Prof. Hugues Goosse Editor *Climate of the Past*

January 10, 2016

Dear Prof. Goosse,

Responses to reviewers' comments

We would like to thank you for your time, efforts, and encouragement. Also, we are very grateful to three reviewers Drs. Licht, Rolf, and Jovane for performing the second round of review of our paper and providing additional valuable comments that help further improve the manuscript. Drs. Rolf and Jovane suggested minor revisions. In the revision, we have followed their suggestions and revised the manuscript accordingly.

While Dr. Licht acknowledges that the previous revision has greatly improved the paper and our proposed correlation for establishing the chronology might be right, he still has concerns about the sedimentological part and the discussion. We appreciate Dr. Licht's additional, critical comments. In the revision, we have addressed these concerns by providing more details and/or more explanations. Also, we have added a paragraph at the end of the paper to clearly state the alternative hypothesis and potential limitations of the study. We hope that Dr. Licht would be pleased to see the further improvements in light of his additional comments.

Overall, we have addressed all the reviewers' additional comments in this second revision. Hope you would be pleased to see the further improvements we have made for this paper. We believe that, after the two rounds of revisions,

the manuscript has been significantly improved and the revised manuscript has become a much better paper. Our paper should make important contributions to the journal—*Climate of the Past.*

Below are our point-by-point responses (in blue) to three reviewers' comments. We start with our responses to the minor revision suggestions raised by Drs. Rolf and Jovane, then our reply to Dr. Licht's comments.

Best regards,

Sincerely,

Yong-Xiang Li On behalf of all co-authors

School of Earth Sciences and Engineering Nanjing University Nanjing 210046, China Email: <u>yxli@nju.edu.cn</u> Phone: 86-25-8968 0866

1. Dr. Rolf's comments

I feel the paper is clearly improved and is now ready for publication (short remarks and corrections included). In my opinion the authors have considered the comments of Professor Licht and Professor Jovane, as well as my remarks from the first review, and the rewritten paper has the quality to be published by Climate of the Past (CotP). The paper deserves to be published now after minor revisions (pdf included).

Comments in the pdf file:

My final review is short. I feel the paper is clearly improved and is now ready for publication (short remarks and corrections included). In my opinion the authors have considered the comments of Professor Licht and Professor Jovane, as well as my remarks from the first review, and the rewritten paper has the quality to be published by Climate of the Past (CotP). This also applies to the significantly-improved written English.

We thank Dr. Rolf for his constructive comments and we are very grateful for his time, efforts, and suggestions.

Some remarks

The applied methods in palaeomagnetism are well described and fulfill modern standards. The additional thermomagnetic IRM method after Lowrie (composite IRM) and the further Kappa (T) (temperature dependent susceptibility) data help to understand the magnetomineralogical content of the sediments under investigation. Each method on its own is not enough to identify the character (primary or secondary) and type (magnetite or iron-sulphide) of magnetic minerals.

Perhaps the final interpretation of the rock magnetic results could be better explained as summarized:

All Kappa (T) curves start with extremely low values in comparison with the susceptibility values at the end of the heating experiments. Assuming that there is a primary ferro(i)magnetic mineral content that did not form during the heating experiments, (as indicated by the IRM experiments) the Kappa(T) experiments seem to indicate magnetite (Fig. 5b) and pyrrhotite (Fig. 5a; c-e), as written. This result is confirmed by the IRM experiments (Fig 5) for magnetite and subtly for pyrrhotite (k, l, m, and o). Figure 5 n is typical of pyrrhotite. ZFC and FC data help to distinguish pyrrhotite and greigite, if there is a difference between ZFC and FC data, so that it hints at pyrrhotite.

Yes. The above summarized are the main findings from the suite of rock magnetic experiments.

On page 10, line 23, you wrote about hexagonal pyrrhotite and later only about monocline pyrrhotite. Do you feel that both minerals are primary? Perhaps you could write one sentence about this.

We have added one sentence at the end of Section 4.2 stating that pyrrhotite was likely produced during the oil shale accumulation.

Cyclostratigraphic study on susceptibility data improves the paper and makes your correlations more profound. Please suggest which orbital cycles you mean (written somewhere, but it should be repeated on page 14, L21-22).

We have revised this part by pointing out the meter-scale sedimentary cycles may represent long and short eccentricity cycles.

Question cycles well than rhythms?? I would suggest cycles (English?). A research of literature shows that "rhythms" and "cycles" appear to be used interchangeably. For example,

- De Boer, P.L., and Alexandre, J.T. 2012. Orbitally forced <u>sedimentary rhythms</u> in the stratigraphic record: is there room for tidal forcing? Sedimentology 59, 379-392.
- Saul, G., Naish, T. R., Abbott, S. T., and Carter, R. M. 1999. <u>Sedimentary cyclicity</u> in the marine Pliocene-Pleistocene of the Wanganui basin (New Zealand): Sequence stratigraphic motifs characteristic of the past 2.5 m.y. Geological Society of America Bulletin 111, 524-537.

To avoid too much repetitiveness, we have replaced some "rhythms" with "cycles" in the revision.

Construction of GPTS in your new Table 1 is much improved. The table is tighter and your different correlation possibilities are now better to understand. The former difficulties recognised by Prof. Licht and Prof. Jovane in relation to your basic stratigraphic assumptions, i.e. the correlation of the magnetozones to chronostratigraphy and the missing palaeoclimatic interpretation seem to me to be overcome now, but I do not feel to be competent enough to argue for or against these points.

Thank you. Yes. The new Table 1 is much better organized and is more effective in illustrating six possible correlations.

Minor corrections:

Thank you so much for help with polishing the paper! We have made correction and/or revision accordingly. Please see below.

P2, L6; magnetostratigraphic instead of magnetostratiphic
Corrected;
P2, L23; Antarctica instead of Antarctic
Corrected;
P4, L26; who instead of that
Corrected;
P5, L14; repeated point
Yes, we agree that it seems a bit repetitive in listing the names of the formations because these formation names have been mentioned in the first paragraph of Section
2.0. However, the first paragraph of Section 2.0 provides the names of ALL the formations in Maoming Basin. The previous magnetostratigraphic work by Wang et al (1994) investigated only SOME of the formations from the basin. Also, the previous

magnetostratigraphy by Wang et al. (1994) was based on a composite stratigraphy by compiling stratigraphic data from three different localities. Here, we present a brief review of what this previous work has been done and to what extent so that we can provide a context for our work. We feel that it is necessary to list the names of the formations that the previous study has investigated. So, we keep the names of the formations here.

P6, L5-7; "For the overlying Huangniuling Fm, it is basal 30 meter was measured and major lithological changes in its upper part are noted". Unclear sentence, please rewrite.

We have revised this sentence as follows to make it clear. "The basal 30 meter of the Huangniuling Fm was measured and major lithological changes in the upper part of the Huangniuling Fm are noted."

P6, L 19; cut into 2 cm cubes (8cm³) instead of 2cm*2cm*2cm Revised as suggested; P8, L23; frequency bands (long and short eccentricity)

P10, L16; ... 500°C (Fig. 5a-e), magnetite **minerals** were probably produced during the experiments

Revised as suggested;

P11, L2-3; in my opinion your Verwey transition in Fig. 5g is over interpreted. We have added a curve of the first derivative of the FC data in Fig. 5g to show the otherwise subdued Verwey transition. Also, we have revised this sentence to tune down the interpretation.

P11, L16; this reference (Snowball and Thompson 1990) is missing in the reference list.

This reference has been added in the list.

Snowball, I., and Thompson, R.: A stable chemical remanence in Holocene sediments.

Journal of Geophysical Research, 95, 4471-4479, 1990.

P12, L 24;and a reversal test passed the confidence criteria. Revised as suggested;

P12, L27; sections instead of section Revised as suggested;

P15, L32; Guo 1996 but in references 2006 which one is correct please correct. This should be Guo (2006) and has been corrected;

P 17, L28; on Antarctica instead of on the Antarctic Revised as suggested;

P29, L1; now abandoned instead of now-abandoned Revised as suggested;

P29, L7; between clays. and The (missing space) Revised as suggested;

P29, L23; susceptibility of the Added "of"

P30, L4; temperature dependence of.... Instead of thermal changes of Revised as suggested;

Figure 5 f-j; please use different (or not too similar) symbols for FC and NFC data. For Fig. 5g-j, we have used filled and unfilled squares to indicate the FC and ZFC data, respectively.

I feel the paper deserves to be published now.

Finally, thanks for your careful revision and your comprehensive discussion of all of our arguments. I hope that your paper will be published now.

Thank you again for your time, efforts, and constructive comments!

2. Dr. Jovane's comments

The manuscript improved very much in this version both in terms of science that in the discussion. However, there are still some minor changes that are needed before complete acceptance of the manuscript:

We thank Dr. Jovane for his additional thoughtful comments and we are grateful for his time, efforts, and suggestions.

1- Spectral analyses need to specify: which method is used (they cited a book not the method; a method is periodogram or blackman-tukey or evolutive etc); number of points and lags used for the spectral analyses; bandwidth; confidence level; have performed resampling, interpolation and trend removal?; is it taped? It is fundamental to know those information because without those the spectral analyses do not have meaning.

We appreciate this comment. In the revision, we have added the details of spectral analysis in "Section 3 Methods"

2- It is still not clear which is the phase relation. There should be a relation such as a geological process that relates the insolation oscillation to the changes in color in the lake. This is fundamental in terms of defining the cycles in the section. I.e. is there any relation between the insolation and the precipitation pattern or winds or erosion...?

In the revision, the geologic process that relates orbital variation and subtle cyclic lithologic changes is now provided in the new subsection "5.1 Depositional environment". Basically, orbital variations may have affected moisture conditions and led to wet/dry oscillations that caused lake level fluctuation, thus subtle cyclic lithologic changes. The reddish beds of the weathered Youganwo oil shale probably correspond to deposits accumulated during low lake levels and contain relatively less organic matter.

3- They continue to endorse the ensemble 6 as the only one possible. I think that also ensembles 4 and 5 as reasonably possible. Ensemble 6 actually shows a C13r (R2) very short in comparison to C15n (N2) which is not realistic if the sedimentary rate is constant inside the Youganwo Fm. Ensemble 6 also shows sedimentary rates too low also for a deep marine basin and seems to me reasonably impossible for a continental section.

In Ensemble 6, R2 is correlated to C13r and N2 is correlated to C15n-C17n, not C15n. So sedimentation rates in the Youganwo Fm are similar (Table 1).

The sedimentation rate seems low for a continental section if the section contains abundant siliciclastic component, which is mostly the case. But for highly organic rich oil shale *alone*, the sedimentation rate is probably possible given that it is comparable with those of organic rich black shales of the mid-Cretaceous, which are very well dated (Section 5.3).

Ensample 5 shows a strong change in sedimentary rate at the Youganwo and Huangniuling boundary Fm. C15n (N1) and C15r (R2) which should have the same length are very different in the section meaning that the Huangniuling Fm have a sedimentary rate 3-4 time higher that the Youganwo Fm.

Yes. Ensemble 5 shows an estimated sedimentation rate of 6.37 cm/kyr for N1 (C15n), which is about 3.6 times of the estimated sedimentation rate of 1.75 cm/kyr for R2 (C15r) (Table 1).

Ensemble 4 would be possible assuming very high sedimentary rates without major changes along the section. But the main problem is that they assume that the major climate change of the EOT happens at the EO boundary. This is very wrong because the EOT is not one event and do not coincide with the EO boundary and even more with major changes in sedimentations in the oceans. Almost everywhere in the world there is first a strong change in the lithology (i.e. Scaglia Variegada to Scaglia Cinerea Fm), then the EO boundary and then the EOT. In this view, it would be much more reasonable that the Youganwo and Huangniuling boundary Fm occur inside the C15 like in the Ensemble 5.

Ensemble 4 was considered relatively less probable on the basis that the upper and lower part of the investigated Youganwo Fm show very different sedimentation rates, yet the similar lithology suggests otherwise. Using the reasoning we lay out in Section 5.4 (also Table 1), the major environmental change is constrained in C13r (Fig. 8), specifically at the later stage of C13r. The major lithologic change from Scaglia Variegada Fm to Scaglia Cinerea Fm at the GSSP section also occurs within C13r (at 12 m, Figure 5 of Jovane et al. 2009), specifically at the early stage of C13r. Thus our records from Maoming Basin are broadly consistent with the records from the GSSP section. Therefore, the lithological change at the GSSP section may be associated with oceanographic change leading to the final major climatic transition-Eocene/Oligoence transition (EOT). The lithological change at the Maoming is probably related to the major phase of EOT at the later stage of C13r. We have added this point in Section 5.5 of the revision.

4- In the text they speak about grain size changes along the section (page 14 line 5/6). I have not seen those data in the figures. It is fundamental to see those data because it is the main Indication of continuous deposition between the Youganwo and Huangniuling boundary Fm.

We appreciate this comment! The grain size changes are based on close inspection of the contact during our field observations. We have revised the lithostratigraphic columns in Fig. 2 and Fig. 8 to show this gradual change in grain size at the contact between the Youganwo Fm and the Huangniuling Fm.

Minor:

-Fig 1, It would really help to understand the section to have the topography in this maps.

We have replaced the regional map with topographic map of the region in the revision.

-Table 1, For ensemble 5 and 6 the polarity zone R1 should be R2. Thank you! Corrected.

-Fig 8 I do not think that the marine isotope curve is needed here. Alternatively they can use the final figure of Jovane et al., 2009, which show the EO GSSP with stable isotopes and magnetostratigrapy and lithological changes.

We have added a sketch of the GSSP section in Fig. 8 and show that major lithological changes at the early stage of C13r prior to EOT at the GSSP section.

Please, remove the reference Brown et al., 2009. This is a grad-student thesis with very bad quality that for 3-4 years have been around trying to be accepted in various journals and at the end the editors/authors have published in their own volume because they was able to bias the review. So, I would like that Authors and Editors do not use this reference because is not scientifically reliable.

Brown et al. (2009) has been removed in the revision.

3. Dr. Licht's comments

The revised version of Li et al.'s manuscript is much clearer and easier to read than the first draft. The authors have been doing a great job simplifying their discussion. The introduction and geological context are now well explained, and all the important details that were lacking about the sedimentology, biostratigraphy, and the previous work in the area are present in the manuscript. However, I still have major concerns about critical issues that were not addressed during the first round of revision. I will focus my comments on the sedimentological part and on the discussion (I am not competent to discuss magnetic properties matters).

The sedimentological part of the manuscript (section 4.1) is still very weak.

1) There is still a mix of description and interpretation throughout the entire section. Please separate both.

In the revision, we have separated description from interpretation. The description remains in Section 4.1 and the interpretation is now placed in a new subsection in the Discussion section, i.e., "5.1 Depositional environment".

