We are once again grateful to the reviewers for their comments. Three points addressed
by the first reviewer have been taken into account in the revision of the manuscript.

Point-by point changes in the manuscript based on the first reviewers’ comments:

- I noticed that the results for India in Table 2 have changed compared to the previous version
of the manuscript. Is this because a different area is used for the averaging? If so, why was a
different area taken?

We have forgotten to mention that we have chosen a larger region (70°-100°E;10°N-
30°N) in the revised manuscript to cover a greater area of the land mass of the Indian
monsoon instead of the smaller region before (70°-100°E;10°N-25°N) which covered
more ocean than land. This is already included in the revised manuscript on page 5,
line 393 and in the caption of Table 2 on page 6. The conclusions were not affected.

- p. 6, line 496. Despite the revision, it is still vague how the 14 experiments have been
combined to produce the correlation maps presented in Figure 9 and 10. Please explain.

We have further tried to clarify our method on page 6, lines 492-506:

In order to evaluate the climatic effects of obliquity, precession and GHG
concentrations, linear correlations between the individual forcing parameters and
climatic fields (surface temperature, precipitation) were calculated from the 14 time
slice experiments (13 interglacial time slices plus PI). To this end, each climate variable
(temperature, precipitation) was averaged over the last 100 years of each experiment.
Linear correlation coefficients between a climatological variable and a forcing
parameter (obliquity, precession, GHG radiative forcing) were calculated at each grid
point. Significance of correlations was tested by a two-sided Student’s t test with 95%
confidence level. Total radiative forcing from CO2, CHas, and N20 in each experiment was
calculated based on a simplified expression as given in Table. 3 (IPCC, 2001).

- p. 6, line 503. | suggest to provide the simple expression that was used to calculate the GHG
radiative forcing.

The simplified expressions are included as Table 3 on page 7 and mentioned on page
6, line 505.

Trace gas  Simplified expression Radiative forcing, AF (Wm ™) Constants
CO; AF=a(g(C)-g(Cq)) @=3.35
where g(C)= In(1+1.2C+0.005C% +1.4x1075C?)
CH, AF=a (VM- v/ Mg)-(F(M Ng)-f(Mp,Ng)) a=0.036
N,O AF=a (VN- /Np)-(F(Mg,N)-f(Mg,Ny)) a=0.12

where f(M,N)=0.47 In[1+2.01x 1075 (MN)*75+5.31x 10~ 15M (MN) 192

Table 3. Simplified expressions for calculation of radiative forcing due to COz, CHy, N20. C is CO; in ppmv, M is CHy in ppbv, N is N0
in ppbv. The subscript 0 denotes the unperturbed GHG concentration of PI.
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Using the Community Climate System Model version:3 hypothesized that this obliquity-induced high-latituderm-
(CCsM3) including a dynamic global vegetation model aseting may have prevented a glacial inception at that time.
of 13 time slice experiments was carried out to study global
climate variability between and within the Quaternary tinte
glacials of Marine Isotope Stages (MIS) 1, 5, 11, 13, and:451 Introduction
The selection of interglacial time slices was based diedi
ent aspects of inter- and intra-interglacial variabilitdeas-« The Quaternary period is characterized by the cyclic growth
sociated astronomical forcing. Thefdirent éfects of oblig-« and decay of continental ice sheets associated with global
uity, precession and greenhouse gas (GHG) forcing on glebagnvironmental changes (e.g., Lisiecki and Raymo, 2005;
surface temperature and precipitation fields are illuneidat Tzedakis et al., 2006; Jouzel et al., 2007; Lang andffVol
In most regions seasonal surface temperature anomalies c&911). While it is commonly accepted that the transitions
largely be explained by local insolation anomalies indueedPetween glacial and interglacial stages are ultimatety- tri
by the astronomical forcing. Climate feedbacks, however,gered by varying astronomical insolation forcing (Hayslet a
may modify the surface temperature response in specifie re1976), climate research is just beginning to understand the
gionS, most pronounced in the monsoon domains and thes pdnternal climate feedbacks that are required to shift thehEa
lar oceans. GHG forcing may also play an important role«for System from one state to the other (e.g., van Nes et al., 2015)
seasonal temperature anomalies, especially in highdatity The astronomical forcing, with its characteristic periads
and early Brunhes interglacials (MIS 13 and 15) when G#Gca. 400 and 100 kyr (eccentricity), 41 kyr (obliquity), ared ¢
concentrations were much lower than during the later irter-19 and 23 kyr (precession) as in Berger (1978), also acts as
glacials. High-versus-low obliquity climates are genlgrai an external driver for long-term climate change within the i
characterized by Strong Warming over the Northern Heqmi-terglaCials (le the |0ng'term intra—interglaCial climavari-
sphere extratropics and slight cooling in the tropics durn ablllty) and |Ik6|y contributes to interglacial diversi!s'mce
boreal summer. During boreal winter, a moderate cootingthe evolution of astronomical parameterietis between all
over large portions of the Northern Hemisphere continentsQuaternary interglacial stages (cf. Tzedakis et al., 26@9;
and a strong warming at high southern latitudes is found.and Berger, 2015). Understanding both interglacial clenat
Beside the well-known role of precession, a significant relediversity and intra-interglacial variability helps to iesate
of obliquity in forcing the West African monsoon is idem- the sensitivity of the Earth system tofigirent forcings and
tified. Other regional monsoon systems are less sensitive di© assess the rate and magnitude of current climate change
not sensitive at all to obliquity variations during inteagials.«: relative to natural variability.
Moreover, based on two specific time slices (394 and 615kyr Numerous interglacial climate simulations have been per-
BP) it is explicitly shown that the West African and Indian formed in previous studies using Earth system models of in-
monsoon systems do not always vary in concert, challengtermediate complexity (e.g., Kubatzki et al., 2000; Crucifi
ing the concept of a global monsoon system at astronomicaénd Loutre, 2002; Loutre and Berger, 2003; Yin and Berger,
timescales. High obliquity can also explain relatively mar 2012, 2015). While the present and the last interglacial
Northern Hemisphere high-latitude summer temperaturessdehave also been extensively investigated with fully coupled
spite maximum precession around 495 kyrBP (MIS 13). kisatmosphere-ocean general circulation models (e.g., Braco
7 not et al., 2007; Lunt et al., 2013), earlier interglaciatipe
Correspondence to: Rima Rachmayani = 0ds have received much less attention by climate modellers.
(rrachmayani@marum.de) 2 Coupled general circulation model (CGCM) studies of ear-
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lier interglacial climates have recently been performed.fo tant insight into the climate system’s response to astrénom
Marine Isotope Stage (MIS) 11 (Milker et al., 2013; Kleinen cal forcing. However, since this response may be non-ljnear
et al.,, 2014) and MIS 13 (Muri et al., 2013). Using the using extreme values of astronomical parameters in ideal-
CGCM CCSM3 (Community Climate System Model versign ized experiments may hide important aspects of astronomi-
3), Herold et al. (2012) presented a set of interglacial aten. cal forcing. Obviously, realistically forced experimehtsve
simulations comprising the interglaciations of MIS 1, 5;:9, a stronger potential for model-data comparison.
11 and 19. Their study, however, focussed on peak inter- Special focus is on the sensitivity of the West African and
glacial forcing (i.e. Northern Hemisphere summer occgrtin Indian monsoon systems to obliquity and precession forcing
at perihelion) and intercomparison of interglacials (inger-.,s  In particular, the applicability of the global monsoon cept
glacial diversity) only. In particular, they found that,me.; (Trenberth et al., 2000; Wang et al., 2014) will be tested for
pared to the other interglacials, MIS 11 exhibits the clbses astronomical timescales.
resemblance to the present interglacial, especially durgs
real summer.

