 ka and a third
13 segment, from ~120 to ~83 ka, shows rather stable $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ values except for the 93-87
14 ka characterized by a change to lower isotopic values for oxygen and higher values for
15 carbon.

16

17 **6. Discussion**

18

19 **6.1. Integrated climatic interpretation of the speleothem proxies**

20 Speleothem growth is conditioned by effective precipitation and CO₂ concentration,
21 controlled mainly by the bio-activity of the soil and consequently by the temperature (Baker
22 and Smart, 1995; Dreybrodt, 1988; Genty et al., 2006). Therefore speleothem growth is
23 typically associated with warm and humid conditions with sufficient rainfall to maintain drip-
24 water flow, whereas low speleothem growth rates or hiatuses tend to indicate cold or dry
25 conditions (Bar-Matthews et al., 2003), or possibly flooding. The lower part of the stalagmite
26 contains several clayey layers that may indicate either short dry periods, or periods during
27 which the speleothem was covered with mud or muddy water (Fig. 3). The fact that apart
28 from these muddy layers the speleothem does not show any change in crystal aspect or
29 change in porosity, suggests that these layers may be better explained by sudden events
30 perturbing slightly the speleothem deposition rather than a significant increase in aridity or
31 drop in temperature. Previous studies in Southern Europe (Drysdale et al., 2005; Zanchetta et
32 al., 2007) and in the Eastern Levant (Bar-Matthews et al., 2003; Frumkin et al., 2000;
33 Verheyden et al., 2008) have shown that most of the carbon in speleothem calcite is derived

1 from soil CO₂ (Genty et al., 2001). The $\delta^{13}\text{C}$ is thus most likely to be controlled by biogenic
2 soil CO₂ productivity (Gascoyne, 1992; Hellstrom et al., 1998; Genty et al., 2006) associated
3 with vegetation density, which regulates soil CO₂ content via root respiration, photosynthetic
4 and microbial activity. The changes in carbon isotopic composition ($\delta^{13}\text{C}$) of speleothems in
5 the Levant are thus linked to changes in precipitation with periods of low rainfall inducing
6 sparse vegetation and a lower contribution of “light” organic carbon in the speleothem
7 resulting in higher $\delta^{13}\text{C}$ value (Frumkin et al., 2000). The low values for $\delta^{13}\text{C}$ in the K1-2010
8 around ~128 ka are indicative of a 100% C3 vegetation profile with relatively high soil
9 productivity suggestive of rather mild and humid conditions.

10 A discontinuity D2 is observed in the first segment (Fig. 3) and is estimated to occur between
11 ~110 and ~103 ka by extrapolating the growth rates of each segment towards the
12 discontinuity D2. This hiatus could be of local origin as it is associated with a major change in
13 the speleothem orientation (Nehme et al., 2015). A striking decrease in the growth rate to 5
14 mm/ka before the speleothem tilted seems to start after 126 ka, before the end of the LIG
15 (Cheng et al., 2009). Additional U-series dates are necessary to better constrain the age of the
16 change in growth rate.

17 The middle part shows a higher growth rate (9 mm/ka) from ~103 to ~99.1 ka during the
18 ensuing interstadial (MIS 5c). A general decrease in growth rate (5 to 7 mm/kyr) followed
19 from ~99.1 ka to ~83 ka but with an unusual rapid increase in growth rate (13 mm/ka)
20 occurred from ~86 to ~84 ka during MIS 5b (Fig. 4). The carbon isotope signal shifts slightly
21 to more positive values around ~126-121 ka and has the most positive values after ~92 ka,
22 indicating a gradual degradation of the soil coverage or change in vegetation type or density
23 at the beginning of MIS 5d.

24 Unraveling the factors controlling the $\delta^{18}\text{O}$ signal in a speleothem can be more complex
25 (McDermott, 2004; Fairchild et al., 2006; Lachniet, 2009). The pattern of $\delta^{18}\text{O}$ changes in K1-
26 2010 stalagmite is slightly different from the $\delta^{13}\text{C}$, particularly the difference in the amplitude
27 of changes between ~126 and 120 ka, and from 120 to 83 ka.

28 Speleothem $\delta^{18}\text{O}$ is controlled by both the calcite precipitation temperature (Kim and O’Neil,
29 1997) and seepage water $\delta^{18}\text{O}$ (Lachniet, 2009). The general consensus in recent years is that
30 the principal driver of speleothem $\delta^{18}\text{O}$ variations through time is change in rainfall $\delta^{18}\text{O}$
31 (McDermott, 2004), which are forced by: i) condensation temperatures; ii) rainfall amount

1 (Dansgaard, 1964); iii) shifts in vapor source $\delta^{18}\text{O}$ or; iv) different air-mass trajectories
2 (Rozanski et al., 1993. Until now, low speleothem $\delta^{18}\text{O}$ values in the Levant region were
3 associated with wetter conditions while high speleothem $\delta^{18}\text{O}$ was generally ascribed to drier
4 periods with lower rainfall amounts (Bar-Matthews, 2014; Verheyden et al., 2008). Important
5 changes in $\delta^{18}\text{O}$ may however also been linked to changes in the source of the water vapor
6 and/or changes in storm-tracks (Frumkin et al., 1999; Kolodny et al., 2005; McGarry et al.,
7 2004). From \sim 126 to \sim 120 ka, the abrupt $3.2\text{\textperthousand}$ increase in $\delta^{18}\text{O}$ values suggests an important
8 change to drier conditions. The growth rate of the stalagmite gradually falls from a high rate
9 (19 mm/ka) between 126.7 ± 1.0 and 126.3 ± 0.9 ka, decreasing to 5 mm/ka between $126.3 \pm$
10 0.9 ka and 123.5 ± 1.6 ka and to 3 mm/ka between 123.4 ± 1.6 ka and 117.7 ± 3.0 ka (Fig. 4).
11 This gradual drop in growth rate most probably indicates a change towards drier conditions in
12 agreement with the increase in $\delta^{18}\text{O}$ values. Global sea-levels reached 6 to 9 meters above
13 present sea-level during the LIG (Dutton and Lambeck, 2012), an elevation peak that could
14 not be responsible for the observed high amplitude of the $\delta^{18}\text{O}$ change in the K1 speleothem.
15 Another mechanism is a change in the composition and source of water vapor reaching the
16 site. Studies of the Eastern (EM), Central and Western Mediterranean marine core records
17 show evidence of reduced sea-surface $\delta^{18}\text{O}$ during the onset of the Sapropel 5 event of $\sim 2\text{\textperthousand}$
18 (e.g. Kallel et al., 1997, 2000; Emeis et al., 2003; Rohling et al., 2002; Scrivner et al., 2004;
19 Ziegler et al., 2010; Grant et al., 2012) and a recovery of the same amount at the end of S5
20 deposition around \sim 121 ka (Grant et al., 2012), with a commensurate increase in the $\delta^{18}\text{O}$ of
21 the EM water. Hence, a more ^{18}O -enriched sea surface of $\sim 2\text{\textperthousand}$ at the end of the sapropel
22 event would cause an increase in vapor $\delta^{18}\text{O}$, leading to enrichment in the isotopic
23 composition of the recharge waters reaching the cave. In the Levant, moisture source was
24 interpreted as one of the drivers for the $\delta^{18}\text{O}$ signal in speleothems from Soreq Cave (Bar-
25 Matthews et al., 2003) related to sapropel S5 (128-121 ka; Grant et al., 2012).