2) Most of the sedimentological description is still based on colors (lines 21-30 page 7). You need to use lithofacies (including the description of grainsize, sedimentary figure and texture, thickness and size of the beds etc...). You can not base paleoenvironmental interpretations on descriptions that are mainly based on sediment color.

The detailed sedimentologic work including paleoenvironment interpretation was done by Guo (2006). Paleoenvironmental interpretations concerning the interval that we are investing in this study is summarized in "Geologic setting" by citing Guo (2006). Here, Section 4.1is focused on sedimentary rhythm, which is the most prominent, striking feature of the outcrop and best displayed as color changes. To avoid the potential misleading impression that interpretation can be made based solely on sediment color, a brief description of lithology is provided prior to focusing on the theme of sedimentary rhythms.

3) The 'log' in Fig. 2 is not a sedimentary log. Please make a standard sedimentary log with varying grain size and displaying sedimentary textures. If your red layers are finer grained than the rest of the section, describe them as fine grained and display them as finer grained on Fig. 2. You have partly based your correlations on grain size consideration. You must provide (at least qualitative) grain size data in your log!

Fig. 2 has been revised to indicate grain size changes.

4) You argue that there are cyclic red beds in the Huangniuling Fm, but a) you do not provide any frequency data for this unit; b) your log from the Huangniuling Fm is

incomplete and has no scale (please provide a real log for this unit, not a schematic one); c) the ~ 30 m log of the base of the Huangniuling Fm that is provided in Fig. 8 does not display any clear cyclic pattern.

As we mentioned in the methods section, the basal 30 meter of Huangniuling Fm was measured and the most pronounced sedimentary feature of the upper part of the Huangniuling Fm, which is the *repeated occurrence* of the parasequence, is noted.

For frequency data, as we mentioned in our previous reply, we agree that it is the best to determine the period represented by a paraseuqence and then compare this period with Milankovitch periods. However, to determine the period of a parasequence, one needs to know at least two numerical ages bracketing the parasequence. But even the age of the Huangniuling Fm remains controversial and we are not aware of any numerical ages available from the Huangniuling Fm that can be used for such a calculation. Given that orbital signals are detected from the underlying Youganwo Fm based on the spectral analysis, the repeated occurrence of the parasequence in the immediately subsequent period when the Huangniuling Fm was accumulated may be related to orbital variation as well.

5) Stop using evidence for orbital forcing in other Eocene sections as a justification for orbital forcing in yours! (pages 9 and 14). You can find sections with evidence of orbital forcing for every geological period, it has nothing to do with the late Eocene. Actually, most of these other sections do not display the same kind of orbital forcing (for instance, in Xining the closest late Eocene section, obliquity is the prominent orbital parameter in the record). This should be discussed.

The justification for orbital forcing in our section is primarily based on the spectral analysis of the magnetic susceptibility depth series of the Youganwo Fm that reveals dominant sedimentary cycles with cycle wavelength ratios similar to that of long and short eccentricity cycles, strongly suggesting that these sedimentary cycles were probably related to orbital forcing.

Our record shows that eccentricity is the prominent orbital parameter, while Xining record indicate strong obliquity signal, indicative of influence from high-latitude, probably related to ice-sheet dynamics. The difference may make our record unique because our record is from a low latitude region. The difference is discussed in this revision.

6) You keep using the word 'parasequence' without describing them. If you have identified parasequences in your section, make them clear. Evidence of parasequence IS NOT evidence for orbital forcing, as discussed during the previous round of comments.

In fact, the "parasequence" was clearly defined in Lines 12-13, P9 of the previous revision, i.e., a red layer, massive sandstones, and a thin mudstone bed constitute a parasequence. As mentioned in 4) above, there is indication that the repeated occurrence of parasequence may be related to orbital forcing. The lack of frequency

analysis of the repeated occurrence of parasequence makes it a limitation of the study, which is clearly stated in the last paragraph in the revision.

Their preferred correlation for the GPTS is still poorly justified.

Note that I think that the correlation chosen by the authors might be right, because I would expect a major hydrological disturbance at the EOT. However, nothing in the present manuscript has convinced me of the accuracy of their choice. All the scientific arguments that are brought by the authors to justify their choice are either controversial or fallacious.

1) As I already discussed during the previous round of revision, increase in grain size does not imply increase in sedimentation rate. The authors argue "the sedimentation rate for mudstone is generally slower than that of sandstone". This is a big mistake. There is no room here for a lengthy lesson on sedimentology, but I invite the authors to read Miall's books about deposition dynamics in continental setting or any general book about continental sedimentology basics. The coarsening upward trend in grain size that you observed in your section likely reflects the shift from lacutrine to deltaic setting. If you want to show that there is a major change in erosion dynamics and a potential increase of sedimentation rate at the transition between both geological units, you need to show that the increase of grain size is basinwide, and provide logs from different parts of the basin.

The context for the assumption that sedimentation rate for mudstone is generally slower than that of sandstone is as follows.

- 1) Deposition is continuous;
- 2) Mudstone undergoes more compaction than does sandstone.

We have explained the compaction effect qualitatively in the previous reply. To illustrate the compaction effect further, let us assume accumulation of 20 cm thick sands and 20 cm thick muds over the same period of 1000 years. After compaction, the thickness of sands becomes, let's say, 15 cm, and muds becomes 10 cm thick. Then the sedimentation rate is 15 cm/kyr for sands and 10 cm/kyr for muds.

Now, the critical part is continuous deposition. This is a result of discussion with my sedimentologist colleague, Prof. Xiumian Hu, who specifically pointed this out. Although we did not explicitly point out previously that deposition was continuous for the stratigraphic interval at our study site concerning interpretation of magnetostratigraphy, i.e., the basal 30 meter of the Huangniuling Fm and the underlying 31.5 meter of Youganwo Fm. There is evidence for continuous deposition including 1) a gradual transition between the Youganwo Fm and the Huangniuling Fm; 2) sandstone and mudstone beds in the lower part of the Huangniuling Fm are nearly flat and extend laterally with uniform thickness for hundreds of meters (Lines 14-16, P9 of the previous version).

Therefore, the assumption should not be understood without the above-mentioned

context. Thus, it remains valid for our interpretation of magetostratigrahy concerning the basal 30 meter of the Huangniuling Fm and the underlying Yougan Fm where deposition was continuous.

The environmental change history of the basin including the erosion dynamics has been analyzed in Guo (2006), which we have cited in this manuscript, using drill core and outcrop data from different parts of the basin.

2) The reply of the authors about accumulation rates in lacustrine context is not satisfying. Accumulation rates are just 2-3 times higher in hypothesis 5 compared to hypothesis 6. This is nothing compared to the actual range of accumulation rates in lacustrine environments. The authors argue that hypothesis 6 is more relevant because it has sedimentation rates that are closer to mid Cretaceous oil shales from the same area. But I do not see why those mid cretaceous oil shales can be use as analog; as I already noted last time, accumulation rates in lakes are highly variable, in profundal or nearshore setting.

The difference in sedimentation rate by 2-3 times for oil shale may not be sufficiently large enough to differentiate scenario 5 and 6. This is stated clearly in the last paragraph as a potential limitation of this study.

The mid-Cretaceous black shales are used because they are organic rich and are very well dated. As discussed in our previous reply, we are not aware of available sedimentation rate estimates for oil shale *alone* at similar age that can be used as an analogue to constrain the sedimentation rate of oil shale in our study.

3) I acknowledge that the authors have made a great effort in describing the paleontological context of the basin. However, their biostratigraphic considerations are based on one single taxon (Lunania) found only in two other basins. Though one taxon is better than no taxon at all, this is still too weak to make this a key argument for the correlation.

Yes. That is right. Although there is only one single taxon, it is better than none. As such, interpretations can only be made based on what is available and make progress in such non-prefect circumstances.

After this first round of revision, almost all the other chronostratigraphic hypotheses still look as pertinent as the one that is eventually proposed.

The paleoclimatic discussion is still weak. The authors do not discuss the meaning of obliquity forcing in their section (cf, for ideas of interpretation: Zachos et al., 2008, Nature; Abels et al., 2011, Paleo3; Xiao et al., 2010, CotP). They do not explain the reasons of a potential increase of aridity at the EOT. Is it related to summer or winter rainfall, to monsoonal dynamics? e.g. Huber and Goldner, 2012 JAES, Licht et al., 2014, Nature. What about the increase of accumulation rates: how does it compare

with other Asian records? e.g. Peter Clift's paper in the South China sea, Metivier's paper in southeast Asia and Tibet.

These are all very interesting issues and our record can certainly contribute to better understanding some of these issues. However, these issues are relatively too remote in terms of what our data can or cannot support, particularly given that records from the low-latitude regions are sparse. Under such circumstance, we prefer to stay focused on discussions that are closely relevant to our data. For instance, in the revision, we compare our records with the lithologic data of the GSSP section in Italy and found the difference in timing of the major lithological changes in two regions. The major lithological change at the GSSP section occurs at early stage of Chron C13r, while the major lithological change in our record occurs at late stage of Chron C13r. In the revision, we expanded our discussion to incorporate this aspect, which is closely relevant to our data. Therefore, we prefer not to make too much speculation that is not closely relevant to our data.

Finally, the scientific English writing is for me comprehensible, but there are many repetitions throughout the paper and a few paragraphs that are particularly unclear (cf the legend of Fig. 2).

The manuscript is further polished. In particular, Fig. 2 caption has been revised.

After this round of revision, my feelings have not changed and I think that this study needs more biostratigraphic or geochronological data to constrain the chronology of the section. I am clearly not convinced by the current set of arguments brought by the authors.

Thank you again for your time, efforts, and comments! We hope you would be pleased to see the further improvements that we have made for this paper.

A list of relevant changes made in the 2nd revision

(P4=page no. 4; L4=Line no.4, in the track-change version)

- 1. P6, L11-14: The description of the outcrop is clarified in light of Dr. Rolf's suggestion;
- 2. P6, L18-29: the method of spectral analysis is added in light of Dr. Jovane's suggestion;
- P8, L17-21: Brief description of the lithology of the studied section is added as Dr. Licht suggested;
- P9, L8-18; P9, L28-32; P10, L14-27: these are interpretations of the lithological data and have been moved to merge into a new subsection "5.1 Depositional environment" (P13-P14) in light of Dr. Licht's suggestion of separating description from interpretation.
- 5. P12, L19-20: revised in light of Dr. Rolf's suggestion;
- 6. P17, L4-8: revised to clarify the issue in light of Dr. Rolf's suggestion;
- 7. P20, L14: revised in light of Dr. Jovane's suggestion;
- 8. P21, L19-29: added in light of Dr. Jovane's suggestion regarding the correlation between our record and the GSSP section in Italy;
- 9. P22, L30-P23, L18: this is a new paragraph to state the limitation of the study.
- 10. References: Brown et al. (2009) has been removed in light of Dr. Jovane's suggestion and new references related to the spectral analysis method are added in the reference list.
- 11. The lithostratigraphic columns in Fig. 2 and Fig. 8 have been revised to indicate grain size changes; Also, the listhostratigraphic data of the GSSP section in Italy are added in Fig. 8 (i); A topographic map is used in Fig. 1(a). Figure captions in Figs 2 and 8 are revised accordingly.

Terrestrial responses of low-latitude Asia to the Eocene Oligocene climate transition revealed by integrated chronostratigraphy

10 11

Yong-Xiang Li¹, Wenjun Jiao¹, Zhonghui Liu², Jianhua Jin³, Dehai Wang⁴, Yuxin

- ¹ State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and
 Engineering, Institute of Geophysics and Geodynamics, Nanjing University, Nanjing 210046,
 China
- 16 ² Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
- 17 ³ State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources,
- 18 School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- ⁴ College of Earth Sciences, Jilin University, Changchun 130061, China
- 20 ⁵ Department of Earth Sciences, Zhejiang University, Hangzhou, China
- ⁶ Research Center of Paleontology and Stratigraphy, Jilin University, Changchun 130026,
 China
- 23

4

5

6

7

8

9

12

He⁵, and Cheng Quan⁶

- 24
- 25 Correspondence to: Yong-Xiang Li (yxli@nju.edu.cn); Cheng Quan (quan@jlu.edu.cn)
- 26

1 Abstract

2 The Paleogene sedimentary records from southern China hold important clues to the impacts 3 of the Cenozoic climate changes on low-latitudes. However, although there are extensive 4 Paleogene terrestrial archives and some contain abundant fossils in this region, few are 5 accurately dated and have a temporal resolution adequate to decipher climate changes. Here 6 we present a detailed stratigraphic and paleomagnetic study of a fossiliferous late Paleogene 7 succession in the Maoming Basin, Guangdong Province. The succession consists of oil shale 8 of the Youganwo Formation (Fm) in the lower part and the overlying sandstone-dominated 9 Huangniuling Fm in the upper part. Fossil records indicate that the age of the succession 10 possibly spans from late Eocene to Oligocene. Both the Youganwo Fm and the overlying 11 Huangniuling Fm exhibit striking sedimentary rhythms, and spectral analysis of the depth 12 series of magnetic susceptibility of the Youganwo Fm reveals dominant sedimentary cycles at orbital frequency bands. The transition from the Youganwo oil shale to the overlying 13 14 Huangniuling sandstones is conformable and represents a major depositional environmental 15 change from a lacustrine to a deltaic environment. Integrating the magnetostratigraphic, 16 lithologic, and fossil data allows establishing a substantially refined chronostratigraphic 17 framework that places the major depositional environmental change at 33.88 Ma, coinciding with the Eocene-Oligocene climate transition (EOT) at ~33.7 to ~33.9 Ma. We suggest that 18 19 the transition from a lacustrine to deltaic environment in Maoming Basin represents terrestrial 20 responses to the EOT and indicates prevailing drying conditions in low-latitude regions 21 during the global cooling at EOT.

22

23 1 Introduction

24 The Late-late Paleogene witnessed one of the most prominent climatic changes in the 25 Cenozoic, a transition from greenhouse to icehouse world. The transition is climaxed at the 26 Eocene-Oligocene boundary when marine sediments registered a large, widespread, and rapid cooling in oceans (e.g., Zachos et al., 2001; Liu et al., 2009; Bohaty et al., 2012), which was 27 28 accompanied by a sudden deepening of the carbonate compensation depth (CCD) by \sim 1.2 km 29 (Pälike et al., 2012) in oceans and a severe calamity in the marine community that gave rise to 30 the largest marine mass extinction since the end of Cretaceous (e.g., Prothero, 1994; Pearson 31 et al., 2008; Cotton and Pearson, 2011). On land, this transition is expressed as rapid ice sheet 32 growth over Antarctica (e.g., DeConto and Pollard, 2003; Coxall et al., 2005; Goldner et al., 1 2014) and large-scale cooling (e.g., Zanazzi et al., 2007; Dupont-Nivet et al., 2007; Hren et al., 2 2013). While the transition is widely recognized in the marine realm (Zachos et al., 2001; Jovane et al., 2006; Liu et al., 2009; Pälike et al., 2012; Westerhold et al., 2014) and is 3 4 increasingly well-defined in terrestrial records from the Atlantic region (e.g., Zanazzi et al., 5 2007; Hren et al., 2013), its impacts on Asian environment remain poorly understood. This is 6 largely because the concomitant tectonism, i.e., the Tibetan plateau uplift, and the 7 development of monsoonal climate may also impose strong influence on Asian environment 8 (e.g., Dupont-Nivet et al., 2007; Quan et al., 2012, 2014; Wang et al., 2013; Licht et al., 2014,

9 2015; Shukla et al., 2014).