Here, we present a flierent and complementary CGCM 2 Experimental setup
(CCSM3) study which takes intra-interglacial climate vari
ability into account by simulating two or more time slices 2.1 Model description
for each interglacial stage of MIS 1, 5, 11, 13, and 15. For . .
the interglacial of MIS 5 (Last Interglacial, MIS 5e; ca. 130 We use the fully coupleq climate model CCSM3 with the_
115 kyr ago), proxy data suggest a peak global mean Jfémgtmogphere, ocean, sea-ice and Iand-surfape components in
perature of about“lC higher than during the pre-industril teractively connected byqflux coqpler (Collins et al., 2006
period (e.g., Otto-Bliesner et al., 2013; Dutton et al., 0% We apply the low-resolution version of the model (Yeager

The maximum global mean sea-level has been estimat&d 6t al., 2006) which enables us to simulate a large set of time
6-9 m above the present-day level (Kopp et al., 2009; Duttorslices. In this version, the resolution of the atmosphere is

and Lambeck, 2012; Dutton et al., 2015). The interglaciétVongen by T31 spectral truncation (3. 78ansform grid) with
MIS 11 was ur’1usuaI’Iy long about 30 000 years (ca. 42539 6 layers, while the ocean model has a nominal horizontal
i ’ ' resolution of 3 (as has the sea-ice component) with 25 lev-

r ago). Global average temperatures of MIS 11 are hitjhl ; - .
?rl]ce?ta)in but a peak global rrr:ean temperature of ug (b% yels in the vertical. The land model shares the same horizon-

relative to pre-industrial cannot be ruled out (Lang andff\6t E:.ll grid \;]Vith. thebgtmospﬁere_ and ir?dl;]dzs Icomptljner:stis for
2011; Dutton et al., 2015). Maximum global mean sea-I&¢el?'09€OPNYSICS, biogeochemistry, the hydrological cyce a

may have been 6-13 m higher than today (Raymo and Mfﬁo_well as a Dynamic Global Vegetation Model (DGVM) based

vica, 2012; Dutton et al., 2015). Interglacials before MIS*1 En the Lunld-Fég':)sf.ag-Jena (LE‘JL)'D.GV% ézitChTer;[ alt; é?/%ls
(early Brunhes interglacials), like MIS 13 and 15, are gefier evis et al., 2004; Bonan and Levis, 20 ): €

ally characterized by lower global mean temperaturesefafg pre_dlcts the d|str|bgt|on of 10 pla_nt fu_nctlonal types (BFT
continental ice-sheets, lower global sea level and lowaoaf” which are difer.ent-|atec.i by ph_yS|oIog|caI, morphologlcal,
spheric greenhouse gas (GHG) concentrations relativestd thphenologlcal, bioclimatic, and fire-response attributeis

more recent interglacials (e.g., Yin and Berger, 2010; Lléfnget al., 2004). In order to improve the simulation of land-
and WO, 2011; Dutton et al., 2015). w0 surface hydrology and hence the vegetation cover, new pa-

The goal of this study is to disentangle tiéeets of oblig* rameterizations for canopy interception and soil evajpamat
uity, precession and GHG on global surface climate. Burvere implemented into the land component (Oleson et al.,
’ 2008; Handiani et al., 2013; Rachmayani et al., 2015). PFT

selection of interglacial time slices takes into accourfit ‘ti lation densiti d llv. while the ki
ferent aspects of inter- and intra-interglacial variapiind® P°PY ation densities are restored annually, while the

associated astronomical forcing. As such, our approaehssdifatmosphere models are integrated with a 30 minutes time

fers from and complements previous model studies that*fo>'€P-:

cussed on peak interglacial forcing and intercomparison of

interglacials (Yin and Berger, 2012; Herold etal., 2012)eT, 2 5  setup of experiments

selection of the time slices is described in detail in Sectio

2.3. s 1O Serve as a reference climatic state, a standard pre-
In contrast to previously performed climate model exper-industrial (PI) control simulation was carried out follow-

iments with idealized astronomical forcing, in which oblig ing PMIP (Paleoclimate Modelling Intercomparison Prgject

uity and precession have usually been set to extreme valueguidelines with respect to the forcing (e.g., Braconnot et a

(e.g., Tuenter et al., 2003; Mantsis et al., 2011, 2014;.&rb2007). The Pl boundary conditions include astronomical pa-

et al., 2013; Bosmans et al., 2015), our analyzes are hase@dmeters of 1950 AD, atmospheric trace gas concentrations

on realistic astronomical configurations. We note that-real from the 18th century (Table 1) as well as pre-industrial dis

istic and idealized forcing experiments are equally imgotits tributions of atmospheric ozone, sulfate aerosols, and car

and complementary. ldealized experiments provide impor-fbonaceous aerosols (Otto-Bliesner et al., 2006). The solar