26 After \sim 120 ka, the $\delta^{18}\text{O}$ increased to an average of $\sim -4.3\text{\textperthousand}$, suggesting less depleted
27 precipitation was reaching the cave until \sim 84 ka. This long-term $\delta^{18}\text{O}$ enrichment, interrupted
28 by a short and moderate $\delta^{18}\text{O}$ decrease during sapropel S4, marks the northern hemisphere
29 glacial inception (Fig. 6). This increase in $\delta^{18}\text{O}$ is driven by several mechanisms. Once cause,
30 the ‘ice volume effect’ can lead to a higher sea water $\delta^{18}\text{O}$ by $1.1\text{\textperthousand}$ during glacial periods
31 together with an increase in $\delta^{18}\text{O}$ of speleothem calcite due to drop in temperature of up to
32 $\sim 8^\circ\text{C}$ (Frumkin et al., 1999; Bar-Matthews et al., 2003; Kolodny et al., 2005; McGarry et al.,
33 2004). However, the change in the K1 speleothem $\delta^{18}\text{O}$ records occurs after the gradual

1 change of the global IG-G changes at termination II suggesting a stronger influence of other
2 mechanisms. A second possible driver for increased $\delta^{18}\text{O}$ is related to changes in wind
3 direction, with more continental trajectories leading to more enriched $\delta^{18}\text{O}$ water vapor
4 reaching the cave. In Southern Levant, Frumkin et al., (1999) and Kolodny et al., (2005)
5 related $\delta^{18}\text{O}$ signal increase during glacial periods to a southward migration of the Westerlies
6 associated with the high-pressure zone over the Northern European ice sheet and thus pushing
7 wind trajectories further south over North Africa. The growth rate (Fig. 3) of the stalagmite
8 after \sim 120 ka is the lowest of the entire profile (between 2 mm/ka and 7 mm/ka) except for
9 the periods between 84.8 ± 1.1 ka and 85.9 ± 1.1 ka and between 102 ± 1.1 ka and 99.3 ± 0.9
10 ka. The first period has a growth rate of 13 mm/ka indicating a wet pulse that could
11 correspond to the Pre-Sapropel event PS3 (Ziegler et al., 2010). The latter period has a
12 moderate growth rate of 9 mm/ka indicating a wet pulse, which coincides with the S4 event.
13 The discontinuity D2, between \sim 110.6 and \sim 103.6 ka is probably linked to local factors such
14 as change in the percolation route or the tilting of the stalagmite's axis due to the floor
15 suffusion beneath the block on which the speleothem grew.

16

17 **6.2. Paleoclimate variability of MIS 5**

18 **6.2.1. An 'early humid LIG'**

19 Speleothem oxygen, carbon and growth proxies from sample K1-2010 indicate an initial
20 relatively warm and humid period at \sim 129 ka – the beginning of speleothem deposition–
21 which extended until \sim 126 ka (Fig. 7). This early humid LIG matches the timing of Eastern
22 Mediterranean Sea Sapropel 5 event (Ziegler et al., 2010; Grant et al., 2012) with high
23 summer insolation (Berger and Loutre, 1991). In southern Europe, an early commencement of
24 full interglacial conditions was dated at 129 ± 1 ka in Corchia Cave speleothems (Drysdale et
25 al., 2005). In northern Levant, the pollen records in Yammouneh paleolake demonstrate the
26 presence of temperate oaks during the early LIG (Develle et al., 2011) indicating sufficient
27 humidity to enable forests to develop. More efficient moisture retention together with
28 developed forest landscapes and intense groundwater circulation in northern Lebanon
29 prevailed during the LIG. These warm and wet conditions are in agreement with similar
30 periods identified in the Lake Van lacustrine sequence (Litt et al., 2014; Shtokhete et al.,
31 2014) in North-Eastern Turkey and with speleothem proxies from Soreq and Peqiin caves
32 (Ayalon et al., 2002; Bar-Matthews et al., 2003) in southwestern Israel.

1

2 **6.2.2. The 126 ka change**

3 The pattern of $\delta^{18}\text{O}$ depletion from sample K1-2010 records a remarkable change between
4 126.3 ± 0.9 ka to ~ 120.3 ka (inferred) along with an unstable enrichment pattern of the
5 $\delta^{13}\text{C}$ and the $\delta^{18}\text{O}$ (Fig. 5). However, the poor chronological resolution of this part of the K1-
6 2010 speleothem record precludes the identification of any seasonality pattern at the end of
7 the LIG, as seen in the Yammouneh lacustrine record in northern Lebanon (Develle et al.,
8 2011; Gasse et al., 2015).

9 The K1-2010 $\delta^{18}\text{O}$ profile undergoes a dramatic change around ~ 126 ka, the timing of which
10 is very close to the onset of the isotopic enrichment of the water source in the eastern
11 Mediterranean Sea during the S5 event (~ 128 -121 ka). The onset of the $\delta^{18}\text{O}$ enrichment in
12 the K1-2010 isotopic record coincides with the onset of the $\delta^{18}\text{O}_{\text{G.ruber}}$ enrichment (Fig. 7) in
13 LC21 core (Grant et al., 2012) and in ODP 967 site (Emeis et al., 2003). Despite differences
14 in dating resolution between marine core records and speleothems, the shift in K1-2010 $\delta^{18}\text{O}$
15 values around ~ 126 ka demonstrates a major source-driven change during the eastern
16 Mediterranean S5 event. Several studies (Rohling et al., 2002; 2015; Schmiedl et al., 2003;
17 Scrivner et al., 2004) suggest a coincidence between cooling and enhanced aridity around the
18 Mediterranean, and the interruption of the insolation-driven monsoon maximum for a
19 millennial-scale episode during the last interglacial sapropel S5. Schmiedl et al. (2003) argue
20 that this episode marked the onset of a regional climate deterioration following the peak (early
21 S5) of the last interglacial. In that case, this regional climate deterioration began at ~ 126 ka (Fig.
22 7), using the S5 timing of Grant et al., (2012) and with the assumed linear sedimentation
23 rate through S5 (Rohling et al., 2002). The K1-2010 isotopic profile confirms this and
24 provides a precise chronology of the change, taking place between 126.3 ± 0.9 ka to ~ 120.3
25 ka (inferred). However the amplitude of the $\delta^{18}\text{O}$ enrichment in the K1-2010 stalagmite
26 from 126 to 120 ka totals $\sim 3.2\text{‰}$ and is much higher than the amplitude of the $\delta^{18}\text{O}_{\text{G.ruber}}$
27 enrichment ($\sim 2\text{‰}$) in the Eastern Mediterranean sea (Grant et al., 2012). This would be
28 explained by Sapropel events in the EMS and their derivative processes during the S5 (Ziegler
29 et al., 2010): the source effect is thus a major driver to the $\delta^{18}\text{O}$ values change in continental
30 records, but other derivative factors of the S5 event contributed in the $\delta^{18}\text{O}$ change in K1-
31 2010 record such as the rainfall amount, the temperature or changes in the wind trajectories.

