1. Need approximate age

Changed as suggested.

2. Last part of sentence not clear.

Changed as suggested.

3. Last sentence needs rewriting.

Rewritten as suggested.

4. Do not see the point of the original opening sentence and references for paragraph 2.

Changed as suggested.

5. This paragraph needs rewriting to place into proper context. Right now, it does not convey a good understanding of the debate and problems.

We added a context. Hopefully, it is proper.

6. Seems awkward

Changed as suggested.

7. Why not include these in the above list??

Because these two papers reported the positive correlation between stomatal index or stomatal frequency and  $pCO_2$ .

8. Probably two good summary papers would suffice here.

Changed as suggested.

9. Not sure what this last sentence means.

We deleted some words of this sentence.

10. The last few bits can be condensed as sort of a repeat from a above.

The repeated sentence was removed.

11. Correct?

Yes, it is cited from Kouwenberg et al. (2003).

12. Things get problematic here as some of this seems to be methods. The parts on *Nageia* seemingly belong later.

The sentences should belong to the later part were deleted.

13. Split this convoluted sentence and rewrite the second bit as difficult to follow. Does this apply to *Podacarpus* or *Nageia*?

Changed as suggested.

14. Both sections? Not clear.

Yes, we are mean to "both sections".

15. Avoid Latin abbreviations in the middle of sentences.

Changed as suggested.

16. This needs slight expansion and conformity. I would list specific locations, types of material and approximate ages.

Changed as suggested.

17. As above, not quite clear what is being suggested.

We changed the whole sentence making it easily understandable.

18. Between \*\* This important point – species specific relationships -- needs to come earlier.

Changed as suggested.

19. Between \*\*\* I think can removed as long as clearly documneted in Tabel 1

Changed as suggested.

\*\* Needs a brief paragraph here noting the Maoming Basin, rock units, depositional environment, and criticially, the age.\*\*

Changed as suggested.

20. This is not crystal clear to me.

We fixed this sentence and corresponding figure 2b to make it clearly to you are readers.

21. See above. The specifics to *Nageia* should be here, but the more general procedure should be presented above.

We think it's more proper to put the specifics to *Nageia* in front of the sentence of "Both *N. maomingensis* and *N. motleyi* are amphistomatic".

Hello Xiaoyan:

In fixing the "Discussion", I think important and interesting to fully compare various stomatal indices in the modern analog to the known  $pCO_2$ .

For example, is use of one leaf side better than the other, or is the combination of both sides more accurate?

Discussed as suggested.

Basically, which of multiple possible methods gives the best correlation to pCO<sub>2</sub>?

SD of the adaxial side gives the best correlation to pCO<sub>2</sub>.

You also want to briefly discuss why some of the leaves give values offset from others.

Mentioned in the discussion part.

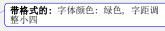
| 1  | The pCO <sub>2</sub> estimates of the late Eocene in South China based on                                   |                                |
|----|-------------------------------------------------------------------------------------------------------------|--------------------------------|
| 2  | stomatal density of Nageia Gaertner leaves                                                                  |                                |
| 3  |                                                                                                             |                                |
| 4  | XIAO-YAN LIU <sup>1,2</sup> , QI GAO <sup>1</sup> , MENG HAN <sup>1</sup> and JIAN-HUA JIN <sup>1,2</sup> * |                                |
| 5  |                                                                                                             |                                |
| 6  | <sup>4</sup> State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant            |                                |
| 7  | Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China                         |                                |
| 8  | <sup>2</sup> State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and       |                                |
| 9  | Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China                                           |                                |
| 10 |                                                                                                             |                                |
| 11 | Abstract:                                                                                                   |                                |
| 12 | Late Eocene <u>Atmospheric</u> pCO <sub>2</sub> concentrations is haves been estimated for intervals of     |                                |
| 13 | the Eocene based onusing various models and proxy informationies. Here we                                   |                                |
| 14 | reconstructed the late Eocene (~ 40.3 XX Ma) pCO <sub>2</sub> based on the fossil species leaves            | 批注 [GD1]: Need approximate age |
| 15 | of Nageia maomingensis Jin et Liu from collected from the late Eocene of Maoming                            |                                |
| 16 | Basin, Guangdong Province, China. This is the first paleoatmospheric estimates for                          |                                |
| 17 | the late Eocene of South China using stomatal data. Studies of We first determine                           |                                |
| 18 | relationships between atmospheric pCO <sub>2</sub> concentrations, stomatal density (SD) and                |                                |
| 19 | stomatal index (SI) with-using "modern" leaves of N. motleyi (Parl.) De Laub-, the                          |                                |
| 20 | nearest living equivalent species of to the Eocene fossils, This work indicates that                        |                                |
| 21 | the SD inversely responds to $\underline{pCO_2}$ atmospheric CO <sub>2</sub> concentration, while SI has    |                                |

Correspondence: Jianhua Jin, tel. +86 20 84113348, fax +86 20 84110436, e-mail: lssjjh@mail.sysu.edu.cn

\*

| 22 | almost no relationships with pCO2 atmospheric CO2 concentration. Therefore, the                               |                    |
|----|---------------------------------------------------------------------------------------------------------------|--------------------|
| 23 | Eocene pCO <sub>2</sub> concentrations iscan be reconstructed based on both thae regression                   |                    |
| 24 | approach- and the stomatal ratio method by using the SD is reconstructed based on-                            | <b>批注</b><br>clear |
| 25 | the SD of the fossil leaves in comparison with <i>N. motleyi</i> . <u>The pCO<sub>2</sub> result based on</u> |                    |
| 26 | the regression The first approach gives a pCO <sub>2</sub> of (351.9 $\pm$ 6.6 ppmv, whereas) is more         |                    |
| 27 | reasonable and much lower than the one based on stomatal ratio method gives a pCO <sub>2</sub> .              |                    |
| 28 | of 537.5 $\pm$ 56.5 (ppmv). Here, we explored the potential of <i>N</i> . maomingensis in pCO <sub>2</sub>    |                    |
| 29 | reconstruction and obtained different results according to different methods, providing                       |                    |
| 30 | a new insight for the reconstruction of paleoclimate and paleoenvironment in conifers.                        | 批注<br>rewr         |
| 31 | Results suggest that the mean CO <sub>2</sub> concentration was 391.0 $\pm$ 41.1 ppmv or 386.5 $\pm$          |                    |
| 32 | 27.8 ppmv during the late Eocene, which is significantly higher than the $CO_2$ -                             |                    |
| 33 | concentrations documented from 1968 to 1955 but similar to the values for current-                            |                    |
| 34 | atmosphere indicating that the Carbon Dioxide levels during that the late Eocene at-                          |                    |
| 35 | that time may have been similar to today                                                                      |                    |
| 36 |                                                                                                               |                    |
| 37 | Keywords: pCO <sub>2</sub> , late Eocene, <i>Nageia</i> , Maoming Basin, South China.                         |                    |
| 38 |                                                                                                               |                    |
| 39 | 1 Introduction                                                                                                |                    |
| 40 |                                                                                                               |                    |
| 41 | The Eocene (55.8-33.9 Ma) generally was characterized by much warmer                                          |                    |
| 42 | temperatures-than present-day, although temperatures also-varied significantly across                         |                    |
| 43 | this time interval (Zachos et al., 2008). Climate of the early Eocene to middle Eocene-                       |                    |
|    |                                                                                                               |                    |

