## Editor Comments:

The Title is a bit awkward. I think it should read "Estimates of late middle Eocene pCO2 based on stomatal density of modern and fossil Nageia leaves". This better incorporates the contents of the manuscript with correct grammar. Also, I think ~40 Ma is better described as late middle Eocene, and I do not think Gaertner needs inclusion as the genus, while not well known, is well established.

The title has been changed as suggested.

Lines 44-47: This is over-referenced and arguably incorrect. I would just put "In particular, there are few reconstructions for the late middle Eocene." (And then cite those papers that show this aspect).

### Changed as suggested.

Line 128: I think this should be "... into two "sections", ..." (I assuming here that sections is a biological classification term).

Changed as suggested.

Line 134: Needs space.

Changed as suggested.

Lines 161-162: I think this should be "... surfaces of leaves might be used ..."

Changed as suggested.

Lines 173-174: This should be "... hours, the reaction was stopped when specimen fragments ... and transparent. The ..." (There should be no semicolons in this case).

Changed as suggested.

Line 175: Should be "After, the ..."

Changed as suggested.

Line 178: Needs period as already has an "and" (i.e., "... 30 min). The ...")

#### Changed as suggested.

\*\*A\*\* Lines 192-197: This needs rewriting as important information is missing. It

should be something like "Further information on the sections is provided by Lie et al. (2015). Importantly, the formations span a depositional age of approximately XX to YY Ma, or late middle Eocene (REF). This has been determined HOW? (1-2 sentences). Now start new paragraph "Macrofossil …" (Are other approaches the same as for modern leaves? This is not crystal clear right now).

Lines 192-194 are changed as suggested. The approaches for fossil are different from modern ones, so we add "directly" in front of "treated" to make the sentence clearer.

Line 216: Remove space.

Changed as suggested.

Line 229: Spell-out "Figure"

Changed as suggested.

Line 245: Indent paragraph.

Changed as suggested.

Line 293: Should be "For modern Nageia, we find that ... increase, but that ..."

Changed as suggested.

Lines 295-296: Should be "... case has been observed for some flora."

Changed as suggested.

Line 300: Can remove "herein ...". Just end the sentence after "cells."

Changed as suggested.

Line 301: Start new paragraph and indent.

Changed as suggested.

Lines 312-313: Tense. Should be "... was young or mature, or grew in a sunny or shady environment".

#### Changed as suggested.

Lines 321-322: Should be "..., which is fairly close to GEOCARB III predictions ..."

### Changed as suggested.

Lines 326-327: Should be "... were generally lower than during much of the Cretaceous, but probably also decreased significantly from the early to late Eocene (REF). Here, I would fix the references. For example, two sets of references not needed, and Zachos et al. 2001 does not really discuss pCO2.

## Changed as suggested.

Lines 330-334: I would change to "However, there is a wide range of estimates for the Eocene (REF)." (Then remove the rest, as it is not really pertinent).

## Changed as suggested.

\*\*B\*\* Lines 336-380: This needs to be condensed and rewritten. All that should be here are past estimates for the middle to late Eocene, and how the Nageia estimates compare. However, there is a critical piece of information that needs to be tied in with the comment above. The world was dynamic in the Paleogene, including in the late middle Eocene, when the MECO occurred. Thus, the exact age matters, and it is possible that a values may differ because of slight offsets in time.

Changed as suggested.

In addition, we made a few changes as follows:

Line 237-238, add two spaces after "=".

Line 349, we use "to" substitute for "and".

| 1  | The Estimates of late middle Eocene pCO2 estimates of the late-                                      |
|----|------------------------------------------------------------------------------------------------------|
| 2  | Eccene in South China based on stomatal density of modern and                                        |
| 3  | <u>fossil</u> Nageia Gaertner-leaves                                                                 |
| 4  |                                                                                                      |
| 5  | XIAO-YAN LIU, QI GAO, MENG HAN and JIAN-HUA JIN $^{*}$                                               |
| 6  |                                                                                                      |
| 7  | State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources,       |
| 8  | School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China                             |
| 9  |                                                                                                      |
| 10 | Abstract:                                                                                            |
| 11 | Atmospheric pCO <sub>2</sub> concentrations have been estimated for intervals of the Eocene          |
| 12 | using various models and proxy information. Here we reconstruct late middle Eocene                   |
| 13 | (42.0-38.5-40.3 Ma) pCO <sub>2</sub> based on the fossil leaves of <i>Nageia maomingensis</i> Jin et |
| 14 | Liu collected from the Maoming Basin, Guangdong Province, China. We first                            |
| 15 | determine relationships between atmospheric pCO2 concentrations, stomatal density                    |
| 16 | (SD) and stomatal index (SI) using "modern" leaves of N. motleyi (Parl.) De Laub, the                |
| 17 | nearest living species to the Eocene fossils. This work indicates that the SD inversely              |
| 18 | responds to $pCO_2$ , while SI has almost no relationship with $pCO_2$ . Eocene $pCO_2$              |
| 19 | concentrations can be reconstructed based on a regression approach and the stomatal                  |
| 20 | ratio method by using the SD. The first approach gives a pCO <sub>2</sub> of 351.9 $\pm$ 6.6 ppmv,   |
| 21 | whereas the one based on stomatal ratio gives a pCO <sub>2</sub> of 537.5 $\pm$ 56.5 ppmv. Here, we  |
|    |                                                                                                      |

.

Correspondence: Jianhua Jin, tel. +86 20 84113348, fax +86 20 84110436, e-mail: lssjjh@mail.sysu.edu.cn

| 22 | explored the potential of <i>N. maomingensis</i> in pCO <sub>2</sub> reconstruction and obtained |
|----|--------------------------------------------------------------------------------------------------|
| 23 | different results according to different methods, providing a new insight for the                |
| 24 | reconstruction of paleoclimate and paleoenvironment in conifers.                                 |
| 25 |                                                                                                  |
| 26 | Keywords: pCO <sub>2</sub> , late middle Eocene, Nageia, Maoming Basin, South China.             |
| 27 |                                                                                                  |
| 28 | 1 Introduction                                                                                   |
| 29 |                                                                                                  |
| 30 | The Eocene (55.8-33.9 Ma) generally was much warmer than present-day, although                   |
| 31 | temperatures varied significantly across this time interval (Zachos et al., 2008).               |
| 32 | Climate of the early Eocene was extremely warm, particularly during the early                    |
| 33 | Eocene Climatic Optimum (EECO; 51 to 53 Ma), and the Paleocene-Eocene Thermal                    |
| 34 | Maximum (PETM; ~55.9 Ma). However, global climatic conditions cooled                             |
| 35 | significantly by the middle to late Eocene (40 to 36 Ma). Indeed, small, ephemeral               |
| 36 | ice-sheets and Arctic sea ice likely existed during the latest Eocene (Moran et al.,             |
| 37 | 2006; Zachos et al., 2008).                                                                      |
| 38 | Many authors have suggested that changes in temperature during the Phanerozoic                   |
| 39 | were linked to atmospheric pCO <sub>2</sub> (Petit et al., 1999; Retallack, 2001; Royer, 2006).  |
| 40 | Central to these discussions are records across the Eocene, as this epoch spans the last         |
| 41 | major change from a "greenhouse" world to an "icehouse" world. The Eocene $\ensuremath{pCO}_2$   |
| 42 | record remains incomplete and debated (K ürschner et al., 2001; Royer et al., 2001;              |
| 43 | Beerling et al., 2002; Greenwood et al., 2003; Royer, 2003). Most pCO <sub>2</sub>               |

| 44                                                                                                                                 | reconstructions have focused on the Cretaceous-Tertiary and Paleocene-Eocene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45                                                                                                                                 | boundaries (65 to 50 Ma; Koch et al., 1992; Stott, 1992; Sinha and Stott, 1994; Royer-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 46                                                                                                                                 | et al., 2001; Beerling and Royer, 2002; Nordt et al., 2002; Royer, 2003; Fletcher et al.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 47                                                                                                                                 | 2008; Roth Nebelsick et al., 2012; 2014; Grein et al., 2013; Huang et al., 2013;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 48                                                                                                                                 | Maxbauer et al.,2014) and the middle Eocene <u>. (Maxbauer et al., 2014), while few</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 49                                                                                                                                 | reconstructions were conducted at the late Eocene In particular, there are few                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50                                                                                                                                 | reconstructions for the late middle Eocene (Pagani et al., 2005; Maxbauer et al., 2014).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 51                                                                                                                                 | In addition, the pCO <sub>2</sub> reconstruction results have varied based on different proxies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 52                                                                                                                                 | Various methods having been used in pCO2 reconstruction mainly include the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 53                                                                                                                                 | computer modeling methods: GEOCARB-I, GEOCARB-II, GEOCARB-III,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 54                                                                                                                                 | GEOCARB-SULF and the proxies: ice cores, paleosol carbonate, phytoplankton,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 55                                                                                                                                 | nahcolite, Boron, and stomata parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 55<br>56                                                                                                                           | nahcolite, Boron, and stomata parameters.<br>The abundance of stomatal cells can be measured on modern leaves and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 55<br>56<br>57                                                                                                                     | nahcolite, Boron, and stomata parameters.<br>The abundance of stomatal cells can be measured on modern leaves and<br>well-preserved fossil leaves. Various plants show a negative correlation between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 55<br>56<br>57<br>58                                                                                                               | nahcolite, Boron, and stomata parameters.<br>The abundance of stomatal cells can be measured on modern leaves and<br>well-preserved fossil leaves. Various plants show a negative correlation between<br>atmospheric CO <sub>2</sub> concentration and stomatal density (SD), stomatal index (SI), or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 55<br>56<br>57<br>58<br>59                                                                                                         | nahcolite, Boron, and stomata parameters.<br>The abundance of stomatal cells can be measured on modern leaves and<br>well-preserved fossil leaves. Various plants show a negative correlation between<br>atmospheric CO <sub>2</sub> concentration and stomatal density (SD), stomatal index (SI), or<br>both. As such, these parameters have been determined in fossil leaves to reconstruct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 55<br>56<br>57<br>58<br>59<br>60                                                                                                   | <ul> <li>nahcolite, Boron, and stomata parameters.</li> <li>The abundance of stomatal cells can be measured on modern leaves and</li> <li>well-preserved fossil leaves. Various plants show a negative correlation between</li> <li>atmospheric CO<sub>2</sub> concentration and stomatal density (SD), stomatal index (SI), or</li> <li>both. As such, these parameters have been determined in fossil leaves to reconstruct</li> <li>past pCO<sub>2</sub>; examples include <i>Ginkgo</i> (Retallack, 2001, 2009a; Beerling et al., 2002;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 55<br>56<br>57<br>58<br>59<br>60<br>61                                                                                             | <ul> <li>nahcolite, Boron, and stomata parameters.</li> <li>The abundance of stomatal cells can be measured on modern leaves and</li> <li>well-preserved fossil leaves. Various plants show a negative correlation between</li> <li>atmospheric CO<sub>2</sub> concentration and stomatal density (SD), stomatal index (SI), or</li> <li>both. As such, these parameters have been determined in fossil leaves to reconstruct</li> <li>past pCO<sub>2</sub>; examples include <i>Ginkgo</i> (Retallack, 2001, 2009a; Beerling et al., 2002;</li> <li>Royer, 2003; Kürschner et al., 2008; Smith et al., 2010), <i>Metasequoia</i> (Royer, 2003;</li> </ul>                                                                                                                                                                                                                                                                                                                                              |
| 55<br>56<br>57<br>58<br>59<br>60<br>61<br>62                                                                                       | <ul> <li>nahcolite, Boron, and stomata parameters.</li> <li>The abundance of stomatal cells can be measured on modern leaves and</li> <li>well-preserved fossil leaves. Various plants show a negative correlation between</li> <li>atmospheric CO<sub>2</sub> concentration and stomatal density (SD), stomatal index (SI), or</li> <li>both. As such, these parameters have been determined in fossil leaves to reconstruct</li> <li>past pCO<sub>2</sub>; examples include <i>Ginkgo</i> (Retallack, 2001, 2009a; Beerling et al., 2002;</li> <li>Royer, 2003; K ürschner et al., 2008; Smith et al., 2010), <i>Metasequoia</i> (Royer, 2003;</li> <li>Doria et al., 2011), <i>Taxodium</i> (Stults et al., 2011), <i>Betula</i> (K ürschner et al., 2001; Sun</li> </ul>                                                                                                                                                                                                                            |
| <ul> <li>55</li> <li>56</li> <li>57</li> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> </ul>             | <ul> <li>nahcolite, Boron, and stomata parameters.</li> <li>The abundance of stomatal cells can be measured on modern leaves and</li> <li>well-preserved fossil leaves. Various plants show a negative correlation between</li> <li>atmospheric CO<sub>2</sub> concentration and stomatal density (SD), stomatal index (SI), or</li> <li>both. As such, these parameters have been determined in fossil leaves to reconstruct</li> <li>past pCO<sub>2</sub>; examples include <i>Ginkgo</i> (Retallack, 2001, 2009a; Beerling et al., 2002;</li> <li>Royer, 2003; K ürschner et al., 2008; Smith et al., 2010), <i>Metasequoia</i> (Royer, 2003;</li> <li>boria et al., 2011), <i>Taxodium</i> (Stults et al., 2011), <i>Betula</i> (K ürschner et al., 2001; Sun</li> <li>et al., 2012), <i>Neolitsea</i> (Greenwood et al., 2003), and <i>Quercus</i> (K ürschner et al., 1996,</li> </ul>                                                                                                            |
| <ul> <li>55</li> <li>56</li> <li>57</li> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> </ul> | <ul> <li>nahcolite, Boron, and stomata parameters.</li> <li>The abundance of stomatal cells can be measured on modern leaves and</li> <li>well-preserved fossil leaves. Various plants show a negative correlation between</li> <li>atmospheric CO<sub>2</sub> concentration and stomatal density (SD), stomatal index (SI), or</li> <li>both. As such, these parameters have been determined in fossil leaves to reconstruct</li> <li>past pCO<sub>2</sub>; examples include <i>Ginkgo</i> (Retallack, 2001, 2009a; Beerling et al., 2002;</li> <li>Royer, 2003; K ürschner et al., 2008; Smith et al., 2010), <i>Metasequoia</i> (Royer, 2003;</li> <li>boria et al., 2011), <i>Taxodium</i> (Stults et al., 2011), <i>Betula</i> (K ürschner et al., 2001; Sun</li> <li>et al., 2012), <i>Neolitsea</i> (Greenwood et al., 2003), and <i>Quercus</i> (K ürschner et al., 1996,</li> <li>2001), <i>Laurus</i> and <i>Ocotea</i> (K ürschner et al., 2008). Recently, positive correlations</li> </ul> |