10 There are numerous basins in southern China that host conspicuous Cenozoic sedimentary 11 archives documenting the Cenozoic climate changes in the region. The late Paleogene 12 sedimentary records from this region are of particular interest because they hold clues to the 13 dramatic shift of climates in low-latitude Asia (Quan et al. 2012; Wang et al., 2013; Licht et al., 2014, 2015), where the influence of the Tibetan Plateau uplift should be minimal in 14 15 comparison to the Asian interior. However, although abundant Paleogene sedimentary 16 successions were developed here (e.g., Tong et al., 2005; 2013), their age controls are 17 generally poor. Despite the fact that some successions contain vertebrate and/or plant fossils 18 (e.g., Tong et al., 2005; 2013), the indicative age ranges of these fossils are often too broad to 19 date climate changes with satisfactory accuracy and precision.

20 In this paper, we present a detailed stratigraphic and paleomagnetic study on the fossiliferous 21 Eocene to Oligocene succession in the Maoming Basin of Guangdong Province, southern 22 China to construct a new chronostratigraphic framework that is based on an integrated litho-, 23 bio-, magneto-, and cyclostratigraphy. The new chronology not only greatly reduces the 24 uncertainty but also significantly refines the available fossil-based timescale of the succession. 25 In particular, the substantially refined chronology permits establishing the link between the 26 dramatic environmental change in the basin and the global Eocene-Oligocene climatic 27 transition, and thus provides a critical chronological basis for further detailed examination of 28 climate changes in this region.

29 2 Geologic setting

The Maoming Basin is an intramontane basin situated in the southwestern part of Guangdong
Province, southern China (Fig. 1). The Cenozoic succession of the basin consists of, from the
bottom to the top, the Shangdong Formation (Fm), Youganwo Fm, Huangniuling Fm,

1 Shangcun Fm, Laohuling Fm, and Gaopengling Fm (BGMRGP, 1988, 1996). Among these

2 units, the Eocene to Oligocene strata concern the Youganwo Fm and the Huangniuling Fm

3 (Fig. 2).

4 The Youganwo Fm is characterized by the occurrence of siltstones and shales containing coal 5 seams in the lower part and the predominant occurrence of oil shales in the upper part (Fig. 2). 6 The Youganwo Fm contains abundant vertebrate and plant fossils including turtles of 7 Anosteira maomingensis, Isometremys lacuna and Adocus inexpectatus (Chow and Liu, 1955; 8 Chow and Yeh, 1962; Claude et al., 2012; Danilov et al., 2013), crocodiles of Tomistoma 9 petrolica and Alligatoridae (Yeh, 1958; Li, 1975; Skutschas et al., 2014), fish of Cyprinus 10 maomingensis (Liu, 1957), mammals of Lunania cf. L. youngi (Wang et al., 2007), and wood 11 of Bischofia maomingensis and Myrtineoxylon maomingensis (Feng et al., 2012; Oskolski et 12 al., 2013). The age of the formation is controversial, varying from Eocene to Oligocene (e.g., Liu, 1957; Yeh, 1958; Yu and Wu, 1983). A comprehensive review of the fossil records 13 14 suggests that the Youganwo Fm was most likely deposited in the late Eocene (Jin, 2008). The 15 late Eocene age is interpreted to include both Priabonian stage and the Bartonian stage of the 16 Eocene based on recent advances in understanding fossil mammals of *Lunania*. Although the 17 systematic position of the genus Lunania is still not fully understood, increasing evidence 18 appears to point its age at Bartonian to Priabonian stage of the Eocene. To date, two species in 19 total were reported: Lunania zhoui from the Yuanqu Basin of central China (Huang, 2002), and Lunania youngi from Yunnan (Chow, 1957; Zong et al., 1996) and Maoming (Wang et al., 20 21 2007) of southern China, respectively. The geological age of Lunania zhoui is regarded to be 22 no earlier than Bartonian and no later than Priabonian (Tong et al., 2005). For the Lunania 23 youngi from Yunnan, its age spans from the Bartonian to Priabonian (Li and Ting, 1983; 24 Russell and Zhai, 1987; Wang, 1992; Qiu and Wang, 2007), the Bartonian (Tong et al., 1995), 25 the early Late Eocene (Huang and Qi, 1982), or the latest Eocene (Tong et al., 2005; Wang, 26 1997). Therefore, the late Eocene age of the mammal fossil in Maoming Basin should be 27 understood as including both the Priabonian stage and the Bartonian stage of the Eocene. 28 The overlying Huangniuling Fm consists mainly of sandstones and siltstones (Fig. 2). The

29 lower part of the Huangniuling Fm is dominated by massive, pebbly coarse sandstones 30 interbedded with thinly bedded, grey, silty mudstones. This formation contains plenty of plant 31 macrofossils such as fruits, leaves and reproductive remnants (e.g., Feng et al., 2013). The age of the Huangniuling Fm has been ascribed to late Eocene to Oligocene, or even to the
 Miocene (Yu and Wu, 1983; Wang et al., 1994; Guo, 2006; Aleksandrova et al., 2012).

3 The areal extent of these two formations and other Cenozoic architectural units in the 4 Maoming Basin was mapped by Guo (2006) that who compiled stratigraphic data from drill cores and outcrops. Sedimentary facies analyses of these sedimentary units indicate that 5 6 alluvial fan and fan delta were initially developed in the north-eastern part of the basin, which 7 gradually gave rise to lacustrine environment that expanded to the whole basin and alternated 8 with deltaic environment as lake area waxed and waned (Guo, 2006). Accordingly, 9 successions that were accumulated in the lacustrine and deltaic environments often exhibit 10 various subfacies and microfacies. For instance, subfacies/microfacies analysis indicates that 11 the lower part of the Youganwo Fm was initially formed in a littoral zone to shallow lake 12 environment that was replaced by a prodelta environment and subsequently by a shallow lake 13 environment (Guo, 2006). The oil shale dominated upper part of the Youganwo Fm was 14 deposited mainly in semi-deep or deep lake environments that gave rise to a shallow lake 15 environment at the uppermost of the Youganwo Fm. The Huangniuling Fm was deposited 16 predominately in deltaic environments that vary from prodelta, delta front to delta plain 17 environments (Guo, 2006). The uppermost part of the Huangniuling Fm, which consists of 18 mainly muddy siltstone and mudstones, was deposited in a prodelta environment that 19 transitioned to a shallow lake environment where the younger Shangcun Fm was deposited.

20 A magnetostratigraphic study was previously conducted in the Maoming Basin (Wang et al., 21 1994). The paleomagetic data were collected from three different sites, drill cores MR and 22 MB as well as an outcrop section MS (Fig. 1b), and stratigraphic data from these three sites 23 were compiled to obtain a composite stratigraphy that comprises the upper part of Youganwo 24 Fm, Huangniuling Fm, Shangcun Fm, and Laohuling Fm-. The age of the composite 25 stratigraphy was interpreted to span from Chron 18n to Chron 12n (Wang et al., 1994). However, the magnetostratigraphy of Wang et al (1994) can only be regarded as preliminary 26 27 by modern standards because of the following reasons. The mean sampling spacing is large, 28 ~ 2.6 m; In addition, changes in sedimentation rates as indirectly reflected by the lithology 29 were not taken into account. Furthermore, despite that samples of the Huangniuling Fm, 30 Shangcun Fm, and Laohuling Fm were collected from the same core, i.e., the 874 m long MR 31 core, samples of the Youganwo Fm were collected from both the MB core (15 samples) and 32 the MS section (17 samples). The MB core is 567 m long, penetrates the Cenozoic strata, and

1 reaches the Cretaceous rocks. No details were available as to how these 32 samples from two
2 different sites were integrated to make a composite stratigraphy for the Youganwo Fm,
3 particularly given that the MB core is relatively condensed and its base reaches the
4 Cretaceous rocks. In particular, concerning the stratigraphic interval equivalent to that of this
5 study, i.e., the upper Yougnawo Fm and the lower Huangniuling Fm, the sampling spacing
6 was on average about 6.0 m (Figs 2 and 5 of Wang et al., 1994), which is too large by modern
7 standards.

8 3 Methods

9 The study section is well exposed in the cliffs of the now- abandoned open mine pit (N21° 10 42.3', E110° 53.9'), located to the northwest of the Maoming City (Fig. 1). The exposed 11 section comprises the upper part of the Youganwo Fm and the overlying Huangniuling Fm. In this study, the upper 31.5 meter of the Youganwo Fm and the basal 30 meter of the 12 13 Huangniuling Fm were measured. Major lithological changes in the upper part of the 14 Huangniuling Fm are noted. To detect subtle changes in lithology of the exposed Youganwo 15 Fm, magnetic susceptibility (MS) was measured with a hand-held susceptibility meter SM30, typically at every 10 to 20 cm. Spectral analysis of the depth MS data series was performed 16 17 using the technique of Muller and MacDonald (2000) to detect the dominant sedimentary 18 cycles. For the overlying Huangniuling Fm, it is basal 30 meter was measured and major lithological changes in its upper part are noted. The raw MS data series was first linearly 19 20 interpolated, detrended, and subjected to a band-pass filter of 1/1000-1/10 cycles/cm. The 21 prepared MS data series in depth domain was then used to perform fast Fourier transforms 22 (FFTs), yielding a series of spectral peaks. To identify the statistically significant spectral 23 peaks, noise estimation using Monte Carlo approach (Mader et al., 2004) was carried out. This approach involves combining FFTs on 1000 randomly generated datasets to produce a 24 25 95% confidence curve. Spectral peaks rising above the confidence curve are considered statistically significant. To further test whether the dominant sedimentary cycles, as 26 27 represented by the statistically significant spectral peaks, are within orbital frequency bands, cycle wavelength ratios (CWRs) of the dominant sedimentary cycles are examined and 28 compared with the periodicity ratios of orbital cycles following Fischer (1991). 29

30 Oriented paleomagnetic samples were collected from the exposed Youganwo Fm and the 31 lower part of the overlying Huangniuling Fm at a depositional center of the basin where the 32 gradual transition between the two formations occur (see Section 4.1). For oil shales in the

{	带格式的:	无下划线
{	带格式的:	无下划线
{	带格式的:	无下划线
1	带格式的:	无下划线

1 Youganwo Fm, samples were collected usually every ~30 to 40 cm and, where possible, 2 2 core samples were taken from a stratigraphic level. For the Huangniuling Fm, samples were 3 mainly collected from the interbedded thin, gray mudstones. A gasoline-powered portable 4 rock drill was used to collect samples and a Pomery orientation device was used to orient the 5 samples. Oriented block samples were taken from outcrops where drilling is not possible. A 6 total of 109 core samples and 66 block samples from 122 stratigraphic levels were collected 7 from this section.

8 In the laboratory, the samples were trimmed to standard cylindrical paleomagnetic specimens 9 or cut into 2cm $\underline{\text{cubes}} \times 2$ (8 $\underline{\text{cm}}^3$) \times 2cm $\underline{\text{cubes}}$. Anisotropy of magnetic susceptibility (AMS) of all specimens was measured with a KLY-3 Kappabridge. The specimens were then 10 subjected to progressive thermal or AF (alternating field) demagnetization. The AF 11 12 demagnetization was performed with a Molspin demagnetizer and the thermal demagnetization was conducted with an ASC TD48 thermal demagnetizer. The remanence of 13 specimens was measured with a three-axis, 2G Enterprise Inc. 755 rock magnetometer. To 14 15 constrain the magnetic mineralogy, isothermal remanent magnetization (IRM) acquisition was 16 conducted with an ASC impulse magnetizer (IM-30) for selected samples. In the IRM 17 acquisition experiments, each sample was magnetized in a forward field that progressively 18 increases from 20 mT to 1.2 T. The sample was then progressively demagnetized in a 19 backward field to estimate the coercivity of magnetic minerals. Between each magnetization/demagnetization treatment, the remanece of the sample was measured with an 20 21 AGICO JR6A magnetometer. In addition, selected samples were subjected to a Lowrie test 22 (Lowrie, 1990) to further constrain the magnetic mineralogy. In the Lowrie test, the samples 23 were first magnetized sequentially along their Z, Y, and X axes with fields of 1.2 T, 0.6 T, and 0.125 T, respectively, and the composite IRM was then thermally demagnetized up to 24 640 °C. To further aid in magnetic mineralogy determination, thermal changes of magnetic 25 26 susceptibility of representative samples from the Youganwo Fm and the Huangniuling Fm 27 were measured with a MFK Kappabridge equipped with CS4 apparatus. The magnetic 28 susceptibility of the samples was measured while the samples were heated and cooled 29 between the room temperature and 700 °C in an argon environment. In addition, Zero-field-30 cooled (ZFC) and field-cooled (FC) low-temperature measurements were conducted with a 31 MPMS system at the Paleomagnetism Laboratory of Chinese Academia of Science. All the 32 demagnetization experiments and remanence measurements were conducted in a magnetically

带格式的: 上标

shielded room (residual field < 300 nT) in the Paleomagnetism Laboratory of Nanjing
 University, China.

The demagnetization data were analyzed using the principal component analysis technique (Kirschvink, 1980). The demagnetization data are presented graphically with vector end point diagrams (Zijderveld, 1967). Software packages Puffinplot (Lurcock and Wilson, 2012) and PMGSC (by Randy Enkin) were used for paleomagnetic data analysis. The defined polarity zones, together with constraints from the paleontologic and lithologic data, are compared with the Geomagnetic Polarity Time Scale (GPTS) of Ogg (2012) to establish a chronologic framework for the investigated section.