批注 [GD2]: Last part of sentence not clear.


批注 [GD3]: Last sentence needs rewriting.

| 44 | was extremely warm, particularly during the early Eccene with the evidence of the                           |   |
|----|-------------------------------------------------------------------------------------------------------------|---|
| 45 | early Eocene Climatic Optimum (EECO; 5 <u>31</u> 2 to <u>50-53</u> Ma; Zachos et al., 2001), also-          |   |
| 46 | and known as the Paleocene-Eocene Thermal Maximum (PETM-event; ~55.98 Ma).;                                 |   |
| 47 | Wing et al., 2005; Kato et al., 2011). A series of sudden and extreme global warming-                       |   |
| 48 | events (hyperthermals; Deconto et al., 2012) have been described ~ 55.5 to 52 Ma;-                          |   |
| 49 | and a mid-Eocene warming has been recognized, the middle Eocene Climate-                                    |   |
| 50 | Optimum (MECO; ~40 Ma; Bijl et al., 2010). However, the global climatic conditions                          |   |
| 51 | cooled significantly bye occurred colder conditions during the early-middle (50 to 48-                      |   |
| 52 | Ma) and the late Eocene (40 to 36 Ma; Zachos et al., 2001). The appearance of Indeed.                       |   |
| 53 | small, -ephemeral ice-sheets and Arctic sea ice likely existed during the latest Eocene                     |   |
| 54 | suggests the coldest climate of the Eocene (Moran et al., 20046; Zachos et al., 20081).                     | / |
| 55 | Atmospheric CO2 concentrations have been well correlated with global surface-                               |   |
| 56 | temperature change (Mann et al., 1998; Crowley, 2000; Barnett et al., 2001; Harries et                      |   |
| 57 | al., 2001; Levitus et al., 2001; Mitchell et al., 2001). Mostany authors have link-                         |   |
| 58 | suggested the that changes in temperature to atmospheric CO2 concentration during                           |   |
| 59 | the entire Phanerozoic were linked to atmospheric (pCO <sub>2</sub> ) (Petit et al., 1999; Retallack,       |   |
| 60 | 2001; Royer, 2006). However, Central to these discussions are records across the                            |   |
| 61 | Eocene, as this epoch spans the last major change from a "greenhouse" world to an                           |   |
| 62 | <u>"icehouse" world. The Eocene</u> pCO <sub>2</sub> record remains incomplete and debated                  |   |
| 63 | <u>**(Beerling et al., 2002;</u> K ürschner et al., 2001; Royer et al., 2001; Beerling et al.,              |   |
| 64 | 2002; Greenwood et al., 2003; Royer, 2003; Wing et al., 2005; Kato et al., 2011).                           |   |
| 65 | Most pCO <sub>2</sub> <u>reconstructions</u> estimates works have focused on the <u>Cretaceous-Tertiary</u> |   |

批注 [GD4]: Do not see the point of the original opening sentence and references for paragraph 2.

| 66 | and Paleocene-Eocene boundary boundaries (65 to 50 Ma; Koch et al., 1992; Stott,                     |   |
|----|------------------------------------------------------------------------------------------------------|---|
| 67 | 1992; Sinha and Stott, 1994; Royer et al., 2001; Beerling and Royer, 2002; Nordt et                  |   |
| 68 | al., 2002; Royer, 2003; Fletcher et al., 2008; Roth-Nebelsick et al., 2012; 2014; Grein              |   |
| 69 | et al., 2013; Huang et al., 2013; Maxbauer et al., 2014Beerling et al., 2002; Wing et al.,           |   |
| 70 | 2005; Kato et al., 2011) and the middle Eocene (MaxbauerDeconto et al., 20122014),                   |   |
| 71 | while few reconstructions were conducted at the late Eocene. In addition, the pCO <sub>2</sub>       |   |
| 72 | reconstruction results have varied based on different proxies. Various methods having                |   |
| 73 | been used in pCO <sub>2</sub> reconstruction mainly include the computer modeling methods:           |   |
| 74 | GEOCARB-I, GEOCARB-II, GEOCARB-III, GEOCARB-SULF and the proxies: ice                                |   |
| 75 | cores, paleosol carbonate, phytoplankton, nahcolite, Boron, and stomata                              |   |
| 76 | parameters. <u>**</u>                                                                                | / |
| 77 | <u>The abundance of Generally, ss</u> tomatal data (stomatal density and index)cells can             |   |
| 78 | be easily and accurately obtainmeasured from on modern leaves and well-preserved                     |   |
| 79 | fossil <u>landeaves-modern leaves</u> . Various plants showing the <u>a</u> negative correlation     |   |
| 80 | between <u>atmospheric CO<sub>2</sub> concentration and stomatal density</u> (SD), or stomatal index |   |
| 81 | (SI). or both. As such, these parameters and atmospheric CO2 concentration have been                 |   |
| 82 | determined in fossil leaves used to reconstruct past pCO2; ,-for-examples include,                   |   |
| 83 | including Ginkgo (Retallack, 2001, 2009a; Beerling et al., 2002; Royer, 2003;                        |   |
| 84 | Retallack, 2001, 2009a; <u>K ürschner et al., 2008;</u> Smith et al., 2010), Metasequoia             |   |
| 85 | (Royer, 2003; Doria et al., 2011), Taxodium (Stults et al., 2011), Betula (Kürschner et              |   |
| 86 | al., 2001; Sun et al., 2012), Neolitsea (Greenwood et al., 2003), and Quercus                        |   |
| 87 | (K ürschner et al., 1996, 2001) <u>, Laurus and Ocotea (K ürschner et al., 2008) and</u>             |   |