| 66 | fossil Typha and Quercus (Bai et al., 2015; Hu et al., 2015). However, the tropical and           |
|----|---------------------------------------------------------------------------------------------------|
| 67 | subtropical moist broadleaf forest conifer tree Nageia has not been used previously in            |
| 68 | paleobotanical estimates of pCO <sub>2</sub> concentration.                                       |
| 69 | Herein, we firstly document correlations between stomatal properties and                          |
| 70 | atmospheric CO <sub>2</sub> concentrations using leaves of the extant species Nageia motleyi      |
| 71 | (Parl.) De Laub. that were collected over the last two centuries. This provides a                 |
| 72 | training dataset for application to fossil representatives of Nageia. We secondly                 |
| 73 | measure stomatal parameters on fossil Nageia leaves from the late middle Eocene of                |
| 74 | South China to estimate past CO <sub>2</sub> levels. The work provides further insights for       |
| 75 | discussing Eocene climate change.                                                                 |
| 76 |                                                                                                   |
| 77 | 2 Background                                                                                      |
| 78 |                                                                                                   |
| 79 | 2.1 Stomatal proxy in pCO <sub>2</sub> research                                                   |
| 80 |                                                                                                   |
| 81 | Stomatal information gathered from careful examination of leaves has been widely                  |
| 82 | used for reconstructions of past pCO <sub>2</sub> concentrations (Beerling and Kelly, 1997; Doria |
| 83 | et al., 2011). The three main parameters are stomatal density (SD), which is expressed            |
| 84 | as the total number of stomata divided by area, epidermal density (ED), which is                  |
| 85 | expressed as the total number of epidermal cells per area, and the stomatal index (SI),           |
| 86 | which is defined as the percentage of stomata among the total number of cells within              |
| 87 | an area $[SI = SD \times 100 / (SD + ED)]$ . Woodward (1987) considered that both SD and SI       |

had inverse relationships with atmospheric CO<sub>2</sub> during the development of the leaves. 88 89 Subsequently, McElwain (1998) created the stomatal ratio (SR) method to reconstruct pCO<sub>2</sub>. SR is a ratio of the stomatal density or index of a fossil  $[SD_{(f)} \text{ or } SI_{(f)}]$  to that of 90 91 corresponding nearest living equivalent  $[SD_{(e)} \text{ or } SI_{(e)}]$ , expressed as follows:  $SR = SI_{(e)} / SI_{(f)}$ (1)92 The stomatal ratio method is a semi-quantitative method of reconstructing pCO<sub>2</sub> 93 concentrations under certain standardizations. An example is the "Carboniferous 94 standardization" (Chaloner and McElwain, 1997), where one stomatal ratio unit 95 96 equals two RCO<sub>2</sub> units: 97  $SR = 2 RCO_2$ (2) and the value of RCO<sub>2</sub> is the pCO<sub>2</sub> level divided by the pre-industrial atmospheric 98 99 level (PIL) of 300 ppm (McElwain, 1998) or that of the year when the nearest living equivalent (NLE) was collected (Berner, 1994; McElwain, 1998): 100 101  $RCO_2 = C_{(f)} / 300 \text{ or } RCO_2 = C_{(f)} / C_{(e)}$ (3) The estimated  $pCO_2$  level can then be expressed as follows: 102  $C_{(f)} = 0.5 \times C_{(e)} \times SD_{(e)} / SD_{(f)}$  or  $C_{(f)} = 0.5 \times C_{(e)} \times SI_{(e)} / SI_{(f)}$ (4) 103 where  $C_{(f)}$  is the pCO<sub>2</sub> represented by the fossil leaf, and  $C_{(e)}$  is the atmospheric CO<sub>2</sub> 104 of the year when the leaf of the NLE species was collected (McElwain and Chaloner, 105 1995, 1996; McElwain 1998). The equation adapts to the pCO<sub>2</sub> concentration prior to 106 Cenozoic. 107 Another standardization, the "Recent standardization" (McElwain, 1998), is 108 expressed as one stomatal ratio unit being equal to one RCO<sub>2</sub> unit: 109

$$110 \qquad SR = 1 \text{ RCO}_2 \tag{5}$$

According to the equations stated above, the pCO<sub>2</sub> concentration can be expressedas:

| 113 | $C_{(f)} = C_e \times SD_{(e)} / SD_{(f)}$ or $C_{(f)} = C_e \times SI_{(e)} / SI_{(f)}$ | (6)  |
|-----|------------------------------------------------------------------------------------------|------|
| 114 | This standardization is usually used for reconstruction based on Cenozoic fossile        | 3    |
| 115 | (Chaloner and McElwain, 1997; McElwain, 1998; Beerling and Royer, 2002).                 |      |
| 116 | Kouwenberg et al. (2003) proposed some special stomatal quantification method            | ls   |
| 117 | for conifer leaves with stomata arranged in rows. The stomatal number per Length         |      |
| 118 | (SNL) is expressed as the number of abaxial stomata plus the number of adaxial           |      |
| 119 | stomata divided by leaf length in millimeters. Stomatal rows (SRO) is expressed as       | ;    |
| 120 | the number of stomatal rows in both stomatal bands. Stomatal density per length          |      |
| 121 | (SDL) is expressed as the equation $SDL = SD \times SRO$ . True stomatal density per     |      |
| 122 | length (TSDL) is expressed as the equation $TSDL = SD \times band$ width (in millimeter  | ers) |
| 123 | The band width on Nageia motleyi leaves was measured as leaf blade width.                |      |
| 124 |                                                                                          |      |
| 125 | 2.2 Review of extant and fossil Nageia                                                   |      |
| 126 |                                                                                          |      |
| 127 | The genus Nageia, including seven living species, is a special group of                  |      |
| 128 | Podocarpaceae, a large family of conifers mainly distributed in the southern             |      |
| 129 | hemisphere. Nageia has broadly ovate-elliptic to oblong-lanceolate, multiveined          |      |
| 130 | (without a midvein), spirally arranged or in decussate, and opposite or subopposite      |      |
| 131 | leaves (Cheng et al., 1978; Fu et al., 1999). Generally, Nageia is divided into two      |      |

| 132                                                                                                                                          | sections, Nageia Sect. Nageia and Nageia Sect. Dammaroideae (Mill 1999, 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 133                                                                                                                                          | Both sections are mainly distributed in southeast Asia and Australasia from north                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 134                                                                                                                                          | latitude 30 ° to nearly the equator (Fu, 1992; Fig. 1). Four species of the N. section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 135                                                                                                                                          | Nageia Nageia nagi (Thunberg) O. Kuntze, N. fleuryi (Hickel) De Laub., N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 136                                                                                                                                          | formosensis (Dummer) C. N. Page, and N. nankoensis (Hayata) R. R. Mill have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 137                                                                                                                                          | hypostomatic leaves where stomata only occur on the abaxial sideOne species of this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 138                                                                                                                                          | section N. maxima (De Laub.) De Laub is characterized by amphistomatic leaves,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 139                                                                                                                                          | but where only a few stomata are found on the adaxial side (Hill and Pole, 1992; Sun,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 140                                                                                                                                          | 2008). Both N. wallichiana (Presl) O. Kuntze and N. motleyi of the N. section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 141                                                                                                                                          | Dammaroideae are amphistomatic with abundant stomata distributed on both sides of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 142                                                                                                                                          | the leaf. This is especially true for N. motleyi, which has approximately equal stomata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 143                                                                                                                                          | numbers on both surfaces (Hill and Pole, 1992; Sun, 2008).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 143<br>144                                                                                                                                   | numbers on both surfaces (Hill and Pole, 1992; Sun, 2008).<br>The fossil record of <i>Nageia</i> can be traced back to the Cretaceous. Krassilov (1965)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 143<br>144<br>145                                                                                                                            | numbers on both surfaces (Hill and Pole, 1992; Sun, 2008).<br>The fossil record of <i>Nageia</i> can be traced back to the Cretaceous. Krassilov (1965)<br>described <i>Podocarpus (Nageia) sujfunensis</i> Krassilov from the Lower Cretaceous of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 143<br>144<br>145<br>146                                                                                                                     | numbers on both surfaces (Hill and Pole, 1992; Sun, 2008).<br>The fossil record of <i>Nageia</i> can be traced back to the Cretaceous. Krassilov (1965)<br>described <i>Podocarpus (Nageia) sujfunensis</i> Krassilov from the Lower Cretaceous of<br>Far East Russia. Kimura et al. (1988) reported <i>Podocarpus (Nageia) ryosekiensis</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 143<br>144<br>145<br>146<br>147                                                                                                              | numbers on both surfaces (Hill and Pole, 1992; Sun, 2008).<br>The fossil record of <i>Nageia</i> can be traced back to the Cretaceous. Krassilov (1965)<br>described <i>Podocarpus (Nageia) sujfunensis</i> Krassilov from the Lower Cretaceous of<br>Far East Russia. Kimura et al. (1988) reported <i>Podocarpus (Nageia) ryosekiensis</i><br>Kimura, Ohanaet Mimoto, an ultimate leafy branch bearing a seed, from the Early                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 143<br>144<br>145<br>146<br>147<br>148                                                                                                       | numbers on both surfaces (Hill and Pole, 1992; Sun, 2008).<br>The fossil record of <i>Nageia</i> can be traced back to the Cretaceous. Krassilov (1965)<br>described <i>Podocarpus (Nageia) sujfunensis</i> Krassilov from the Lower Cretaceous of<br>Far East Russia. Kimura et al. (1988) reported <i>Podocarpus (Nageia) ryosekiensis</i><br>Kimura, Ohanaet Mimoto, an ultimate leafy branch bearing a seed, from the Early<br>Barremian in southwestern Japan. In China, a Cretaceous petrified wood, <i>Podocarpus</i>                                                                                                                                                                                                                                                                                                                                                                             |
| 143<br>144<br>145<br>146<br>147<br>148<br>149                                                                                                | <ul> <li>numbers on both surfaces (Hill and Pole, 1992; Sun, 2008).</li> <li>The fossil record of <i>Nageia</i> can be traced back to the Cretaceous. Krassilov (1965)</li> <li>described <i>Podocarpus (Nageia) sujfunensis</i> Krassilov from the Lower Cretaceous of</li> <li>Far East Russia. Kimura et al. (1988) reported <i>Podocarpus (Nageia) ryosekiensis</i></li> <li>Kimura, Ohanaet Mimoto, an ultimate leafy branch bearing a seed, from the Early</li> <li>Barremian in southwestern Japan. In China, a Cretaceous petrified wood, <i>Podocarpus</i></li> <li>(<i>Nageia</i>) nagi Pilger, was discovered from the Dabie Mountains in central Henan,</li> </ul>                                                                                                                                                                                                                           |
| 143<br>144<br>145<br>146<br>147<br>148<br>149<br>150                                                                                         | <ul> <li>numbers on both surfaces (Hill and Pole, 1992; Sun, 2008).</li> <li>The fossil record of <i>Nageia</i> can be traced back to the Cretaceous. Krassilov (1965)</li> <li>described <i>Podocarpus (Nageia) sujfunensis</i> Krassilov from the Lower Cretaceous of</li> <li>Far East Russia. Kimura et al. (1988) reported <i>Podocarpus (Nageia) ryosekiensis</i></li> <li>Kimura, Ohanaet Mimoto, an ultimate leafy branch bearing a seed, from the Early</li> <li>Barremian in southwestern Japan. In China, a Cretaceous petrified wood, <i>Podocarpus</i></li> <li>(<i>Nageia</i>) nagi Pilger, was discovered from the Dabie Mountains in central Henan,</li> <li>China (Yang et al., 1990). Jin et al. (2010) reported a upper Eocene <i>Nageia</i> leaf</li> </ul>                                                                                                                          |
| 143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151                                                                                  | numbers on both surfaces (Hill and Pole, 1992; Sun, 2008).<br>The fossil record of <i>Nageia</i> can be traced back to the Cretaceous. Krassilov (1965)<br>described <i>Podocarpus (Nageia) sujfunensis</i> Krassilov from the Lower Cretaceous of<br>Far East Russia. Kimura et al. (1988) reported <i>Podocarpus (Nageia) ryosekiensis</i><br>Kimura, Ohanaet Mimoto, an ultimate leafy branch bearing a seed, from the Early<br>Barremian in southwestern Japan. In China, a Cretaceous petrified wood, <i>Podocarpus</i><br>( <i>Nageia</i> ) nagi Pilger, was discovered from the Dabie Mountains in central Henan,<br>China (Yang et al., 1990). Jin et al. (2010) reported a upper Eocene <i>Nageia</i> leaf<br>named <i>N. hainanensis</i> Jin, Qiu, Zhu et Kodrul from the Changchang Basin of Hainan                                                                                           |
| <ol> <li>143</li> <li>144</li> <li>145</li> <li>146</li> <li>147</li> <li>148</li> <li>149</li> <li>150</li> <li>151</li> <li>152</li> </ol> | numbers on both surfaces (Hill and Pole, 1992; Sun, 2008).<br>The fossil record of <i>Nageia</i> can be traced back to the Cretaceous. Krassilov (1965)<br>described <i>Podocarpus (Nageia) sujfunensis</i> Krassilov from the Lower Cretaceous of<br>Far East Russia. Kimura et al. (1988) reported <i>Podocarpus (Nageia) ryosekiensis</i><br>Kimura, Ohanaet Mimoto, an ultimate leafy branch bearing a seed, from the Early<br>Barremian in southwestern Japan. In China, a Cretaceous petrified wood, <i>Podocarpus</i><br>( <i>Nageia</i> ) nagi Pilger, was discovered from the Dabie Mountains in central Henan,<br>China (Yang et al., 1990). Jin et al. (2010) reported a upper Eocene <i>Nageia</i> leaf<br>named <i>N. hainanensis</i> Jin, Qiu, Zhu et Kodrul from the Changchang Basin of Hainan<br>Island, South China. Recently, Liu et al. (2015) found another leaf species <i>N</i> . |

| 154 | Although some of the Nageia fossil materials described in the above studies                       |
|-----|---------------------------------------------------------------------------------------------------|
| 155 | (Krassilov, 1965; Jin et al., 2010; Liu et al., 2015) have well-preserved cuticles, these         |
| 156 | studies are mainly concentrated on morphology, systematics and phytogeography.                    |
| 157 | Here we try to reconstruct the $pCO_2$ concentration based on stomatal data of                    |
| 158 | Nageia maomingensis Jin et Liu. Among the modern Nageia species mentioned above,                  |
| 159 | N. motleyi was considered as the NLE species of N. maomingensis (Liu et al., 2015).               |
| 160 | However, because of the species-specific inverse relationship between atmospheric                 |
| 161 | CO <sub>2</sub> partial pressure and SD (Woodward and Bazzaz, 1988), it is necessary to explore   |
| 162 | whether the SD and SI of $N$ . <i>motleyi</i> show negative correlations with the CO <sub>2</sub> |
| 163 | concentration before applying the stomatal method. Both <i>N. maomingensis</i> and <i>N.</i>      |
| 164 | motleyi are amphistomatic, suggesting that both upper and lower surfaces of the leaf-             |
| 165 | are needed leaves might be used to estimate the $pCO_2$ concentrations.                           |
| 166 |                                                                                                   |
| 167 | 3 Material and methods                                                                            |
| 168 |                                                                                                   |
| 169 | 3.1 Extant leaf preparation                                                                       |
| 170 |                                                                                                   |
| 171 | We examined 12 specimens of extant Nageia motleyi from different herbaria (Table                  |
| 172 | 1). We removed one or two leaves from each specimen, and took three fragments                     |
| 173 | $(0.25 \text{ mm}^2)$ from every leaf (Fig. 2a) and numbered them for analysis.                   |
| 174 | The numbered fragments were boiled for 5-10 min in water. Subsequently, after                     |
| 175 | being macerated in a mixed solution of 10% acetic acid and 10% $H_2O_2(1:1)$ and                  |