10 4 Results

11 4.1 Sedimentary rhythms

12 The lithostratigraphy of the investigated section is summarized in Fig. 2. At distance, Tthe lithology difference of the Youganwo Fm at the lower part and the Huangniuling Fm at the 13 14 upper part of the section is indicated by the distinct color contrast (Fig. 2c-e). The overall 15 light brownish color in the lower part characterizes the exposed Youganwo Fmoil shale, while 16 the overall pale grey to light yellowish color in the upper part characterizes the overlying, sandstone dominated Huangniuling Fm (Fig. 2e). The investigated Youganwo Fm consists 17 18 predominately of brown to dark brown oil shales with faint thin laminations. Brown grey to 19 grey mudstone occurs at the uppermost of the Youganwo Fm. The overlying Huangniuling 20 Fm contains dominantly massive sandstone and siltstone beds that are interbeded with pale grey to grey thin mudstones beds. 21

22 One of the most striking features of the outcrop is the occurrence of sedimentary rhythms, 23 which are impressively expressed as the repeated occurrence of beds with distinct reddish color, in both the Youganwo Fm and the Huangniuling Fm (Fig. 2c, e). In the Youganwo Fm, 24 25 there are more than a dozen of beds displaying distinct reddish color (Fig. 2a). The sedimentary rhythm is particularly well expressed between ~11 m and 30 m, where the 26 27 average spacing between two neighboring reddish beds is about 1.0 to 1.5 m (Fig. 2a). 28 Inspection of the beds with reddish color at the outcrop found that the reddish coloration only 29 occurs at the surface and should represent weathering banding of the beds because the fresh exposure of these beds does not show reddish color. Despite that the reddish color represents 30 recent weathering, not the depositional signature, weathering enhanced the expression of 31

8

1 changes in lithology and made the subtle lithological changes more distinctly and 2 expressively visible on the outcrop. Because the reddish layers correspond to higher magnetic susceptibility (MS) values and less reddish levels display relatively lower magnetic 3 4 susceptibility values, MS data can facilitate the characterization of sedimentary rhythms 5 cycles in the Youganwo Fm. Indeed, our high-resolution MS data also exhibit meter-scale 6 cyclicity (Fig. 2b). Spectral analysis of the MS data reveals dominant sedimentary cycles with a cycle wavelength of ~252 cm, 127 to 107 cm, and ~30 cm (Fig. 3). The 127 to 107 cm cycle 7 8 and the ~30 cm cycle have a cycle wavelength ratio of 3.6 to 4.2:1.5 which is similar to the periodicity ratio of 4:1 for the long eccentricity and the short eccentricity. The ~252 cm cycle 9 10 and the 127 to 107 cm cycle have a cycle wavelength ratio of 1.98 to 2.35:1, probably representing the harmonics of the 127 to 107 cm cycle. Therefore, the dominant sedimentary 11 evcles are probably in the orbital frequency bands and the meter scale cycles may represent 12 the long eccentricity cycle. Since the Youganwo oil shale was formed in a lacustrine 13 environment (Guo, 2006), the subtle lithological changes in a repeated fashion as exemplified 14 by the occurrence of the meter scale sedimentary rhythms were probably related to fluctuating 15 lake levels, which can cause subtle changes in deposition, thus in lithology. Fluctuations of 16 lake level in Maoming Basin may have been modulated by orbital variations because the 17 18 dominant sedimentary cycles appear to be in the orbital frequency bands.

19 The contact between the Youganwo Fm and the overlying Huangniuling Fm is sharp at many 20 locations around the edge of the open mine pit where the siltstone and sandstone dominated 21 Huangniuling Fm directly sit atop of brown grey to dark grey mudstones of the upper part of 22 the Youganwo Fm. However, when the contact is traced toward the center of the basin, the 23 interface between the two formations is represented by a ~ 50 cm thick layer that displays a 24 continuous, gradual change from brown grey mudstones at the uppermost Youganwo Fm to 25 pale grey mudstones at the base of the Huangniuling Fm (Fig. 2d). Above the pale grey 26 mudstone are siltstones and sandstones, exhibiting a coarsening upward trend in grain size. 27 Further upsection, the siltstones and sandstones are interbeded with thin layers of pale grey 28 mudstones in the lower part of the Huangniuling Fm. These features suggest that the deposition was continuous at the study site when the Maoming Basin experienced the 29 30 transition from a shallow lacustrine environment, as represented by the upper part of the Youganwo Fm to a prodelta environment, as represented by the lower part of the 31 32 Huangniuling Fm (Guo, 2006), while the lake level was probably dropping.

√ 带格式的:下划线

1
2

3 In the Huangniuling Fm, sedimentary rhythms are indicated by repeated occurrence of the 4 distinct red layers-consists of coarse sandstones. It The red layer occurs at the base of the pale 5 grey massive coarse sandstone and is typically a few centimeters thick. The basal red 6 sandstones are more resistant to weathering than the rest of the massive sandstones and 7 commonly stick out of the surface of the outcrop, making the distinct red layers readily 8 recognizable at distance (Fig. 2c). The thickness of the massive sandstone varies largely from 9 decimeters to meters, occasionally up to decameters. Above massive sandstones is typically a 10 relatively thinner mudstone bed (Fig. 2c). A red layer, massive sandstones, and a thin mudstone bed appear to form a parasequence that occurs repeatedly across the Huangniuling 11 12 Fm (Fig. 2a, b, c). In the lower part of the Huangniuling Fm, the sandstone and mudstone 13 beds in a parasequence are nearly flat and extend laterally with uniform thickness for 14 hundreds of meters, and there is a fining-upward trend within a parasequence. , suggesting 15 that this part of the Huangniuling Fm was deposited in a prodelta to delta front or an interdistributary bay environment. Given the gradual nature of the transition from the 16 17 Youganwo Fm to the Huangniuling Fm, the repeated occurrence of the parasequence in the lower part of the Huangniuling Fm was probably associated with fluctuating lake levels that 18 19 may have been forced by orbital variations as well. This notion of orbital forcing is supported by the persistent pattern of rhythmic occurrence of the parasequences. This notion is also 20 strengthened by the demonstrated orbital forcing of the deposition in marine (e.g., the 21 22 Eocene/Oligocene boundary GSSP section in Italy, Jovane et al., 2006) and lacustrine (e.g., the Green River Fm, Meyers, 2008) settings during the similar time interval. In the upper part 23 24 of the Huangniuling Fm, lense-shaped channelized sandstones are occasionally observed, suggesting that delta front to delta plain deposits gradually became dominant in the upper 25 26 section. Using the distinct red layer in a parasequence as a marker bed, we have counted 19 parasequences, representing 19 sedimentary cycles, in the exposed Huangniuling Fm (Fig. 2a, 27 28 b).

1 4.2 Rock magnetic data

2 4.2.1 Anisotropy of magnetic susceptibility (AMS)

3 The AMS data of the Youganwo samples show predominantly oblate fabrics with the 4 minimum axes perpendicular to the bedding and the maximum and intermediate axes parallel 5 or subparallel to the bedding (Fig. 4a,b). The degree of anisotropy (Pj) ranges from 1.0 to 6 1.232 (Fig. 4b). The AMS data of the Huangnuling samples display mainly oblate fabrics (Fig. 7 4d), but also show a weak prolate fabric with the maximum axes trending SE and the 8 minimum and intermediate axes girdling along the NE-SW direction (Fig. 4c). In addition, the 9 degree of anisotropy of the Huangniuling samples is low, varying from 1.0 to 1.089, and 10 mostly below ~1.03 (Fig. 4d).

11 4.2.2 Temperature-dependence magnetic properties and IRM

12 Thermomagnetic curves of the samples show that all the low-field magnetic susceptibility 13 values at the end of the experiments are higher than those at the beginning of the experiments, 14 suggesting that transformation of magnetic mineral phases occurred during heating (Fig. 5a-e). 15 Because the cooling curves generally show a rapid increase in susceptibility from 580°C to 500°C (Fig. 5a-e), magnetite minerals were probably produced during the experiments, 16 leading to elevated susceptibility values by the end of the experiments. The mudstone at the 17 18 lower part of the Huangniuling Fm (Fig. 5a,b) and the brown grey shale of the uppermost 19 Youganwo Fm (Fig. 5c) show overall similar features with an increase in magnetic 20 susceptibility between 450°C and 500°C during heating, whereas the oil shale samples show an increase in magnetic susceptibility at ~250°C and another major increase between 400°C 21 and 450°C (Fig. 5d,e) during heating. For the oil shale samples, the magnetic susceptibility 22 23 increase at ~250°C (Fig. 5d,e) is diagnostic of hexagonal pyrrohtite due to thermally activated 24 vacancy ordering (Dunlop and Özdemir, 1997), and the subsequent increase in magnetic 25 susceptibility between 450°C and ~500°C probably indicates transformation of pyrrohtite to magnetite during heating (Fig. 5d,e). 26

IRM acquisition of the samples shows that these samples are mostly saturated at fields above 200 mT (Fig. 5f). The demagnetization of IRMs in the backward DC fields suggests that the 29 coercivity of the magnetic minerals is around 40 mT (Fig. 5f). The ZFC and FC low-30 temperature data of the samples show that the Huangniuling mudstone and the brown grey 31 shale of the uppermost part of the Youganwo Fm exhibit similar features that are

characterized by a small difference between the ZFC and FC curves (Fig. 5g, h). In addition, 1 2 the Huangniuling mudstone shows a subdued transition at ca. 120 K (marked with an arrow in 3 Fig. 5g), which may indicative of the presence of magnetite (Verwey, 1939; Özdemir et al., 4 1993). Thermal demagnetization of the composite IRM of the Huangniuling mudstone and the 5 brown grey shale of the Youganwo Fm shows that the low coercivity component (0.125 T) 6 unblocked at 580°C, confirming that magnetite is the major magnetic mineral phase in the 7 Huangniuling mudstone and the brown grey shale of the uppermost of the Youganwo Fm. For 8 the Youganwo oil shale, in addition to the presence of pyrrhotite as indicated by the rapid 9 increase in magnetic susceptibility at ~250°C (Fig. 5d,e), magnetite is present as well, which 10 is evidenced by the 580°C unblocking temperature of the composite IRM (Fig. 50). At some 11 oil shale levels such as around 17.2 m, iron suphide phases become predominant, which is 12 indicated by the sharp drop of the composite IRM between 350°C and 400°C (Fig. 5n). ZFC and FC low-temperature measurements show that there is a marked difference between the 13 14 ZFC and FC curves (Fig. 5i, j), indicating the presence of pyrrhotite (Snowball and Torii, 1999). The Mr/ χ ratio of the Youganwo oil shale is typically around 0.5 x 10³ to 1.0 x 10³ 15 A/m, which is low in comparison to the $\sim 70 \times 10^3$ A/m for greigite (Snowball and Thompson, 16 1990). Also, greigite tends to display little difference between ZFC and FC curves (Chang et 17 18 al., 2007; Roberts et al., 2011). Therefore, greigite may not be present in Youganwo oil shale. 19 Pyrrhotite is the dominant iron sulphide phases in the Youganwo oil shale and was likely produced during the oil shale accumulation-20

21

22 4.3 Paleomagnetic data

Natural remanent magnetizations (NRMs) of the samples range between 3×10^{-3} and 20 23 mA/m with the majority being at the orders of 10^{-2} to 10^{-1} mA/m. About half of the specimens 24 25 are magnetically unstable, displaying erratic directions upon demagnetization. For the rest of 26 the samples, the AF demagnetized samples generally show demagnetization trajectories 27 decaying toward the origin (Fig. 6a, b, c) and the thermally demagnetized samples generally 28 show relatively stable demagnetization trajectories below 400 °C (Fig. 6d, e, f), above which 29 erratic directions occur. For most samples, the linear segment of the demagnetization 30 trajectory with coercivities > 15 mT or with a temperature range from \sim 150 °C to \sim 340°C or 31 380°C that decays toward the origin is regarded as a characteristic remanence (ChRM). The

1 demagnetization data together with the rock magnetic data (Section 4.2.2) suggest that the

2 remanence of the samples mainly resides in magnetite and pyrrhotite becomes the dominant

3 magnetic mineral phase in the Youganwo oil shale.

4 To obtain reliable estimates of the ChRMs, the following criteria are also used to scrutinize 5 the data: a) we generally accept ChRMs of higher coercivity/unblocking temperature component decaying toward the origin with at least four data points; b) ChRMs with a 6 7 maximum angular deviation (MAD) greater than 16° are rejected; c) if two samples from the 8 same stratigraphic level yield similar ChRMs, the sample that has a better definition of the 9 ChRM is used. Following the above treatments, we obtain reliable paleomagnetic data from 10 63 stratigraphic levels. Among these data, ChRMs from 46 stratigraphic levels have their corresponding virtual geomagnetic pole (VGP) within 45° from the mean of VGPs. These 46 11 ChRMs show both normal and reversed polarities (Fig. 7). A reversal test was performed and 12 passed at 95% confidence level with class "C" (McFadden and McElhinny, 1990). Therefore, 13 the quality of the 46 ChRMs is ranked at "A" and the remaining 17 ChRMs are ranked at "B" 14 15 in quality. Changes in inclinations and VGP latitudes of these ChRMs with depth are shown 16 in Fig. 8c, d.

17 5 Discussions

18 <u>5.1 Depositional environment</u>

19 The history of depositional environmental changes in Maoming Basin was ---20 summarized by Guo (2006). For the investigated section in this study, the upper part of the Youganwo oil shale was deposited in semi-deep or deep lake environment that gradually 21 22 transitioned to a shallow lake environment at the uppermost of the Youganwo Fm (Guo, 23 2006). The striking sedimentary rhythms are dominated by 127 to 107 cm cycles and 30 cm cycles, displaying a cycle wavelength ratio of 3.6 to 4.2:1, which is similar to the periodicity 24 ratio of 4:1 for the long eccentricity and the short eccentricity. The 252 cm cycle has a cycle 25 wavelength about 2 times of the 127 to 107 cm cycles, probably representing the harmonics of 26 27 the 127 to 107 cm cycle. Therefore, the dominant sedimentary cycles are probably in the orbital frequency bands and the meter-scale cycles may represent the long eccentricity cycle. 28 Since the Youganwo oil shale was formed in a lacustrine environment (Guo, 2006), such 29 30 subtle lithological changes in a repeated fashion as exemplified by the occurrence of the 31 meter-scale sedimentary cycles were probably related to fluctuating lake levels, which can

带格式的:正文

cause subtle changes in deposition, thus in lithology. Fluctuations of lake level in Maoming 1 2 Basin may have been modulated by orbital variations because the dominant sedimentary 3 cycles appear to be in the orbital frequency bands, probably representing long and short 4 eccentricity cycles. Orbital variations probably affected moisture conditions in this region, 5 leading to wet/dry oscillations and thus fluctuations of lake level. Relatively less/more 6 organic matter may have been accumulated during low/high lake level periods, resulting in 7 subtle cyclic lithological variations. The subtle lithological changes become expressively 8 displayed as striking sedimentary cycles on the outcrop upon weathering. The reddish beds 9 probably correspond to depositions during low lake level periods when relatively less organic 10 matter was accumulated.