Climate of the Past www.clim-past.net
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constant is set to 1365Wrh The PI control run was intex the past using realistic forcings. In the same vein, tineesli
grated for 1000 years starting from modern initial condisig: for MIS 13 have been chosen. Obliquity is at maximum at
except for the vegetation which starts from bare soil. 2. 495kyrBP and at minimum at 516 kyrBP, while precession
In total, 13 interglacial time slice experiments were @i is almostidentical. Unlike the 394 and 416 kyrBP time slices
out, all branching ff from year 600 of the PI spin-up run ard of MIS 11 which are characterized by intermediate preces-
running for 400 years each. Note that the present study.@nlgion values, precession is at maximum at 495 and 516 kyrBP,
focusses on the surface climate, for which this spin-up tinei.e. Northern Hemisphere summer occurs at aphelion caus-
should be sfiicient, whereas the deep ocean usually needsng weak insolation forcing (Yin et al., 2009). In addition,
more time to adjust to changes in forcing (Renssen etzal.the 504 kyrBP time slice was picked because of peak North-
2006). 20 ern Hemisphere summer insolation forcing, while obliquity
Boundary conditions for the selected time slices which-arehas an intermediate value (Fig. 1).
spanning the last 615 kyr comprise astronomical parameters Finally, two time slice experiments were performed
(Berger, 1978) and GHG concentrations as given in Table 1for MIS 15 to assess the climatic response to minimum
while other forcings (ice sheet configuration, ozone distris (579 kyrBP) and maximum (609 kyrBP) precession. Ac-
tion, sulfate aerosols, carbonaceous aerosols, solatartjpis cordingly, Northern Hemisphere summer insolation is near
were kept as in the PI control run. The mean of the last200maximum and minumum at 579 and 609 kyrBP, respec-
simulation years of each experiment was used for analysis. tively. In addition, a third MIS 15 experiment was carried ou
We note that a fixed calendar based on a 365-day year i§615 kyrBP) with insolation forcing in between the two oth-
used for all experiments (Joussaume and Braconnot, 399%&rs (Fig. 1). Moreover, the 615kyrBP time slice has a very
Chen et al., 2011). The greatest calender-biases are kmowspecial seasonal insolation pattern as we will see in the nex
to occur in boreal fall, whereas th@ects in boreal summes section. All three MIS 15 time slices coincide with minimum
and winter (the seasons discussed in the present study) a0 values (Lisiecki and Raymo, 2005).
generally small (e.g., Timm et al., 2008). 252 Table 1 summarizes the GHG forcing of all experiments
s With values based onilthi et al. (2008), Loulergue et al.
2.3 Selection of interglacial time slices =4 (2008), and Schilt et al. (2010) using the EPICA Dome C
»s  timescale EDC3, except for the MIS 1 and MIS 5 experi-
For MIS 1, the mid-Holocene time slice of 6 kyrBP usig ments, where GHG values were chosen following the PMIP
standard PMIP forcing (Braconnot et al., 2007) was cgm-guidelines (see above). We note that due to the uneven-distri
plemented by an early-Holocene 9 kyrBP simulation whenbution of methane sources and sinks over the latitudes, val-
Northern Hemisphere summer insolation was close to maxues of atmospheric Cftoncentration derived from Antarc-
imum (Fig. 1). Two time slices, 125 and 115kyrBP, were tic ice cores present a lower estimate of global ,Gién-
also chosen for the last interglacial (MIS 5e). Similatsto centration. We further note that some results from the MIS
9kyrBP, the 125kyrBP time slice is also characterizedsby1 (6 and 9kyrBP), MIS 5 (125kyrBP), and MIS 11 (394,
nearly peak interglacial forcing, although the MIS 5 insala 405, and 416 kyrBP) experiments were previously published
tion forcing is stronger due to a greater eccentricity of.the(Lunt et al., 2013; Milker et al., 2013; Kleinen et al., 2014;
Earth’s orbit. Moreover, the global benthi¢®0 stack is.s Rachmayani et al., 2015).
at minimum around 125 kyrBP (Lisiecki and Raymo, 2005).
By contrast, boreal summer insolation is close to miningﬁtgmz'4
at 115kyrBP, which marked the end of MIS 5e (Fig. 1).
GHG concentrations for the MIS 5 time slices were takem-asAnnual cycles of the latitudinal distribution of insolatiat
specified by PMIP-3 (Lunt et al., 2013). »s the top of the atmosphere (as anomalies relative to PI) are
For the unusually long interglacial of MIS 11 (e.g., Milker shown in Fig. 2 for each experiment. The insolation pat-
et al., 2013) three time slices were chosen, 394, 405zanderns can be divided into three groups whickteti in their
416 kyrBP. The middle time slice (405kyrBP) coincides seasonal distribution of incoming energy. Group | is charac
with the 680 minimum of MIS 11 (Lisiecki and Rayme, terized by high Northern Hemisphere summer insolation as
2005; Milker et al., 2013). The time slices of 394 and exhibited for the 6 and 9kyrBP (MIS 1), 125kyrBP (MIS
416 kyrBP are characterized by almost identical precessiorb), 405 and 416 kyrBP (MIS 11), 504 kyrBP (MIS 13), and
and similar GHG concentrations (Table 1), but opposite-£x-579 kyrBP (MIS 15) time slices. In most (but not all, see be-
tremes of obliquity (maximum at 416 kyrBP, minimum:at low) cases this is due to an astronomical configuration with
394 kyrBP; Fig. 1). This allows to study the quasi-isolated northern summer solstice at or close to perihelion. Group I
effect of obliquity forcing (Berger, 1978) during MIS 11 by comprises anomalies with low boreal summer insolation as
directly comparing the results of these two time slices.Asshown for 115 kyrBP (MIS 5), 495 and 516 kyrBP (MIS 13),
opposed to idealized simulations of obliquity forcing (esg and 609 kyrBP (MIS 15). In these cases, northern winter sol-
Tuenter et al., 2003; Mantsis et al., 2011, 2014; Erb etsal. stice is near perihelion. Group Il is characterized by gjemn
2013) our approach considers quasi-realistic climatestafts: in the sign of the Northern Hemisphere insolation anoma-

Insolation anomalies
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Stage Time slice cO CH, N,O
(kaBP)  (ppmv)  (ppbv) (ppbv)