| 176                                                                       | heated in the thermostatic water bath at 85 C for 8.5 hours; the reaction was stopped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 177                                                                       | when the specimens fragments turned white and semitransparent.; The cuticles were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 178                                                                       | then rinsed with distilled water until the pH of the water became neutral. After, that-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 179                                                                       | the cuticles were treated in Schulze's solution (one part of potassium chlorate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 180                                                                       | saturated solution and three part of concentrated nitric acid) for 30 min, rinsed in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 181                                                                       | water, and then treated with 8% KOH (up to 30 min). and the The abaxial and adaxial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 182                                                                       | cuticles were separated with a hair mounted on needle. Finally, the cuticles were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 183                                                                       | stained with 1% Safranin T alcoholic solution for 5 min, sealed with Neutral Balsam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 184                                                                       | and observed under LM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 185                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 186                                                                       | 3.2 Fossil leaf preparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 187                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 187<br>188                                                                | Maoming Basin (21 °42'33.2"N, 110 °53'19.4"E) is located in southwestern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 187<br>188<br>189                                                         | Maoming Basin (21 <sup>°4</sup> 2'33.2"N, 110 <sup>°5</sup> 3'19.4"E) is located in southwestern<br>Guangdong, South China including Cretaceous and Tertiary strata. Tertiary strata are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 187<br>188<br>189<br>190                                                  | Maoming Basin (21 %2'33.2"N, 110 %3'19.4"E) is located in southwestern<br>Guangdong, South China including Cretaceous and Tertiary strata. Tertiary strata are<br>fluvial and lacustrine sedimentary units, divided into the Gaopengling, Laohuling,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 187<br>188<br>189<br>190<br>191                                           | Maoming Basin (21 42'33.2"N, 110 53'19.4"E) is located in southwestern<br>Guangdong, South China including Cretaceous and Tertiary strata. Tertiary strata are<br>fluvial and lacustrine sedimentary units, divided into the Gaopengling, Laohuling,<br>Shangcun, Huangniuling and Youganwo formations in descending order, aged from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 187<br>188<br>189<br>190<br>191<br>192                                    | Maoming Basin (21 %2'33.2"N, 110 %3'19.4"E) is located in southwestern<br>Guangdong, South China including Cretaceous and Tertiary strata. Tertiary strata are<br>fluvial and lacustrine sedimentary units, divided into the Gaopengling, Laohuling,<br>Shangcun, Huangniuling and Youganwo formations in descending order, aged from<br>late Eocene to early Oligocene (Wang et al., 1994).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 187<br>188<br>189<br>190<br>191<br>192<br>193                             | Maoming Basin (21 42'33.2"N, 110 53'19.4"E) is located in southwestern<br>Guangdong, South China including Cretaceous and Tertiary strata. Tertiary strata are<br>fluvial and lacustrine sedimentary units, divided into the Gaopengling, Laohuling,<br>Shangcun, Huangniuling and Youganwo formations in descending order, aged from<br>late Eocene to early Oligocene (Wang et al., 1994).<br>Four fossil leaves of <i>Nageia maomingensis</i> were recovered from the Youganwo                                                                                                                                                                                                                                                                                                                                                                        |
| 187<br>188<br>189<br>190<br>191<br>192<br>193<br>194                      | Maoming Basin (21 <sup>4</sup> 2'33.2"N, 110 <sup>5</sup> 3'19.4"E) is located in southwestern<br>Guangdong, South China including Cretaceous and Tertiary strata. Tertiary strata are<br>fluvial and lacustrine sedimentary units, divided into the Gaopengling, Laohuling,<br>Shangcun, Huangniuling and Youganwo formations in descending order, aged from<br>late Eocene to early Oligocene (Wang et al., 1994).<br>Four fossil leaves of <i>Nageia maomingensis</i> were recovered from the Youganwo<br>(MMJ1-001) and Huangniuling (MMJ2-003, MMJ2-004 and MMJ3-003) formations                                                                                                                                                                                                                                                                    |
| 187<br>188<br>189<br>190<br>191<br>192<br>193<br>194<br>195               | Maoming Basin (21 <sup>42</sup> <sup>33</sup> .2"N, 110 <sup>53</sup> <sup>19</sup> .4"E) is located in southwestern<br>Guangdong, South China including Cretaceous and Tertiary strata. Tertiary strata are<br>fluvial and lacustrine sedimentary units, divided into the Gaopengling, Laohuling,<br>Shangcun, Huangniuling and Youganwo formations in descending order, aged from<br>late Eocene to early Oligocene (Wang et al., 1994).<br>Four fossil leaves of <i>Nageia maomingensis</i> were recovered from the Youganwo<br>(MMJ1-001) and Huangniuling (MMJ2-003, MMJ2-004 and MMJ3-003) formations<br>of Maoming Basin, South China-(Fig. 1B, 1C in Liu et al., 2015). Further information                                                                                                                                                      |
| 187<br>188<br>189<br>190<br>191<br>192<br>193<br>194<br>195<br>196        | Maoming Basin (21 %2'33.2"N, 110 53'19.4"E) is located in southwestern<br>Guangdong, South China including Cretaceous and Tertiary strata. Tertiary strata are<br>fluvial and lacustrine sedimentary units, divided into the Gaopengling, Laohuling,<br>Shangcun, Huangniuling and Youganwo formations in descending order, aged from<br>late Eocene to early Oligocene (Wang et al., 1994).<br>Four fossil leaves of <i>Nageia maomingensis</i> were recovered from the Youganwo<br>(MMJ1-001) and Huangniuling (MMJ2-003, MMJ2-004 and MMJ3-003) formations<br>of Maoming Basin, South China-(Fig. 1B, 1C in Liu et al., 2015). Further information<br>on the sections is provided by Liu et al. (2015). Importantly, the formations span a                                                                                                            |
| 187<br>188<br>189<br>190<br>191<br>192<br>193<br>194<br>195<br>196<br>197 | Maoming Basin (21 <sup>9</sup> 42'33.2"N, 110 <sup>5</sup> 3'19.4"E) is located in southwestern<br>Guangdong, South China including Cretaceous and Tertiary strata. Tertiary strata are<br>fluvial and lacustrine sedimentary units, divided into the Gaopengling, Laohuling,<br>Shangcun, Huangniuling and Youganwo formations in descending order, aged from<br>late Eocene to early Oligocene (Wang et al., 1994).<br>Four fossil leaves of <i>Nageia maomingensis</i> were recovered from the Youganwo<br>(MMJ1-001) and Huangniuling (MMJ2-003, MMJ2-004 and MMJ3-003) formations<br>of Maoming Basin, South China (Fig. 1B, 1C in Liu et al., 2015). Further information<br>on the sections is provided by Liu et al. (2015). Importantly, the formations span a<br>depositional age of approximately 42.0 to 38.5 Ma which was considered as late |

| 198                                                         | Eocene by Wang et al. (1994), but it can be recognized as late middle Eocene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 199                                                         | according to Walker and Geissman (2009). The age from Youganwo to Huangniuling-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 200                                                         | formations is late Eocene (~ 40.3 Ma). Precise information regarding locations is-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 201                                                         | provided by Liu et al., (2015).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 202                                                         | Macrofossil cuticular fragments were taken from the middle part of each fossil leaf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 203                                                         | (Fig. 2c) and <u>directly</u> treated with Schulze's solution for approximately 1h and 5–10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 204                                                         | KOH for 30 min (Ye, 1981). The cuticles were observed and photographed under a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 205                                                         | Carl Zeiss Axio Scope A1 light microscope (LM). All fossil specimens and cuticle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 206                                                         | slides are housed in the Museum of Biology of Sun Yat-sen University, Guangzhou,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 207                                                         | China.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 208                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 209                                                         | 3.3 Stomatal counting strategy and calculation methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 210                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 210<br>211                                                  | The basic stomatal parameters, SD, ED and SI, were counted based on analyzing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 210<br>211<br>212                                           | The basic stomatal parameters, SD, ED and SI, were counted based on analyzing pictures taken with a light microscope (LM). A total of 2816 pictures ( $200 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 210<br>211<br>212<br>213                                    | The basic stomatal parameters, SD, ED and SI, were counted based on analyzing pictures taken with a light microscope (LM). A total of 2816 pictures ( $200 \times$ magnification of Zeiss LM) of cuticles from 21 leaves of <i>N. motleyi</i> were counted.                                                                                                                                                                                                                                                                                                                                                                                                        |
| 210<br>211<br>212<br>213<br>214                             | The basic stomatal parameters, SD, ED and SI, were counted based on analyzing pictures taken with a light microscope (LM). A total of 2816 pictures ( $200 \times$ magnification of Zeiss LM) of cuticles from 21 leaves of <i>N. motleyi</i> were counted. Each counting field was 0.366 mm <sup>2</sup> . We used a standard sampling protocol (Poole and                                                                                                                                                                                                                                                                                                        |
| 210<br>211<br>212<br>213<br>214<br>215                      | The basic stomatal parameters, SD, ED and SI, were counted based on analyzing pictures taken with a light microscope (LM). A total of 2816 pictures (200× magnification of Zeiss LM) of cuticles from 21 leaves of <i>N. motleyi</i> were counted. Each counting field was 0.366 mm <sup>2</sup> . We used a standard sampling protocol (Poole and K ürschner, 1999), counting all full stomata in the image plus stomata straddling the                                                                                                                                                                                                                           |
| 210<br>211<br>212<br>213<br>214<br>215<br>216               | The basic stomatal parameters, SD, ED and SI, were counted based on analyzing pictures taken with a light microscope (LM). A total of 2816 pictures (200× magnification of Zeiss LM) of cuticles from 21 leaves of <i>N. motleyi</i> were counted. Each counting field was 0.366 mm <sup>2</sup> . We used a standard sampling protocol (Poole and K ürschner, 1999), counting all full stomata in the image plus stomata straddling the left and top margins, as presented in Figure 2(b), and (d).                                                                                                                                                               |
| 210<br>211<br>212<br>213<br>214<br>215<br>216<br>217        | The basic stomatal parameters, SD, ED and SI, were counted based on analyzing pictures taken with a light microscope (LM). A total of 2816 pictures (200× magnification of Zeiss LM) of cuticles from 21 leaves of <i>N. motleyi</i> were counted. Each counting field was 0.366 mm <sup>2</sup> . We used a standard sampling protocol (Poole and K ürschner, 1999), counting all full stomata in the image plus stomata straddling the left and top margins, as presented in Figure 2(b), and (d). The SNL, SRO, SDL, and TSDL were also determined based on LM images. A                                                                                        |
| 210<br>211<br>212<br>213<br>214<br>215<br>216<br>217<br>218 | The basic stomatal parameters, SD, ED and SI, were counted based on analyzing pictures taken with a light microscope (LM). A total of 2816 pictures (200× magnification of Zeiss LM) of cuticles from 21 leaves of <i>N. motleyi</i> were counted. Each counting field was 0.366 mm <sup>2</sup> . We used a standard sampling protocol (Poole and K ürschner, 1999), counting all full stomata in the image plus stomata straddling the left and top margins, as presented in Figure 2(b), and (d). The SNL, SRO, SDL, and TSDL were also determined based on LM images. A total of 2293 pictures (200× magnification of Zeiss LM) of the cuticles from 21 leaves |

| 220 | aforementioned counting areas overlapped and they were larger than the minimum                             |
|-----|------------------------------------------------------------------------------------------------------------|
| 221 | area $(0.03 \text{ mm}^2)$ for statistics (Poole and K ürschner, 1999). In this study, the stomatal        |
| 222 | data of both surfaces are applied in $pCO_2$ reconstruction because both the fossil and                    |
| 223 | NLE species are amphistomatic.                                                                             |
| 224 |                                                                                                            |
| 225 |                                                                                                            |
| 226 | 4 Results                                                                                                  |
| 227 |                                                                                                            |
| 228 | 4.1 Correlations between the CO <sub>2</sub> concentrations and stomatal parameters of                     |
| 229 | Nageia motleyi                                                                                             |
| 230 |                                                                                                            |
| 231 | The SD and SI data of the adaxial sides of N. motleyi leaves are presented in Table                        |
| 232 | 2. The SDs and SIs average 62.28 $\rm mm^{-2}$ and 3.30 %, respectively. However, the SDs                  |
| 233 | and SIs data of the abaxial sides, summarized in Table 3, give higher average values                       |
| 234 | (70.03 mm <sup>-2</sup> in SDs and 3.90 % in SIs) than those from the adaxial sides. The                   |
| 235 | combined SD and SI of the adaxial and abaxial surfaces average 66.14 mm <sup>-2</sup> and                  |
| 236 | 3.60 %, respectively (table 4).                                                                            |
| 237 | Fig-ure_3 shows the relationships between the stomatal parameters (SD and SI) of                           |
| 238 | modern N. motleyi and the atmospheric CO <sub>2</sub> concentration (SD-CO <sub>2</sub> relationship and   |
| 239 | SI-CO <sub>2</sub> relationship). $R^2$ values in the SD-CO <sub>2</sub> relationship from the adaxial and |
| 240 | abaxial surfaces of <i>N. motley</i> are up to 0.4667 and 0.3824 (Fig. 3a, b), suggesting that             |
| 241 | the stomatal densities of <i>N. motleyi</i> are inverse to the CO <sub>2</sub> concentrations. However,    |

Fig. 3c and d indicate no relationship between the SIs and CO<sub>2</sub> concentrations for the 242 extremely low level of the  $R^2$  values (0.2558 and 0.0248). Figs. 3e and 3f based on the 243 combined data also show that SD inversely responds to the atmospheric CO<sub>2</sub> 244 concentration ( $R^2 = 0.4421$ ), while SI has almost no relationship with the atmospheric 245  $CO_2$  concentration ( $R^2 = 0.1177$ ). 246 The mean values of SNL, SDL and TSDL are 9.81, 326.39 and 1226.93 no. $\cdot$ mm<sup>-1</sup>, 247 respectively (Table 5). Fig. 4 shows the relationships between SNL (SDL, TSDL) and 248  $CO_2$  concentrations. The low R<sup>2</sup> values in the Fig. 4a and 4c indicate that SNL (R<sup>2</sup> = 249 0.0643) and TSDL ( $R^2 = 0.0788$ ) have no relationship with the CO<sub>2</sub> concentration in 250 251 this study. Fig. 4b shows that there is a weak reverse relevance between SDL and the  $CO_2$  concentration ( $R^2 = 0.3154$ ). 252 Compared with the SDL method, the SD-based method shows a larger R<sup>2</sup> value, 253 254 indicating a stronger relevance between the SD and CO<sub>2</sub> concentrations. In this study, 255 the pCO<sub>2</sub> is reconstructed based on the regression equations of SD-CO<sub>2</sub> relationship. Additionally, the stomatal ratio method can be also used in estimating  $pCO_2$ 256 257 concentration of the late middle Eocene based on stomatal densities (SDs) of the 258 fossil species N. maomingensis and extant species N. motleyi. The SD results of specimen No. 18328 are selected to reconstruct the pCO<sub>2</sub> concentration, because they 259 are closest to the fitted equations in Fig. 3. This specimen was collected by Neth. Ind. 260 For. Service from Riau on Ond. Karimon, Archipel. Ind., Malaysia, in 1934 at an 261 altitude of 5 m and CO<sub>2</sub> concentration of 306.46 ppmv (Brown, 2010). 262 263