11 The contact between the Youganwo Fm and the Huangniuling Fm shows gradual 12 change from brown grey mudstones at the uppermost of Youganwo Fm to the pale grey mudstone at the base of the Huangniuling Fm, which is gradually transitioned to siltstones 13 and further to sandstones. These features suggest that the deposition was continuous at the 14 15 study site when the Maoming Basin experienced the transition from a shallow lacustrine 16 environment, as represented by the upper part of the Youganwo Fm to a prodelta environment, as represented by the lower part of the Huangniuling Fm (Guo, 2006), while the lake level 17 18 was probably dropping.

19 For the lower part of the Huangniuling Fm, since the sandstone and mudstone beds in 20 a parasequence are nearly flat and extend laterally with uniform thickness for hundres of 21 meters, the lower part of the Huangniuling Fm was likely deposited in a prodelta to delta front 22 or an interdistributary bay environment. Given the gradual nature of the transition from the 23 Youganwo Fm to the Huangniuling Fm, the repeated occurrence of the parasequence in the 24 lower part of the Huangniuling Fm was probably associated with fluctuating lake levels that 25 may have been forced by orbital variations as well. This notion of orbital forcing is supported 26 by the persistent pattern of rhythmic occurrence of the parasequences. This notion is also 27 strengthened by the demonstrated orbital forcing of the deposition in marine (e.g., the 28 Eocene/Oligocene boundary GSSP section in Italy, Jovane et al., 2006) and lacustrine (e.g., 29 the Green River Fm, Meyers, 2008) settings during the similar time interval. For the upper part of the Huangniuling Fm, the occasional occurrence of lense-shaped channelized 30 31 sandstones suggest that delta front to delta plain deposits gradually became dominant in the 32 upper section.

带格式的:正文,制表位:不在

5.15.2 Definition of magnetozones

1

2 Oil shales in the Youganwo Fm exhibit predominantly oblate AMS fabrics (Fig. 4), indicative 3 of a depositional origin of the fabrics. Silty mudstone layers in the Huangniuling Fm also show mainly oblate AMS fabrics, and prolate fabrics occur as well, though weak. These 4 5 features indicate depositional type of fabrics developed in the presence of currents flowing at 6 a moderate speed (Tauxe, 1998), which is consistent with a deltaic depositional environment 7 for the Huangniuling Fm. In addition, reversed polarities are present and a reversal test passed 8 the confidence criteria (Section 4.3). Taking together, the occurrence of depositional type 9 fabrics, the presence of reversed polarities, and the passage of a reversal test suggest that the 10 remanence is likely primary. Therefore, both the VGP latitudes and inclinations are used to define magnetozones of the investigated sections (Fig. 8e). Also, definition of magnetozones 11 is primarily based on the "A"-quality ChRM data and the "B"-quality ChRM data are only 12 used as a second-order constraint for intervals where "A"-quality data are sparse (Fig. 8c, d). 13 14 In addition, a polarity zone is defined by at least two consecutive levels of similar polarities. 15 Changes in inclinations and VGP latitudes with depth are largely in concert, which allows us 16 to define two reversed polarity zones (R1 and R2) and two main normal polarity zones (N1 17 and N2) (Fig. 8e). Among these magnetozones N1 and R2 are better defined. N1 is defined 18 between 32.2 m and 51.0 m, and R2 is defined from 25.0 m to 32.2 m (Fig. 8e). Below 25.0 m 19 is dominated by the normal polarities except at ~ 10 m where isolated negative inclinations 20 and VGP latitudes occur (Fig. 8c, d). Although these negative values do not occur 21 consecutively in depth (Fig. 8c, d), the trend of shift toward negative values in both 22 inclinations and VGP latitudes is evident and is consistent, suggesting that a reversed polarity 23 probably exists at ~10 m (Fig. 8e). This possible reversed polarity zone is tentatively defined between ~11.0 m and ~8.5 m and separates the lower 25 m section into two short normal 24 25 polarity zones, N2 and N3 (Fig. 8e).

26 **5.2**5.3 Major constraints on a geomagnetic polarity timescale (GPTS)

27 Correlation of these magnetozones to the standard GPTS is not unique due to the lack of 28 numerical ages serving as anchor points. However, several constraints exist for the 29 investigated section. When these constraints are used collectively and in conjunction with the 30 defined magnetozones (Fig. 8e), it is possible to establish a reliable polarity time scale for this 31 section.

1 The major constraints are as follows. 1), the studied oil shales contain abundant vertebrate and 2 plant fossils (Chow and Liu, 1955; Liu, 1957; Yeh, 1958; Chow and Yeh, 1962; Li, 1975; Yu and Wu, 1983; Wang et al., 2007; Claude et al., 2012; Feng et al., 2012, 2013). In particular, 3 4 the mammal fossil (Lunania cf. L. youngi) (Wang et al., 2007), which was unearthed from the 5 studied oil shale of the Youganwo Fm, provides the most definitive evidence for a late Eocene 6 age (Wang et al., 2007; Jin et al., 2008). Accordingly, the Youganwo oil shale was formed 7 sometime in the Priabonian stage and/or Bartonian stage of the Eocene that could span from 8 magnetic Chrons C18r to C13r, i.e., 41 to 34 Ma (Fig. 8f). 2), the marked difference in 9 lithology of the Youganwo Fm and the Huangniuling Fm suggests drastic difference in 10 sediment accumulation rates. The sampled Youganwo Fm consists predominantly of brown 11 oil shales, whereas the overlying Huangniuling Fm comprises dominantly massive pebbly 12 coarse sandstones and siltstones. Therefore, the sediment accumulation rates for the 13 Huangniuling Fm were much faster than those for the Youganwo Fm. In addition, although 14 organic matter and silt content decreases upsection and grey mudstones occur at the 15 uppermost of the Youganwo Fm, changes in lithology within the Youganwo Fm are subtle. 16 This suggests that sediment accumulation rates of the studied Youganwo Fm should not 17 change drastically. 3), the deposition between the Youganwo and Huangniuling Fms is 18 continuous. The contact between the two formations displays a continuous, gradual change 19 from brown grey mudstones at the uppermost Youganwo Fm to pale grey mudstones at the base of the Huangniuling Fm within an interval of ~50 cm. In addition, siltstones and 20 21 sandstones overlying the basal pale grey mudstone exhibit a coarsening upward-trend-in-grain-22 size, indicating a continuous deposition during the transition from the Youganwo Fm to the 23 Huangniuling Fm. 4), the characteristic sedimentary rhythms cycles of the investigated 24 section may also be used as an additional constraint. In fact, the occurrence of sedimentary 25 rhythms-cycles is not unique at the studied section. A marine succession of similar age in 26 Massignano, Italy also displays striking limestone/marl cycles (Jovane et al., 2006). Cyclic lithologic patterns are also seen in the middle Eocene oil shale-bearing lacustrine succession 27 28 in the Mudurnu-Göynük Basin, Turkey (Ocakoğlu et al., 2012), the Eocene oil shale-bearing 29 Green River Formation in the United States (Meyers, 2008), and other terrestrial records of 30 similar ages in Asia (e.g., Dupont-Nivet et al., 2007; Xiao et al., 2010). All these lithologic 31 cycles are attributed to orbital forcing and represent orbital cycles (Jovane et al., 2006; 32 Dupont-Nivet et al., 2007; Meyers, 2008; Xiao et al., 2010; Ocakoğlu et al., 2012). The strong 33 lithologic expression of orbital variations in both marine and terrestrial records, particularly

带格式的:下划线

1 those containing oil shales, from widespread regions at similar ages leads us to believe that 2 the sedimentary cycles of the studied section likely-probably represent orbital cycles as well. 3 In particular, spectral analysis of magnetic susceptibility depth series of the Youganwo Fm 4 reveals dominant sedimentary cycles with a cycle wavelength ratio of $\sim 4:1$, which suggesting 5 that these sedimentary cycles is in the orbital frequency bands. Therefore, although it is not 6 certain yet as to exactly which orbital cycle(s) (i.e., eccentricity, obliquity, or precession) 7 these sedimentary rhythms-may represent long and short eccentricity cycles. Therefore, the frequency of these lithologic cycles should be within the orbital frequency bands, which can 8 9 be used as an additional, first-order constraint when establishing a time-scale for the studied 10 section. Based on the definition of the magnetozones (Fig. 8), there are ~3.5 sedimentary cycles in N1. Because a sedimentary cycle in the Huangniuling Fm is represented by a 11 12 sequence of red layer, massive sandstone, and a thin mudstone, one red layer marker at 40 m 13 might be unidentified, where the accompanied thin mudstone bed did occur (Fig. 8). 14 Therefore, there are probably 4 sedimentary cycles in N1 zone. Similarly, there are ~ 3 15 sedimentary cycles in R2 zone and ~8.5 sedimentary cycles in N2 zone, respectively (Fig. 8).

16

5.35.4 Construction of a geomagnetic polarity timescale (GPTS)

With the aforementioned 4 constraints, correlations between the four polarity zones (Fig. 8e) and the magnetochrons C18r to C13r (Fig. 8f) can be examined and unrealistic correlations can be rejected. Because polarity zones N1 and R2 are better defined than other two polarity zones, correlation is thus constructed mainly between the N1 and R2 pair and the consecutive normal and reversed magnetochrons of the GPTS. To facilitate the analyses, the N2 zone is also used, but as a secondary constraint, in establishing the correlations.

23 The results of correlations are summarized in Table 1. With the first-order constraint that the 24 Youganwo oil shales were formed in the late Eocene, i.e., from C18 to C13, six ensembles of 25 correlations are possible (Table 1). Ensemble 1 correlates N1 and R2 zones with C18n and 26 C18r, respectively. Ensemble 2 correlates N1 and R2 zones with C17n and C17r, respectively. 27 Ensemble 3 relates N1 to C16n.2n and R2 to C16r. Ensemble 4 links N1 to C16n.1n, R2 to 28 C16n.1r, and N2 to C16n.2n. In Ensemble 5, N1 and R2 zones are correlated to C15n and 29 C15r, respectively. And Ensemble 6 correlates N1 to C13n and R2 to C13r. The quality of 30 each correlation is assessed by examining whether and to what extent the above four constraints are met. The one that satisfies most or all of the constraints is preferred and is used 31 32 to establish the magnetic polarity timescale for the investigated section. For instance,

1 Ensemble 1 is rejected because this correlation would force the majority of the Youganwo oil 2 shale section (N2-N3), where funa fossils of late Eocene age were discovered, to the middle Eocene (Fig. 8e,f). Ensembles 2 and 3 are rejected on the grounds that the sedimentation rate 3 4 for N1 in the coarse sandstones is slower than or similar to that of R2 in the oil shale, which 5 violates constraint 2). Ensemble 4 is also rejected because the sedimentation rate for the upper 6 part of the Youganwo Fm (R2) is almost two times that of the lower part of the Youganwo oil 7 shale, which is incompatible with the subtle compositional change within the studied 8 Youganwo Fm.

9 For Ensemble 5, assuming that C16n.1r was not captured probably due to its relatively short 10 duration, N2 zone would correlate to C16n. Such a correlation yields a sedimentation rate of \sim 11 6.37 cm/kyr for N1, ~1.75 cm/ky for R2, and ~1.51 cm/kyr for N2 (Table 1). These 12 sedimentation rates comply with the constraints specified in Section 5.2. However, the 13 sedimentation rates of ~1.51 to 1.75 cm/kyr are probably too fast for the investigated oil shale 14 because oil shale in the Youganwo Fm was formed in a semi-deep to deep lake environment 15 (Guo, 19962006) and the lithology of the investigated interval of the Youganwo Fm is nearly 16 monotonic, consisting of only oil shale. A pure shale unit represents a condensed time interval 17 and should be accumulated at very slow rates. Two well-dated organic-rich black shale 18 intervals in the mid-Cretaceous could serve as useful analog to oil shale of the investigated 19 section. The well-dated black shale unit at ~120 Ma is about 5 m thick and represents ~1270 kyr (Li et al., 2008), and thus was accumulated at a rate of ~0.39 cm/kyr. Similarly, the 20 21 sedimentation rates of the well-dated black shale unit at ~94 Ma (Sageman et al., 2006) are 22 estimated to be ~ 0.37 to ~ 0.50 cm/kyr. In addition, Ensemble 5 correlation would result in a 23 duration of 295 kyr (C15n) for N1 zone and 411 kyr for R2 zone. Because there are ~4 and ~3 24 sedimentary cycles in N1 zone and R2 zone, respectively, the sedimentary cycle in N1 zone 25 and R2 zone would represent a \sim 74 kyr and \sim 137 kyr cycle, respectively. The \sim 137 kyr cycle 26 in R2 zone could be a result of modulation by short eccentricity of orbital variations. But the 27 \sim 70 kyr cycle in N1 zone is not in the frequency band of orbital variations and its origin is 28 thus difficult to interpret. Therefore, Ensemble 5 is rejected as well.

Ensemble 6 satisfies the constraints on sedimentation rates for the Huangniuling Fm and the Youganwo Fm. Also, the sedimentation rates of 0.42 to 0.56 cm/kyr for the Youganwo Fm (Table 1) are compatible with those of the well-dated, organic-rich black shales in the mid-

32 Cretaceous. Furthermore, this correlation would result in durations of N1, R2, and N2 zones

1 that are largely comparable to those estimated from sedimentary cycles. With ensemble 6 2 correlation, N1, R2, and N2 zone would represent ~548 kyr, ~1294 kyr, and ~3334 kyr, 3 respectively. Since N1 zone contains ~ 4 sedimentary cycles (Fig. 8a, b), each cycle would 4 represent a \sim 137 kyr cycle, which is similar to the short eccentricity cycle E2 (95 to 125 kyr). 5 Similarly, since there are \sim 3 sedimentary cycles in R2 zone (Fig. 8a, b), each sedimentary 6 cycle would represent a ~431 kyr cycle, which is similar to the long eccentricity cycle E1 (405 to 413 kyr). As an additional check, the duration of the sedimentary cycles within N2 7 8 zone is calculated. There are ~8.5 sedimentary cycles in N2 zone representing ~3334 kyr and 9 thus each sedimentary cycle has a duration of 392 kyr, which is similar to the periodicity of 10 long eccentricity cycle E1. Therefore, the sedimentary cycles in the Youganwo Fm are consistently shown as representing the long eccentricity cycles. It is reasonable that the 11 sedimentary cycles in N1, i.e., Huangniuling Fm, represent short eccentricity E2 and 12 13 sedimentary cycles in R2 represent long eccentricity E1 because the sedimentation rates of the 14 Huangniuling Fm is much faster than that of the Youganwo Fm and orbital cycles with 15 shorter durations can be recorded in the Huangniuling Fm. Indeed, among these six ensembles, 16 only Ensemble 6 can yield periodicities of all the sedimentary cycles, which are from 17 different parts of the section, in the orbital frequency band within uncertainties (Table 1). 18 Thus, taking together, Ensemble 6 can satisfy different aspects of major constraints within 19 uncertainties and thus is acceptable.