32 With the additional U/Th datings and new records of Soreq cave (Grant et al., 2012), the K1-

1 2010 $\delta^{18}\text{O}$ profile indicates that this major change occurred in phase with other continental
2 records in the Levant region, moving the interpretation based on previous age-model
3 (Verheyden et al, 2015). The $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ change in the K1-2010 profiles lasted 6000 years,
4 started gradually, and then continued more rapidly, ending at ~ 120.3 ka (interpolated). The
5 initial pattern of the change from ~ 126 to ~ 122 ka suggests more gradual $\delta^{18}\text{O}$ enrichment
6 than the change in the Soreq cave $\delta^{18}\text{O}$ records. Nonetheless, the rapid pattern of the $\delta^{18}\text{O}$
7 changes well recorded by the Soreq cave record in that period could not be observed in the
8 Kanaan cave record due to the poor resolution of this part of the K1 speleothem with the
9 occurrence of short hiatuses (mud layers). A similar gradual variation but over a larger time
10 scale was demonstrated in the Yammouneh paleovegetation signal, where the transition seems
11 to be more progressive than in other Eastern Mediterranean records. In Southern Levant, the
12 oxygen and carbon isotopic record in Peqiin and Soreq cave suggest an abrupt but later
13 enrichment signal around ~ 118 ka (Bar-Matthews et al., 2003). This change was shifted to
14 ~ 120.5 ka (Grant et al., 2012) using a more refined U-Th chronology (Fig. 7).

15

16 **6.2.3. The glacial inception**

17 After ~ 120.3 ka, a more enriched $\delta^{18}\text{O}$ profile indicates the end of warm and wet conditions of
18 the LIG. The onset of glacial conditions as indicated in several continental records in the
19 Eastern Mediterranean (Fig. 7), shows gradual climate deterioration into the glacial inception
20 period before the MIS 4. The isotopic response of K1-2010 to the glacial inception is recorded
21 synchronously at ~ 120 ka in both $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ signals, but while the $\delta^{18}\text{O}$ decreases rapidly
22 along with a shift to a moderate growth rate, especially in response to the wet pulses during
23 the S4 event, the $\delta^{13}\text{C}$ shows a more gradual evolution. This can be explained by the fact that
24 a rainfall- and mostly source-driven $\delta^{18}\text{O}$ signal is rapidly transmitted to K1-2010 speleothem,
25 whereas the inertia and gradual change of the $\delta^{13}\text{C}$ signal reflect a long-term deterioration of
26 the soil and biopedological activity above the cave. On a regional scale, the Yammouneh
27 paleovegetation signal indicates expanded steppic vegetation cover after ~ 120 ka (Develle et
28 al, 2011). In southern Levant, a gradual $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ enrichment, except for the wet pulses
29 during the S4 and S3 events, until the end of the MIS 5 indicate a general climate degradation
30 that could be related to less rainfall derived from the Mediterranean moisture source (Ayalon
31 et al., 2002; Bar-Matthews et al., 2003) or to changes in wind circulation pattern (Kolodny et
32 al., 2005; Lisker et al., 2010). Further south in the Negev region, a different climatic regime
33 from the Northern Levant is recorded from speleothems and lacustrine records. **Speleothem**

1 growth rates decreased after MIS5c (Vaks et al., 2006) with less rainfall from the
2 Mediterranean Sea reaching Tzavoa cave (Northern Negev). Speleothem records from caves
3 located further south in the Negev desert (Vaks et al., 2010) along with the Mudawara
4 paleolake records in southern Jordan showed a wet pulse during the MIS 5a, related more to
5 rainfall originating from the Indian Monsoon (Petit-Maire et al., 2010). Moreover, Lake
6 Samra records in the Dead Sea basin are less out-of-phase with Levantine records further
7 north than suggested for the last 20ka (Cheng et al., 2015). The DSB records, recently
8 investigated with a higher chronological resolution (Neugebauer et al., 2015) than previous
9 studies (Waldmann et al., 2009), show minor high levels during MIS 5c and 5a. These wet
10 pulses indicate though wet periods but with smaller amplitude than the wet phase in the
11 northern Levant. The climate picture of the Dead Sea basin during the glacial inception is
12 related probably to local factors influenced by the Judean rain shadow (Vaks et al., 2006;
13 2013) and together with other continental records further south, invoke climatic variations
14 driven by the monsoon system (Torfstein et al., 2015) and its boundary shifts (Parton et al.,
15 2015; Bar-Mathews., 2014) or by the North Atlantic and Mediterranean climates (Neugebauer
16 et al. 2015).

17

18 **7. Conclusions**

19 A dated MIS 5 stalagmite record (129–84 ka) from Kanaan Cave, Lebanon demonstrates the
20 potential of stalagmite records for palaeoclimate reconstruction in the northern Levant. The
21 K1-2010 model age coupled with growth rates and isotopic data provide a more precise
22 record of the climatic changes that occurred during the last interglacial and on into the glacial
23 inception period.

24 The K1-2010 speleothem record indicate a very wet early LIG and during the LIG optimum at
25 the global scale, and is in agreement with warm and humid conditions demonstrated in other
26 speleothem and lacustrine records from the Mediterranean. The K1-2010 isotope record and
27 growth rate curves clearly demonstrate an important change from 126.3 ± 0.9 ka to 120.3 ka
28 (interpolated). The change seems to be driven mainly by a ‘source’ effect, reflecting the $\delta^{18}\text{O}$
29 Mediterranean Sea surface water composition and the EM isotopic increase at ~ 126 ka during
30 the S5 event. Other factors such as the rainfall amount, the temperature or the wind
31 trajectories might have contributed as a second order factor to the $\delta^{18}\text{O}$ change from 126 to
32 120 ka. This change sets the onset of the regional climate deterioration following the peak

1 (early S5) of the last interglacial over the Levant region. However, the climatic change as
2 recorded in the K1-2010 isotopic record could be more gradual than the changes identified in
3 the Soreq and Peqiin speleothem records.