带格式的: 缩进: 首行缩进: 1 字符

**4.2** The pCO<sub>2</sub> estimates results

| 266 | 4.2.1 The regression approach                                                                           |
|-----|---------------------------------------------------------------------------------------------------------|
| 267 | The summary of stomatal parameters of the fossil Nageia and reconstruction results                      |
| 268 | are provided in Tables 6–8. The mean SD and SI values of the adaxial surface are 44.5                   |
| 269 | $\rm mm^{-2}$ and 1.8 %, respectively (Table 6). The mean SD and SI values of the abaxial               |
| 270 | surface are 49.8 mm <sup>-2</sup> and 2.07 %, respectively (Table 7).                                   |
| 271 | Based on the regression approach, the pCO <sub>2</sub> was reconstructed as 351.9 $\pm$ 6.6 ppmv        |
| 272 | and 365.6 $\pm$ 7.6 ppmv according to the SD of adaxial and abaxial sides. The combined                 |
| 273 | SD value is an average of 46.6 $\text{mm}^{-2}$ (Table 8), giving the reconstructed pCO <sub>2</sub> of |
| 274 | 358.1 ± 5.0 ppmv.                                                                                       |
| 275 |                                                                                                         |
| 276 | 4.2.2 The stomatal ratio method                                                                         |
| 277 | Mean SR value of the adaxial side (SR=1.69 $\pm 0.18$ ) is a little larger than that of the             |
| 278 | abaxial side (SR=1.60 $\pm$ 0.11) in fossil Nageia leaves (Tables 6 and 7). The pCO <sub>2</sub>        |
| 279 | reconstruction results are<br>537.5 $\pm$ 56.5 ppmv (Table 6) and 496.1 $\pm$ 35.7 ppmv (Table 7)       |
| 280 | based on the adaxial and abaxial cuticles, respectively. Based on the combined SD of                    |
| 281 | both leaf sides, the pCO <sub>2</sub> result is 519.9 $\pm$ 35.0 ppmv.                                  |
| 282 | The partial pressure of $CO_2$ decreases with elevation (Gale, 1972). Jones (1992)                      |
| 283 | proposed that the relationship between elevation and partial pressure in the lower                      |
| 284 | atmosphere can be expressed as $P = -10.6E + 100$ , where E is elevation in kilometers                  |
| 285 | and $P$ is the percentage of partial pressure relative to sea level. Various studies                    |
|     |                                                                                                         |

| 286 | corroborate that SI and SD of many plants have positive correlations with altitude                  |
|-----|-----------------------------------------------------------------------------------------------------|
| 287 | (Körner and Cochrane, 1985; Woodward, 1986; Woodward and Bazzaz, 1988;                              |
| 288 | Beerling et al., 1992; Rundgren and Beerling, 1999) while they are negatively related               |
| 289 | to the partial pressure of $CO_2$ (Woodward and Bazzaz, 1988). Therefore, it is essential           |
| 290 | to take elevation calibration into account during $pCO_2$ concentration estimates.                  |
| 291 | However, Royer (2003) pointed out that it is unnecessary to provide this conversion                 |
| 292 | when trees lived at $<250$ m in elevation. In this paper, the nearest living equivalent             |
| 293 | species, <i>Nageia motleyi</i> , grows at 5 m in elevation with $P = 99.9$ , suggesting that $CO_2$ |
| 294 | concentration estimates were only underestimated by 0.1%. Consequently, no                          |
| 295 | correction is needed for the reconstruction result in this study. After being projected             |
| 296 | into a long-term carbon cycle model (GEOCARB III; Berner and Kothaval á, 2001),                     |
| 297 | the results of this study compares well with $\mathrm{CO}_2$ concentrations for corresponding age   |
| 298 | within their error ranges (Fig. 5).                                                                 |
| 299 |                                                                                                     |
| 300 | 5 Discussion                                                                                        |
| 301 |                                                                                                     |
| 302 | 5.1 Stomatal parameters response to CO <sub>2</sub>                                                 |
| 303 |                                                                                                     |
| 304 | For modern <i>Nageia</i> , Here, we find that SD decreases as atmospheric $CO_2$                    |
| 305 | concentrations increase, however, but that SI does not. Generally, SI is more sensitive             |
| 306 | in response to the atmospheric CO <sub>2</sub> concentration than SD (Beerling, 1999; Royer,        |
| 307 | 2001). However, the reverse case has been observed for some flora. is not unfound.                  |
|     |                                                                                                     |

• . •

1 ..

: 41.

- 14:4--- - 1

| 308 | For example, Kouwenberg et al. (2003) reported that SD is better than SI in reflecting            |
|-----|---------------------------------------------------------------------------------------------------|
| 309 | the negative relationships with $CO_2$ in conifer needles, accounting for the special             |
| 310 | paralleled mode of the ordinary epidermal and stomatal formation. Although Nageia                 |
| 311 | is broad-leaved rather than needle-leaved, it also has well paralleled epidermal cells.           |
| 312 | herein showing the different relationships between CO2 and SD or SI                               |
| 313 | Compared with SD, the SDL has weaker correlation with $CO_2$ at a smaller $R^2$ . The             |
| 314 | SNL and TSDL have no response to the change of CO <sub>2</sub> . The insensitivity of SNL,        |
| 315 | SDL and TSDL might account for the characters of broad-leaved leaf shape and                      |
| 316 | paralleled epidermal cells. The SNL should be applied to conifer needles with single              |
| 317 | file of stomata (Kouwenberg et al., 2003). The SDL and TSDL were considered as the                |
| 318 | most appropriate method when the stomatal rows grouped in bands in a hypo- or                     |
| 319 | amphistomatal conifer needle species (Kouwenberg et al., 2003). Considering all the               |
| 320 | stomatal parameters above, SD appears to be the most sensitive to $CO_2$ .                        |
| 321 | The SD-CO <sub>2</sub> correlation shows one value from leaf No. 40798 offset from the            |
| 322 | others. The SI-CO <sub>2</sub> correlation shows different offset values in different leaf sides. |
| 323 | The offset values might be affected by leaf maturity and light intensity. However, it is          |
| 324 | hard to distinguish whether a fossil leaf is was young or mature, or grew in a sunny or           |
| 325 | shady environmentor live in the sunny or shady light regimes.                                     |
| 326 | The $R^2$ value (0.5) of SD-CO <sub>2</sub> based on the adaxial side is higher than from the     |
| 327 | abaxial side and the combination of both sides, indicating that the correlation of                |
| 328 | $SD-CO_2$ is stronger than the others parameters herein. Therefore, the SD on the                 |
|     |                                                                                                   |

adaxial side is the best in reconstructing pCO<sub>2</sub>. The reconstruction result based on the

| 330 | regression approach is $351.9 \pm 6.6$ ppmv lower than the one based on the stomatal              |
|-----|---------------------------------------------------------------------------------------------------|
| 331 | ratio method (Table 6), and it is relatively lower than the results based on the other            |
| 332 | proxies (Fig. 6; Freeman and Hayes, 1992; Pagani et al., 2005; Maxbauer et al., 2014).            |
| 333 | However, the result based on stomatal ratio method is 537.5 $\pm$ 56.5 ppmv <sub>2</sub> which is |
| 334 | fairly closeclosest to GEOCARB III predictions (Fig. 5) and historical reconstruction             |
| 335 | trends (Fig. 6).                                                                                  |
| 336 |                                                                                                   |
| 337 | 5.2 Paleoclimate reconstructed history                                                            |
| 338 |                                                                                                   |
| 339 | The pCO <sub>2</sub> levels throughout the Cenozoic were relatively generally lower than          |
| 340 | during much of through the Cretaceous, but probably also decreased significantly from             |
| 341 | the early to late Eocene. However, there is a wide range of estimates for the Eocene              |
| 342 | (Koch et al., 1992; Sinha and Stott, 1994; Ekart et al., 1999; Greenwood et al., 2003;            |
| 343 | Royer, 2003; Pagani et al., 2005; Wing et al., 2005; Lowenstein and Demicco, 2006;                |
| 344 | Fletcher et al., 2008; Zachos et al., 2008; Beerling et al., 2009; Bijl et al., 2010; Smith       |
| 345 | et al., 2010; Doria et al., 2011; Kato et al., 2011; Maxbauer et al., 2014). (Ekart et al.,       |
| 346 | 1999), but had an overall decreasing trend with some significant increases on-                    |
| 347 | short-time scales (e.g. in the earliest Eocene and middle Miocene, Zachos et al., 2001,           |
| 348 | 2008; Wing et al., 2005; Lowenstein and Demicco, 2006; Fletcher et al., 2008; Bijl et-            |
| 349 | al., 2010; Kato et al., 2011). There is a wide range in pCO <sub>2</sub> estimates for the-       |
| 350 | Paleogene, reflecting problems in the various proxies. Both the fractionation of                  |
| 351 | carbon isotopes by phytoplankton (Freeman and Hayes, 1992) and analysis of                        |

| 352 | paleosol (fossil soil) carbonates (Ekart et al., 1999) demonstrate that carbon dioxide-                   |        |
|-----|-----------------------------------------------------------------------------------------------------------|--------|
| 353 | levels were less than 1000 ppmv before the Cretaceous-Tertiary boundary and have                          |        |
| 354 | been decreasing since the Paleocene.                                                                      |        |
| 355 | Based on the measurements of palaeosol carbon isotopes, Cerling (1991) reported that <b>带格式的:</b> 缩进: 首   | 行缩进:   |
| 356 | pCO <sub>2</sub> levels for the Eocene and Miocene through to the present was lower than 700-             |        |
| 357 | ppmv. Fletcher et al. (2008) also showed that atmospheric CO <sub>2</sub> levels were-                    |        |
| 358 | approximately 680 ppmv by 60 million years ago. However, Stott (1992)-                                    |        |
| 359 | reconstructed pCO <sub>2</sub> as 450–550 ppmv for the early Eocene based on phytoplankton.               |        |
| 360 | Additionally, reconstructions using the stomatal ratio method based on Ginkgo,                            |        |
| 361 | Metasequoia, and Lauraceae leaves also revealed a low pCO <sub>2</sub> level between 300 and              |        |
| 362 | 500 ppmv during the early Eocene (Kürschner et al., 2001; Royer et al., 2001;                             |        |
| 363 | Greenwood et al., 2003; Royer, 2003) except a single high estimate of about 800-                          |        |
| 364 | ppmv near the Paleocene/Eocene boundary (Royer et al., 2001).                                             |        |
| 365 | Subsequently, Smith et al. (2010) reconstructed the value of the early Eocene pCO <sub>2</sub> 带格式的: 首行缩进 | : 1 字符 |
| 366 | ranging from 580 $\pm$ 40 to 780 $\pm$ 50 ppmv using the stomatal ratio method (recent                    |        |
| 367 | standardization) based on both SI and SD. A climatic optimum occurred in the middle                       |        |
| 368 | Eocene (MECO): the reconstructed $CO_2$ concentrations are mainly between 700 and                         |        |
| 369 | to 1000 ppmv during the late middle Eocene climate transition (42–38 Ma) using                            |        |
| 370 | stomatal indices of fossil Metasequoia needles, but concentrations declined to 450                        |        |
| 371 | ppmv toward the top of the investigated section (Doria et al., 2011). Jacques et al.                      |        |
| 372 | (2014) used CLAMP to calibrate climate change in Antarctica during the early-middle                       |        |
| 373 | Eocene, suggesting a seasonal alternation of high- and low-pressure systems over                          |        |

0 厘米

| 374 | Antarctica during the early-middle Eocene. Spicer et al. (2014) also reconstructed a             |
|-----|--------------------------------------------------------------------------------------------------|
| 375 | relatively lower cool temperature than $\delta^{18}$ O records (Keating-Bitonti et al., 2011) in |
| 376 | the middle Eocene of Hainan Island, South China using CLAMP, indicating a not                    |
| 377 | uniformly warm climate in the low latitude during the Eocene. An overall decreasing              |
| 378 | trend of the pCO <sub>2</sub> level was presented after the middle Eocene (Fig. 6; Retallack,    |
| 379 | 2009b).                                                                                          |
| 380 | The ice-sheets started to appear in the Antarctic during the Late Eocene (Zachos et              |
| 381 | al., 2001), then the temperature suffered an apparent further decrease from the late             |
| 382 | Eocene to the early Oligoceneonwards (Fig. 6)(Roth-Nebelsick et al., 2004), which-               |
| 383 | resulted in the Antarctic being almost fully covered by ice-sheets. Subsequently, the            |
| 384 | climate variation was comparatively stable with a little wobbling in temperature-                |
| 385 | during the Oligocene period (Fig. 6), while a small and ephemeral Late Oligocene-                |
| 386 | Warming was present in the latest part of the Oligocene, resulting in reducing the               |
| 387 | Antarctic ice sheets to a minimum and forming a brief period of glaciation at that time          |
| 388 | (Zachos et al., 2001). During the Middle Miocene, a quick rise in temperature was-               |
| 389 | shown, which was followed by a small glaciation (Fig. 6; Zachos et al., 2001;                    |
| 390 | Roth-Nebelsick et al., 2004; Beerling and Royer, 2011). Subsequently, the CO <sub>2</sub> .      |
| 391 | concentration decreased gradually and reached 280 ppmv until the period of the-                  |
| 392 | industrial revolution (Fig. 6). Since then, however, the CO <sub>2</sub> concentration rebounded |
| 393 | to present day level.                                                                            |
| 394 |                                                                                                  |
|     |                                                                                                  |