20 Analyses of the six possible correlations lead to a conclusion that only Ensemble 6 correlation 21 offers the most realistic scenario. Therefore, the Ensemble 6 correlation is employed to 22 establish a chronologic framework for the studied section (Fig. 8e, f). With this chronologic 23 framework, the transition from the Youganwo Fm to the Huangniuling Fm took place within magnetochron C13r (Fig. 8). Because the transition is represented by a \sim 50 cm thick, 24 25 mudstone-dominated interval and the C13n/C13r boundary (33.705 Ma) occurs at ~70 cm 26 above the top of the transitional interval, the age of the onset of the transition can be 27 determined by estimating the duration of the ~ 1.2 m thick interval. There are two ways to 28 estimate the duration of the 1.2 m thick interval. One is to extrapolate the sedimentation rate 29 of ~0.56 cm/kyr for the uppermost part of the Youganwo Fm, i.e., R2 zone. This would lead 30 to an estimate of \sim 210 kyr and the onset of the transition is then estimated to be at \sim 33.915 31 Ma. The second approach is to treat the 1.2 m thick interval as the upper part of the long 32 eccentricity cycle at the uppermost of the Youganwo Fm (Fig. 8a, b). This results in an estimate of \sim 140 kyr for the 1.2 m thick interval and an onset age of \sim 33.845 Ma. Taking the 33

average of the above two estimates, we obtain a mean age of 33.88 Ma for the onset of the transition. In summary, the constructed timescale represents a significantly refined chronology for the Paleogene strata in Maoming Basin, and provides the tightest possible constraints on the timing of the onset of the transition from a lacustrine environment to a deltaic environment in the Maoming Basin.

6

5.45.5 Paleoclimatic implications

7 The rapid transition from a lacustrine environment to a deltaic environment could be related 8 to global climate change. In the late Paleogene, the Earth's climate underwent a major 9 transition from greenhouse to icehouse that was climaxed at the Eocene-Oligocene boundary 10 (Zachos et al., 2001). This climatic transition was accompanied by rapid ice sheet growth on the Antarctica (e.g., DeConto and Pollard, 2003; Coxall et al., 2005; Goldner et al., 2014) and 11 12 was characterized by pronounced global cooling (e.g., Zanazzi et al., 2007; Liu et al., 2009; 13 Bohaty et al., 2012; Hren et al., 2013). The Eocene–Oligocene transition (EOT) was dated at 14 33.714 Ma (Jovane et al., 2006) or 33.9 ±0.05 Ma (Brown et al., 2009) from the marine 15 succession in Massignano, Italy, which is the Global Stratotype Section and Point (GSSP) for the Eocene-Oligocene boundary. Studies of the equatorial Pacific records constrain the EOT 16 17 at ~33.79 Ma (Pälike et al., 2006) or 33.89 Ma (Westerhold et al., 2014). The rapid transition 18 from a lacustrine environment to a deltaic environment in Maoming Basin is dated at 33.88 19 Ma, which coincides well with the timing of the EOT determined from marine records. The 20 close timing suggests strong linkage between the drastic environmental transition in Maoming 21 Basin and the EOT (Fig. 8f). The dramatic shift from a lacustrine to a deltaic environment at 22 the Maoming Basin suggests that low-latitude Asia likely underwent a transition in regional hydrological cycle from humid to dry conditions in response to global cooling at the EOT. As 23 24 dry conditions become prevailed, lake level likely dropped and lake area became shrunk. The 25 prevailing drying conditions together with global cooling during EOT probably promoted 26 erosions in upland and supplied abundant sediments to the shrinking lake, leading to the rapid 27 increase in sediment accumulation rates after the dramatic environmental change. The dry 28 conditions perhaps persisted in low-latitude Asia after the dramatic environmental change as 29 the global climate continued to deteriorate following the rapid, severe, and widespread 30 climatic transition at the Eocene–Oligocene boundary (Fig. 748f). This persisted dry condition is indicated by the accumulation of the sandstone-dominated Huangniuling Fm in the 31 Maoming Basin at relatively increased sedimentation rates. Indeed, similar depositional 32

带格式的:突出显示

1 environmental change and increase in sedimentation rates between 34.5 Ma and 31 Ma are

also observed in Xining Basin and the E/O climatic transition is considered as a possible
cause (Dai et al., 2006).

4 The new, significantly refined chronology also indicates that the striking sedimentary cycles 5 in both the Youganwo Fm and the Huangniuling Fm likely represent eccentricity cycles. The 6 recognition of eccentricity signal suggests that sedimentation in the Maoming Basin during 7 this time interval may have been modulated by orbital variations, probably via lake level 8 fluctuations at orbital frequency. The occurrence of eccentricity signals in the records is 9 consistent with the fact the Maoming Basin is situated in the low-latitude areas that are 10 sensitive to orbital variations at eccentricity frequency bands. Indeed, modulation of orbital 11 variations on sedimentation appeared to be widespread during this time interval. The long and 12 short eccentricity signals are also detected from the Eocene/Oligocene Massignano section in 13 Italy (Jovane et al., 2006). The eccentricity signals are also found in other marine successions 14 (e.g., Westerhold et al., 2014) and lacustrine deposits (e.g., Meyers, 2008; Okacoğlu et al., 15 2012) at the similar ages. Therefore, the drastic environmental change in the Maoming Basin 16 during EOT represents the terrestrial responses in low-latitude Asia to the EOT that may be 17 superimposed on the long-term variations at orbital frequency. The investigated section in the 18 Maoming Basin thus likely faithfully recorded the impacts of the EOT on low-latitude Asia. 19 Another notable feature is the different timings of the major lithological change the Maoming

terrestrial record and the marine record at Italy. At the GSSP section of Italy, the rapid 20 21 lithological change occurred at early stage of Chron C13r, representing a precursor event of 22 the EOT (Jovane et al., 2009) (Fig. 8i), while the main lithological change in Maoming Basin 23 took place at late stage of Chron 13r, representing the major event of the EOT (Fig. 8a-f). 24 This feature may indicate leads/lags of major environmental changes in terrestrial and marine realms. The significantly refined chronology of the Maoming record from low-latitude Asia 25 could potentially help better understand the teleconnection mechanism for the major global 26 climatic transition across the Eocene-Oligocene boundary. With the significantly refined 27 chronology, future studies using various proxies shall shed new lights into understanding 28 29 these regional processes.

30

1 6 Conclusions

2 We have carried out a detailed stratigraphic and paleomagnetic investigation of the upper 3 Paleogene succession in the Maoming Basin, southern China. The investigated succession 4 comprises oil shale dominated Youganwo Fm and the overlying sandstone dominated Huangniuling Fm. Both the Youganwo Fm and the overlying Huangniuling Fm exhibit 5 6 striking sedimentary rhythms. The sedimentary rhythms of the Youganwo Fm are well 7 expressed the high-resolution magnetic susceptibility (MS) data and spectral analysis of the 8 MS depth series reveals that the dominant meter-scale sedimentary cycles are in orbital 9 frequency bands. The sedimentary rhythms in the Huangniuling Fm are characterized by the 10 repeated occurrence of a parasequence containing red sandstone layer, massive coarse 11 sandstones, and a relatively thin mudstone bed. New paleomagnetic results, together with the 12 lithologic and fossil age data, allow us to establish a magnetostratigraphy for the studied section that constrains the striking sedimentary rhythms-cycles of the Youganwo Fm and 13 Huangniuling Fm to long and short eccentricity cycles, respectively. Taken together, a 14 significantly refined chronologic framework is established for the investigated succession. 15

16 The contact between the Youganwo Fm and the Huangniuling Fm is represented by a 50 cm 17 interval that shows a gradual change from dark grey mudstone at the uppermost of the 18 Youganwo Fm to the grey mudstone and siltstones with a coarsening upward trend in grain 19 size at the base of the Huangniuling Fm. This interval represents a major environment change 20 from a lacustrine to a deltaic environment in the Maoming Basin and its onset is dated at 21 \sim 33.88 Ma. The timing of the onset of the dramatic environmental change is in remarkable 22 similarity with that of the Eocene–Oligocene transition (EOT) that is dated at 33.7 to 33.9 Ma 23 from various marine records. The synchroniety suggests strong linkage between these two 24 events and implies that the rapid environmental change in the Maoming Basin most likely 25 represents terrestrial responses to the global cooling associated with the EOT. This notion is 26 strengthened by the subsequent occurrence of the persistently prolonged dry conditions, as 27 represented by the sandstone-dominated Huangniuling Fm, following the rapid environment 28 change coincident with the EOT. These features are highly compatible with the continued 29 deteriorating conditions after the EOT.

In addition, this study demonstrates that it is possible to construct a refined chronologic
 framework for a terrestrial record by integrating multiple constraints synergistically from
 magnetostratigraphic, lithologic, biostratigraphic, and perhaps cyclostratigraphic data. For this

1 study, six possible correlations between magnetozones and the standard geomagnetic polarity 2 timescale (GPTS) are examined and accepted/rejected using four different types of constraints (Table 1). The robustness of the accepted correlation is thus dependent on how stringent 3 4 and/or reliable these constraints are. In this study, although ensemble 6 is considered as the 5 most probable correlation after examining all six possible scenarios, constraints derived from 6 the currently available data may not be stringent enough for a fully definitive choice of 7 ensemble 6. For example, the repeated occurrence of parasequences in the upper part of the 8 Huangniuling Fm has not been quantitatively assessed to show convincingly that those 9 parasequences represent orbital cycles. Also, the 2-3 times difference in sedimentation rates 10 of oil shale between ensembles 5 and 6 may not be sufficiently large enough to differentiate these two ensembles. Therefore, it would be beneficial to acquire more late Paleogene 11 12 terrestrial records from other parts of low-latitude Asia in future studies. It would also be interesting to test whether the major environmental change in low-latitude Asia truly 13 coincided with the main EOT event or represents responses to a precursor event of EOT. 14 15 Despite the limitations of the present study, the lack of detailed terrestrial records near the 16 E/O boundary in continental Southeast Asia makes the results of this study an important 17 contribution to the understanding of the impacts of the major climatic transition at the end of 18 Eocene on the environment of low latitude Asia.

- 19
- 20

21 Acknowledgements

This study was supported by National Natural Science Foundation of China (Nos. 41210001, 41372002, 41274071, 41230208, 41321062, 41528201), the National Basic Research Program of China (No. 2012CB822000), and the Fundamental Research Funds for the Central Universities (20620140389). We thank Shipeng Wang for field assistance, Mike Jackson and Qingsong Liu for helpful discussions about the rock magnetic data<u>and Xiumian Hu for</u> discussions about sedimentologic data. We are grateful to reviewers Alexis Licht, Christian Rolf, and Luigi Jovane whose comments were helpful in improving the manuscript.