批注 [GD5]: This paragraph needs rewriting to place into proper context. Right now, it does not convey a good understanding of the debate and problems.



| 88  | multiple trees (K ürschner et al., 2008). Recently, positive correlations between                  |
|-----|----------------------------------------------------------------------------------------------------|
| 89  | stomatal index or stomatal frequency and $pCO_2$ have been reported based on fossil                |
| 90  | <i>Typha</i> and <i>Quercus</i> (Bai et al., 2015; Hu et al., 2015). However, the tropical and     |
| 91  | subtropical moist broadleaf forest conifer tree Nageia has <u>not</u> been overlooked used         |
| 92  | <u>previously</u> in paleobotanical estimates of $pCO_2$ concentration.                            |
| 93  | Herein, we firstly document the correlations between the SD and SIstomatal                         |
| 94  | properties and atmospheric CO <sub>2</sub> concentrations for of using Nageia using leaves of      |
| 95  | the extant species Nageia motleyi (Parl.) De Laub. that were leaves and collected                  |
| 96  | atmospheric CO <sub>2</sub> -concentrationover the last two centuries. This to-provides a training |
| 97  | dataset for application to fossil representatives of <i>Nageia</i> . Furthermore, wWe              |
| 98  | secondly estimate a new pCO <sub>2</sub> level for the late Eocene using the stomatal density      |
| 99  | method based-measure stomatal parameters on fossil Nageia leaves from the late                     |
| 100 | Eocene of South China to estimate past CO <sub>2</sub> levels. The work, provides furthering       |
| 101 | significant implications on insights fordiscussing Eocene the climate change.                      |
| 102 | rhythm throughout the Eocene.                                                                      |
| 103 |                                                                                                    |
| 104 | 2 Background                                                                                       |
| 105 |                                                                                                    |
| 106 | 2.1 Stomatal proxy in pCO <sub>2</sub> research                                                    |
| 107 |                                                                                                    |
| 108 | Stomatal proxy-information gathered from careful examination of leaves is has                      |
| 109 | been widely used in for reconstructions of past pCO <sub>2</sub> concentrations (Beerling and      |

 批注 [GD6]: Seems awkward

 带格式的:字体颜色:绿色,字距调整小四

批注 [GD7]: Why not include these in the above list??

| 110 | Kelly, 1997; Doria et al., 2011 REF). The three main parameters are stomatal density                                               |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------|--|
| 111 | (SD), which is expressed as the total number of stomata divided by area, epidermal                                                 |  |
| 112 | density (ED), which is expressed as the total number of epidermal cells per area, and                                              |  |
| 113 | the stomatal index (SI), which is calculated by the calculating defined as the                                                     |  |
| 114 | percentage of stomata among the total number of cells within an area [SI = SD×100 /                                                |  |
| 115 | (SD+ED)]. Woodward (1987) considered that both SD and SI had inverse                                                               |  |
| 116 | relationships with atmospheric CO <sub>2</sub> during the development of the leaves.                                               |  |
| 117 | Subsequently, McElwain (1998) created the stomatal ratio (SR) method to reconstruct                                                |  |
| 118 | pCO <sub>2</sub> . SR is a ratio of the stomatal density or index of a fossil $[SD_{(f)} \text{ or } SI_{(f)}]$ to that of         |  |
| 119 | corresponding nearest living equivalent $[SD_{(e)} \text{ or } SI_{(e)}]$ , expressed as follows:                                  |  |
| 120 | $SR = SI_{(e)} / SI_{(f)} $ (1)                                                                                                    |  |
| 121 | The stomatal ratio method is a semi-quantitative method of reconstructing $pCO_2$                                                  |  |
| 122 | concentrations under certain standardizations. One <u>An example</u> is the "Carboniferous                                         |  |
| 123 | standardization" (Chaloner and McElwain, 1997), indicating that where one stomatal                                                 |  |
| 124 | ratio unit was equals to two RCO2 units and :                                                                                      |  |
| 125 | $SR = 2 RCO_2 $ (2)                                                                                                                |  |
| 126 | and Where the value of $RCO_2$ is the pCO <sub>2</sub> level divided by the pre-industrial                                         |  |
| 127 | atmospheric level (PIL) of 300 ppm (McElwain, 1998) or that of the year when the                                                   |  |
| 128 | nearest living equivalent (NLE) was collected (Berner, 1994; McElwain, 1998):                                                      |  |
| 129 | $\text{RCO}_2 = C_{(f)} / 300 \text{ or } \text{RCO}_2 = C_{(f)} / C_{(e)}$ (3)                                                    |  |
| 130 | Then tThe estimated pCO <sub>2</sub> level is can then be expressed as follows:                                                    |  |
| 131 | $C_{(f)} = 0.5 \times C_{(e)} \times SD_{(e)} / SD_{(f)} \text{ or } C_{(f)} = 0.5 \times C_{(e)} \times SI_{(e)} / SI_{(f)} $ (4) |  |

批注 [GD8]: Probably two good summary papers would suffice here.