4 After ~120 ka, enriched oxygen and carbon profiles in K1-2010 document the end of the LIG
5 humid phase. The change in isotopic composition from 122 to 120 ka is driven by a reduction
6 in rainfall originating from the Mediterranean Sea, coupled with a long-term change in the
7 $\delta^{18}\text{O}$ composition of the EM surface waters. The onset of glacial inception conditions, as
8 indicated in several continental records in the Levant, is signified by a gradual climatic
9 deterioration until the full glacial conditions of the MIS 4. A short, wet phase (~103-100 ka)
10 at the end of the S4 event is indicated by increased water circulation into Kanaan Cave
11 causing faster speleothem growth rates, sediment flushing, subsidence and speleothem tilting.
12 The climatic scheme suggested from K1-2010 isotopic profiles and growth rates is in overall
13 agreement with Yammouneh paleolake records in northern Lebanon, and with the Soreq and
14 Peqiin speleothems records. However, the K1-2010 record **show different amplitude patterns**
15 **with continental records located further south, although it doesn't show a clear out-of-phase**
16 **climate variability during the MIS 5 as demonstrated for the last 20.000 years by the Jeita**
17 **speleothem record (Cheng et al., 2015).**

18 **Acknowledgements**

19 This study was funded by the mobility fellowship program of the Belgian Federal Scientific
20 Policy (BELSPO), co-funded by the Marie Curie Actions of the European Commission. We
21 acknowledge EDYTEM Laboratory (UMR-5204 CNRS) and Saint-Joseph University for
22 making stalagmites of Kanaan Cave available for analyses during this study. We would like to
23 thank the support of ALES (Association Libanaise d'Etudes Spéléologiques) members who
24 accompanied us during field trips. Farrant and Noble publish with the approval of the
25 Executive Director, British Geological Survey. We thank Daniel Condon for assisting with
26 the uranium series analyses and Kevin De Bont for assisting in water analyses. We also thank
27 the anonymous reviewers for their constructive comments and reviews.

28

29 **References**

30 Andersen, M.B., Stirling, C.H., Potter, E.K., Halliday, A.N., Blake, S.G., McCulloch, M.T.,
31 Ayling, B.F. and O'Leary, M.: High-precision U-series measurements of more than 500,000
32 year old fossil corals, *Earth Planet. Sc. Lett.*, 265, 229-245, 2008.

1 Arz, HW, Lamy, F, Patzold, J, Muller, P.J., and Prins, M.: Mediterranean moisture source for
2 an early-Holocene humid period in the northern Red Sea, *Science*, 300, 118–121, 2003.

3 Ayalon, A, Bar-Matthews, M., and Kaufman, A.: Climatic conditions during marine isotopic
4 stage 6 in the Eastern Mediterranean region as evident from the isotopic composition of
5 speleothems: Soreq Cave, Israel, *Geology*, 30, 303–306, 2002.

6 Ayalon, A., Bar-Matthews, M., Frumkin, A. and Matthews, A.,: Last Glacial warm events on
7 Mount Hermon: the southern extension of the Alpine karst range in the east Mediterranean,
8 *Quaternary Sci. Rev.*, 59, 43-56, 2013.

9 Baker, A. and Smart, P.L.: Recent flowstone growth rates: field measurements in comparison
10 to theoretical predictions. *Chem. Geol.*, 122, 121-128, 1995.

11 Bar-Matthews, M., Ayalon, A., Kaufman, A. and Wasserburg, G.J.: The Eastern
12 Mediterranean paleoclimate as a reflection of regional events: Soreq Cave, Israel. *Earth*
13 *Planet. Sc. Lett.*, 166, 85-95, 1999.

14 Bar-Matthews, M., Ayalon, A. and Kaufman, A.: Timing and hydrological conditions of
15 Sapropel events in the Eastern Mediterranean, as evident from speleothems, Soreq Cave,
16 Israel, *Chem. Geol.*, 169, 145-156, 2000.

17 Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, M. and Hawkesworth, C.: Sea-land
18 isotopic relationships from planktonic foraminifera and speleothems in the Eastern
19 Mediterranean region and their implications for paleorainfall during interglacial interval,
20 *Geochim Cosmochim Ac.*, 67, 3181-3199, 2003.

21 Bar-Matthews, M.: History of Water in the Middle East and North Africa. In: Holland H.D.
22 and Turekian K.K., *Treatise on Geochemistry*, Second Edition, Oxford, Elsevier, 109-128,
23 2014.

24 Bronk Ramsey, C.: Deposition models for chronological records, *Quaternary Sci. Rev.*, 27,
25 42-60, 2008.

26 Berger, A. and Loutre, M.F.: Insolation values for the climate of the last 10 million years,
27 *Quaternary Sci. Rev.*, 10, 297-317, 1991.

28 Cheddadi, R. and Rossignol-Strick, M.: Eastern Mediterranean Quaternary paleoclimates
29 from pollen and isotope records of marine cores in the Nile cone area. *Paleoceanography*, 10,
30 291–300, 1995.

1 Cheng, H., Edwards, R.L., Broecker, W.S., Denton, G.H., Kong, X., Wang, Y., Zhang, R.,
2 Wang, X.: Ice age terminations, *Science*, 326, 248–252, 2009.

3 Cheng, H., A. Sinha, S. Verheyden, F. H. Nader, X. L. Li, P. Z. Zhang, J. J. Yin, L. Yi, Y. B.
4 Peng, Z. G. Rao, *et al.* The climate variability in northern Levant over the past 20,000 years,
5 *Geophys. Res. Lett.*, 42, 8641–8650, 2015.

6 Cuffey, K.M. and Marshall, S.J.: Substantial contribution to sea-level rise during the last
7 interglacial from the Greenland ice sheet, *Nature*, 404, 591–594, 2000.

8 Develle, A.L., Gasse, F., Vidal, L., Williamson, D., Demory, F., Van Campo, E., Ghaleb,
9 B. and Thouveny, N.: A 250 ka sedimentary record from a small karstic lake in the Northern
10 Levant (Yammoûneh, Lebanon): Paleoclimatic implications., *Palaeogeography,
11 Palaeoclimatology, Palaeoecology*, 305, 10-27, 2011.

12 Drysdale, R., Zanchetta, G., Hellstrom, J., Fallick, A., and Zhao, J-X.: Stalagmite evidence
13 for the onset of the Last Interglacial in southern Europe at 129 ± 1 ka, *Geophys. Res. Lett.*, 32,
14 L24708, 2005.

15 Drysdale, R.N., Zanchetta, G., Hellstrom, J.C., Fallick, A.E., McDonald, J., and Cartwright,
16 I.: Stalagmite evidence for the precise timing of North Atlantic cold events during the early
17 last glacial, *Geology*, 35-1, 77–80, 2007.

18 Drysdale, R., Hellstrom, J., Zanchetta, G., Fallick A.E., Sánchez Goñi, M.F., Couchoud I.,
19 McDonald J., Maas, R., Lohmann, G., Isola I.: Evidence for obliquity forcing of glacial
20 Termination II, *Science*, 325, 1527–1531, 2009 .

21 Dutton, A. and Lambeck, K.: Ice volume and sea level during the last interglacial, *Science*,
22 337, 216–219, 2012.

23 Edwards, R.L., Chen, J.H., Ku, T.L., and Wasserburg, G.J.: Precise timing of the last
24 interglacial period from mass-spectrometric determination of ^{230}Th in corals, *Science*, 236,
25 1547–1553, 1987.