395 In conclusion, although various results were made by different  $pCO_2$  reconstruction

| 396                                                                | proxies at the same time, their entire decreasing tendency of pCO <sub>2</sub> level are                                                                                                                                                                                                                                                                                                                                                                                                   |               |                  |                                                       |                |                |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|-------------------------------------------------------|----------------|----------------|
| 397                                                                | remarkably consistent with each other since the Eocene (Fig. 6). Fig. 6 shows that                                                                                                                                                                                                                                                                                                                                                                                                         |               |                  |                                                       |                |                |
| 398                                                                | during the Eocene the temperature was higher than at present. Comparing to the                                                                                                                                                                                                                                                                                                                                                                                                             |               |                  |                                                       |                |                |
| 399                                                                | estimates of late middle Eocene pCO <sub>2</sub> by Doria et al. (2011), the present result The-                                                                                                                                                                                                                                                                                                                                                                                           |               |                  |                                                       |                |                |
| 400                                                                | reconstructed pCO <sub>2</sub> of 351.9 $\pm$ 6.6 ppmv based on the regression approach is-shows a                                                                                                                                                                                                                                                                                                                                                                                         |               |                  |                                                       |                |                |
| 401                                                                | remarkably low <u>er</u> pCO <sub>2</sub> level, during the early late Eocene. The result while the one                                                                                                                                                                                                                                                                                                                                                                                    |               |                  |                                                       |                |                |
| 402                                                                | based on the stomatal ratio method of 537.5 $\pm$ 56.5 ppmv is <u>within the variation range</u>                                                                                                                                                                                                                                                                                                                                                                                           |               |                  |                                                       |                |                |
| 403                                                                | of 500–1000 ppmv, which is closely consistent with the $pCO_2$ changes over the                                                                                                                                                                                                                                                                                                                                                                                                            |               |                  |                                                       |                |                |
| 404                                                                | geological ages (Fig. 6). The world was dynamic in the Paleogene, including in the                                                                                                                                                                                                                                                                                                                                                                                                         |               |                  |                                                       |                |                |
| 405                                                                | late middle Eocene, when the MECO occurred. Thus, the exact age matters, and it is                                                                                                                                                                                                                                                                                                                                                                                                         |               |                  |                                                       |                |                |
| 406                                                                | possible that the values may differ because of slight offsets in time.                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                  |                                                       |                |                |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                  |                                                       |                |                |
| 407                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>带</b><br>米 | 格式的: 统           | 诸进: 首行                                                | 缩进: (          | 0.42 厘         |
| 407<br>408                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>帯</b> 米    | 格式的: 新<br>格式的: 新 | 辞进:首行:<br>辞进:首行:                                      | 缩进: (<br>缩进: ( | 0.42 厘<br>0 厘米 |
| 407<br>408<br>409                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #<br>*        | 格式的: 约<br>格式的: 约 | 诸进:首行<br>诸进:首行                                        | 缩进: (<br>缩进: ( | 0.42 厘<br>0 厘米 |
| 407<br>408<br>409<br>410                                           | 6 Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ##<br>#       | 格式的: 约<br>格式的: 约 | 诸进:首行:<br>育进:首行:                                      | 缩进: (<br>缩进: ( | 0.42 厘         |
| 407<br>408<br>409<br>410<br>411                                    | •<br>6 Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | #<br>#        | 格式的: 约<br>格式的: 约 | ă进:首行                                                 | 缩进: (          | 0.42 厘         |
| 407<br>408<br>409<br>410<br>411<br>412                             | •<br>6 Conclusion<br>In this study, we reconstructed <del>the</del> -late <u>middle</u> .Eocene pCO <sub>2</sub> based on the fossil                                                                                                                                                                                                                                                                                                                                                       | #<br>#        | 格式的: 约<br>格式的: 约 | ă进:首行                                                 | 缩进: (          | 0.42 厘         |
| 407<br>408<br>409<br>410<br>411<br>412<br>413                      | •<br>6 Conclusion<br>In this study, we reconstructed the late <u>middle</u> Eocene pCO <sub>2</sub> based on the fossil<br>leaves of <i>Nageia maomingensis</i> Jin et Liu from the late <u>middle</u> Eocene of Maoming                                                                                                                                                                                                                                                                   | #**           | 格式的:纤格式的:纤       | ă进:首行                                                 | 缩进: (          | 0.42 厘         |
| 407<br>408<br>409<br>410<br>411<br>412<br>413<br>414               | •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>带</b> 米    | 格式的: 4<br>格式的: 4 | <sup>诸</sup> 进:首行                                     | 缩进: (          | 0.42 厘         |
| 407<br>408<br>409<br>410<br>411<br>412<br>413<br>414<br>415        | •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                         | #**           | 格式的:约格式的:约       | i进:首行                                                 | 缩进: (          | 0.42 厘         |
| 407<br>408<br>409<br>410<br>411<br>412<br>413<br>414<br>415<br>416 | 6 Conclusion<br>In this study, we reconstructed the late middle Eocene pCO <sub>2</sub> based on the fossil<br>leaves of <i>Nageia maomingensis</i> Jin et Liu from the late middle Eocene of Maoming<br>Basin, Guangdong Province, China. <i>Nageia</i> is a special element in conifers by its<br>broad multi-veined leaf that lacks mid-vein. The stomatal data analysis suggests that<br>only stomatal densities (SD) from both sides of <i>Nageia motleyi</i> leaves have significant | <b>带</b> 米    | 格式的: 4<br>格式的: 4 | <sup>  </sup> 进: 首行<br>  <br>  <br>  <br>  <br>  <br> | 缩进: (          | 0.42 厘         |

| 418 | adaxial side gives the best correlation to the $CO_2$ . Based on SDs, the $pCO_2$                   |
|-----|-----------------------------------------------------------------------------------------------------|
| 419 | concentration is reconstructed using both the regression approach and the stomatal                  |
| 420 | ratio method. The pCO <sub>2</sub> result based on the regression approach is $351.9 \pm 6.6$ ppmv, |
| 421 | showing a relatively lower CO <sub>2</sub> level. The reconstructed result based on the stomatal    |
| 422 | ratio method is 537.5 $\pm$ 56.5 ppmv consistent with the variation trends based on the             |
| 423 | other proxies. Here, we explored the potential of $N$ . maomingensis in pCO <sub>2</sub>            |
| 424 | reconstruction and obtained different results according to different methods, providing             |
| 425 | a new insight for the reconstruction of paleoclimate and paleoenvironment in conifers.              |
| 426 |                                                                                                     |
| 427 | Acknowledgements. This study was supported by the National Natural Science                          |
| 428 | Foundation of China (Grant No. 41210001, 41572011), and the Fundamental                             |
| 429 | Research Funds for the Central Universities-(Grant No.121gjc04), and the Key Project-               |
| 430 | of Sun Yat sen University for inviting foreign teachers. We greatly thank the                       |
| 431 | Herbarium of the V.L. Komarov Botanical Institute of the Russian Academy of                         |
| 432 | Sciences (LE) for the permission to examine and collect extant Nageia specimens. We                 |
| 433 | also express sincere gratitude to Prof. Sun Tongxing (Yancheng Teachers University),                |
| 434 | Dr. David Boufford (Harvard University) and Dr. Richard Chung Cheng Kong (Forest                    |
| 435 | Research Institute Malaysia) for providing extant N. motleyi leaves from the                        |
| 436 | herbarium of the Royal Botanic Garden at Edinburgh (E), the Harvard University                      |
| 437 | Herbaria (A/GH) and the herbarium of Forest Research Institute Malaysia (KEP). We                   |
| 438 | sincerely appreciate the guidance of Chengqian Wang (Harbin Institute of Technology)                |
| 439 | on preparing Figs. 3-6. We also offer sincere gratitude to Prof. Steven R. Manchester               |

# 440 and Mr. Terry Lott (Florida Museum of Natural History, University of Florida) for

441 suggestions and modification.

#### 442 **References**

- 443 Bai, Y. J., Chen, L. Q., Ranhotra, S. P., Wang, Q., Wang, Y. F., Li, C. S.:
- 444 Reconstructing atmospheric CO<sub>2</sub> during the Plio–Pleistocene transition by fossil
- 445 *Typha*. Global Change Biology, 21, 874–881, doi:10.1111/gcb.12670, 2015.
- 446 Beerling, D. J.: Stomatal density and index: theory and application, in: Jones, T. P.,
- 447 and Rowe, N. P., (Eds.), Fossil Plants and Spores: Modern Techniques,
- 448 Geological Society, London, 251–256, 1999.
- 449 Beerling, D. J., and Kelly, C. K.: Stomatal density responses of temperate woodland
- 450 plants over the past seven decades of CO<sub>2</sub> increase: A comparison of salisbury
- 451 (1927) with contemporary data, American Journal of Botany, 84, 1572–1583,
- 452 1997.
- 453 Beerling, D. J., and Royer, D. L.: Reading a CO<sub>2</sub> signal from fossil stomata, New
- 454 Phytologist, 153, 387–397, doi:10.1046/j.0028-646X.2001.00335.x, 2002.
- 455 Beerling, D. J., and Royer, D. L.: Convergent Cenozoic CO<sub>2</sub> history, Natural
- 456 Geoscience, 4, 418–420, doi:10.1038/ngeo1186, 2011.
- 457 Beerling, D. J., Chaloner, W. G., Huntley, B., Pearson, J. A., Tooley, M. J., and
- 458 Woodward, F. I.: Variations in the stomatal density of *Salix herbacea* L. under
- 459 the changing atmospheric  $CO_2$  concentrations of late- and post-glacial time,
- 460 Philosophical Transactions of the Royal Society of London, ser. B. 336, 215–224,
- 461 doi:10.1098/rstb.1992.0057, 1992.
- 462 Beerling, D. J., Fox, A., and Anderson, C. W.: Quantitative uncertainty analyses of
- 463 ancient atmospheric CO<sub>2</sub> estimates from fossil leaves, American Journal of

464 Science, 309, 775–787, doi:10.2475/09.2009.01, 2009.

| 465 | Beerling, | D. J., I | Lomax, B. | H., Ro | yer, D. L. | , Upchurch J | r., G. R., | and Kump, | L. R.: An |
|-----|-----------|----------|-----------|--------|------------|--------------|------------|-----------|-----------|
|-----|-----------|----------|-----------|--------|------------|--------------|------------|-----------|-----------|

- 466 atmospheric  $pCO_2$  reconstruction across the Cretaceous-Tertiary boundary from
- 467 leaf megafossils, Proceedings of the National Academy of Sciences of the United

468 States of America, 99, 7836–7840, doi:10.1073/pnas.122573099, 2002.

- 469 Berner, R. A.: GEOCARB II: A revised model of atmospheric CO<sub>2</sub> over Phanerozoic
- 470 time, American Journal of Science, 294, 56–91, doi:10.2475/ajs.294.1.56, 1994.
- 471 Berner, R. A., and Kothaval á, Z.: GEOCARB III: A revised model of Atmospheric
- 472 CO<sub>2</sub> over Phanerozoic time, American Journal of Science, 301, 182–204,
- 473 doi:10.2475/ajs.301.2.182, 2001.
- 474 Bijl, P. K., Houben, A. J. P., Schouten, S., Bohaty, S. M., Sluijs, A., Reichart, G.,
- 475 Sinninghe Damst é, J. S., and Brinkhuis, H.: Transient Middle Eocene
- 476 atmospheric  $CO_2$  and temperature variations, Science, 330, 819–821,
- 477 doi:10.1126/science.1193654, 2010.
- 478 Brown, L. R.: Atmospheric carbon dioxide concentration, 1000-2009 (Supporting
- 479 data), in: Brown, L. R., (Ed.), World on the Edge: How to Prevent Environmental
- 480 and Economic Collapse. Chapter 4 Data: Rising Temperatures, Melting Ice, and
- 481 Food Security, Earth policy institute, Norton, W.W. & Company, New York,
- 482 London (<u>http://www.earth-policy.org/books/wote/wote\_data</u>), 2010.
- 483 Cerling, T. E.: Carbon dioxide in the atmosphere: evidence from Cenozoic and
- 484 Mesozoic palaeosols, American Journal of Science, 291, 377–400,-
- 485 doi:10.2475/ajs.291.4.377, 1991.

- 486 Cerling, T. E.: Use of carbon isotopes in paleosols as an indicator of the P(CO<sub>2</sub>) of the
- 487 paleoatmosphere, Global Biogeochemical Cycles, 6, 307–314,
- 488 doi:10.1029/92GB01102, 1992.
- 489 Chaloner, W. G., and McElwain, J. C.: The fossil plant record and global climate
- 490 change, Review of Palaeobotany and Palynology, 95, 73–82,
- 491 doi:10.1016/S0034-6667(96)00028-0, 1997.
- 492 Cheng, W. C., Fu, L. K., and Chao, C. S.: Podocarpus (Podocarpaceae), in: Cheng,
- 493 Wanch ün, and Fu, Likuo, (Eds.), Flora of China, Science Press, Beijing, 7,
- 494 398–422, 1978 (in Chinese).
- 495 Doria, G., Royer, D. L., Wolfe, A. P., Fox, A., Westgate, J. A., and Beerling, D. J.:
- 496 Declining atmospheric  $CO_2$  during the Late Middle Eocene climate transition,
- 497 American Journal of Science, 311, 63–75, doi:10.2475/01.2011.03, 2011.
- 498 Ekart, D. D., Cerling, T. E., Montanez, I. P., and Tabor, N. J.: A 400 million year
- 499 carbon isotope record of pedogenic carbonate: implications for paleoatmospheric
- carbon dioxide, American Journal of Science, 299, 805–827,
- 501 doi:10.2475/ajs.299.10.805, 1999.
- 502 Fletcher, B. J., Brentnall, S. J., Anderson, C. W., Berner, R. A., and Beerling, D. J.:
- 503 Atmospheric carbon dioxide linked with Mesozoic and Early Cenozoic climate
- 504 change, Nature Geoscience, 1, 43–48, doi:10.1038/ngeo.2007.29, 2008.
- 505 Freeman, K. H., and Hayes, J. M.: Fractionation of carbon isotopes by phytoplankton
- and estimates of ancient  $CO_2$  levels, Global Biogeochemical Cycles, 6, 185–198,
- 507 doi:10.1029/92GB00190, 1992.