MIS 1 0 280 760 270
6 280 650 270

9 265 680 260

MIS 5 115 273 472 251
125 276 640 263

MIS 11 394 275 550 275
405 280 660 285

416 275 620 270

MIS 13 495 240 487 249
504 240 525 278

516 250 500 285

MIS 15 579 252 618 266
609 259 583 274

615 253 617 274

Table 1. Atmospheric GHG concentrations used in the interglacial experiments.

lies from spring to summer and consists of two dates ¢394season (Fig. 2). As such, the 416 kyrBP time slice must be
and 615 kyrBP). At 394 (615 kyrBP) the insolation anomaly considered a special case in Group |. While high Northern
spring-to-summer change is from positive (negative) to neg Hemisphere summer insolation is related to low precession
ative (positive). In these cases, spring equinox (394 kyeBP in most Group | members, positive anomalies of Northern

or fall equinox (615 kyrBP) are close to perihelion. 21 Hemisphere summer insolation at 416 kyrBP are attributable
22 t0 @ maximum in obliquity (Fig. 1), yielding the Northern-
3 Results w23 versus-Southern Hemisphere insolation contrast.
324 In contrast to Group |, Group Il climates exhibit anoma-
3.1 JJAS surface temperature anomalies = lously cold JJAS surface temperatures globally with theehr

w»s coldest anomalies at 115, 516, and 609 kyrBP. Again, the
The response of boreal summer (June—July—Augysttemperature response can largely be explained by the di-
September, JJAS) surface temperature to the combined efect response to insolation forcing, amplified in high lati-
fect of insolation and GHG in all individual climates (Fgg tudes by an increase of the sea-ice cover (about 5% in the
3) shows warm conditions (relative to PI) over most pasts Arctic compared to Pl). Due to a particular combination of
of the continents in Group I (6, 9, 125, 405, 416, 504, andhigh precession and eccentricity with low obliquity thedns
579 kyrBP) with the three warmest anomalies at 9, 125,.andation forcing and surface temperature response is stetnge
579kyrBP. The warm surface conditions can largely be.gx-for the 115 kyrBP time slice. Group Il warming in the North
plained by the immediatefiect of high summer insolatiof)  African and Indian monsoon regions is associated with in-
and a reduction of the Northern Hemisphere sea-ice area byreased aridity and reduced cloudiness.
about 15-20% (not shown) relative to PI. The large ther-  Group Il climates (394 and 615 kyrBP) show rather com-
mal capacity of the ocean explains a larger temperaturg, replex temperature anomaly patterns, especially in the ¢sopi
sponse over land than over the ocean (Herold et al., 2012 the 394 kyrBP time slice, however, northern continental
Nikolova et al., 2013). Simulated cooling over North Afriga regions show a distinct cooling, whereas continental regjio
(10-25 N) and India in the Group | experiments is causgd exhibit an overall warming in the Southern Hemisphere (ex-
by enhanced monsoonal rainfall in these regions, which iscept for Antarctica). To a large extent, the 394 kyrBP time
associated with increased cloud cover, i.e. reduced %QOI’tsﬁce shows a reversed JJAS temperature anoma|y pattern

wave fluxes, and enhanced land surface evapotranspirafiogompared to the 416 kyrBP simulation over the continental
i.e. greater latent cooling (e.g., Braconnot et al., 200B42.,, regions, except for Antarctica.

Zheng and Braconnot, 2013). Cooling in some parts of the

S_outhern Ocean in most Group | experiments is_ IikeI)/34§t-3_2 DJF surface temperature anomalies

tributable to an austral summer remnaifieet of local insola-
tion (see below) as in Yin and Berger (2012). The 416 kysBPBoreal winter (December—January—February, DJF) surface
time slice, however, diers from the other Group | members temperature anomalies are presented in Fig. 4. Generally
by anomalously cold conditions over the Southern Hemi-low DJF insolation in Group | time slices (Fig. 2) results in
sphere continents. Again, this behaviour can be explainednomalously cold surface conditions over most of the globe,
by the immediate féect of the insolation, which shows neg- particularly strong in the 579 kyrBP (MIS 15) time slice.

ative anomalies in the Southern Hemisphere during the dJA%lowever, anomalously warm conditions in the Arctic stand

Climate of the Past www.clim-past.net
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in contrast to the global DJF cooling at 6, 9, 125, 405, .and3.4 Net Primary Production (NPP) anomalies

416 kyrBP. The Arctic warming is due to the remnafieet ) )

of the polar summer insolation through ocean—sea ice féedvegetation responds to changes in surface temperature and
backs (Fischer and Jungclaus, 2010; Herold et al., 2012**jfPrecipitation and, in certain regions, may feedback to the ¢
and Berger, 2012; Kleinen et al., 2014). Anomalous short-Mate (cf. Rachmayani etal., 2015). Figure 6 shows the simu-
wave radiation during the Arctic summer leads to enharfeed@€d changes in NPP, reflecting incredserease and expan-
melting of sea ice and warming of the upper polar OC@an§|0|”yr(_etreat of veggtatmn covers, relative to P_I. In hl_gh Arc-
The additional heat received by the upper ocean deIay”é%hEC latitudes, NPP increases in the Group | simulations, ex-
formation of winter sea ice, reduces its thickness and firfall C€Pt for 405 kyrBP where temperature changes are probably
leads to a warming of the winter surface atmospheric I4yeif00 Small to substantiallyféect the vegetation. By contrast,
by enhanced ocean heat release (Yin and Berger, 2012)§1N(:6_\rct|c NPP declines in the Gr_oup_ I _experlments, albeit only
tic winter warming is not present in the 504 kyrBP (MIS £3) In the easternmost part of Siberia in the 495 kyrBP experi-
and 579 kyrBP (MIS 15) time slices in Group |, where the ment. A substantial decline of Arctl_c NPP is also S|mule_1ted
summer remnantfEect in the Arctic is probably masked By for 394 kyrBP (Group Ill). In the tropical regions, vegegati

a global cooling that is induced by low GHG concentratiths changes are mostly governed by precipitation. Conseguentl

typical for early Brunhes (MIS 13 and before) interglaciafé enhanced rainfall results in increased NPP over North Afric
s the Arabian Peninsula and India in all Group | experiments.