26 Emeis K.C., Schulz H., Struck U., Rossignol-Strick M., Erlenkeuser H., Howell M.W., Kroon
27 D., Mackensen A., Ishizuka S., Oba T., Sakamoto T., and Koizumi I.: Eastern Mediterranean
28 surface water temperatures and $\delta^{18}\text{O}$ during deposition of sapropels in the late Quaternary,
29 *Paleoceanography*, 18, 1005, 2003.

30 Emiliani, C.: Pleistocene temperatures. *J. Geol.*, 63, 538– 578, 1955.

1 Enzel Y, Amit R, Dayan U, Crouvi, O., Kahana R., Ziv, B., Sharon D.: The climatic and
2 physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the
3 southern Levant and its neighboring deserts, *Global Planet. Change*, 60, 165–192, 2008.

4 Fairchild, I.J., Smith, C.L., Baker, A., Fuller, L., Spötl, C., Matthey, D., and McDermott, F.:
5 Modification and preservation of environmental signals in speleothems. *Earth Sci. Rev.*, 75,
6 105-153, 2006.

7 Frumkin, A., Ford, D.C., and Schwarcz, H.P.: Continental oxygen isotopic record of the last
8 170,000 years in Jerusalem, *Quaternary Research*, 51, 317-327, 1999.

9 Frumkin, A., Ford, D.C. and Schwarcz, H.: Paleoclimate and vegetation of the Last Glacial
10 cycles in Jerusalem from a speleothem record, *Global Biogeochem. Cy.*, 14, 863-870, 2000.

11 Gascoyne, M.: Palaeoclimate determination from cave calcite deposits, *Quaternary Sci. Rev.*,
12 11, 609–632, 1992.

13 Gasse, F., Vidal, L., Develle, A.-L. and Van Campo, E.: Hydrological variability in the
14 Northern Levant: a 250 ka multi-proxy record from the Yammoûneh (Lebanon) sedimentary
15 sequence, *Clim. Past*, 7, 1261-1284, 2011.

16 Gasse, F., Vidal L., Van Campo, E., Demory, F., Develle, A.-L., Tachikawa, K., Elias, A.,
17 Bard, E., Garcia, M., Sonzogni., C., and Thouveny, N.: Hydroclimatic changes in northern
18 Levant over the past 400,000 years, *Quaternary Sci. Rev.*, 111, 1-8, 2015.

19 Genty, D., Baker, A., and Vokal, B.: Intra- and inter-annual growth rate of modern
20 stalagmites. *Chem. Geol.*, 176, 191-212, 2001.

21 Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J. and Van-Exter, S.:
22 Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite
23 data, *Nature*, 421, 833-837, 2003.

24 Genty, D., Blamart, D., Ghaleb, B., Plagnes, V., Causse, C.h., Bakalowicz, M., Zouari, K.,
25 Chkir, N., Hellstrom, J., Wainer, K., and Bourges, F.: Timing and dynamics of the last
26 deglaciation from European and North African $d^{13}C$ stalagmite profiles—comparison with
27 Chinese and South Hemisphere stalagmites, *Quaternary Sci. Rev.*, 25, 2118-2142, 2006.

28 Grant, K.M., Rohling, E.J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde, M., Bronk
29 Ramsey, C., Satow, C., and Roberts, A.P.: Rapid coupling between ice volume and polar
30 temperature over the past 150 kyr, *Nature* 491, 744–747, 2012.

1 Hellstrom, J., McCulloch, M., and Stone, J.: A detailed 31,000-year record of climate and
2 vegetation change, from the isotope geochemistry of two New Zealand speleothems.
3 Quaternary Res., 50, 167–178, 1998.

4 Hellstrom, J.: U–Th dating of speleothems with high initial ^{230}Th using stratigraphical
5 constraint. Quat. Geochron. 1: 289–295, 2006

6 Hendy, C.H.: The isotopic geochemistry of speleothems - I. The calculation of the effects of
7 different modes of formation on the isotopic composition of speleothems and their
8 applicability as palaeoclimatic indicators, Geochim Cosmochim Ac., 35, 801–824, 1971.

9 Heiss, J., Condon, D.J., McLean, N. and Noble, S.R.: $^{238}\text{U}/^{235}\text{U}$ systematics in terrestrial
10 uranium-bearing minerals, Science, 335, 1610-1614, 2012.

11 Kallel, N., Paterne, M., Duplessy, J.-C., Vergnaud-Grazzini, C., Pujol, C., Labeyrie, L.,
12 Arnold, M., Fontugne, M. and Pierre, C.: Enhanced rainfall in the Mediterranean region
13 during the last sapropel event, Oceanol Ac., 20, 697-712, 2012.

14 Kallel N, Duplessy J-C, Labeyrie L, Fontugne M, Paterne M, and Montacer M.:
15 Mediterranean
16 pluvial periods and sapropel formation during the last 200,000 years, Palaeogeography,
17 Palaeoclimatology, Palaeoecology, 157, 45–58, 2000.

18 Kim, S.T. and O’Neil, J.R.: Equilibrium and nonequilibrium oxygen isotope effects in
19 synthetic carbonates. Geochim Cosmochim Ac., 61-16, 3461–3475, 1997.

20 Kopp, R.E., Simons, F.J., Mitrovica, J.X., Maloof, A.C., and Oppenheimer, M.: Probabilistic
21 assessment of sea level during the last interglacial stage, Nature, 462, 863–867, 2009.

22 Kolodny, Y., Stein, M. and Machlus, M.: Sea-rain-lake relation in the Last Glacial East
23 Mediterranean revealed by d^{18}O - d^{13}C in Lake Lisan aragonites, Geochim Cosmochim Ac.,
24 69, 4055-4060, 2005.

25 Lachniet, M.S.: Climatic and environmental controls on speleothem oxygenisotope values,
26 Quaternary Sci. Rev., 28, 412–432, 2009

27 Lisker, S., Vaks, A. and Bar-Matthews, M.: Late Pleistocene palaeoclimatic and
28 palaeoenvironmental reconstruction of the Dead Sea area (Israel), based on speleothems and
29 cave stromatolites, Quaternary Sci. Rev., 29, 1201–1211, 2010.

1 Litt, T., Pickarski, N., Heumann, G., Stockhecke, M., and Tzedakis, P.C.: A 600,000 year
2 long continental pollen record from Lake Van, eastern Anatolia (Turkey). *Quaternary Sci.*
3 *Rev.* 104, 30-41, 2014.

4 Lourens, L. J., Antonarakou, A., Hilgren, F. J., Van Hoof, A.A.M., Vergnaud-Grazzini, C.,
5 and Zachariasse W.J.: Evaluation of the Plio-Pleistocene astronomical timescale.
6 *Paleoceanography*, 11, 391–413, 1996.

7 McDermott, F.: Paleo-climate reconstruction from stable isotope variations in speleothems: a
8 review. *Quaternary Sci. Rev.*, 23, 901–918, 2004.