- 508 Fu, D. Z.: Nageiaceae a new gymnosperm family, Acta Phytotaxonomica Sinica, 30,
- 509 515–528, 1992 (in Chinese with English summary).
- 510 Fu L. K., Li Y., and Mill, R. R.: Podocarpaceae, in: Wu Z. Y., and Raven, P. H., (Eds.),
- 511 Flora of China, Science Press, Beijing, 4, 78–84, 1999.
- 512 Gale, J.: Availability of carbon dioxide for photosynthesis at high altitudes: theoretical
- considerations, Ecology, 53, 494–497, doi:10.2307/1934239, 1972.
- 514 Greenwood, D. G., Scarr, M. J., and Christophel, D. C.: Leaf stomatal frequency in the
- 515 Australian tropical rain forest tree *Neolitseadealbata* (Lauraceae) as a proxy
- 516 measure of atmospheric *p*CO<sub>2</sub>, Palaeogeography, Palaeoclimatology,
- 517 Palaeoecology, 196, 375–393, doi:10.1016/S0031-0182(03)00465-6, 2003.
- 518 Grein, M., Oehm, C., Konrad, W., Utescher, T., Kunzmann, L., and Roth-Nebelsick,
- 519 A.: Atmospheric  $CO_2$  from the late Oligocene to early Miocene based on
- 520 photosynthesis data and fossil leaf characteristics, Palaeogeography,
- 521 Palaeoclimatology, Palaeoecology, 374, 41–51,
- 522 doi:10.1016/j.palaeo.2012.12.025, 2013.
- 523 Henderiks, J., and Pagani, M.: Coccolithophore cell size and the Paleogene decline in
- atmospheric CO<sub>2</sub>, Earth and Planetary Science Letters 269, 575–583,
- 525 doi:10.1016/j.epsl.2008.03.016, 2008.
- 526 Hill, R. S., and Pole, M. S.: Leaf and shoot morphology of extant Afrocarpus, Nageia
- 527 and *Retrophyllum* (Podocarpaceae) species, and species with similar leaf
- 528 arrangement, from Tertiary sediments in Australasia, Australian Systematic
- 529 Botany, 5, 337–358, doi:10.1071/SB9920337, 1992.

| 530 | Hu. J. | J., Xing. | Y. W. | . Turkington. | R., Jaco | ues. F. M. | . B. Su. | T., F | Juang. | Y. J. a | and Zhou |
|-----|--------|-----------|-------|---------------|----------|------------|----------|-------|--------|---------|----------|
|     | ,      | , 0,      | ,,    | ,,            |          |            | ,        |       |        |         |          |

- 531 Z. K.: A new positive relationship between  $pCO_2$  and stomatal frequency in
- 532 *Quercus guyavifolia* (Fagaceae): a potential proxy for palaeo-CO<sub>2</sub> levels, Annals
- 533 of Botany, 1–12, doi:10.1093/aob/mcv007, 2015.
- Huang, C., Retallack, G. J., Wang, C., and Huang, Q.: Paleoatmospheric pCO<sub>2</sub>
- 535 fluctuations across the Cretaceous-Tertiary boundary recorded from paleosol
- 536 carbonates in NE China, Palaeogeography, Palaeoclimatology, Palaeoecology,
- 537 385, 95–105, doi.org/10.1016/j.palaeo.2013.01.005, 2013.
- 538 Jacques, F. M. B., Shi, G. L., Li, H. M., and Wang, W. M.: An Early-Middle Eocene
- 539 Antarctic summer monsoon: Evidence of 'fossil climates', Gondwana Research,
- 540 25, 1422–1428, doi:10.1016/j.gr.2012.08.007, 2014.
- 541 Jin, J. H., Qiu, J., Zhu, Y. A., and Kodrul, T. M.: First fossil record of the genus
- 542 *Nageia* (Podocarpaceae) in South China and its phytogeographic implications,
- 543
   Plant Systematics and Evolution, 285, 159–163, doi:10.1007/s00606-010-0267-4,
- 544 2010.
- Jones, H. G.: Plants and microclimate, Cambridge UK Cambridge University Press,
  1–428, 1992.
- 547 Kato, Y., Fujinaga, K., and Suzuki, K.: Marine Os isotopic fluctuations in the Early
- 548 Eocene greenhouse interval as recorded by metalliferous umbers from a Tertiary
- 549 ophiolite in Japan, Gondwana Research, 20, 594–607,
- doi:10.1016/j.gr.2010.12.007, 2011.
- 551 Keating-Bitonti, C. R., Ivany, L. C., Affek, H. P., Douglas, P., and Samson, S. D.:

Warm, not super-hot, temperatures in the early Eocene subtropics, Geology 39,

- 553 771–774, doi: 10.1130/G32054.1, 2011.
- 554 Kimura, T., Ohana, T., and Mimoto, K.: Discovery of a podocarpaceous plant from
- 555 the Lower Cretaceous of Kochi Prefecture, in the outer zone of southwest Japan,
- 556 Proceedings of the Japan Academy, ser. B, 64, 213–216, doi:10.2183/pjab.64.213,
  557 1988.
- 558 Koch, P. L., Zachos, J. C., and Gingerich, P. D.: Correlation between isotope records
- in marine and continental carbon reservoirs near the Palaeocene/Eocene
- 560 boundary, Nature, 358, 319–322, doi:10.1038/358319a0, 1992.
- 561 Kouwenberg, L. L. R., McElwain J. C., Kürschner, W. M., Wagner, F., Beerling, S. J.,
- 562 Mayle, F. E., and Visscher, H.: stomatal frequency adjustment of four conifer
- 563 species to historical changes in atmospheric  $CO_2$ , American Journal of Botany,
- 564 90, 610–619, 2003.
- 565 Körner, Ch., and Cochrane, P. M.: Stomatal responses and water relations of
- 566 *Eucalyptus pauciflora* in summer along an elevational gradient, Oecologia, 66,
- 567 443–455, doi:10.1007/BF00378313, 1985.
- 568 Krassilov, V. A.: New coniferales from Lower Cretaceous of Primorye, Botanical
- 569 Journal, 50, 1450–1455 (in Russia), 1965.
- 570 Kürschner, W. M., van der Burgh, J., Visscher, H., and Dilcher, D. L.: Oak leaves as
- 571 biosensors of Late Neogene and Early Pleistocene paleoatmospheric CO<sub>2</sub>
- 572 concentrations, Marine Micropaleontology, 27, 299–312,
- 573 doi:10.1016/0377-8398(95)00067-4, 1996.

| 574 | Kürschner, W. M., Wagner, F., Dilcher, D. L., and Visscher, H.: Using fossil leaves for    |
|-----|--------------------------------------------------------------------------------------------|
| 575 | the reconstruction of Cenozoic paleoatmospheric CO <sub>2</sub> concentrations, in:        |
| 576 | Gerhard, L. C., Harrison, W. E., Hanson, B. M., (Eds.), Geological Perspectives            |
| 577 | of Global Climate Change, APPG Studies in Geology, 47, Tulsa, 169–189, 2001.               |
| 578 | Kürschner, W. M., Kvaček, Z., and Dilcher, D. L.: The impact of Miocene                    |
| 579 | atmospheric carbon dioxide fluctuations on climate and the evolution of                    |
| 580 | terrestrial ecosystems, Proceedings of the National Academy of Sciences of the             |
| 581 | United States of America, 105, 449-453, doi:10.1073/pnas.0708588105, 2008.                 |
| 582 | Liu, X. Y., Gao, Q., and Jin, J. H.: Late Eocene leaves of Nageia Gaertner (section        |
| 583 | Dammaroideae Mill) from Maoming Basin, South China and their implications                  |
| 584 | on phytogeography, Journal of Systematics and Evolution, 53, 297-307,                      |
| 585 | doi:10.1111/jse.12133, 2015.                                                               |
| 586 | Lowenstein, T. K., and Demicco, R. V.: Elevated Eocene atmospheric CO <sub>2</sub> and its |
| 587 | subsequent decline, Science, 313, 1928, doi:10.1126/science.1129555, 2006.                 |
| 588 | McElwain, J. C.: Do fossil plants signal palaeoatmospheric carbon dioxide                  |
| 589 | concentration in the geological past, Philosophical Transactions of the Royal              |
| 590 | Society, Lond B, 353, 83–96, doi:10.1098/rstb.1998.0193, 1998.                             |
| 591 | McElwain, J. C., and Chaloner, W. G.: Stomatal density and index of fossil plants          |
| 592 | track atmospheric carbon dioxide in the Palaeozoic, Annals of Botany, 76,                  |
| 593 | 389–395, doi:10.1006/anbo.1995.1112, 1995.                                                 |
| 594 | McElwain, J. C., and Chaloner, W. G.: The fossil cuticle as a skeletal record of           |
| 595 | environmental changes, Palaios, 11, 376–388, doi: 10.2307/3515247, 1996.                   |

| 596 | Mill, R. R.: A new | combination in | Nageia (Po | odocarpaceae): | Novon, | 9, 77–78, | 1999. |
|-----|--------------------|----------------|------------|----------------|--------|-----------|-------|
|-----|--------------------|----------------|------------|----------------|--------|-----------|-------|

| 597 | Mill, R | . R.: A new | sectional | combination | in Nageia | Gaertn | (Podocarr | baceae) |
|-----|---------|-------------|-----------|-------------|-----------|--------|-----------|---------|
|-----|---------|-------------|-----------|-------------|-----------|--------|-----------|---------|

- 598 Edinburgh Journal of Botany, 58, 499–501, doi:10.1017/S0960428601000804,
- 599 2001.
- 600 Maxbauer, D. P., Royer, D. L., and LePage, B. A.: High Artic forests during the
- 601 middle Eocene supported by moderate levels of atmospheric  $CO_2$ , Geology, 42,
- 602 1027–1030, doi:10.1130/G36014.1, 2014.
- 603 Moran, K., Backman, J., Brinkhuis, H., Clemens, S. C., Cronin, T., Dickens, G. R.,
- 604 Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R. W., Kaminski, M., King, J.,
- 605 Koc, N., Krylov, A., Martinez, N., Matthiessen, J., McInroy, D., Moore, T.C.,
- 606 Onodera, J., O'Regan, M., Pälike, H., Rea, B., Rio, D., Sakamoto, T., Smith, D.
- 607 C., Stein, R., St John, K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M.,
- 608 Yamamoto, M., Farrell, J., Frank, M., Kubik, P., Jokat, W., and Kristoffersen, Y.:
- The Cenozoic palaeoenvironment of the Arctic Ocean, Nature, 441, 601–605,
- 610 doi:10.1038/nature04800, 2006.
- 611 Nordt, L., Atchley, S., and Dworkin, S. I.: Paleosol barometer indicates extreme
- fluctuations in atmospheric  $CO_2$  across the Cretaceous-Tertiary boundary,
- 613 Geology, 30, 703–706, doi:10.1130/0091-7613(2002)030<0703:PBIEFI>
- 614 2.0.CO;2, 2002.
- 615 Pagani, M., Arthur, M. A., and Freeman, K. H.: Miocene evolution of atmospheric
- carbon dioxide, Paleoceanography, 14, doi:10.1029/1999PA900006, 273–292,
- 617 1999.

- 618 Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S.: Marked decline
- 619 in atmospheric carbon dioxide concentrations during the Paleocene, Science, 309,
- 620 600–603, doi:10.1126/science.1110063, 2005.
- 621 Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide through the
- Eocene-Oligocene climate transition, Nature, 461, 1110–1113,
- 623 doi:10.1038/nature08447, 2009.
- 624 Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender,
- 625 M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M.,
- 626 Legrand, M., Lipenkov, V. Y., Lorius, C., PÉpin, L., Ritz, C., Saltzman, E., and
- 627 Stievenard, M.: Climate and atmospheric history of the past 420,000 years from
- 628 the Vostokicecore, Antarctica, Nature, 399, 429–436, doi:10.1038/20859, 1999.
- 629 Pieter, T., and Keeling, R.: Recent monthly average Mauna Loa CO<sub>2</sub>, NOAA/ESRL,
- 630 www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed March 2015), 2015.
- 631 Poole, I., and Kürschner, W. M.: Stomatal density and index: the practice, in: Jones,
- 632 T.P., and Rowe, N.P., (Eds.), Fossil Plants and Spores: Modern Techniques,
- 633 Geological Society, London, 257–260, 1999.
- 634 Retallack, G. J.: A 300-million-year record of atmospheric carbon dioxide from fossil
- 635 plant cuticles, Nature, 411, 287–290, doi:10.1038/35077041, 2001.
- 636 Retallack, G. J.: Greenhouse crises of the past 300 million years, Geological Society
- 637 of America Bulletin, 121, 1441–1455, doi:10.1130/B26341.1, 2009a.
- 638 Retallack, G. J.: Refining a pedogenic-carbonate CO<sub>2</sub> paleobarometer to quantify a
- 639 Middle Miocene greenhouse spike, Palaeogeography, Palaeoclimatology,

| 640 | Palaeoecology, 281, 57-65, doi:10.1016/j.palaeo.2009.07.011, 2009b.                        |
|-----|--------------------------------------------------------------------------------------------|
| 641 | Roth-Nebelsick, A., Utescher, T., Mosbrugger, V., Diester-Haass, L., and Walther, H.:-     |
| 642 | Changes in atmospheric CO <sub>2</sub> -concentrations and climate from the Late Eocene to |
| 643 | Early Miocene: palaeobotanical reconstruction based on fossil floras from-                 |
| 644 | Saxony, Germany, Palaeogeography, Palaeoclimatology, Palaeoecology, 205,-                  |
| 645 | 43-67, doi:10.1016/j.palaeo.2003.11.014, 2004.                                             |
| 646 | Roth-Nebelsick, A., Grein, M., Utescher, T., and Konrad, W.: Stomatal pore length          |
| 647 | change in leaves of Eotrigonobalanus furcinervis (Fagaceae) from the Late                  |
| 648 | Eccene to the Latest Oligocene and its impact on gas exchange and $CO_2$                   |
| 649 | reconstruction, Review of Palaeobotany and Palynology, 174, 106-112,                       |
| 650 | doi:10.1016/j.revpalbo.2012.01.001, 2012.                                                  |
| 651 | Roth-Nebelsick, A., Oehm, C., Grein, M., Utescher, T., Kunzmann, L., Friedrich, JP.,       |
| 652 | and Konrad, W.: Stomatal density and index data of Platanus neptuni leaf fossils           |
| 653 | and their evaluation as a CO2 proxy for the Oligocene, Review of Palaeobotany              |
| 654 | and Palynology, 206, 1–9, doi:10.1016/j.revpalbo.2014.03.001, 2014.                        |
| 655 | Royer, D. L.: Stomatal density and stomatal index as indicators of paleoatmospheric        |
| 656 | CO <sub>2</sub> concentration, Review of Palaeobotony and Palynology, 114, 1–28,           |
| 657 | doi:10.1016/S0034-6667(00)00074-9, 2001.                                                   |
| 658 | Royer, D. L.: Estimating Latest Cretaceous and Tertiary atmospheric CO <sub>2</sub> from   |
| 659 | stomatal indices, in: Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E.,          |
| 660 | (Eds.), Causes and Consequences of Globally Warm Climates in the Early                     |
| 661 | Paleocene, Geological Society of America Special Paper, 79–93, 2003.                       |

- 662 Royer, D. L.: CO<sub>2</sub>-forced climate thresholds during the Phanerozoic, Geochimica et
- 663 Cosmochimica Acta, 70, 5665–5675, doi:10.1016/j.gca.2005.11.031, 2006.
- 664 Royer, D. L., Wing, S. L., Beerling, D. J., Jolley, D. W., Koch, P. L., Hickey, L. J., and
- 665 Berner, R. A.: Paleobotanical evidence for near present-day levels of atmospheric
- $CO_2$  during part of the Tertiary, Science, 292, 2310–2313,
- 667 doi:10.1126/science.292.5525.2310, 2001.
- 668 Rundgren, M., and Beerling, D. J.: A Holocene CO<sub>2</sub> record from the stomatal index of
- subfossil *Salix herbacea* L. leaves from northern Sweden, The Holocene, 9,
- 670 509–513, doi:10.1191/095968399677717287, 1999.
- 671 Seki, O, Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and Pancost, R.
- $D_{12}$  D.: Alkenone and boron-based Pliocene  $pCO_2$  records, Earth and Planetary
- 673 Science Letters, 292, 201–211, doi:10.1016/j.epsl.2010.01.037, 2010.
- 674 Sinha, A., and Stott, L. D.: New atmospheric pCO<sub>2</sub> estimates from paleosols during
- the late Paleocene/early Eocene global warming interval, Global and Planetary
- 676 Change, 9, 297–307, doi:10.1016/0921-8181(94)00010-7, 1994,
- 677 Smith, R. Y., Greenwood, D. R., and Basinger, J.F.: Estimating paleoatmospheric
- $pCO_2$  during the Early Eocene Climatic Optimum from stomatal frequency of
- 679 *Ginkgo*, Okanagan Highlands, British Columbia, Canada, Palaeogeography,
- 680 Palaeoclimatology, Palaeoecology, 293, 120–131,
- 681 doi:10.1016/j.palaeo.2010.05.006, 2010.
- 682 Spicer, A. R., Herman, A. B., Liao, W. B., Spicer, T. E. V., Kodrul, T. M., Yang, J., and
- 583 Jin, J. H.: Cool tropics in the middle Eocene: Evidence from the Changchang