| <u>w</u> Where $C_{(f)}$ is the pCO <sub>2</sub> are presented by the fossil leaf, and $C_{(e)}$ is the atmospheric                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $CO_2$ of the year when the <u>leaf of the NLE</u> species was collected (McElwain and                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Chaloner, 1995, 1996; McElwain 1998). The equation adapts to the $pCO_2$                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| concentration prior to Cenozoic era.                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 批注 [GD9]: Not sure what this last sentence means.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Another standardization, the "Recent standardization" (McElwain, 1998), is                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| expressed as one stomatal ratio unit being equal to one RCO <sub>2</sub> unit:                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $SR = 1 RCO_2 $ (5)                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| According to the equations stated above, the pCO <sub>2</sub> concentration can be expressed                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| as:                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $C_{(f)} = C_e \times SD_{(e)} / SD_{(f)} \text{ or } C_{(f)} = C_e \times SI_{(e)} / SI_{(f)}$ (6)                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Where $C_{(f)}$ , $C_{(e)}$ , $SD_{(e)}$ , $SD_{(f)}$ , $SI_{(e)}$ and $SI_{(f)}$ are stated above. This standardization is                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| usually used for reconstruction based on Cenozoic fossils (Chaloner and McElwain,                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1997; McElwain, 1998; Beerling and Royer, 2002).                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 批注 [GD10]: The last few bits can be condensed as sort of a repeat from a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Kouwenberg et al. (2003) proposed some special stomatal quantification methods                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| for the conifers leaves with stomata arranged in rows. The main terms are as follows:                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| stomatal nmumber per Length (SNL) is expressed as (the number of abaxial stomata                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| plus the number of adaxial stomata) divided by leaf length in millimeters. Stomatal                                                                                                                      | $\langle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 批注 [GD11]: Correct?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| rows (SRO) is expressed as the number of stomatal rows in both stomatal bands.                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 批注 [GD12]: Things get problematic<br>here as some of this seems to be methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Stomatal density per length (SDL) is expressed as the equation $SDL = SD \times SRO$ .                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The parts on Nageia seemingly belong later.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <u>Turue stomatal density per length (TSDL) is expressed as the equation TSDL = SD <math>\times</math></u>                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <u>Turue stomatal density per length (TSDL) is expressed as the equation <math>TSDL = SD \times B</math></u><br>band width (in millimeters). The band width on <i>Nageia motleyi</i> leaves was measured |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                          | Chaloner, 1995, 1996; McElwain 1998). The equation adapts to the pCO <sub>2</sub><br>concentration prior to Cenozoic era.<br>Another standardization, the "Recent standardization" (McElwain, 1998), is<br>expressed as one stomatal ratio unit being equal to one RCO <sub>2</sub> unit:<br>$SR = 1 \text{ RCO}_2$ (5)<br>According to the equations stated above, the pCO <sub>2</sub> concentration can be expressed<br>as:<br>$C_{(f)} = C_e \times SD_{(e)} / SD_{(f)}$ or $C_{(f)} = C_e \times SI_{(e)} / SI_{(f)}$ (6)<br>Where $C_{(f)} = C_{(e)} - SD_{(e)} - SD_{(e)} - SI_{(e)} - and SI_{(f)}$ are stated above. This standardization is<br>usually used for reconstruction based on Cenozoic fossils (Chaloner and McElwain,<br>1997; McElwain, 1998; Beerling and Royer, 2002).<br>Kouwenberg et al. (2003) proposed some special stomatal quantification methods.<br>for the conifers leaves with stomata arranged in rows. The main terms are as follows:<br>stomatal number per Length (SNL) is expressed as (the number of abaxial stomata<br>plus the number of adaxial stomata) divided by leaf length in millimeters. Stomatal<br>rows (SRO) is expressed as the number of stomatal rows in both stomatal bands. | Chaloner, 1995, 1996; McElwain 1998). The equation adapts to the pCO <sub>2</sub><br>concentration prior to Cenozoic era,<br>Another standardization, the "Recent standardization" (McElwain, 1998), is<br>expressed as one stomatal ratio unit being equal to one RCO <sub>2</sub> unit:<br>$SR = 1 RCO_2$ (5)<br>According to the equations stated above, the pCO <sub>2</sub> concentration can be expressed<br>as:<br>$C_{(j)} = C_e \times SD_{(e)} / SD_{(j)}$ or $C_{(j)} = C_e \times SI_{(e)} / SI_{(j)}$ (6)<br>Where $C_{(j)} - SD_{(e)} - SD_{(j)} - SI_{(e)} - and SI_{(g)}$ are stated above. This standardization is<br>usually used for reconstruction based on Cenozoic fossils (Chaloner and McElwain,<br>1997; McElwain, 1998; Beerling and Royer, 2002).<br>Kouwenberg et al. (2003) proposed some special stomatal quantification methods.<br>for the conifers leaves with stomata arranged in rows. The main terms are as follows:<br>stomatal number per Length (SNL) is expressed as the number of abaxial stomata<br>plus the number of adaxial stomata) divided by leaf length in millimeters. Stomatal<br>rows (SRO) is expressed as the number of stomatal rows in both stomatal bands. |

# 155 2.2 Review of extant and fossil Nageia

156

| 157 | The genus Nageia-, including only seven living species, is an special group of                                            |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| 158 | Podocarpaceae-, which is a large family of conifers mainly distributed in the southern                                    |
| 159 | hemisphere. <u>Nageia has with broadly ovate-elliptic to oblong-lanceolate</u> , multiveined                              |
| 160 | (without a midvein), spirally arranged or in decussate, and opposite or subopposite                                       |
| 161 | leaves (Cheng et al., 1978; Fu et al., 1999). Generally, <i>Nageia</i> is divided into <i>Nageia</i>                      |
| 162 | Sect. Nageia and Nageia Sect. Dammaroideae (Mill 1999, 2001).; Both sections are                                          |
| 163 | <b>XX</b> -mainly distributed in <u>south</u> east <del>ern</del> Asia <u>and Australasia</u> from north latitude 30 ° to |
| 164 | nearly the equator and coastal mountain areas and island areas of the western Pacific-                                    |
| 165 | Ocean, including South China, South Japan, Malaya and Indonesia, New Guinea, and                                          |
| 166 | other Pacific islands (Fu, 1992; Fig. 1a). Four species of the N. section Nageia, ie.,                                    |
| 167 | Nageia nagi (Thunberg) O. Kuntze, N. fleuryi (Hickel) De Laub., N. formosensis                                            |
| 168 | (Dummer) C. N. Page, and N. nankoensis (Hayata) R. R. Mill, of the N. section-                                            |
| 169 | Nageia, have hypostomatic leaves where (the stomata only distributed occur on the                                         |
| 170 | abaxial side.) leaves, with a single exceptionOne species of this section N. maxima                                       |
| 171 | (De Laub.) De Laub. which is characterized by amphistomatic leaves, but where                                             |
| 172 | only a few stomata are found on the adaxial side (Hill and Pole, 1992; Sun, 2008).                                        |
| 173 | Both N. wallichiana (Presl) O. Kuntze and N. motleyi., of the N. section                                                  |
| 174 | Dammaroideae, are amphistomatic with abundant stomata distributed on both sides of                                        |
| 175 | the leaf. This is, especially true for N. motleyimotleyi, which has ving approximately                                    |
|     |                                                                                                                           |

批注 [GD13]: Split this convoluted sentence and rewrite the second bit as difficult to follow. Does this apply to Podacarp or Nageia?