9 Moller, T., Schultz, H., Hamann, Y., Dellwig, O., and Kucera, M.: Sedimentology and
10 geochemistry of an exceptionally preserved last interglacial sapropel S5 in the Levantine
11 Basin (Mediterranean Sea). *Mar. Geol.*, 291–294, 34–48, 2012.

12 NEEM community members: Eemian interglacial reconstructed from a Greenland folded ice
13 core. *Nature* 493, 489- 494, 2013.

14 Nehme C., Verheyden S., Noble S., Farrant A., Delannoy J.J.: Contribution of an accurate
15 growth rate reconstruction of a stalagmite from the Kanaan Cave-Lebanon to the
16 understanding of humidity variations in the Levant during the MIS 5. *Geol. Belg.*, 18, 2-4,
17 102-108, 2015.

18 Neugebauer, I., Schwab, M.J., Waldmann, N.D., Tjallingii, R., Frank, U., Hadzhiivanova, E.,
19 Naumann R., Taha, N., Agnon, A., Enzel, Y., and Brauer, A.: Hydroclimatic variability in the
20 Levant during the early last glacial (~117–75 ka) derived from micro-facies analyses of deep
21 Dead Sea sediments. *Clim. Past Discuss.*, 11, 3625–3663, 2015.

22 North Greenland Ice Core Project members: High-resolution climate record of Northern
23 Hemisphere climate extending into the Last Interglacial period. *Nature* 431, 147-151, 2004.

24 Otto-Bliesner, B.L., Rosenbloom, N., Stone, E.J., McKay, N.P., Lunt, D.J., Brady, E.C.,
25 Overpeck, J.T.: How warm was the Last Interglacial? New model-data comparisons.
26 *Philosophical Trans. R. Soc. A Math. Phys. Eng. Sci.* 371, 2013

27 Parton, A., White, T.S., Parker, A.G., Breeze, P.S., Jennings, R., Groucutt, H.S., and
28 Petraglia, M.D.: Orbital-scale climate variability in Arabia as a potential motor for human
29 dispersals, *Quaternary Int.*, 1-19, 2015

30 Petit-Maire, N., Carbonel, P., Reyss, J.L., Sanlaville, P., Abed, A., Bourrouilh, R., Fontugne,

1 M., and Yasin, S.: A vast Eemian palaeolake in Southern Jordan (29°N), *Global Planet.*
2 *Change*, 2010.

3 Republic of Lebanon: Policy Note on Irrigation Sector Sustainability. Report No. 28766– LE,
4 the World Bank, Middle-East and North Africa Region, 2003.

5 Rohling, E.J., Cane, T.R., Cooke, S., Sprovieri, M., Bouloubassi, I., Emeis, K.C., Schiebel,
6 R., Kroon, D., Jorissen, F.J., Lorre, A., and Kemp, A.E.S.: African monsoon variability
7 during the previous interglacial maximum, *Earth Planet Sci. Lett.* 202, 61–75, 2002.

8 Rohling, E.J., M. Sprovieri, T. Cane, J. S. L. Casford, S. Cooke, Bouloubassi I., Emeis K.C.,
9 Schiebel R., Rogerson M., Hayes A., Jorissen F.J., Kroon D.: "Reconstructing past planktic
10 foraminiferal habitats using stable isotope data: a case history for Mediterranean sapropel S5."
11 *Marine Micropaleontology* 50,1, 89-123, 2015.

12 Rohling E.J., Marino G., and Grant, K.M.: Mediterranean climate and oceanography, and the
13 periodic development of anoxic events (sapropels). *Earth Sci. Rev.* 143, 62-97, 2015.

14 Rossignol-Strick, M.: Sea-land correlation of pollen records in the eastern Mediterranean for
15 the glacial-interglacial transition: biostratigraphy versus radiometric time-scale. *Quaternary.*
16 *Sci. Rev.*, 14, 9, 893-915, 1995

17 Rossignol-Strick, M. and Paterne, M.: The Holocene climatic optimum and pollen records of
18 sapropel 1 in the Eastern Mediterranean, 9000–6000 BP, *Quaternary Sci Rev*, 18, 515–530,
19 1999.

20 Rozanski, K., Araguas, L., and Gonfiantini, R.: Isotopic patterns in modern global
21 precipitation, in: *Climate Change in Continental Isotopic Record*, Geophysical Monograph
22 Series, Washington DC, AGU, 78, 1–37, 1993.

23 Saad, Z., Slim, K., Ghaddar, A., Nasreddine, M. and Kattan, Z., Composition chimique des
24 eaux de pluie du Liban; Chemical composition of rain water in Lebanon; *Journal Europeen*
25 d'Hydrologie, 31-2, 105-120, 2000.

26 Saaroni, H., Ziv, B., Bitan, A., Alpert, P.: Easterly wind storms over Israel. *Theor. Appl.*
27 *Climatol.* 59, 61–77, 1998.

28 Schmiedl, G., Mitschele, A., Beck, S., Emeis, K.C., Hemleben, Ch., Schultz, H., Sperling, M.,
29 and Weldeab, S.: Benthic foraminiferal record of ecosystem variability in the eastern
30 Mediterranean Sea during times of sapropel S5 and S6 deposition, *Palaeogeog. Palaeoclim.*

1 Palaeoecol., 190, 139–164, 2003.

2 Scrivner, A.E., Vance, D., and Rohling, E.J.: New neodymium isotope data quantify Nile
3 involvement in Mediterranean anoxic episodes. *Geology*, 32, 565–568, 2004.

4 Shackleton, N.J., Chapman, M., Sanchez Goni, M.F., Pailler, D., and Lancelot, Y.: The
5 classic marine isotope substage 5e, *Quaternary Res.*, 58, 14–16, 2002.

6 **Shtokhete**, M., Sturm, M., Brunner, I., Schmincke, H.-U., Sumita, M., Kipfer, R., Cukur, D.,
7 Kwiecien, O., and Anselmetti, F.: Sedimentary evolution and environmental history of Lake
8 Van (Turkey) over the past 600,000 years, *Sedimentology*, 61, 1830- 1861, 2014.

9 Torfstein A., Goldstein, S.L., Kushnir, Y., Enzel, Y., Haug, G., Stein, M. Dead Sea drawdown
10 and monsoonal impacts in the Levant during the last interglacial. *Earth Planet. Sci. Lett.* 412,
11 235-244, 2015.

12 Vaks, A., Bar-Matthews, M., Ayalon, A., Schilman, B., Gilmour, M., Hawkesworth C.J.,
13 Frumkin A., Kaufman A., and Matthews A.: Paleoclimate reconstruction based on the timing
14 of speleothem growth, oxygen and carbon isotope composition from a cave located in the
15 ‘rain shadow’, Israel, *Quaternary Res.*, 59, 182–193, 2003.