To a large extent, DJF surface temperature anomaly, patm North Africa increased NPP is associated with a northward
terns are reversed in Group Il with warming over most GQn-ghjft of the Sahel-Sahara boundary. The largest shifts are
tinental regions. Moreover, the summer remnaffiec re-,,, simulated for 125 and 579 kyrBP in accordance with maxi-
verses to a substantial cooling in the Arctic region. Terapgr  mum North African rainfall anomalies. In these experiments
ture anomaly patterns in Group Il are, again, rather comple 5 complete greening of the Arabian Desert is simulated. Op-
Interestingly, most Northern Hemisphere continentala®g),, posite NPP anomalies in the tropical monsoon regions are
remain relatively cold during boreal winter (as in summen)i simulated in the Group Il experiments. In Group Ill, NPP in-
the 394 kyrBP simulation. Relatively low GHG concenia- creases result from anomalously high rainfall in North édri
tions, especially Cki contribute to the year-round extratroR- (615 kyrBP) or India (394 kyrBP).
ical cooling in this time slice.

2 3.5 Climatic effects of obliquity variations during MIS 11
427 and MIS 13

3.3 JJAS precipitation anomalies 2 The MIS 11 time slices 394 and 416 kyrBP show opposite
429 0Obliquity extremes (at similar precession), as do the MIS 13
o - . ... o time slices 495 and 516 kyrBP (Fig. 1). Insolatiorffeli-
queal summer precipitation shown in Fig. 5 eXh',b'tS INtEN- ences between the high obliquity (416, 495 kyrBP) and low
S|_f|ed _ramfall in the monsoon bel_t from North Afr_|ca to _I4r312- obliquity (394, 516 kyrBP) cases (i.e. 416 minus 394 and
dia, via the Arabian Peninsula, in all Group | simulations 495 minus 516 kyrBP) are displayed in Fig. 7. Theeet of

in resjpdonse EI) high .Ic,ummer insolation (Plrell anc? Kuubﬁfhhigh obliquity is to strengthen the seasonal insolatioriecyc
1987; de Noblet et al., 1996; Tuenter et al., 2003; BracoAr;Sno%t low latitudes, the fect of obliquity on insolation is small.

ence anomalously iy conditons inthe Group I (low bofgal 0! e maximum oblguiy tme sices (416 and
summer insolation) experiments. The most interestiné37re-495 kyrBP) relatlvel_y_ high boreal summer insolation d_lryect
sults regarding the tropical rainfail response 1o astrdnahi’ translates into positive surfgce temperature anomalies ov

. . . 239 Northern Hemisphere continents, except for the low lati-
forcing appear in Group Ill, where the monsoonal precipita-

i " h ite si in North Africa (S4h Itudes where reduced local insolation (especially in the MIS
lon anomaiies Show opposite signs in Nor rica ( anelis case) and higher monsoon rainfall (especially in the MIS
region) and India.

x> 11 case, see below) lead to surface cooling (Fig. 8a,b). By
Table 2 summarizes the summer monsoonal rainfallcontrast, receiving anomalously low insolation duringteals
amounts for the North African (20V=30 E; 10-253 N) and..«  winter, Southern Hemisphere continents exhibit anom&lous
Indian (70-100E; 10-30 N) regions. Highest rainfall inthe cold surface temperatures. For the 416-394 kyrBP case,
North African monsoon region occurs in the 9, 125, 504,.andhowever, the Antarctic continent and the Southern Ocean
579 kyrBP time slice runs (all Group I) associated with law show large-scale warming during the JJAS season, which can
precession values (Fig. 1). Driest conditions occur at Zd5be attributed to a south polar summer remndfea as the
495, 516, and 609 kyrBP (all Group Il) associated with pse-austral summer insolation anomaly is extremely high in this
cession maxima (Fig. 1). As in North Africa, Group | (Grosp experiment (Fig. 7a). Higher GHG concentrations at 416
I1) experiments exhibit anomalously wet (dry) monsoon can- compared to 394 kyrBP may add to this warming. Owing to
ditions in India. 2 @ smaller south polar summer insolation anomaly (Fig. 7)
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Stage  Timeslice North Africa  North Africa Anomaly India India Anomaly
(mm day™?) (mm day™) (mmday™?) (mmday™)

MIS 1 0 ka 2.440.04 6.53:0.12
6 ka 3.410.04 0.97 6.910.10 0.32
9 ka 3.7%0.04 1.27 7.360.08 0.77
MIS 5 115 ka 1.590.02 -0.85 5.980.15 -0.69
125 ka 3.720.04 1.35 7.260.07 0.67
MIS 11 394 ka 2.320.04 -0.07 6.920.12 0.33
405 ka 3.260.04 0.76 6.950.11 0.36
416 ka 3.06:0.04 0.62 7.130.12 0.54
MIS 13 495 ka 1.920.04 -0.53 6.120.13 -0.48
504 ka 3.720.04 1.28 7.120.08 0.52
516 ka 1.880.04 -0.56 6.220.13 -0.37
MIS 15 579 ka 3.720.04 1.33 7.720.07 1.13
609 ka 1.490.02 -0.95 6.180.13 -0.49
615 ka 3.2%0.04 0.77 6.2%0.13 -0.32

Table 2. Summer (JJAS) precipitation over North Africa (20-30° E and 10—25N) and over India (70E-100 E and 10—30N) along with
anomalies relative to PIl. Absolute precipitation values are given with staedeor (2-) based on 100 simulation years of each experiment.

the summer remnantfect is smaller in the 495-516 kyrB® lation anomaly favor a strong North African monsoon (see
case and even surpassed by anomalously low GHG forcigg iiscussion).

the 495 kyrBP time slice, leading to negative austral winter

temperature anomalies in the Southern Ocean and Antaycticg g Evaluating the climatic effects of astronomical and

(Fig. 7b). w91 GHG forcings through correlation maps
During boreal winter, Northern Hemisphere contlnents