- 684 Flora, Hainan Island, China, Palaeogeography, Palaeoclimatology, Palaeoecology,
- 685 412, 1–16, doi:10.1016/j.palaeo.2014.07.011, 2014.
- 686 Stott, L. D.: Higher temperatures and lower oceanic  $pCO_2$ : A climate enigma at the
- end of the Paleocene Epoch, Paleoceanography, 7, 395–404,
- 688 doi:10.1029/92PA01183, 1992.
- 689 Stults, D. Z., Wagner-Cremer, F., and Axsmith, B. J.: Atmospheric paleo-CO<sub>2</sub>
- 690 estimates based on *Taxodium distichum* (Cupressaceae) fossils from the Miocene
- and Pliocene of Eastern North America, Palaeogeography Palaeoclimatology
- 692 Palaeoecology, 309, 327–332, doi:10.1016/j.palaeo.2011.06.017, 2011.
- Sun, B. N., Ding, S. T., Wu, J. Y., Dong, C., Xie, S. P., and Lin, Z. C.: Carbon isotope
- and stomatal data of Late Pliocene Betulaceae leaves from SW China:
- 695 Implications for palaeoatmospheric CO<sub>2</sub>-levels, Turkish Journal of Earth
- 696 Sciences, 21, 237–250, doi:10.3906/yer-1003-42, 2012.
- 697 Sun, T. X.: Cuticle micromorphology of Nageia, Journal of Wuhan Botanical
- 698 Research, 26, 554–560, doi:10.3969/j.issn.2095-0837.2008.06.002, 2008 (in
- 699 Chinese with English abstract).
- 700 Tripati, A. K., Roberts, C. D., and Eagle, R. A.: Coupling of CO<sub>2</sub> and ice sheet
- stability over major climate transitions of the last 20 million years, Science, 326,
- 702 1394–1397, doi:10.1126/science.1178296, 2009.
- Van der Burgh, J., Visscher, H., Dilcher, D. L., and Kürschner, W. M.:
- Paleoatmospheric signatures in Neogene fossil leaves, Science, 260, 1788–1790,
- 705 doi:10.1126/science.260.5115.1788, 1993.

| 706 | Wang, J. D., Li, H. M.                  | and Zhu Z.   | Y.: Magnetostr | ratigraphy of | f Tertiary     | rocks from |
|-----|-----------------------------------------|--------------|----------------|---------------|----------------|------------|
| 100 | """, "", "", "", "", "", "", "", "", "" | , und Znd Z. | 1 mugnetosu    | ungruping o   | i i ci ci ui y | TOURS HOM  |

- 707 Maoming Basin, Guangdong province, China, Chinese Journal of Geochemistry,
- 708 13, 165–175, doi:10.1007/BF02838516, 1994.
- 709 Walker, J. D., and Geissman, J. W.: Geologic Time Scale, Geological Society of
- 710 America, doi:10.1130/2009.CTS004R2C, 2009.
- 711 Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., and Freeman, K.
- 712 H.: Transient floral change and rapid global warming at the Paleocene-Eocene
- boundary, Science, 310, 993–996, doi:10.1126/science.1116913, 2005.
- 714 Woodward, F. I.: Ecophysiological studies on the shrub Vaccinium myrtillus L. taken
- from a wide altitudinal range, Oecologia, 70, 580–586, doi:10.1007/BF00379908,
  1986.
- 717 Woodward, F. I.: Stomatal numbers are sensitive to increases in CO<sub>2</sub> concentration
- 718 from pre-industrial levels, Nature, 327, 617–618, doi:10.1038/327617a0, 1987.
- 719 Woodward, F. I., and Bazzaz, F. A.: The responses of stomatal density to CO<sub>2</sub> partial
- pressure, Journal of Experimental Botany, 39, 1771–1781,
- 721 doi:10.1093/jxb/39.12.1771, 1988.

- mountains, Scientia Silvae Sinicae, 26, 379–386, 1990 (in Chinese with English
- abstract).
- 725 Ye, M. N.: On the preparation methods of fossil cuticle. Palaeontological Society of
- 726 China (Ed.), Selected papers of the 12th Annual conference of the
- 727 Palaeontological Society of China, Science Press, Beijing, 170–179, 1981 (in

<sup>722</sup> Yang, J. J., Qi, G. F., and Xu, R. H.: Studies on fossil woods excavated from the Dabie

728 Chinese).

- 729 Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms,
- aberrations in global climate 65 Ma to present, Science, 292, 686–693,
- doi:10.1126/science.1059412, 2001.
- 732 Zachos, J., Dickens, G. R. and Zeebe, R. E.: An early Cenozoic perspective on
- rand greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283,
- 734 doi:10.1038/nature06588, 2008.

- Figure 1. Map showing the distribution of extant and fossil *Nageia* and their mean annual
- 737 temperature (Modified after the map from
- 738 <u>http://www.sage.wisc.edu/atlas/maps.php?datasetid=35&includerelatedlinks=1&dataset=35</u>).



- Figure 2. Sampling areas and counting rules are shown. (a) *Nageia motleyi* (Parl.) De Laub.leaf.
- 742 Black squares in the middle of the leaf show the sampling areas for preparing the cuticles. (b) The
- 743 abaxial side of the cuticle from *N. motleyi* leaf. Black circles show the counted stomatal
- 744 complexes. (c) *N. maomingensis* Jin et Liu. Red squares in the middle of the leaf indicate the
- sampling areas. (d) The abaxial side of the fossil cuticle. Red circles show the counted stomatal
- 746 complexes. Scale bars: (a) and (c) = 1 cm; (b) and (d) = 50  $\mu$ m.





750 Trends of SD with CO<sub>2</sub> concentration for the adaxial surface. (b) Trends of SD with CO<sub>2</sub>

- 751 concentration for the abaxial surface. (c) Trends of SI with CO<sub>2</sub> concentration for the adaxial
- surface. (d) Trends of SI with  $CO_2$  concentration for the abaxial surface. (e) Trends of SD with
- 753  $CO_2$  concentration for the combined data of both leaf surfaces. (f) Trends of SI with  $CO_2$
- concentration for the combined data of both leaf surfaces.



Figure 4. Correlation between SNL, SDL and TSDL versus CO<sub>2</sub> concentration for modern *Nageia motleyi*. (a) Trends of SNL with CO<sub>2</sub> concentration for the adaxial surface. (b) Trends of SDL with
CO<sub>2</sub> concentration for the adaxial surface. (c) Trends of TSDL with CO<sub>2</sub> concentration for the
adaxial surface.







Figure 6. Atmospheric CO<sub>2</sub> estimates from proxies over the past 60 million years. The horizontal

- dashed line indicates monthly atmospheric CO<sub>2</sub> concentration for March 2015 at Mauna Loa,
- Hawaii (401.5 ppmv) (Pieter and Keeling, 2015). The vertical lines show the error bars. The data
- are from the supporting data of Beerling and Royer (2011) and references in Table 9. The lower
- blue star shows the reconstructed result based on the regression approach. The higher one presents

the result of stomatal ratio method.



| Harkering | Collection    | Callecting legality                                          | Callestons              | Number of    | Collection | CO <sub>2</sub> |
|-----------|---------------|--------------------------------------------------------------|-------------------------|--------------|------------|-----------------|
| Herbarium | number        | Conecting locality                                           | Collectors              | leaf samples | date       | (ppmv)          |
| LE        | No. 2649      | Malaysia                                                     | Beccari, O.             | 1            | 1868       | 289.23          |
| A/GH      | No. bb. 17229 | 150 m, Riau on Ond. Karimon, Archipel. Ind.                  | Neth. Ind. For. Service | 2            | 1932       | 306.19          |
| A/GH      | No. bb. 18328 | 5 m, Z. O. afd. v. Borneo Tidoengsche Landen, Archipel. Ind. | Neth. Ind. For. Service | 2            | 1934       | 306.46          |
| A/GH      | No. bb. 21151 | 500 m, Z. O. afd. Borneo, Poeroek Tjahoe Tahoedjan,          | Neth. Ind. For. Service | 2            | 1936       | 306.76          |
|           |               | Archipel. Ind.                                               |                         |              |            |                 |
| KEP       | No. 30887     | Kata Tinggi, Johor, Malaysia                                 | Corner, E.J.H.          | 1            | 1936       | 306.76          |
| KEP       | No. 57329     | Batang Padang, Perak, Malaysia                               | Unkonwn                 | 2            | 1947       | 309.82          |
| KEP       | No. 57330     | Batang Padang, Perak, Malaysia                               | Unkonwn                 | 2            | 1947       | 309.82          |
| KEP       | No. 55897     | Batang Padang, Perak, Malaysia                               | Unkonwn                 | 2            | 1947       | 309.82          |
| KEP       | No. 61064     | Batang Padang, Perak, Malaysia                               | Syed Woh                | 2            | 1947       | 309.82          |
| Е         | No. bb. 40798 | 51 m, Kuala Trengganu-Besut Road, Bukit Bintang Block,       | Sinclair, J. and Kiah   | 2            | 1955       | 313.73          |
|           |               | Gunong Tebu Forest reserve, Malaysia                         | bin, Salleh             |              |            |                 |
| KEP       | No. 80548     | Gombak, Selangor, Malaysia                                   | Rahim                   | 1            | 1965       | 320.04          |
| KEP       | No. 33343     | Jelebu, Negeri Sembilan, Malaysia                            | Yap, S.K.               | 2            | 1987       | 348.98          |

Table 1. Modern Nageia motleyi (Parl.) De Laub samples and atmospheric CO<sub>2</sub> values of their collection dates from ice core data (Brown, 2010).

Note: A/GH—Harvard University Herbarium, Harvard University, 22 Divinity Avenue, Cambridge, Massachusetts 02138, USA (www.huh.harvard.edu).

E-The Herbarium of Royal Botanic Garden, Edinburgh EH3 5LR, Scotland, UK (www.rbge.org.uk).

LE—The Herbarium of the V.L. Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Street 2, Saint Petersburg 197376, Russia (www.binran.ru).

KEP-Kepong Herbarium, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia (http://www.frim.gov.my/).

| Collection  | Collection | $CO_{1}$ (normal) |       | <u>s</u> | $SD (mm^{-2})$ | _      |     |      | SI(%) |      |        |     |  |  |
|-------------|------------|-------------------|-------|----------|----------------|--------|-----|------|-------|------|--------|-----|--|--|
| number      | date       | $CO_2$ (ppinv)    | x     | σ        | s.e.           | t*s.e. | n   | x    | σ     | s.e. | t*s.e. | n   |  |  |
| No.2649     | 1868       | 289.23            | 78.60 | 15.44    | 1.41           | 2.76   | 120 | 3.44 | 0.66  | 0.06 | 0.12   | 120 |  |  |
| No.bb.17229 | 1932       | 306.19            | 62.14 | 17.20    | 1.78           | 3.50   | 93  | 2.89 | 0.68  | 0.07 | 0.14   | 93  |  |  |
| No.bb.18328 | 1934       | 306.46            | 64.57 | 15.05    | 1.58           | 3.11   | 90  | 3.39 | 1.01  | 0.11 | 0.21   | 90  |  |  |
| No.bb.21151 | 1936       | 306.76            | 65.45 | 11.14    | 1.17           | 2.30   | 90  | 3.94 | 0.74  | 0.08 | 0.15   | 90  |  |  |
| No.SFN30887 | 1936       | 306.76            | 66.90 | 16.10    | 1.27           | 2.49   | 161 | 3.61 | 0.92  | 0.07 | 0.14   | 161 |  |  |
| No.61064    | 1947       | 309.82            | 56.71 | 16.81    | 1.95           | 3.83   | 74  | 3.27 | 1.26  | 0.15 | 0.29   | 74  |  |  |
| No.57330    | 1947       | 309.82            | 67.37 | 15.97    | 2.04           | 4.01   | 61  | 3.70 | 0.82  | 0.10 | 0.20   | 61  |  |  |
| No.57329    | 1947       | 309.82            | 67.85 | 15.61    | 1.70           | 3.34   | 84  | 3.50 | 0.90  | 0.10 | 0.20   | 84  |  |  |
| No.55897    | 1947       | 309.82            | 66.74 | 14.10    | 1.78           | 3.48   | 63  | 3.18 | 0.66  | 0.08 | 0.16   | 63  |  |  |
| No.40798    | 1955       | 313.73            | 45.89 | 13.81    | 1.12           | 2.20   | 151 | 3.03 | 0.87  | 0.07 | 0.14   | 151 |  |  |
| No.KEP80548 | 1965       | 320.04            | 52.94 | 11.25    | 0.85           | 1.67   | 175 | 2.81 | 0.61  | 0.05 | 0.09   | 175 |  |  |
| No.FRI33343 | 1987       | 348.98            | 52.25 | 12.05    | 0.77           | 1.51   | 242 | 2.87 | 0.69  | 0.04 | 0.09   | 242 |  |  |
| Mean        | _          | -                 | 62.28 | 14.54    | 1.45           | 2.85   | 117 | 3.30 | 0.52  | 0.08 | 0.16   | 117 |  |  |

Table 2. Summary of stomatal parameters of the adaxial surface from modern *Nageia motleyi* (Parl.) De Laub.