16 Vaks, A., Bar-Matthews, M., Ayalon, A., Matthews, A., Frumkin, A., Dayan, U., Halicz, L.,
17 Almogi-Labin, A., and Schilman, B.: Paleoclimate and location of the border between
18 Mediterranean climate region and the Saharo-Arabian desert as revealed by speleothems from
19 the northern Negev Desert, Israel. *Earth Planet. Sci. Lett.*, 249, 384-399, 2006.

20 Vaks, A., Bar-Matthews, M., Matthews A., Ayalon, A. and Frumkin, A.: Middle-Late
21 Quaternary paleoclimate of northern margins of the Saharan-Arabian Desert: reconstruction
22 from speleothems of Negev Desert, Israel. *Quaternary Sci. Rev.*, 29, 2647-2662, 2013.

23 Van Geldern R. and Barth Johannes A.C.: Optimization of instrument setup and post-run
24 corrections for oxygen and hydrogen stable isotope measurements of water by isotope ratio
25 infrared spectroscopy (IRIS), *Limnol. Oceanogr. Methods*, 10, 2012.

26 Verheyden, S., Nader, F.H., Cheng, H.J., Edwards, L.R., and Swennen, R.: Paleoclimate
27 reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from the
28 Jeita cave, Lebanon. *Quaternary Res.*, 70, 368–381, 2008.

29 Verheyden S., Nehme C., Nader F.H., Farrant A.R., Cheng H., Noble S.R., Sahy D., Edwards
30 R.L., Swennen R., Claeys Ph., Delannoy JJ.: X. The Lebanese speleothems and the Levant

1 palaeoclimate. In: Bar Josef Y. & Enzel Y. Quaternary Environments, Climate Change, and
2 Humans in the Levant. Cambridge University Press, UK, 2015.

3 Waldmann, N., Stein, M., Ariztegui, D., and Starinsky, A.: Stratigraphy, depositional
4 environments and level reconstruction of the last interglacial Lake Samra in the Dead Sea
5 basin. *Quaternary Res.*, 72, 1-15, 2009.

6 Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C. and Dorale, J.A.: A
7 high-resolution absolute-dated Late Pleistocene monsoon record from Hulu cave, China.
8 *Science*, 294, 2345–2348, 2001.

9 Zanchetta, G., Drysdale R.N., Hellstrom JC, Fallick, A.E., Isola, I., Gaganf, M.K., and
10 Pareschi, M.T.: Enhanced rainfall in the Western Mediterranean during deposition of sapropel
11 S1: Stalagmite evidence from Corchia cave (Central Italy). *Quaternary Sci. Rev.*, 26, 279–
12 286, 2007.

13 Ziegler, M., Tuenter, E., Lourens, L.J.: The precession phase of the boreal summer monsoon
14 as viewed from the eastern Mediterranean (ODP Site 968). *Quaternary Sci. Rev.* 29, 1481–
15 1490, 2010.

16

1 Table 1. U-Th results of K1-2010 dating.

Sample Number	Distance from top (cm)	U (ppm)	^{232}Th (ppb)	$[^{230}\text{Th}/^{232}\text{Th}]$ (measured)	$[^{230}\text{Th}/^{238}\text{U}]$ (corrected)	$[^{234}\text{U}/^{238}\text{U}]$ (corrected)	ρ_{08-48}	Age uncorrected (ka)	Age corrected (ka)	Age BP_{1950} corrected (ka)	$[^{234}\text{U}/^{238}\text{U}]_{\text{initial}}$
KA STM 1-3	10.0	0.05971	0.7545	108.5	0.4486 ± 0.56	0.8439 ± 0.33	0.27	85.83 ± 0.70	85.36 ± 0.78	85.30 ± 0.78	0.8014 ± 0.50
KA STM 1-18	31.0	0.04279	0.5226	112.1	0.4546 ± 0.62	0.8478 ± 0.29	0.27	86.92 ± 0.79	86.46 ± 0.85	86.40 ± 0.85	0.8057 ± 0.41
KA STM 1-12	42.0	0.04502	0.1626	367.1	0.4352 ± 0.34	0.8478 ± 0.15	0.08	80.94 ± 0.45	80.81 ± 0.46	80.74 ± 0.46	0.8088 ± 0.25
KA STM 1-11	58.0	0.07340	0.2089	516.7	0.4829 ± 0.30	0.8532 ± 0.13	0.06	94.27 ± 0.50	94.21 ± 0.51	94.15 ± 0.51	0.8085 ± 0.20
KA STM 1-17	69.0	0.05857	0.3388	252.3	0.4824 ± 0.34	0.8530 ± 0.15	0.22		94.04 ± 0.53	93.98 ± 0.53	0.8083 ± 0.25
KA STM 1-10	89.0	0.05592	0.7053	121.9	0.5037 ± 0.45	0.8579 ± 0.21	0.44	100.41 ± 0.61	99.94 ± 0.69	99.88 ± 0.69	0.8116 ± 0.25
KA STM 1-2	114.0	0.06580	0.8400	124.6	0.5208 ± 0.51	0.8716 ± 0.31	0.26	103.03 ± 0.90	102.57 ± 0.96	102.50 ± 0.96	0.8284 ± 0.48
KA STM 1-9	129.0	0.07067	0.8548	139.8	0.5541 ± 0.40	0.8809 ± 0.19	0.42	112.31 ± 0.68	111.88 ± 0.74	111.81 ± 0.74	0.8367 ± 0.24
KA STM 1-8	140.0	0.05426	2.676	35.1	0.5523 ± 0.67	0.8804 ± 0.34	0.72		111.37 ± 0.95	111.31 ± 0.95	0.8363 ± 0.48
KA STM 1-5	158.0	0.05155	1.207	74.1	0.5551 ± 2.47	0.8616 ± 1.32	0.86		117.75 ± 2.98	117.68 ± 2.98	0.8071 ± 1.86
KA STM 1-16	159.0	0.04663	0.8603	96.9	0.5978 ± 0.68	0.8602 ± 0.33	0.31	137.62 ± 1.91	136.91 ± 1.94	136.85 ± 1.94	0.7942 ± 0.59
KA STM 1-6	167.0	0.07508	3.488	37.5	0.5665 ± 1.0	0.8298 ± 0.56	0.85	135.85 ± 0.97	133.99 ± 1.63	133.93 ± 1.63	0.7515 ± 0.93
KA STM 1-15	169.0	0.1179	0.3388	555.5	0.5525 ± 0.30	0.8319 ± 0.17	0.04	126.63 ± 0.90	126.51 ± 0.90	126.44 ± 0.90	0.7598 ± 0.32
KA STM 1-5	174.0	0.1425	1.623	147.2	0.5521 ± 0.33	0.8317 ± 0.19	0.17		126.37 ± 0.92	126.31 ± 0.92	0.7596 ± 0.36
KA STM 1-4	180.0	0.1549	0.5079	520.1	0.5497 ± 0.37	0.8297 ± 0.18	0.47	126.47 ± 0.77	126.02 ± 0.83	125.96 ± 0.83	0.7570 ± 0.26
KA STM 1-14	192.0	0.1144	0.5855	321.1	0.5480 ± 0.62	0.8291 ± 0.33	0.76		125.50 ± 1.03	125.44 ± 1.03	0.7564 ± 0.34
UMD120325-206	199.0	0.0630	0.1006	1058.1	0.5440 ± 0.20	0.8188 ± 0.23		127.43 ± 1.28	127.36 ± 1.27	127.30 ± 1.27	0.7404 ± 0.39
KA STM 1-13	206.0	0.1241	8.566	34.6	0.7837 ± 0.90	0.9177 ± 0.58	0.89	228.61 ± 2.90	226.14 ± 3.28	226.08 ± 3.28	0.8442 ± 1.18
					0.7787 ± 1.97	0.9157 ± 1.3	0.96		223.21 ± 4.78	223.15 ± 4.78	0.8418 ± 0.26