批注 [GD14]: Both sections? Not clear.

批注 [GD15]: Avoid Latin abbreviations in the middle of sentences

| 176 | equal stomata <u>numbers</u> on both surfaces (Hill and Pole, 1992; Sun, 2008).                   |
|-----|---------------------------------------------------------------------------------------------------|
| 177 | The fossil records of <i>Nageia</i> can be traced back to the Cretaceous. <u>Krassilov (1965)</u> |
| 178 | described Podocarpus (Nageia) sujfunensis Krassilov from the Lower Cretaceous of                  |
| 179 | Far East Russia. Kimura et al. (1988) reported Podocarpus (Nageia) ryosekiensis                   |
| 180 | Kimura, Ohanaet Mimoto, an ultimate leafy branch bearing a seed, from the Early                   |
| 181 | Barremian in southwestern Japan. In China, a Cretaceous petrified wood, Podocarpus                |
| 182 | (Nageia) nagi Pilger, was discovered from the Dabie Mountains in central Henan,                   |
| 183 | China (Yang et al., 1990). Jin et al. (2010) reported a upper Eocene Nageia leaf                  |
| 184 | named N. hainanensis Jin, Qiu, Zhu et Kodrul from the Changchang Basin of Hainan                  |
| 185 | Island, South China. Recently, Liu et al. (2015) found another leaf species N.                    |
| 186 | maomingensis Jin et Liu from upper Eocene of Maoming Basin, South China.with the                  |
| 187 | evidence from Far East Russia, Japan and Henan, China (Krassilov, 1965; Matsuo,-                  |
| 188 | 1977; Kimura et al., 1988; Yang, 1990) and be extended into the Eocene of Hainan-                 |
| 189 | Island and Guangdong (Maoming), South China (Jin et al., 2010; Liu et al., 2015; Fig.             |
| 190 | 1a). Although some of the <i>Nageia</i> fossil materials described <u>in the above studies</u>    |
| 191 | (Krassilov, 1965; Jin et al., 2010; Liu et al., 2015) have well-preserved cuticles (e.g.,         |
| 192 | Jin et al., 2010; Liu et al., 2015), the above _ these studies are mainly concentrated on         |
| 193 | the morphology, systematics and phytogeography.                                                   |
| 194 | Here we try to reconstruct the pCO <sub>2</sub> concentration based on stomatal data of           |
| 195 | Nageia maomingensis Jin et Liu <u>. was reported described on the basised of</u> n four-          |
| 196 | leaves with well preserved cuticles recovered fromlate upper Eocene sedimentary                   |
| 197 | rocks of South China (Liu et al., 2015). Among the modern Nageia species mentioned                |
|     |                                                                                                   |

批注 [GD16]: This needs slight expansion and conformity. I would list specific locations, types of material and approximate ages.

批注 [GD17]: As above, not quite clear what is being suggested.

| 198 | above, <i>N. motleyi</i> was considered as the nearest extant livingNLE (NEL) species of <i>N</i> . |   |
|-----|-----------------------------------------------------------------------------------------------------|---|
| 199 | maomingensis (Liu et al., 2015). However, because of the species-specific inverse                   |   |
| 200 | relationship between atmospheric CO <sub>2</sub> partial pressure and SD (Woodward and              |   |
| 201 | Bazzaz, 1988), it is necessary to explore whether the SD and SI of N. motleyi show                  |   |
| 202 | negative correlations with the $CO_2$ concentration before applying the stomatal method.            |   |
| 203 | Both N. maomingensis and N. motleyi are amphistomatic, indicating suggesting that                   |   |
| 204 | both upper and lower surfaces of the leaf are needed to estimate the pCO <sub>2</sub>               |   |
| 205 | concentration-sduring the late Eocene. <u>**However, because of the species specific</u>            |   |
| 206 | inverse relationship between atmospheric CO2-partial pressure and SD (Woodward-                     |   |
| 207 | and Bazzaz, 1988), it is necessary to explore whether the SD and SI of the N. motleyi-              |   |
| 208 | show the negative correlations with the CO <sub>2</sub> concentration before applying the-          |   |
| 209 | stomatal method. <u>**</u>                                                                          |   |
| 210 |                                                                                                     |   |
| 211 | 3 Material and methods                                                                              |   |
| 212 |                                                                                                     |   |
| 213 | 3.1 Extant leaf preparation                                                                         |   |
| 214 |                                                                                                     |   |
| 215 | We examined five- <u>12</u> specimens of extant Nageia motleyi from different herbaria              |   |
| 216 | (Table 1): <u>***(1) the specimen numbered 2649 (the herbarium of the V. L. Komarov</u>             |   |
| 217 | Botanical Institute of the Russian Academy of Sciences) was collected by Beccari O                  |   |
| 218 | from Malaysia in 1868; (2) the specimen numbered bb. 17229 (Harvard University-                     |   |
| 210 |                                                                                                     |   |
| 219 | Herbarium) was collected by Neth. Ind. For. from Riau on Ond. Karimon, Archipel.                    | • |