Ehow Iarglget Scfllel coolmgl '? response tt(; h'tghh O:“?u"l[y Qa OIS|on and GHG concentrations, linear correlations between
ence relatively low insolation), except for the Arctic 82, the individual forcing parameters and climatic fields (aaef

vtvhere t?e sutmmer retmnartf@ct rlesultli n ZUbSthSaI 8035 temperature, precipitation) were calculated from the fdveti
itive surface temperature anomalies (Fig. 8¢ and d) UiN%lice experiments (13 interglacial time slices plus PI)tHie

the same season (DJF) anomalously high insolation causeesnd each climate variable (temperature, precipitation$ w

surface warming in the Southern Hemisphere in reSponS‘:A‘alveraged over the last 100 years of each experiment. Lin-
to high obliquity. As a general pattern in the annual mea

maximum-minus-minimum obliauity forcing causes anofsa- N.ear correlation ca@icients between a climatological variable
quity 9 5 and a forcing parameter (obliquity, precession, GHG radia-
lous surface warming at high latitudes and surface coolin

low | q db | and | o ive forcing) were calculated at each grid point. Significan
at low latitudes caused by seasonal and annua mso&ﬂ Bf correlations was tested by a two-sided Student’s t tetbt wi

anomalies in combination with climate feedbacks like thep 95% confidence level. Total radiative forcing from €O
lar summer remnantgect and monsoon rainfall. sa CHy, and NO in each experiment was calculated based on
Despite the weak insolation signal at low latitudes, swub-a simplified expression given in Table 3 (IPCC , 2001).
stantial obliquity-induced changes in tropical precifitasos Figure 9 shows the corresponding correlation maps for an-
are simulated (Fig. 8e and f). The strongest signal is feundhual mean, boreal summer, and boreal winter surface temper-
in the North African monsoon region in the MIS 11 expesi- ature. As expected, GHG forcing is positively correlatethwi
ments, where greater JJAS precipitation occurs during saxsurface temperature over most regions of the globe (Fig. 9a)
imum obliquity at 416 kyrBP than during the obliquity mim- which is particularly pronounced in the annual mean. For the
imum at 394 kyrBP. A positive Sahel rainfall anomaly.is seasonal correlation maps (boreal summer and winter) the
also found in the MIS 13 experiments (495-516 kyrBP),shutcorrelation cofficients are smaller because of the dominant
much weaker than in the MIS 11 case (416—-394 kyrBP)ss\Weimpact of obliquity and precession forcing.
suppose that the obliquity-induced increase in North /Affig: As already described in the previous subsection, the gen-
monsoonal rainfall is counteracted by the high precesdian aeral surface temperature pattern of high obliquity fordmg
495 kyrBP that tends to weaken the monsoon. Considetingvarming at high latitudes and cooling at low latitudes (Fig.
the spatiotemporal insolation patterns (Fig. 7) the Narthe 9b). High precession (northern solstice near apheliorgdea
Hemisphere tropical summer insolation anomaly is less saegto boreal summer surface cooling over most extratropical re
ative and the meridional summer insolation gradient anemagions (Fig. 9c). However, surface warming occurs in some
lies are generally greater in the 416-394 kyrBP case esmtropical regions as a response to weaker monsoons. During
pared to the 495-516 kyrBP case. Both features of the insoboreal winter, anomalously high insolation causes anoma-

In order to evaluate the climatidfects of obliquity, preces-

Climate of the Past www.clim-past.net


rimakhansa
Highlight

rimakhansa
Highlight

rimakhansa
Highlight


522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

R. Rachmayani et al.: Intra-interglacial climate varigyilModel simulations of MIS 1, 5, 11, 13, and 15 7

Trace gas  Simplified expression Radiative forcing,(Wm2) Constants
CO, AF=a(9(C)-9(G)) @=3.35
where g(C¥ In(1+1.2C+0.005C +1.4x1075C?)
CHs  AF=a(VM-vMp)-(f(M,No)-f(Mo,No)) 2=0.036
N2O  AF=a(VN- VNo)-(f(Mo,N)-f(Mo,No)) @=0.12

where f(M,N)=0.47 In[1+2.01x10-5(MN)®75+5.31x 10" *5M(MN) 5]

Table 3. Simplified expressions for calculation of radiative forcing due tg,GCTH,, N,O. Cis CQ in ppmv, M is CH, in ppbv, N is NO
in ppbv. The subscript O denotes the unperturbed GHG concentratiin of

lous surface warming except in the Arctic (due to the sumsnerare anomalously cold due to enhanced rainfall (Braconnot
remnant &ect) and northern Australia (due to a strongesse- et al., 2007). Though evidenced by proxy records (e.g., Mc-
gional monsoon). sss Clure, 1976; Hoelzmann et al., 1998; Fleitmann et al., 2003)
Correlation maps for annual mean, boreal summer,sandeveral models fail to simulate wetter mid-Holocene con-

boreal winter precipitation are shown in Fig. 10. GHGsra- ditions over the Arabian Peninsula (cf. htjfgsmip3.Isce.
diative forcing exhibits no clear response in precipitatix-ss» ipsl.fr/databasgnapg), while CCSM3 simulates not only en-
cept for the high latitudes where the hydrologic cycle aceel hanced rainfall but also greening of the Arabian Desert. The
erates with higher GHG concentrations (Fig. 10a). Sincethel25kyrBP surface temperature pattern shows similar fea-
GHG variations are relatively small, th€ects of astronoms tures than the 6 kyrBP pattern, but much more pronounced
ical forcing on the monsoons are way larger than tfieotss:  due to the larger eccentricity and hence stronger preaessio
of GHG variations during the interglacials. Arctic pre¢ipi« forcing. However, compared to other simulations of the
tion is also amplified by high obliquity during summer (Fig. last interglaciation, our CCSM3 simulation produces a rel-
10b). Obliquity also strengthens the monsoonal rainfatisinatively cold MIS 5e surface climate as shown by Lunt et al.
North Africa (Sahel region), whereas nffext of obliquitys» (2013). At 115kyrBP, surface temperature anomalies show
can be detected for the Australian monsoon. The sensitivthe opposite sign with dramatic cooling over the Arctic and
ity of other monsoon systems to obliquity changes is aisothe northern continental regions providing ideal conditio
weak or even absent in our experiments. The most robust refor glacial inception (e.g., Khodri et al., 2005; Kaspar and
sponse of the hydrologic cycle is found for precession @ig.Cubasch, 2007; Jochum etal., 2012). A retreat of the vegeta-
10c). In particular, high precession reduces summer finfa tion at high northern latitudes tends to amplify the insofat
in the monsoon belt from North Africa to India as wellsas induced cooling (cf. Gallimore and Kutzbach, 1996; Meiss-
in the Arctic realm. East Asian rainfall shows a somewhatner et al., 2003).
heterogeneous pattern and is, in general, only weaklyseou- A recent simulation of the MIS 13 time slice at 506 kyrBP
pled with the Indian and African monsoons. This finding using the CGCM HadCM3 (Muri et al., 2013) can be com-
is consistent with a recent model intercomparison study-bypared to our 504 kyrBP time slice using CCSM3. Global pat-
Dallmeyer et al. (2015). During boreal winter, the hydratog  terns of surface temperature anomalies (relative to Pljeare
cycle strengthens in the Arctic and Antarctic regions, el markably similar in the two dierent simulations with warm
Southern Hemisphere monsoon systems amplify resulting inomalies over all continents (except for the North African
enhanced rainfall over South America, southern Africa,sandand South Asian monsoon regions) in boreal summer and
northern Australia in response to high precession. We srotevorldwide cold anomalies during boreal winter. Moreover,
that these monsoonal rainfall changes go along with distincboth simulations show anomalously high boreal summer pre-
surface temperature signals in the annual mean (Fig. 9¢): cipitation over northern South America, North and central