2

3 Data in **bold** calculated using average continental detritus U-Th composition: $(^{230}\text{Th}/^{238}\text{U}) = 1.0 \pm 50\%$, $(^{232}\text{Th}/^{238}\text{U}) = 1.2 \pm 50\%$, $(^{234}\text{U}/^{238}\text{U}) = 1 \pm 50\%$.4 Data in **italic** calculated using detritus U-Th composition of Kaufmann et al. 1998: $(^{230}\text{Th}/^{238}\text{U}) = 0.9732 \pm 50\%$, $(^{232}\text{Th}/^{238}\text{U}) = 0.5407 \pm 50\%$, $(^{234}\text{U}/^{238}\text{U}) = 1 \pm 50\%$.5 Data in underline are uncorrected activity ratios

6

7

8

9

10

1
 2
 3 Figure 1. The Eastern Mediterranean showing the location of palaeoclimate records including
 4 this study and the major wind trajectories (Saaroni et al., 1998), including the Mid-Latitude
 5 Westerlies, and occasional incursions from the Sharav cyclone and the Sharqiya. The north-
 6 south and east-west precipitation gradients are indicated by dashed dark lines (isohyets in
 7 mm). CL: Cyprus Low. The location of Kanaan Cave and other Levantine paleoclimatic
 8 records spanning the MIS 5 period cited in the text, are numbered 1 to 14. Records derived
 9 from marine studies are indicated by points, lake level reconstructions and pollen data by
 10 rectangles and speleothems by stars. (1) Core MD 70-41 (Emeis et al., 2003), (2) Core LC21
 11 (Grant et al., 2012), (3) Core ODP site 967 (Rohling et al., 2002; 2004; Emeis et al., 2003;
 12 Scrivner et al., 2004), (4) Core ODP site 968 (Ziegler et al., 2010), (5) Kanaan Cave, (6)
 13 Peqiin Cave (Bar-Matthews et al., 2003), (7) West Jerusalem Cave (Frumkin et al., 1999,
 14 2000), (8) Soreq Cave (Bar-Matthews et al., 2000; 2003) (9) Tsavoa Cave (Vaks et al., 2006;
 15 2013), (10) Negev composite speleothems from Ashalim, Hol-Zakh and Ma'ale-ha-Meyshar
 16 caves (Vaks et al., 2010), (11) Lakes of the Dead Sea basin (Kolodny et al., 2005; Waldmann
 17 et al., 2009; Lisker et al., 2010), (12) Lake formation at Mud
 18 awwara (Petit-Maire et al., 2010); (13) Yammouneh Paleolake (Develle et al., 2011; Gasse et
 19 al., 2011; 2015), (14) Lake Van (Shtokhete et al., 2014, Litt et al., 2014).

Figure 2. (A) Location map of Kanaan cave and the continental records in the Levant. (A) Geological map of the Antelias region (western flank of central Mount-Lebanon) (Dubertret, 1955). (B) Photo of K1-2010 stalagmite in the Collapse Chamber (C) Geomorphological section of Kanaan Cave showing the location of the stalagmite K1-2010 (Nehme, 2013)

Stalagmite K1-2010 (Kanaan cave)

1

2 Figure 3: Cut face of the K1-2010 speleothem and sketch showing the position of the
3 Uranium series age data. In Segment 1, the dashed line indicates detrital layers and U/Th
4 shows much more uncertainties than those in the Segment 2. The third age from the base of
5 the segment 1 is an outlier. Segment 1 is tilted from its initial position probably due to the
6 **suffosion** of clay deposits in the Collapse Chamber that caused the block on which the
7 speleothem grew to subside. Red lines indicate discontinuities.

8

1
2 Figure 4: Growth rate of the stalagmite with respect to distance (in cm) from the top, using
3 OxCal Bayesian statistics model between two consecutive dates except in the middle part
4 where a discontinuity (hiatus) is identified.
5

1
2 Figure 5. $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ profiles (values are in ‰ VPDB) of samples microdrilled along the
3 growth axis of the K1-2010 stalagmite (Kanaan cave, Lebanon).
4

1
2
3 Figure 6. Oxygen versus carbon stable isotopic composition (values are in \textperthousand V-PDB) of
4 samples microdrilled along the growth axis of the K1-2010 stalagmite (Kanaan cave,
5 Lebanon). The present-day $\delta^{18}\text{O}$ value for the precipitated calcite was calculated using the
6 Kim & O'Neil (1997) equilibrium equation. The $\delta^{13}\text{C}$ value was obtained from the Holocene
7 $\delta^{13}\text{C}$ mean value of Jeita cave (Verheyden et al., 2008). This cave, located just 20 km to the
8 north has very similar climate, vegetation geology, soil type, and altitude (98 m asl) to
9 Kanaan Cave.

10

Figure 7. A- Kanaan Cave $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ profiles compared to continental records in the Levant. From North to South Levant: (a) Yammouneh AP %, north Lebanon (Gasse et al., 2015), (b) Kanaan carbon and oxygen isotopic profile (this study), (c) Peqiin Cave (Bar-Matthews et al., 2003), (d) Soreq Cave (Grant et al, 2012), (e) Tzavoa Cave (Vaks et al., 2006), (f) lake Samra paleolevels in the Dead Sea Basin (Waldmann et al., 2009). B- Kanaan Cave $\delta^{18}\text{O}$ profile compared to global and regional records in the Eastern Mediterranean Basin: (g) Summer insolation at 30°N and orbital eccentricity forcing (Berger and Loutre, 1991), (h) NGRIP-NEEM indicating the volume of the arctic Ice sheet (NGRIP Members, 2004; + NEEM community members, 2013), (i) Eastern Mediterranean $\delta^{18}\text{O}_{G.ruber}$ in core LC21 (Grant et al., 2012), (j) Mediterranean sapropel events (Ziegler et al., 2010) and the Nile flooding event (Scrivner et al., 2004), (l) EMS Mediterranean $\delta^{18}\text{O}_{G.ruber}$ in ODP site 967 and in MD 70-41 site resampled at 1 ka interval (Emeis et al., 2003).