29

1 References

2	Aleksandrova, G. N., Kodrul, T. M., Liu, X. Y., Song, Y. S., and Jin. J. H.: Palynological	
3	characteristics of the upper part of the Youganwo Formation and lower part of the	
4	Huangniuling Formation, Maoming Basin, South China. In Proceedings of the 2nd Sino-	
5	Russian Seminar on Evolution and Development of Eastern Asia Flora based on	
6	Palaeobotanical Data, 3-15, Guangzhou, China. School of Life Sciences, Sun Yat-sen	
7	University, Guangzhou, China, 2012.	
8	Bohaty, S. M., Zachos, J. C. and Delaney, L. M.: Foraminiferal Mg/Ca evidence for Southern	
9	Ocean cooling across the Eocene-Oligocene transition. Earth Planet. Sci. Lett. 317-318,	
10	251–261, 2012.	
11	Bureau of Geology and Mineral Resources of Guangdong Province: Regional Geology of	
12	Guangdong Province. Geological Publishing House, Beijing. (In Chinese with English	
13	abstract), 1988.	
14	Bureau of Geology and Mineral Resources of Guangdong Province: Stratigraphy (Lithostratic)	
15	of Guangdong Province. China University of Geosciences Press, Wuhan. (In Chinese),	
16	1996.	
17	Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a change in	带格式的:
17 18	Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene	带格式的:
17 18 19	Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene Oligocene boundary GSSP, in: The Late Eocene Earth – Hothouse, Icchouse and Impacts,	带格式的:
17 18 19 20	Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene Oligocene boundary GSSP, in: The Late Eocene Earth – Hothouse, Icehouse and Impacts, edited by: Koeberl, C., and Montanari, A., Geol. S. Am. S., 452, 119–137,	
17 18 19 20 21	Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene Oligocene boundary GSSP, in: The Late Eocene Earth – Hothouse, Icehouse and Impacts, edited by: Koeberl, C., and Montanari, A., Geol. S. Am. S., 452, 119–137, doi:10.1130/2009.2452(08), 2009.	
 17 18 19 20 21 22 	 Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene Oligocene boundary GSSP, in: The Late Eocene Earth – Hothouse, Icehouse and Impacts, edited by: Koeberl, C., and Montanari, A., Geol. S. Am. S., 452, 119–137, doi:10.1130/2009.2452(08), 2009. Chang, L., Robert, A.P., Rowan, C.J., Tang, Y., Pruner, P., Chen, Q., and Horng, C.S., Low- 	
 17 18 19 20 21 22 23 	 Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene Oligocene boundary GSSP, in: The Late Eocene Earth — Hothouse, Icehouse and Impacts, edited by: Koeberl, C., and Montanari, A., Geol. S. Am. S., 452, 119-137, doi:10.1130/2009.2452(08), 2009. Chang, L., Robert, A.P., Rowan, C.J., Tang, Y., Pruner, P., Chen, Q., and Horng, C.S., Lowtemperature magnetic properties of greigite (Fe₃S₄). Geochem. Geophys. Geosyst., 10, 	/ 带格式的:
 17 18 19 20 21 22 23 24 	 Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene Oligocene boundary GSSP, in: The Late Eocene Earth – Hothouse, Icehouse and Impacts, edited by: Koeberl, C., and Montanari, A., Geol. S. Am. S., 452, 119–137, doi:10.1130/2009.2452(08), 2009. Chang, L., Robert, A.P., Rowan, C.J., Tang, Y., Pruner, P., Chen, Q., and Horng, C.S., Lowtemperature magnetic properties of greigite (Fe₃S₄). Geochem. Geophys. Geosyst., 10, Q01Y04, doi:10.1029/2008GC002276, 2007. 	/ 带格式的:
 17 18 19 20 21 22 23 24 25 	 Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene Oligocene boundary GSSP, in: The Late Eocene Earth – Hothouse, Icehouse and Impacts, edited by: Koeberl, C., and Montanari, A., Geol. S. Am. S., 452, 119–137, doi:10.1130/2009.2452(08), 2009. Chang, L., Robert, A.P., Rowan, C.J., Tang, Y., Pruner, P., Chen, Q., and Horng, C.S., Lowtemperature magnetic properties of greigite (Fe₃S₄). Geochem. Geophys. Geosyst., 10, Q01Y04, doi:10.1029/2008GC002276, 2007. Chow M.C., On some Eocene and Oligocene mammals from Kwangsi and Yunnan. 	带格式的:
 17 18 19 20 21 22 23 24 25 26 	 Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene Oligocene boundary GSSP, in: The Late Eocene Earth – Hothouse, Icehouse and Impacts, edited by: Koeberl, C., and Montanari, A., Geol. S. Am. S., 452, 119–137, doi:10.1130/2009.2452(08), 2009. Chang, L., Robert, A.P., Rowan, C.J., Tang, Y., Pruner, P., Chen, Q., and Horng, C.S., Low-temperature magnetic properties of greigite (Fe₃S₄). Geochem. Geophys. Geosyst., 10, Q01Y04, doi:10.1029/2008GC002276, 2007. Chow M.C., On some Eocene and Oligocene mammals from Kwangsi and Yunnan. Verterbrata PalAsiatica, 1(3): 201-214, 1957 (in Chinese with English abstract). 	带格式的:
17 18 19 20 21 22 23 24 25 26 27	 Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a change in	带格式的:
17 1 18 19 20 21 21 22 23 24 25 26 27 28	 Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene- Oligocene boundary GSSP, in: The Late Eocene Earth – Hothouse, Ieehouse and Impacts, edited by: Koeberl, C., and Montanari, A., Geol. S. Am. S., 452, 119–137, doi:10.1130/2009.2452(08), 2009. Chang, L., Robert, A.P., Rowan, C.J., Tang, Y., Pruner, P., Chen, Q., and Horng, C.S., Low- temperature magnetic properties of greigite (Fe₃S₄). Geochem. Geophys. Geosyst., 10, Q01Y04, doi:10.1029/2008GC002276, 2007. Chow M.C., On some Eocene and Oligocene mammals from Kwangsi and Yunnan. Verterbrata PalAsiatica, 1(3): 201-214, 1957 (in Chinese with English abstract). Chow, M.C., Liu, C.L.: A new anosterine turtle from Maoming, Kwangtung. Acta Palaeontologica Sinica 3 (4), 275–282, 1955 (In Chinese with English abstract). 	带格式的:
 17 18 19 20 21 22 23 24 25 26 27 28 29 	 Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene-Oligocene boundary GSSP, in: The Late Eocene Earth Hothouse, Ieehouse and Impacts, edited by: Koeberl, C., and Montanari, A., Geol. S. Am. S., 452, 119–137, doi:10.1130/2009.2452(08), 2009. Chang, L., Robert, A.P., Rowan, C.J., Tang, Y., Pruner, P., Chen, Q., and Horng, C.S., Lowtemperature magnetic properties of greigite (Fe₃S₄). Geochem. Geophys. Geosyst., 10, Q01Y04, doi:10.1029/2008GC002276, 2007. Chow M.C., On some Eocene and Oligocene mammals from Kwangsi and Yunnan. Verterbrata PalAsiatica, 1(3): 201-214, 1957 (in Chinese with English abstract). Chow, M.C., Liu, C.L.: A new anosterine turtle from Maoming, Kwangtung. Acta Palaeontologica Sinica 3 (4), 275–282, 1955 (In Chinese with English abstract). 	带格式的:
 17 18 19 20 21 22 23 24 25 26 27 28 29 30 	 Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a change in Milankovitch forcing caused by extraterestrial events at Massignano, Italy, Eocene- Oligocene boundary GSSP, in: The Late Eocene Earth – Hothouse, Icehouse and Impacts, edited by: Koeberl, C., and – Montanari, A., Geol. S. Am. S., 452, 119–137, doi:10.1130/2009.2452(08), 2009. Chang, L., Robert, A.P., Rowan, C.J., Tang, Y., Pruner, P., Chen, Q., and Horng, C.S., Low- temperature magnetic properties of greigite (Fe₃S₄). Geochem. Geophys. Geosyst., 10, Q01Y04, doi:10.1029/2008GC002276, 2007. Chow M.C., On some Eocene and Oligocene mammals from Kwangsi and Yunnan. Verterbrata PalAsiatica, 1(3): 201-214, 1957 (in Chinese with English abstract). Chow, M.C., Liu, C.L.: A new anosterine turtle from Maoming, Kwangtung. Acta Palaeontologica Sinica 3 (4), 275–282, 1955 (In Chinese with English abstract). Chow, M.C., Yeh, H.K., A new emydid from the Eocene of Maoming, Kwangtung. Vertebrata Palasiatica 6 (3), 225–229, 1962 (In Chinese with English abstract). 	带格式的:

突出显示

- Claude, J., Zhang, J.Y., Li, J.J., Mo, J.Y., Kuang, X.W., and Tong, H.Y.: Geoemydid turtles
 from the Late Eocene Maoming basin, southern China. Bull. Soc. géol. France 183 (6),
 641-651, 2012.
- Coxall, H. K., Wilson, P. A., Pa⁻like, H., Lear, C. H. and Backman, J.: Rapid stepwise onset
 of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433,
 53–57, 2005.
- Cotton, L.J., and Pearson, P.N.: Extinction of larger benthic foraminifera at the
 Eocene/Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 311,
 281–296, 2011.
- Dai, S., X. Fang, G. Dupont-Nivet, C. Song, J. Gao, W. Krijgsman, C. Langereis, and W.
 Zhang (2006), Magnetostratigraphy of Cenozoic sediments from the Xining Basin:
 Tectonic implications for the northeastern Tibetan Plateau, J. Geophys. Res., 111,
 B11102, doi:10.1029/2005JB004187.
- Danilov I. G., Syromyatnikova E. V., Skutschas P. P., Kodrul T. M. and Jin J. H.: The first
 'True' Adocus (Testudines, Adocidae) from the Paleogene of Asia, Journal of Vertebrate
 Paleontology 33(5), 1071–1080, 2013.
- DeConto, R. M. and Pollard, D.: Rapid Cenozoic glaciation of Antarctica induced by
 declining atmospheric CO2. Nature 421, 245–249, 2003.
- Dunlop, D. J., and Ö. Özdemir: Rock Magnetism: Fundamentals and Frontiers, 573 pp.,
 Cambridge Univ. Press, Cambridge, U. K., 1997.
- Dupont-Nivet, G., Krijgsman, W., Langereis, C. G., Abels, H. A., Dai, S., and Fang, X. M.:
 Tibetan plateau aridification linked to global cooling at the Eocene Oligocene
 transition, Nature 445, 635–638, 2007.
- Feng, X. X., Oskolski, A., and Jin, J.H.: Eocene dicotyledonous wood, Bischofia
 maomingensis sp. nov. from Maoming Basin, South China. Review of Palaeobotany and
 Palynology 174, 101–105, 2012.
- Feng, X. X., Tang, B., Kodrul, T. M., and Jin, J.H.: Winged fruits and associated leaves of
 Shorea (Dipterocarpacesa) from the late Eocence of South China and their
 phytogeogrpahic and paleoclimatic implications. American Journal of Botany 100(3),
 574 581, 2013.

25

1	Fischer, A.G.: Orbital cyclicity inMesozoic strata. In: Einsele, G., Ricken, W., Seilacher, A.
2	(Eds.), Cycles and Events in Stratigraphy. Springer-Verlag, Berlin, pp. 48–62, 1991.
3	Goldner, A., Herold, N. and Huber, M.: Antarctic glaciation caused ocean circulation changes
4	at the Eocene–Oligocene transition. Nature 511, 574-577, doi:10.1038/nature13597,
5	2014.
6 7	Guo, M.: Characteristics and mineralization controlling factors of oil shale in Maoming Basin.M.sc. Thesis, Jilin University, p 86. 2006.
8	Hren, M. T., Sheldonc, N.D., Grimesd, S.T., Collinsone, M. E., Hookerf, J.J., Buglerd, M.,
9	and Lohmannc, K. C.: Terrestrial cooling in Northern Europe during the Eocene–
10	Oligocene transition. Proc. Natl Acad. Sci. 110, 7562–7567, 2013.
11	Huang X.S., New emoropid (Mammalia, Perissodactyla) remains from the middle Eocene of
12	Yuanqu Basin. Verterbrata PalAsiatica, 40(4): 286-290, 2002 (in Chinese with English
13	abstract).
14	Huang X., Qi T., Notes on Late Eocene Tapiroids from the Lunan Basin, eastern Yunnan.
15	Verterbrata PalAsiatica, 20(4): 315-326, 1982 (in Chinese with English abstract)
16	Jelinek, V.: Characterization of the magnetic fabrics of rocks, Tectonophysics 79, 63-67, 带格式的: 缩进: 左侧: 0 厘米, 首行缩进: 0 字符
17	1981.
18	Jin, J.H.: On the age of the Youganwo Formation in the Maoming Basin, Guangdong
19	Province. Journal of Stratigraphy 32 (1), 47–50 (In Chinese with English abstract), 2008.
20	Jovane, L., F. Florindo, M. Sprovieri, and H. Pälike: Astronomic calibration of the late
21	Eocene/early Oligocene Massignano section (central Italy), Geochem. Geophys. Geosyst.
22	7, Q07012, doi:10.1029/2005GC001195, 2006.
23	Jovane, L., R. Coccioni, A. Marsili, G. Acton: The late Eocene greenhouse-icehouse
24	transition: observations from the Massignano global stratotype section and point (GSSP),
25	<u>Geological Society of America, Special Paper 452: 149-168, 2009.</u>
26	Kirschvink, J. L.: The least-squares line and plane and the analysis of paleomagnetic data,
27	Geophys. J. Int. 62, 699–718, doi: 10.1111/j.1365-246X.1980.tb02601.x., 1980.
28 29	Li C., Ting S., The Paleogene mammals of China. Bull. Bulletin of Carnegie Museum of Natural History, 21: 1-93, 1983 (in Chinese with English abstract).

26

- Li, J.L.: New materials of Tomistoma petrolica Yeh from Maoming, Guangdong. Vertebrata
 Palasiatica 13 (3), 190–194 (In Chinese), 1975.
- Li, Y.X., T.J. Bralower, I.P. Montanez, D.A. Osleger, M.A. Arthur, D.M. Bice, T.D. Herbert,
 E. Erba, I. Premoli-Silva: Toward an orbital chronology for the early Aptian Oceanic
 Anoxic Event 1a (OAE1a, ~120 Ma). Earth and Planetary Science Letters 271, 88–100.
 doi:10.1016/j.epsl.2008.03.055, 2008.
- Licht, A. van Cappelle, M., Abels, H. A., Ladant, J.-B., Trabucho-Alexandre, J., FranceLanord, C.: Asian monsoons in a late Eocene greenhouse world. Nature 513, 501-506.
 doi:10.1038/nature13704, 2014.
- Licht, A., Boura, A., De Franceschi, D., Utescher, T., Sein, C., and Jaeger, J.-J.: Late middle
 Eocene fossil wood of Myanmar: Implications for the landscape and the climate of the
 Eocene Bengal Bay. Review of Palaeobotany and Palynology 216, 44–54, 2015.
- Liu, X.T.: A new fossil cyprinid fish from Maoming, Kwangtung. Vertebrata Palasiatica 1 (2),
 151–153 (In Chinese with English abstract), 1957.
- Liu, Z.H., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S.R.,
 Leckie, R.M. and Pearson, A.: Global cooling during the Eocene–Oligocene climate
 transition. Science 323, 1187–1190, 2009.
- Lowrie, W.: Identification of ferromagnetic minerals in a rock by coercivity and unblocking
 temperature properties, Geophys. Res. Lett., 17, 159–162, 1990.
- Lurcock, P. C., and G. S. Wilson: PuffinPlot: A versatile, user-friendly program for
 paleomagnetic analysis, Geochem. Geophys. Geosyst. 13, Q06Z45,
 doi:10.1029/2012GC004098, 2012.
- Mader, D., Cleaveland, L., Bice, D., Montanari, A., Koeberl, C.: High-resolution
 cyclostratigraphic analysis of multiple climate proxies from a short Langhian pelagic
 succession in the Conero Riveiera, Ancona (Italy). Paleo³ 211, 325–344, 2004.
- McFadden, P.L., and McElhinny, M.W.: Classification of the reversal test in
 palaeomagnetism. Geophys. J. Int. 103,725-729, 1990.
- Meyers, S.R.: Resolving Milankovitchian controversies: The Triassic Latemar Limestone and
 the Eocene Green River Formation. Geology 36, 319–322, doi: 10.1130/G24423A.1,
 2008.

带格式的: 上标

- Muller, R.A. and MacDonald, J.G.: Ice ages and astronomical causes: Data, spectral analysis,
 and mechanisms. Springer Praxis, Berlin, 2000.
- Ocakoğlu, F., Açıkalın, S., Yılmaz, I.Ö., Safak, Ü., and Gökçeoglu, C.: Evidence of orbital
 forcing in lake-level fluctuations in the Middle Eocene oil shale-bearing lacustrine
 successions in the Mudurnu-Göynük Basin, NW Anatolia (Turkey). Journal of Asian
 Earth Sciences 56, 54–71, 2012.
- Ogg, J.G., Chapter 5: Geomagnetic Polarity Time Scale: in Gradstein, F.M., Ogg, J.G.,
 Schmitz, M.D., and Ogg, G.M., eds., The Geologic Time Scale 2012, Elsevier,
 Amsterdam, 85–113, 2012.
- Oskolski A. A., Feng X. X., Jin J. H.: Myrtineoxylon gen. nov.: The first fossil wood record
 of the tribe Myrteae (Myrtaceae) in eastern Asia. Taxon 62 (4), 771–778, 2013.
- Özdemir, Ö., Dunlop, D.J., and Moskowitz, B.M. The effect of oxidation on the Verwey
 transition in magnetite. Geophysical Research Letters, 20, 1671-1674,
 doi:10.1029/93/GL01483, 1993.
- Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear, C. H., Shackleton,
 N. J., Tripati, A. K., and Wade, B. S.: The Heartbeat of the Oligocene Climate System,
 Science 314, 1894–1898, doi:10.1126/science.1133822, 2006.
- Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., and Gamage, K., et al.: A Cenozoic
 record of the equatorial Pacific carbonate compensation depth, Nature 488, 609–614,
 doi:10.1038/nature11360, 2012.
- Pearson, P.N., McMillan, I.K., Wade, B.S., Dunkley Jones, T., Coxall, H.K., Bown, P.R.,
 Lear, C.H.: Extinction and environmental change across the Eocene–Oligocene boundary
 in Tanzania. Geology 36, 179–182, 2008.
- Prothero, D.R.: The late Eocene-Oligocene extinctions. Annu. Rev. Earth Planet. Sci. 22, 145165, 1994.
- Qiu Z.X., Wang B., Paracerathere fossils of China. Palaeontoligca Sinica, New Ser. C, 29: 1 188, 2007 (in Chinese with English abstract).
- Quan, C., Liu, Z.H., Utescher, T., Jin, J.H., Shu, J.W., Li, Y.X., Liu, Y.-S. C: Revisiting the
 Paleogene climate pattern of East Asia: A synthetic review. Earth-Science Reviews 139,
 213–230, 2014.