批注 [GD18]: Between \*\* This important point – species specific relationships -needs to come earlier

| 220 | Ind. in the latitude of 150 m in 1932; (3) the specimen numbered bb. 18328 (Harvard-      |
|-----|-------------------------------------------------------------------------------------------|
| 221 | University Herbarium) was collected from Z. O. afd. v. Borneo Tidoengsche Landen,         |
| 222 | Archipel. Ind., Malaysia in the latitude of 5 m in 1934; (4) the specimen numbered bb.    |
| 223 | 21151 (Harvard University Herbaria) was collected from Z. O. afd. Borneo, Poeroek-        |
| 224 | Tjahoe Tahoedjan, Archipel. Ind. in the latitude of 500 m in 1936; (5) the specimen-      |
| 225 | numbered bb. 40798 (Herbarium of Royal Botanic Garden, Edinburgh) was collected           |
| 226 | by Sinclair, J. and Kiah bin, Salleh from Gunong Tebu Forest reserve, Malaysia in the-    |
| 227 | latitude of 51 m in 1955 (Table 1). *** We removed one or two leaves from each            |
| 228 | specimen, and took three fragments (0.25 mm <sup>2</sup> ) from every leaf (Fig. 2a) and  |
| 229 | numbered them for analysis.                                                               |
| 230 | The numbered fragments were boiled for 5-10 min in water. Subsequently, after             |
| 231 | being macerated in a mixed solution of 10% acetic acid and 10% $H_2O_2(1:1)$ and          |
| 232 | heated in the thermostatic water bath at 85 C for 8.5 hours; the reaction was stopped     |
| 233 | when the specimens fragments turned white and semitransparent; The cuticles were          |
| 234 | then rinsed with distilled water until the pH of the water became neutral. After that the |
| 235 | cuticles were treated in Schulze's solution (one part of potassium chlorate saturated     |
| 236 | solution and three part of concentrated nitric acid) for 30 min, rinsed in water, and     |
| 237 | then treated with 8% KOH (up to 30 min) and the abaxial and adaxial cuticles were         |
| 238 | separated with a hair mounted on needle. Finally, the cuticles were stained by with 1%    |
| 239 | Safranin T alcoholic solution for 5 min, sealed with Neutral Balsam and observed          |
| 240 | under <del>the</del> -LM.                                                                 |

批注 [GD19]: Between \*\*\* I think can removed as long as clearly documneted in Tabel 1

241

# **3.2 Fossil leaf preparation**

| 243 |                                                                                                         |
|-----|---------------------------------------------------------------------------------------------------------|
| 244 | ** Needs a brief paragraph here noting the Maoming Basin, rock units, depositional                      |
| 245 | environment, and criticially, the age.**                                                                |
| 246 | Maoming Basin (21 °42'33.2"N, 110 °53'19.4"E) is located in southwestern                                |
| 247 | Guangdong, South China including Cretaceous and Tertiary strata. Tertiary strata are                    |
| 248 | fluvial and lacustrine sedimentary units, divided into the Gaopengling, Laohuling,                      |
| 249 | Shangcun, Huangniuling and Youganwo formations in descending order, aged from                           |
| 250 | late Eocene to early Oligocene (Wang et al., 1994).                                                     |
| 251 | Four fossil leaves of Nageia maomingensis were recovered from the late Eocene of                        |
| 252 | the Youganwo Formation (MMJ1-001) and the Huangniuling Formation (MMJ2-003,                             |
| 253 | MMJ2-004 and MMJ3-003) formations of Maoming Basin, South China (Fig. 1B, 1C                            |
| 254 | in Liu et al., 2015). The age from Youganwo to Huangniuling formations is late                          |
| 255 | Eocene (~ 40.3 Ma). the layersPrecise information wasregarding locations areis                          |
| 256 | <u>provided <del>shown in Fig. 1b-c in</del>by Liu et al., (2015</u> ). Macrofossil cuticular fragments |
| 257 | were taken from the middle part of each fossil leaf (Fig. 2c) and treated by with                       |
| 258 | Schulze's solution for approximately 1h and 5–10% KOH for 30 min (Ye, 1981). The                        |
| 259 | cuticles were observed and photographed under a Carl Zeiss Axio Scope A1 light                          |
| 260 | microscope (LM). All fossil specimens and cuticle slides are housed in the Museum of                    |
| 261 | Biology of Sun Yat-sen University, Guangzhou, China.                                                    |
| 262 |                                                                                                         |

**3.3 Stomatal counting strategy and calculation methods** 

| The basic stomatal parameters, SD, ED and SI, weare counted based on analyzing                                  |
|-----------------------------------------------------------------------------------------------------------------|
| the pictures taken with the <u>a</u> light microscope (LM) using the standard sampling                          |
| protocol, only counting those stomata touching or straddling the left hand side and top                         |
| including the corner between them, provided by Poole and Kürschner (1999; Fig. 2b,                              |
| $\frac{2d}{2d}$ . A total of $\frac{1116-2816}{2816}$ pictures (200× magnification of Zeiss LM) of the cuticles |
| from <u>9-21</u> leaves of <i>N. motleyi</i> were counted. Each counting field was 0.366 mm <sup>2</sup> . We   |
| used a standard sampling protocol (Poole and K ürschner, 1999), and only counted                                |
| counting all full stomata in the image plus stomata straddling the left and top margins,                        |
| as presented in Figure 2(b), and (d). those stomata touching or straddling the left-hand-                       |
| side and top including the corner between them, provided by Fig. 2b, 2d) In <i>Nageia</i> -                     |
| maomingensis, 112 views (400×magnification) of the abaxial side and 150 views-                                  |
| $(400 \times magnification)$ of the adaxial side of cuticles were counted with an area of                       |
| 0.092 mm <sup>2</sup> . None of the counting areas above overlapped and they were larger than-                  |
| the minimum area (0.03 mm <sup>2</sup> ) for statistics (Poole and K ürschner, 1999). In this study,            |
| the stomatic data of both surfaces are applied in pCO <sub>2</sub> reconstruction because both our              |
| fossil species and the NLE species are amphistomatic.                                                           |
| The SNL, SRO, SDL, and TSDL weare also countdetermined based on the pictures                                    |
| taken with the light microscope (LM images.) using the strategies stated in the                                 |
| background**A total of 2293 pictures (200×magnification of Zeiss LM) of the                                     |
| cuticles from 21 leaves of <i>N. motleyi</i> were counted. Each counting field was 0.366                        |
| mm <sup>2</sup> . None of the aforementioned counting areas overlapped and they were larger                     |
|                                                                                                                 |

批注 [GD20]: This is not crystal clear to me

批注 [GD21]: See above. The specifics to Nageia should be here, but the more general procedure should be presented above.