sss Africa as well as the South Asian monsoon region.

596 Although our CCSM3 results show general agreement
4 Discussion sov  With other model studies, the validation of model resulthwi

ss Oata is usually not straightforward. The reader is refetoed
While most time slices presented in this study were siau-previous work where our CCSM3 simulation of 125 kyrBP
lated for the first time using a comprehensive CGCM,«the(Lunt et al., 2013) as well as the MIS 11 simulations have
6, 115 and 125 kyrBP time slices have been studied extenbeen extensively compared to proxy data (Milker et al., 2013
sively in previous model studies. In general, the CCSM3Kleinen et al., 2014). Taken together, these and other stud-
results are in line with these previous studies in terms: ofies (e.g., Lohmann et al., 2013) indicate that CGCMs tend
large-scale temperature and precipitation patterns. \Warnto produce generally smaller interglacial temperaturevaao
boreal summer conditions (relative to PI) over most partslies than suggested by the proxy records. So far, the reason
of the continents and the Arctic are a general features infor these discrepancies is unsolved (cf. Liu et al., 20149, b
paleoclimatic simulations of the mid-Holocene (6 kyrB&), Hessler et al. (2014) pointed out that uncertainties aasexti
while the North African and South Asian monsoon regienswith sea surface temperature reconstructions are geyerall
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larger than interglacial temperature anomalies. Thus,sgurBosmans et al. (2015) complement this picture, showing that
rently available surface temperature proxy data cannetser the direct insolation-gradient forcing associated withigpb
as a target for benchmarking interglacial model simula&tiesa uity can contribute to West African monsoon changes with-
Two time slices of MIS 11 (394 vs. 416 kyrBP) and two out involving high-latitude remote climate forcing assaed
time slices of MIS 13 (495 vs. 516 kyrBP) allow the in- with Northern Hemisphere ice sheets.
vestigation of (almost pure) obliquityffects on global cCliss According to the CCSM3 results, the Indian monsoon is
mate, although the GHG and precession are not exactly.th&ess sensitive to direct obliquity (insolation gradiemding
same between the time slices. As such, the results from ¢hesban the West African monsoon. This finding is consistent
simulations can be compared to previously performed idealwith proxy records from the Arabian Sea that show substan-
ized model experiments in which obliquity has been chargedial 41 kyr (obliquity) periodicity only after the onset ofu@-
from maximum to minimum values (Tuenter et al., 2083; ternary glacial cycles when waxing and waning of northern
Mantsis et al., 2011; Erb et al., 2013; Bosmans et al., 2@845)ice sheets could have worked as an agent for the transfer of
The common results of those idealized and our experimentsbliquity forcing to the Indian monsoon region (Bloemen-
can be summarized as follows. High-versus-low obliquity dal and deMenocal, 1989). In general, it is found that the
climates are characterized by strong warming over the Nesthtwo monsoon systems do not always vary in concert. This is
ern Hemisphere extratropics and slight cooling in the tepp-particularly evident in the Group 1l experiments (394 and
ics during boreal summer. During boreal winter, a modesate615 kyrBP) where the precipitation anomalies over North
cooling over large portions of the Northern Hemisphere een-Africa and India have opposite signs (Table 2). Considering
tinents and a strong warming at high southern latitudes ighe annual insolation maps of the 394 and 615 kyr experi-
found. The obliquity-induced Northern Hemisphere sumimerments (Fig. 2), West African monsoon rainfall turns out to
warming appears to be of particular interest for the MISs13be most sensitive to changes in summer insolation, whereas
climate evolution. At 495 kyrBP, precession is at maximun, springearly summer insolation is more important for mon-
but the global benthig®0 stack by Lisiecki and Rayma soon rainfall over India. Similar results have been found by
(2005) does not show the expected increase towards heavi@raconnot et al. (2008). It has been argued that the reason
values which would indicate colder conditions and No#h- is a resonant response of the Indian monsoon to the insola-
ern Hemisphere cryosphere expansion (Fig. 1). In factsdetion forcing when maximum insolation anomalies occur near
spite high precession, the 495 kyrBP simulation exhibigssth the summer solstice and a resonant response of the African
warmest Northern Hemisphere summer temperatures ftonmonsoon — which has its rainfall maximum one month later
all Group Il experiments (Fig. 3), which can be attributed in the annual cycle than the Indian monsoon —when the max-
to concomitant high obliquity. We therefore hypothesiz#tta imum insolation change is delayed after the summer solstice
the Northern Hemisphere summer climate at 495 kyrBPswaslhe diferent responses to specific forcings and the some-
not cold enough for ice sheets to grow and global o@& s times out-of-phase behaviour of the African and Indian mon-
to increase. We note, however, that the benshf© stack isss soon systems challenge the global monsoon concept — ac-
subject to age model uncertainties of a few thousand years. cording to which all regional monsoon systems are part of
Moreover, our CCSM3 results as well as the studiessbyone seasonally varying global-scale atmospheric ovartgrn
Tuenter et al. (2003) and Bosmans et al. (2015) suggest asigsirculation in the tropics (Trenberth et al., 2000; Wanglgt a
nificant efect of obliquity on West African monsoon rainfall 2014) — at astronomical timescales.
despite the weak insolation signal at low latitudes. Boswan  Another important result of our study is associated with
et al. (2015) have shown that obliquity-induced changes inobliquity forcing of high-latitude precipitation anomed. As
moisture transport towards North Africa result from chage obliquity increases, high latitudes become warmer and the
in the meridional insolation gradient (Davis and Brewer, gradient in solar heating between high and low latitudes de-
2009). However, the impact of obliquity on the monsaen creases, while precipitation over high-latitude conttaére-
also depends on precession. In the 495-516 kyrBP expemgions increases (Fig. 10b). This result clearly contradice
iment the obliquity-&ect on the West African monsoon-s “gradient hypothesis” by Raymo and Nisancioglu (2003) ac-
minor, as both time slices (495 and 516 kyrBP) are charagtereording to which low obliquity would favour polar ice-sheet
ized by precession maxima leading to extremely weak mon-growth through enhanced delivery of moisture owing to an
soonal circulation and rainfall in both cases. The existenc increased meridional solar heating gradient.
of a ~41kyr cyclicity (in addition to astronomical-relatad  Since CQ and other GHG variations are relatively small
~ 100 and 19-23kyr cycles) in reconstructions of Ne#th during the interglacials, theffects of astronomical forcing
African aridity during the Quaternary has usually been.at-on the monsoons are substantially larger. Hence, GHG forc-
tributed to obliquity-forced Northern Hemisphere cryosph.. ing shows a clear response in precipitation only for the high
effects on the monsoon climate (e.g., Bloemendal and.delatitudes where the hydrologic cycle accelerates with éigh
Menocal, 1989; deMenocal et al., 1993; Tiedemann et.al. GHG concentrations. In the monsoon regions, interglacial
1994; deMenocal, 1995; Kroon et al., 1998). Our medelrainfall variations are almost entirely controlled by astom-
results along with the studies by Tuenter et al. (2003)-andcal forcing.
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The use of a modern ice-sheet configuration for all inter-and challenge the global monsoon concept at the astronomi-
glacial time slice experiments, however, must be consttlere cal timescale.
a limitation of the present study. Future studies should.in- As a general pattern in the annual mean, maximum-minus-
clude the &ects of changing ice sheets and associated meltminimum obliquity forcing causes anomalous surface warm-
water fluxes in shaping interglacial climates. Large No#th-ing at high latitudes and surface cooling at low latitudes
ern Hemisphere ice sheets might have played an imparantaused by seasonal and annual insolation anomalies in com-
role for regional and global climates especially durindyear bination with climate feedbacks like the polar summer rem-
Brunhes interglacials (MIS 13 and before) as suggestegd, bynant dfect and monsoon rainfall. High obliquity may also
e.g., Yin et al. (2008) and Muri et al. (2013). But also dur- explain relatively warm Northern Hemisphere high-latagud
ing late Brunhes interglacial stages, like the Holocenadehe, summer temperatures despite maximum precession around
studies suggest an influence of changing land ice on the inter495 kyrBP (MIS 13). We hypothesize that this obliquity-
glacial climate evolution (Renssen et al., 2009; Marzin.et:a induced high-latitude warming may have prevented a glacial
2013). The tremendous uncertainties regarding ice-skegt r inception at that time. Moreover, our results suggest high-
constructions beyond the present interglacial could bertak latitude precipitation increase with increasing obliguéon-
into account by performing sensitivity experiments. 74 tradicting the “gradient hypothesis” by (Raymo and Nisan-
s cioglu, 2003) according to which low obliquity would favour
76 polar ice-sheet growth through enhanced delivery of mois-
5 Conclusions 7 ture owing to an increased meridional solar heating gradien
788 Future studies should include th&exts of changing ice