- Quan, C., Liu, Y.-S.C. and Utescher, T.: Eocene monsoon prevalence over China: a
 paleobotanical perspective. Palaeogeogr. Palaeoclimatol. Palaeoecol. 365–366, 302–311,
 2012.
- 4 Roberts, A. P., L. Chang, C. J. Rowan, C. S. Horng, and F. Florindo: Magnetic properties of
 5 sedimentary greigite (Fe3S4): An update. Rev. Geophys. 49, RG1002,
 6 doi:10.1029/2010RG000336, 2011.
- Russell D.E., Zhai R.J., The Paleogene of Asia: mammals and stratigraphy. Memoires du
 Museum National d'Histioire Naturelle, 52: 1-490, 1987.
- 9 Sageman, B.B., Meyers, S.R., and Arthur, M.A.: Orbital time scale and new C-isotope record
 10 for Cenomanian-Turonian boundary stratotype. Geology 34, 125–128,
 11 doi:10.1130/G22074.1, 2006.
- Shukla, A, Mehrotra, R.C., Spicer, R.A, Spicer, T.E.V., and Kumara, M.: Cool equatorial
 terrestrial temperatures and the South Asian monsoon in the Early Eocene: Evidence
 from the Gurha Mine, Rajasthan, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 412,
 187–198, 2014.
- Skutschas P. P., Danilov I. G., Kodrul T. M. and Jin J. H.: The First Discovery of an
 Alligatorid (Crocodylia, Alligatoroidea, Alligatoridae) in the Eocene of China. Journal of
 Vertebrate Paleontology 34(2), 471–476, 2014.
- 19 <u>Snowball, I., and Thompson, R.: A stable chemical remanence in Holocene sediments.</u>
 20 Journal of Geophysical Research, 95, 4471-4479, 1990.
- Snowball I. F. and Torii, M., Incidence and significance of magnetic iron sulphides in
 Quaternary sediments and soils, in Quaternary Climates, Environments and Magnetism,
 edited by B.A. Maher and R. Thompson, pp. 199-230. Cambridge Univ. Press,
 Cambridge, U.K., doi:10.1017/CBO9780511535635.009, 1999
- 25 Tauxe, L.: Paleomagnetic principles and practice, 301 pp., Kluwer Academic Publisher, 1998.
- Tong Y., Zheng S., Qiu Z., Cenozoic mammal ages of China. Verterbrata PalAsiatica, 33(4):
 290-314, 1995 (in Chinese with English abstract).
- Tong, Y.S., Li, Q., and Wang, Y. Q.: A brief introduction to recent advance in the Paleogene
 studies. Journal of Stratigraphy 29 (2), 109-133 (In Chinese with English abstract), 2005.

2	continental Early Paleogene stages in China. Journal of Stratigraphy 37 (4), 428-440 (In
3	Chinese with English abstract), 2013.
4 5	Verwey, E. J. W. Electronic conduction of magnetite (Fe ₃ O ₄) and its transition point at low temperatures, Nature, 144, 327-328, doi:10.1038/144327b0. 1939
6	Wang B., The Chinese Oligocene: A preliminary review of mammalian localities and local
7	faunas. In: Prothero D.R., Berggren W.A., eds. Eocene-Oligocene Climatic and Biotic
8	Evolution. Princeton: Princeton University Press, 529-547, 1992 (in Chinese with
9	English abstract).
10	Wang B., Problems and recent advances in the division of the continental Oligocene.
11	Verterbrata PalAsiatica, 21(2): 81-90, 1997 (in Chinese with English summary).
12	Wang, D., Lu, S., Han, S., Sun, X. and Quan, C.: Eocene prevalence of monsoon-like climate
13	over eastern China reflected by hydrological dynamics. J. Asian Earth Sci. 62, 776–787,
14	2013.
15	Wang, J.D., Li, H. M., Zhu, Z. Y., Seguin, M. K., Yang, J. F., and Zhang, G. M.:
16	Magnetostratigraphy of Tertiary rocks from Maoming Basin, Guangdong Province,
17	China. Chinese Journal of Geochemistry 13, 165-175, 1994.
18 19 20	 Wang, Y.Y., Zhang, Z.H., and Jin, J.H.: Discovery of Eocene fossil mammal from Maoming Basin, Guangdong. Acta Scientiarum Naturalium Universitatis Sunyatseni 46 (3), 131-133 (In Chinese with English abstract), 2007.
21	Westerhold, T, U. Röhl, H. Pälike, R. Wilkens, P. A. Wilson, and G. Acton: Orbitally tuned
22	timescale and astronomical forcing in the middle Eocene to early Oligocene. Clim. Past,
23	10, 955–973, doi:10.5194/cp-10-955-2014, 2014.
24	Xiao, G. Q., Abels, H. A., Yao, Z. Q., Dupont-Nivet, G., and Hilgen, F. J.: Asian aridification
25	linked to the first step of the Eocene-Oligocene climate Transition (EOT) in obliquity-
26	dominated terrestrial records (Xining Basin, China). Clim. Past, 6, 501–513,
27	doi:10.5194/cp-6-501-2010, 2010.
28	Yeh, H.K.: A new crocodile from Maoming, Kwangtung. Vertebrata Palasiatica 2 (4), 237–
29	242 (In Chinese with English abstract), 1958.

Tong, Y.S., Li, Q., and Wang, Y. Q.: An introduction to recent advance in the study of the

1

1	Yu,	J.F.	and	Wu,	Z.J.:	Spore-pollen	assemblage	of	Mao	5	well	of	Maoming	Basin,
2		Gua	ngdor	ng and	d its g	eological age.	Journal of S	trati	igraph	у 7	(2),	112-	-118 (In C	hinese),
3		1983	3.											

- Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and
 aberrations in global climate 65 Ma to present. Science 292, 686–693, 2001.
- Zanazzi, A., Kohn, M.J., MacFadden, B.J., and Terry, D.O. Jr.: Large temperature drop across
 the Eocene–Oligocene transition in central North America. Nature 445, 639–642, 2007.
- 8 Zijderveld, J.D.A.: A. C. demagnetization of rocks: analysis of results, in Methods in
 9 Palaeomagnetism, pp. 254–286, edited by D.W. Collinson, K.M. Creer and S.K.
- 10 Runcorn, Elsevier, Amsterdam, 1967.
- 11 Zong G., Cenozoic Mammals and Environment of Hengduan Mountains Region. China
- 12 Ocean Press, Beijing, 279, 1996 (in Chinese with English abstract).

13

Table 1 Correlations of magnetozones with Chrons C18 to C13 of the geomagnetic polarity
 time scale (GPTS).

- 3
- 4 Note:

5 *, N1 is defined from 32.2 to 51.0 m and contains \sim 4 sedimentary cycles; R2 is defined from 25.0 to 32.2 m and contains \sim 3 sedimentary cycles; N2 is defined from 11.0 to 25.0 m and 6 7 contains ~8.5 sedimentary cycles. Bold (regular) fonts indicate normal (reversed) polarity 8 zones/chrons; The two numbers in each cell are sedimentation rate in cm/kyr and the 9 perodicity of the sedimentary cycle (in kyr) calculated based on the correlation. For example, 10 1.23, 382 in the very first cell indicate that the sedimentation rate is 1.23 cm/kyr and the sedimentary cycle represents 382 kyr based on Correlation 1. "-" denotes "not applicable"; "x" 11 indicates that the correlation is unrealistic and is rejected. " \checkmark " indicates acceptable 12 correlations; a-e provides brief comments on why the correlation is rejected or accepted. a, the 13 14 correlation would place the majority of the Youganwo Fm, i.e., N2-N3, to the middle Eocene; 15 b, the correlation would result in sedimentation rates in R2, i.e., the Youganwof Fm, faster than or similar to those in N1, i.e., the Huangniuling Fm; c, the correlation leads to the drastic 16 17 difference in sedimentation rates between the upper (R2) and lower (N2) part of the studied 18 Youganwo Fm; d, the sedimentation rates for the Youganwo oil shale are too fast in 19 comparison to those of well-dated organic-rich shales in deep-time; e, the sedimentation rates 20 of the Youganwo oil shale are compatible with those of well-dated organic-rich shales in 21 deep-time and the sedimentary cycles in both Huangniuling Fm (N1) and the Youganwo Fm 22 (R2 and N2) are in the orbital frequency bands and likely represent eccentricity cycles.

23

24 **Figure captions**

Figure 1 Location and regional geology of the study area. (a) Map showing the location of
the Maoming Basin, Guangdong Province, southern China. (b) Simplified geological map of
the Maoming Basin. 1. Precambrian; 2. Upper Cretaceous; 3. Youganwo Fm.; 4.
Huangniuling Fm.; 5. Shangcun Fm.; 6. Laohuling Fm.; 7. Gaopengling Fm.; 8. Quaternary; 9.
Fault; 10. Investigated Jintang section. MR, MB, and MS mark the sites where samples were
collected for a magnetostratigraphic study by Wang et al. (1994). See text for details.

Figure 2 Stratigraphy of the investigated section exposed in the now-_abandoned open mine 1 2 pit in Maoming Basin. Lithostratigraphic column (a) shows that the investigated section 3 contains the Youganwo Fm in the lower part and the overlying Huangniuling Fm in the upper 4 part. The Huangniuling Fm part of the The stratigraphic column of the upper part of the 5 Huangniuling Fm schematically shows the overall rhythmic sedimentary feature that is 6 characterized by the repeated occurrence of a sedimentary package that is composed of a thin 7 bed (shown in short red lines) of red coarse sandstone at the base, followed by massive grey 8 sandstone in the middle, and that is capped by light grey elaysmudstone at the top. The 9 Youganwo Fm also exhibits sedimentary rhythms that are characterized by repeated 10 occurrence of the beds with distinct reddish color (shown in pinkish lines) at distance that are indicated by the pinkish lines. Sedimentary cycles (b) are reflected by magnetic susceptibility 11 12 data. The distinct reddish beds in the Youganwo Fm and the thin red sandstone layers in the Huangniuling Fm generally correspond to the magnetic susceptibility peaks. The distinct thin 13 14 red sandstone layer in the Huangniuling Fm is numbered and a total of 19 repeated 15 sedimentary packages (eyeles) are identified. -Note the different scales of the magnetic 16 susceptibility of the Youganwo Fm (the lower part) and the Huangniuling Fm (the upper part). 17 Field photographs (c-e) show the major sedimentary features of the two formations and the 18 contact between them. In (c), the red arrows indicate the red, thin marker bed of sandstone in 19 the Huangniuling Fm. In (d), the arrow marks the contact between the two formations, 20 displaying a continuous, gradual transition from brown grey mudstones at the uppermost of 21 the Youganwo Fm to pale grey mudstones at the base of the Huangniuling Fm. In (e), the 22 yellow ellipse at the lower-middle part of the picture marks a person (~ 1.6 m) for scale; red 23 arrows point to several distinctive reddish layers that form the sedimentary rhythms in the Youganwo Fm. br grey = brown grey, lt grey = light grey. 24

Figure 3 Spectral analysis of the depth series of magnetic susceptibility of the Youganwo oil shale. The analysis reveals dominant sedimentary cycles with cycle wavelength ratios similar to periodicity ratios of orbital cycles, suggesting that these sedimentary cycles are orbital frequency bands. The red curve represents the noise level above which the spectral peaks are considered statistically significant. The numbers above the spectral peaks indicate cycle wavelength (in cm) of the sedimentary cycles.

Figure 4 Anisotropy of magnetic susceptibility (AMS) data of the Youganwanwo Fm (a, b) and the Huangniuling Fm (c, d). k1, k2, k3 are the maximum, intermediate, and minimum 1 axis of the anisotropy ellipsoid, respectively. (a, c) are the equal area projection of these

2 principal axes. No. is the number of specimens. T and Pj in (b, d) are the shape factor and the

3 degree of anisotropy, respectively (Jelinek, 1981).

4 Figure 5 Rock magnetic data of samples from the Youganwo Fm and Huangniuling Fm. (a) – 5 (e), thermal changesemperature dependence of magnetic susceptibility (MS) of samples from the Huangniuling mudstone (a, b), the uppermost brown grey shale (c) and the oil shale (d, e) 6 7 of the Youganwo Fm during a heating-cooling cycle between room temperature and 700°C; (f), IRM acquisition and the subsequent demagnetization in a backward DC field; (g-j), Zero-8 9 field-cooled (ZFC) and field-cooled (FC) low temperature measurements of the representative 10 samples. The arrow in (g) marks the subdued Verwey transition; (k-o) thermal demagnetization of composite IRM along Z-, Y-, and X-axis at a field of 1.2T, 0.6T, and 11 12 0.125T, respectively. 13 Figure 6 Representative demagnetization data of samples from the studied section.

15 Figure 6 Representative demagnetization data of samples from the studied sec 14 Open/closed squares indicate the vertical/horizontal components.

Figure 7 Characteristic remanent magnetization in stratigraphic coordinates. The solid/open
 symbols represent the lower/upper hemisphere projection.

17 Figure 8 Integrated litho-, cyclo-, and magnetostratigraphy (a-f) of the investigated section,

and the correlation with the δ_1^{18} O and δ_1^{13} C records (g, h) from the equatorial Pacific deep-sea 18 19 sediments (ODP site 1218) (Pälike et al., 2006) as well as the chrono- and lithostratigraphy (i) of Massignano section in Italy (the Eocene-Oligocene boundary global stratotype section and 20 points, GSSP) (Jovane et al., 2009), that showing the Eocene-Oligocene climatic transition 21 (EOT) and its precursor events. The legends for lithology and sedimentary cycles of the 22 studied section in Maoming Basin are the same as those in Fig. 2. In (c,_d), the solid (open) 23 symbols represent "A"("B")-quality ChRM data. Note that major lithological change from the 24 25 Scaglia Variegada Fm to Scaglia Cinerea Fm occurs at 12 m, which corresponds to the early 26 stage of Chron C13r (i), while the major lithological change at the investigated section occurs at the late stage of Chron C13r (a, f). 27

带格式的:上标 **带格式的:**上标

28