| 286 | than the minimum area (0.03 mm <sup>2</sup> ) for statistics (Poole and Kürschner, 1999). In this               |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 287 | study, the stomatal data of both surfaces are applied in pCO <sub>2</sub> reconstruction because                |
| 288 | both the fossil and NLE species are amphistomatic.                                                              |
| 289 |                                                                                                                 |
| 290 |                                                                                                                 |
| 291 | 4 Results                                                                                                       |
| 292 |                                                                                                                 |
| 293 | 4.1 Correlations between the CO <sub>2</sub> concentrations and stomatal parameters of                          |
| 294 | Nageia motleyi                                                                                                  |
| 295 |                                                                                                                 |
| 296 | The SD and SI data of the adaxial sides of N. motleyi leaves are shown-presented in                             |
| 297 | Table 2. The SDs and SisSIs average _ range from 62.28 mm <sup>-2</sup> and 3.30 % 45.89 to-                    |
| 298 | 78.6 (mm <sup>-2</sup> ) and from 2.89 to 3.94 (%), respectively. However, the SDs and SIs data                 |
| 299 | of the abaxial sides, summarized in Table 3, give significantly higher average values                           |
| 300 | ( <u>70.03 mm<sup>-2</sup>53.22 82.71</u> in SDs and <u>3.13 4.663.90 % in</u> SIs) than those from the         |
| 301 | adaxial sides. The combined SD and SI of the adaxial and abaxial surfaces average                               |
| 302 | 66.14 mm <sup>-2</sup> and 3.60 %, respectively (table 4).                                                      |
| 303 | Figure Fig. 3 shows the relationships between the stomatal parameters (SD and SI)                               |
| 304 | of modern <i>N. motleyi</i> and the atmospheric CO <sub>2</sub> concentration (SD-CO <sub>2</sub> relationships |
| 305 | and SI-CO <sub>2</sub> relationships). $R^2$ values in the SDCO <sub>2</sub> relationships from both the        |
| 306 | adaxial and abaxial surfaces of <i>N. motley</i> are up to 0.841-0.4667 and 0.7250.3824 (Fig.                   |
| 307 | 3a, b), suggesting that the stomatal densities of <i>N. motleyi</i> are in significant inverse                  |

| 308                                                                                                   | proportion to the CO <sub>2</sub> concentrations. However, the figure Fig. $3(c)$ and $(d)$ indicate no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 309                                                                                                   | relationships between the SIs and $\text{CO}_2$ concentrations for the extremely low level of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 310                                                                                                   | the R <sup>2</sup> values (0.0030.2558 and 0.06080.0248). Figs. 3e and 3f based on the combined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 311                                                                                                   | data also show that SD inversely responds to the atmospheric $CO_2$ concentration ( $R^2$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 312                                                                                                   | =0.4421), while SI has almost no relationship with the atmospheric $CO_2$ concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 313                                                                                                   | $(\mathbf{R}^2 = 0.1177).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 314                                                                                                   | The mean values of SNL, SDL and TSDL are 9.81, 326.39 and 1226.93 no. $\cdot$ mm <sup>-1</sup> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 315                                                                                                   | respectively (Table 5). Fig. 4 shows the relationships between SNL (SDL, TSDL) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 316                                                                                                   | <u>CO<sub>2</sub> concentrations. The low R<sup>2</sup> values in the Fig. 4a and 4c indicate that SNL (R<sup>2</sup> = </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 317                                                                                                   | 0.0643) and TSDL ( $R^2 = 0.0788$ ) have no relationship with the CO <sub>2</sub> concentration in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 318                                                                                                   | this study. Fig. 4b shows that there is a weak reverse relevance between SDL and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 319                                                                                                   | $\underline{CO_2}$ concentration (R <sup>2</sup> = 0.3154).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 319<br>320                                                                                            | <u>CO<sub>2</sub> concentration (R<sup>2</sup> = 0.3154).</u><br>Compared with the SDL method, the SD-based method shows a larger R <sup>2</sup> value,                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 320                                                                                                   | Compared with the SDL method, the SD-based method shows a larger R <sup>2</sup> value,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 320<br>321                                                                                            | <u>Compared with the SDL method, the SD-based method shows a larger <math>R^2</math> value,</u><br>indicating a stronger relevance between the SD and CO <sub>2</sub> concentrations. In this study,                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 320<br>321<br>322<br>323                                                                              | Compared with the SDL method, the SD-based method shows a larger $R^2$ value,<br>indicating a stronger relevance between the SD and CO <sub>2</sub> concentrations. In this study,<br>the pCO <sub>2</sub> is reconstructed based on the regression equations of SD-CO <sub>2</sub> relationship.                                                                                                                                                                                                                                                                                                                    |
| 320<br>321<br>322                                                                                     | Compared with the SDL method, the SD-based method shows a larger R <sup>2</sup> value,<br>indicating a stronger relevance between the SD and CO <sub>2</sub> concentrations. In this study,<br>the pCO <sub>2</sub> is reconstructed based on the regression equations of SD-CO <sub>2</sub> relationship.<br>Additionally,                                                                                                                                                                                                                                                                                          |
| 320<br>321<br>322<br>323<br>324                                                                       | Compared with the SDL method, the SD-based method shows a larger R <sup>2</sup> value,<br>indicating a stronger relevance between the SD and CO <sub>2</sub> concentrations. In this study,<br>the pCO <sub>2</sub> is reconstructed based on the regression equations of SD-CO <sub>2</sub> relationship.<br>Additionally,<br>According to the results stated above, the stomatal ratio method can be also used in                                                                                                                                                                                                  |
| 320<br>321<br>322<br>323<br>324<br>325                                                                | Compared with the SDL method, the SD-based method shows a larger R <sup>2</sup> value,<br>indicating a stronger relevance between the SD and CO <sub>2</sub> concentrations. In this study.<br>the pCO <sub>2</sub> is reconstructed based on the regression equations of SD-CO <sub>2</sub> relationship.<br>Additionally,<br>According to the results stated above, the stomatal ratio method can be also used in<br>estimating pCO <sub>2</sub> concentration of the late Eocene based on the stomatal densities                                                                                                  |
| <ul> <li>320</li> <li>321</li> <li>322</li> <li>323</li> <li>324</li> <li>325</li> <li>326</li> </ul> | Compared with the SDL method, the SD-based method shows a larger R <sup>2</sup> value,<br>indicating a stronger relevance between the SD and CO <sub>2</sub> concentrations. In this study,<br>the pCO <sub>2</sub> is reconstructed based on the regression equations of SD-CO <sub>2</sub> relationship.<br>Additionally,<br>According to the results stated above, the stomatal ratio method can be also used in<br>estimating pCO <sub>2</sub> concentration of the late Eocene based on the stomatal densities<br>(SDs) of the fossil species <i>N. maomingensis</i> and the extant species <i>N. motleyi</i> . |