Using CCSM3-DGVM, 13 interglacial time slice expefi- sheets and associated meltwater fluxes in shaping inteblac

ments were carried out to study global climate variabifity climates. With increasing computer power long-term tran-

between and within Quaternary interglacials. The séilec-Siem simulations of interglacial climates will become mor
tion of interglacial time slices was based offelient aspects’ fc:rrrr;rgé)r;(.)rstc:]fear, rt;ir;sr’:te?é CG(E('\)/:::;u;igofzﬁri\éigeego%irf
of inter- and intra-interglacial variability and assoeidtas-" present (€.g., e
tronomical forcing. As such. our approach is com Ierﬁgén-varma et al., 2012; Liu et al., 2014) and the last interglacia
9 ' PP P s (e.g., Bakker et al., 2013; Govin et al., 2014). More tran-

tary to both idealized astronomical forcing experimentg.(e . . . T . . .
Tuenter et al. 2003 Mantsis et al.. 2011. 2014 Erb ef*al sient simulations of earlier interglacials, ideally withupled
N ' 2 ' ! “interactive ice-sheet models, will help to develop a signifi

2013; Bosmans et al., 2015) and climate simulations that’ Oantly deeper understanding of interalacial climate dvnam
cussed on peak interglacial forcing (Herold et al., 2012;"Yi ics y P 9 9 yn

and Berger, 2012). 799
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Groups |, Il, and 11l (see text). The calculation assumes a fixecepteday calendar with vernal equinox at 21 March.
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Figure 3. Boreal summer surface temperature anomalies (relative to PI) falifieeent interglacial time slices. Classification into Groups
I, 11, and Il (see text) is indicated.
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R. Rachmayani et al.: Intra-interglacial climate vaitigh Model simulations of MIS 1, 5, 11, 13, and 15
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As in Fig. 3, but for boreal winter.
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Figure 5. As in Fig. 3, but for boreal summer precipitation.
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As in Fig. 3, but for annual net primary production.
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Figure 7. Differences in the seasonal and latitudinal distribution of insolation for (Ay3®¥6ka BP, (B) 495-516 ka BP.
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Figure 8. Differences in seasonal surface temperature (A)-(D) and boreatsupmecipitation (E)-(F) for 416-394 ka BP (left) and 495-516

ka BP (right).
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Figure 9. Linear correlation maps between surface temperature and GHG radiatding (A), obliquity (B), and climatic precession (C)
as calculated from the entire set of experiments. Summer refers tQ ddABr to DJF. Only significant values are shown according to a
two-sided Student's t-test at 95% confidence level.
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Annual Boreal Summer Boreal Winter

(A) Precipitation vs GHG radiative forcing
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Figure 10. As in Fig. 9, but for precipitation.
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