*Note: x*—mean;  $\sigma$ —standard deviation; s.e. —standard error of mean; n— numbers of photos counts (40×); t · s.e. — 95% confidence interval.

| Collection  | Collection | CO <sub>2</sub> (ppmv) – |       | S     | $D (mm^{-2})$ |        |     | SI (%) |      |      |        |     |  |  |
|-------------|------------|--------------------------|-------|-------|---------------|--------|-----|--------|------|------|--------|-----|--|--|
| number      | date       | $CO_2$ (ppinv) –         | x     | σ     | s.e.          | t*s.e. | n   | x      | σ    | s.e. | t*s.e. | n   |  |  |
| No.2649     | 1868       | 289.23                   | 82.71 | 12.23 | 1.02          | 2.00   | 144 | 3.89   | 0.58 | 0.05 | 0.09   | 144 |  |  |
| No.bb.17229 | 1932       | 306.19                   | 69.16 | 14.23 | 1.48          | 2.90   | 93  | 3.13   | 0.58 | 0.06 | 0.12   | 93  |  |  |
| No.bb.18328 | 1934       | 306.46                   | 69.92 | 14.38 | 1.52          | 2.97   | 90  | 3.99   | 1.08 | 0.11 | 0.22   | 90  |  |  |
| No.bb.21151 | 1936       | 306.76                   | 75.68 | 15.74 | 1.66          | 3.25   | 90  | 4.66   | 0.88 | 0.09 | 0.18   | 90  |  |  |
| No.SFN30887 | 1936       | 306.76                   | 76.18 | 12.51 | 0.99          | 1.93   | 161 | 4.42   | 0.89 | 0.07 | 0.14   | 161 |  |  |
| No.61064    | 1947       | 309.82                   | 60.93 | 11.02 | 1.39          | 2.72   | 63  | 3.05   | 0.62 | 0.08 | 0.15   | 63  |  |  |
| No.57330    | 1947       | 309.82                   | 75.82 | 14.14 | 1.82          | 3.58   | 60  | 4.38   | 0.84 | 0.11 | 0.21   | 60  |  |  |
| No.57329    | 1947       | 309.82                   | 71.74 | 16.84 | 1.75          | 3.42   | 93  | 3.72   | 0.62 | 0.06 | 0.13   | 93  |  |  |
| No.55897    | 1947       | 309.82                   | 78.63 | 13.41 | 1.75          | 3.42   | 59  | 4.41   | 1.00 | 0.13 | 0.26   | 59  |  |  |
| No.40798    | 1955       | 313.73                   | 53.22 | 13.88 | 1.12          | 2.19   | 155 | 3.71   | 0.93 | 0.07 | 0.15   | 155 |  |  |
| No.KEP80548 | 1965       | 320.04                   | 67.22 | 13.97 | 1.07          | 2.09   | 171 | 3.70   | 0.80 | 0.06 | 0.12   | 171 |  |  |
| No.FRI33343 | 1987       | 348.98                   | 59.09 | 12.10 | 0.79          | 1.55   | 233 | 3.69   | 0.86 | 0.06 | 0.11   | 233 |  |  |
| Mean        | -          | -                        | 70.03 | 13.70 | 1.36          | 2.67   | 118 | 3.90   | 0.81 | 0.08 | 0.16   | 118 |  |  |

Table 3. Summary of stomatal parameters of the abaxial surface from modern *Nageia motleyi* (Parl.) De Laub.

| Collection  | Collection | $CO_{(nnmy)}$  |       | S     | $D (mm^{-2})$ |        |     |      | SI(%) |      |        |     |  |  |
|-------------|------------|----------------|-------|-------|---------------|--------|-----|------|-------|------|--------|-----|--|--|
| number      | date       | $CO_2$ (ppinv) | x     | σ     | s.e.          | t*s.e. | n   | X    | σ     | s.e. | t*s.e. | n   |  |  |
| No.2649     | 1868       | 289.23         | 80.84 | 13.74 | 0.85          | 1.66   | 264 | 3.69 | 0.66  | 0.04 | 0.08   | 264 |  |  |
| No.bb.17229 | 1932       | 306.19         | 65.65 | 16.13 | 1.18          | 2.32   | 186 | 3.01 | 0.64  | 0.05 | 0.09   | 186 |  |  |
| No.bb.18328 | 1934       | 306.46         | 67.24 | 14.92 | 1.11          | 2.18   | 180 | 3.69 | 1.08  | 0.08 | 0.16   | 180 |  |  |
| No.bb.21151 | 1936       | 306.76         | 70.57 | 14.53 | 1.08          | 2.12   | 180 | 4.30 | 0.89  | 0.07 | 0.13   | 180 |  |  |
| No.SFN30887 | 1936       | 306.76         | 71.54 | 15.12 | 0.84          | 1.65   | 322 | 4.01 | 0.99  | 0.05 | 0.11   | 322 |  |  |
| No.61064    | 1947       | 309.82         | 58.65 | 14.54 | 1.24          | 2.43   | 137 | 3.17 | 1.02  | 0.09 | 0.17   | 137 |  |  |
| No.57330    | 1947       | 309.82         | 71.56 | 15.61 | 1.42          | 2.78   | 121 | 4.03 | 0.89  | 0.08 | 0.16   | 121 |  |  |
| No.57329    | 1947       | 309.82         | 69.90 | 16.33 | 1.23          | 2.41   | 177 | 3.62 | 0.77  | 0.06 | 0.11   | 177 |  |  |
| No.55897    | 1947       | 309.82         | 72.49 | 14.95 | 1.35          | 2.65   | 122 | 3.77 | 1.04  | 0.09 | 0.18   | 122 |  |  |
| No.40798    | 1955       | 313.73         | 49.60 | 14.31 | 0.82          | 1.60   | 306 | 3.37 | 0.96  | 0.05 | 0.11   | 306 |  |  |
| No.KEP80548 | 1965       | 320.04         | 60.00 | 14.53 | 0.78          | 1.53   | 346 | 3.25 | 0.84  | 0.05 | 0.09   | 346 |  |  |
| No.FRI33343 | 1987       | 348.98         | 55.61 | 12.53 | 0.58          | 1.13   | 475 | 3.28 | 0.88  | 0.04 | 0.08   | 475 |  |  |
| Mean        | -          | -              | 66.14 | 14.77 | 1.04          | 2.08   | 235 | 3.60 | 0.89  | 0.06 | 0.12   | 235 |  |  |

Table 4. Summary of stomatal parameters of the combined data of the adaxial and abaxial surfaces from modern *Nageia motleyi* (Parl.) De Laub.

*Note: x*—mean; σ—standard deviation; s.e. —standard error of mean; n— numbers of photos counts (40×); t·s.e. — 95% confidence interval.

|             | -          | -      |       | -      |         |     |  |
|-------------|------------|--------|-------|--------|---------|-----|--|
| Collection  | Collection | $CO_2$ | SNL   | SDL    | TSDL    | n   |  |
| number      | date       | (ppmv) |       |        |         |     |  |
| No.2649     | 1868       | 289.23 | 11.64 | 394.38 | 1455.10 | 264 |  |
| No.bb.17229 | 1932       | 306.19 | 9.19  | 337.98 | 1280.12 | 186 |  |
| No.bb.18328 | 1934       | 306.46 | 8.71  | 378.92 | 1277.63 | 180 |  |
| No.bb.21151 | 1936       | 306.76 | 9.62  | 376.93 | 1517.21 | 180 |  |
| No.SFN30887 | 1936       | 306.76 | 10.55 | 325.08 | 735.38  | 240 |  |
| No.61064    | 1947       | 309.82 | 8.19  | 282.04 | 1200.66 | 133 |  |
| No.57330    | 1947       | 309.82 | 9.67  | 397.83 | 1397.33 | 119 |  |
| No.57329    | 1947       | 309.82 | 10.13 | 350.98 | 1672.50 | 176 |  |
| No.55897    | 1947       | 309.82 | 10.48 | 379.06 | 1486.13 | 122 |  |
| No.40798    | 1955       | 313.73 | 10.29 | 175.14 | 933.85  | 305 |  |
| No.KEP80548 | 1965       | 320.04 | 9.36  | 266.16 | 585.72  | 263 |  |
| No.FRI33343 | 1987       | 348.98 | 9.84  | 252.20 | 1181.51 | 125 |  |
| Mean        | _          | _      | 9.81  | 326.39 | 1226.93 | 191 |  |

Table 5. Summary of stomatal parameters from modern *Nageia motleyi* (Parl.) De Laub (Kouwenberg et al., 2003).

|           |             | -    |                |      |     |      |        | /    | -   | - 0/- |       |       |                         |       |                  |  |
|-----------|-------------|------|----------------|------|-----|------|--------|------|-----|-------|-------|-------|-------------------------|-------|------------------|--|
|           |             |      | $SD (mm^{-2})$ |      |     |      | SI (%) |      |     | S     | SR    |       | pCO <sub>2</sub> (ppmv) |       | $C_{(f)}$ (ppmv) |  |
| Species   | Age         | X    | σ              | s.e. | n   | x    | σ      | s.e. | n   | x     | t*s.e | x     | t*s.e                   | x     | t*s.e            |  |
| MMJ1-001  | Late Eocene | 52.5 | 17.1           | 3.1  | 30  | 2.08 | 0.7    | 0.1  | 30  | 1.35  | 0.19  | 333.6 | 13.9                    | 412.1 | 62.0             |  |
| MMJ2-003  | Late Eocene | 42.3 | 12.9           | 2.4  | 30  | 1.80 | 0.6    | 0.1  | 30  | 1.75  | 0.39  | 356.8 | 10.5                    | 536.1 | 126.2            |  |
| MMJ2-004  | Late Eocene | 39.9 | 13.6           | 2.5  | 30  | 1.66 | 0.6    | 0.1  | 30  | 1.81  | 0.32  | 362.4 | 11.0                    | 554.3 | 101.9            |  |
| MMJ3-003a | Late Eocene | 43.2 | 17.7           | 3.2  | 30  | 1.67 | 0.7    | 0.1  | 30  | 1.84  | 0.43  | 354.8 | 14.4                    | 564.6 | 135.7            |  |
| Mean      | Late Eocene | 44.5 | 16.3           | 1.5  | 120 | 1.80 | 0.7    | 0.1  | 120 | 1.69  | 0.18  | 351.9 | 6.6                     | 516.8 | 56.5             |  |

Table 6. Summary of stomatal parameters of the adaxial surface of fossil *Nageia* and pCO<sub>2</sub> [ $C_{(f)}$ ] estimates results.

*Note: x*—mean;  $\sigma$ —standard deviation; s.e. —standard error of mean; n— numbers of photos counts (400×); t·s.e. — 95% confidence interval. pCO<sub>2</sub>— the result based the regression approach;  $C_{(j)}$ — the result based on the stomatal method.

|           |             |      | $SD (mm^{-2})$ |      |     |      | SI (%) |      |     | S    | SR    |       | pCO <sub>2</sub> (ppmv) |       | $C_{(f)}$ (ppmv) |  |
|-----------|-------------|------|----------------|------|-----|------|--------|------|-----|------|-------|-------|-------------------------|-------|------------------|--|
| Species   | s Age       | X    | σ              | s.e. | n   | X    | σ      | s.e. | n   | x    | t*s.e | x     | t*s.e                   | x     | t*s.e            |  |
| MMJ1-001  | Late Eocene | 47.7 | 17.7           | 3.2  | 30  | 2.11 | 0.8    | 0.2  | 30  | 1.66 | 0.23  | 368.6 | 16.2                    | 515.6 | 72.3             |  |
| MMJ2-003  | Late Eocene | 50.9 | 18.3           | 3.3  | 30  | 2.12 | 0.8    | 0.1  | 30  | 1.57 | 0.23  | 360.9 | 16.6                    | 486.0 | 70.7             |  |
| MMJ2-004  | Late Eocene | 48.2 | 15.8           | 2.9  | 30  | 2.14 | 0.7    | 0.1  | 30  | 1.63 | 0.25  | 367.4 | 14.5                    | 504.6 | 77.3             |  |
| MMJ3-003a | Late Eocene | 48.9 | 12.6           | 2.7  | 22  | 1.85 | 0.5    | 0.1  | 22  | 1.52 | 0.19  | 365.4 | 13.5                    | 472.3 | 59.0             |  |
| Mean      | Late Eocene | 48.9 | 16.2           | 1.5  | 112 | 2.07 | 0.7    | 0.1  | 112 | 1.60 | 0.11  | 365.6 | 7.6                     | 496.1 | 35.7             |  |

Table 7. Summary of stomatal parameters of the abaxial surface of fossil *Nageia* and pCO<sub>2</sub> [ $C_{(f)}$ ] estimates results.

*Note: x*—mean;  $\sigma$ —standard deviation; s.e. —standard error of mean; n— numbers of photos counts (400×); t·s.e. — 95% confidence interval. pCO<sub>2</sub>— the result based the regression approach;  $C_{(f)}$ — the result based on the stomatal method.

|           | <b>A</b> = - | $SD (mm^{-2})$ |      |      |     | SI (%) |     |      | S   | SR   |       | pCO <sub>2</sub> (ppmv) |       | $C_{(f)}$ (ppmv) |       |
|-----------|--------------|----------------|------|------|-----|--------|-----|------|-----|------|-------|-------------------------|-------|------------------|-------|
| Species   | Age          | x              | σ    | s.e. | n   | x      | σ   | s.e. | n   | x    | t*s.e | x                       | t*s.e | x                | t*s.e |
| MMJ1-001  | Late Eocene  | 50.1           | 17.5 | 2.3  | 60  | 2.09   | 0.8 | 0.1  | 60  | 1.50 | 0.15  | 349.7                   | 10.6  | 471.2            | 47.8  |
| MMJ2-003  | Late Eocene  | 46.5           | 16.3 | 2.1  | 60  | 1.96   | 0.7 | 0.1  | 60  | 1.67 | 0.24  | 358.3                   | 9.8   | 524.1            | 75.7  |
| MMJ2-004  | Late Eocene  | 44.0           | 15.8 | 2.0  | 60  | 1.90   | 0.7 | 0.1  | 60  | 1.73 | 0.17  | 364.3                   | 9.5   | 542.9            | 52.6  |
| MMJ3-003a | Late Eocene  | 45.6           | 16.1 | 2.2  | 52  | 1.75   | 0.6 | 0.1  | 52  | 1.73 | 0.28  | 360.5                   | 10.4  | 544.6            | 88.3  |
| Mean      | Late Eocene  | 46.6           | 16.4 | 1.1  | 232 | 1.93   | 0.7 | 0.1  | 232 | 1.66 | 0.11  | 358.1                   | 5.0   | 519.9            | 35.0  |

Table 8. Summary of stomatal parameters of the combined data of the adaxial and abaxial surfaces of fossil *Nageia* and pCO<sub>2</sub> [ $C_{(f)}$ ] estimates results.

*Note*: *x*—mean;  $\sigma$ —standard deviation; s.e. —standard error of mean; n— numbers of photos counts (400×); t·s.e.— 95% confidence interval. pCO<sub>2</sub>— the result based the regression approach;  $C_{(j)}$ — the result based on the stomatal method.

Table 9. pCO<sub>2</sub> estimates proxies and corresponding references.

| Proxies       | References                                                                                                                                      |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Boron         | Pearson et al., 2009; Seki et al., 2010                                                                                                         |
| B/Ca          | Tripati et al., 2009                                                                                                                            |
| Phytoplankton | Freeman and Hayes, 1992; Stott, 1992; Pagani et al., 1999, 2005; Henderiks and Pagani, 2008; Seki et al., 2010                                  |
| Nahcolite     | Lowenstein and Demicco, 2006                                                                                                                    |
| Liverworts    | Fletcher et al., 2008                                                                                                                           |
| Paleosols     | Cerling, 1992; Koch et al., 1992; Ekart et al., 1999; Royer et al., 2001; Nordt et al., 2002; Retallack, 2009b; Huang et al. 2013               |
| Stomata       | Van der Burgh et al., 1993; Kürschner et al., 1996, 2001, 2008; McElwain, 1998; Royer et al., 2001, 2003; Greenwood et al., 2003; Beerling      |
|               | et al., 2009; Retallack, 2009a; Smith et al., 2010; Doria et al., 2011; Roth-Nebelsick et al., 2012; 2014; Grein et al., 2013; Maxbauer et al., |
|               | 2014                                                                                                                                            |