| 330 | (Beerling, 1999) and more accurate in responding to the variation of pCO <sub>2</sub> -                |
|-----|--------------------------------------------------------------------------------------------------------|
| 331 | concentration (Royer, 2001). However, the study of Kouwenberg et al. (2003)                            |
| 332 | indicated that the SD better reflects the negative relationships with atmospheric CO <sub>2</sub> -    |
| 333 | concentration.                                                                                         |
| 334 | The SD results of specimen No. 18328 are selected to reconstruct the pCO <sub>2</sub>                  |
| 335 | concentration, because they are closest to the fitted equations in Fig. 3. This specimen               |
| 336 | was collected by Neth. Ind. For. Service from Riau on Ond. Karimon, Archipel. Ind.,                    |
| 337 | Malaysia, in 1934 at an altitude of 5 m and CO <sub>2</sub> concentration of 306.46 ppmv               |
| 338 | (Brown, 2010). The SD results of specimen No. 40798 are closest to the fitted-                         |
| 339 | equations in Fig. 3a and 3b and therefore are selected to reconstruct the $pCO_2$ -                    |
| 340 | concentration. The specimen was collected by J. Sinclair. & Salleh Kiah Bin from-                      |
| 341 | Gunong Tebu Forest Reserve, Malaysia, in 1955 at an altitude of 51 m and a CO <sub>2</sub> -           |
| 342 | concentration of 313.73 ppmv during that time (Brown, 2010). Therefore, the SD-                        |
| 343 | from the adaxial and abaxial surfaces of <i>N. maomingensis</i> and its NLE species <i>N</i> .         |
| 344 | <i>motleyi</i> are used to recover pCO <sub>2</sub> concentrations based on the stomatal ratio method. |
| 345 |                                                                                                        |
| 346 | 4.2 Stomatal parameters and The pCO <sub>2</sub> estimates results                                     |
| 347 | 4.2.1 The regression approach                                                                          |
| 348 | After being projected into a long-term carbon cycle model (GEOCARB III; Berner-                        |
| 349 | and Kothaval á, 2001), the results of this study compares well with the CO2-                           |
| 350 | concentrations for corresponding age within their error ranges (Fig. 4). The summary                   |
| 351 | of stomatal parameters of the extant and fossil Nageia and reconstruction results are                  |
|     | 1                                                                                                      |

| 352 | provided in Tables 2 <u>6–8. and 3, respectively. SD and SI values were calculated for all-</u>                              |
|-----|------------------------------------------------------------------------------------------------------------------------------|
| 353 | samples of the extant and fossil Nageia. The mean SD and SI values of the adaxial                                            |
| 354 | surface are <u>44.5 mm<sup>-2</sup>44.5 ± 2.9</u> and <u>1.8 % 1.80 ± 0.12</u> , respectively (Table <u>56</u> ). The        |
| 355 | mean SD and SI values of the abaxial surfacevalues of the abaxial and abaxial surface                                        |
| 356 | are $49.8 \text{ mm}^{-2}48.9 \pm 3.0$ and $2.07 \% 53.22 \pm 2.2$ , respectively (Table 2, 37).                             |
| 357 | Based on the regression approach, the pCO <sub>2</sub> was reconstructed as $351.9 \pm 6.6$ ppmv                             |
| 358 | and 365.6 $\pm$ 7.6 ppmv according to the SD of adaxial and abaxial sides. The combined                                      |
| 359 | SD value is an average of 46.6 mm <sup>-2</sup> (Table 8), giving the reconstructed pCO <sub>2</sub> of                      |
| 360 | <u>358.1 ± 5.0 ppmv.</u>                                                                                                     |
| 361 |                                                                                                                              |
| 362 | 4.2.2 The stomatal ratio method                                                                                              |
| 363 | The mMean SR values of both sides the adaxial side (SR=1.69 $\pm 0.18$ ) are is a little                                     |
| 364 | larger quite similar with 1.24 $\pm 0.13$ than that in adaxial of the abaxial side (SR=1.60 $\pm$                            |
| 365 | <u>0.11) in fossil Nageia leaves and 1.23 <math>\pm 0.09</math> in abaxial side</u> (Tables 4- <u>6</u> and <u>57</u> ). The |
| 366 | pCO <sub>2</sub> average reconstruction results are of pCO <sub>2</sub> concentration in the late Eocene of                  |
| 367 | Maoming Basin is 391.0 $\pm 41.1537.5 \pm 56.5$ ppmv (Table 46) and $\frac{386.5 \pm 27.8496.1}{27.8496.1}$                  |
| 368 | $\pm 35.7$ ppmv (Table 57) with a 95% confidence interval based on the adaxial and                                           |
| 369 | abaxial cuticles, respectively. Based on the combined SD of both leaf sides, the $pCO_2$                                     |
| 370 | result is 519.9 $\pm$ 35.0 ppmv. Clearly the two estimates are rather similar with a                                         |
| 371 | difference of 5 ppmv in mean value, which is clearly less than their own standard-                                           |
| 372 | error, indicating that the reconstructions based on both sides are consistent in this-                                       |
| 373 | fossil species. Table 4 shows gradually increasing pCO <sub>2</sub> level from the lower layer to-                           |
|     |                                                                                                                              |

the upper ones, while the pCO<sub>2</sub> estimated results based on the abaxial side are random with the highest result in lowest layer (Table 5).

## 376 The partial pressure of $CO_2$ decreases with elevation (Gale, 1972). Jones (1992) 377 proposed that the relationship between elevation and partial pressure in the lower 378 atmosphere can be expressed as P = -10.6E + 100, where E is elevation in kilometers and P is the percentage of partial pressure relative to sea level. Various studies 379 380 corroborate that SI and SD of many plants have positive correlations with altitude (Körner and Cochrane, 1985; Woodward, 1986; Woodward and Bazzaz, 1988; 381 382 Beerling et al., 1992; Rundgren and Beerling, 1999) while they are negatively related 383 to the partial pressure of $CO_2$ (Woodward and Bazzaz, 1988). Therefore, it is essential 384 to take elevation calibration into account during the pCO<sub>2</sub> concentration estimates. 385 However, Royer (2003) pointed out that it is unnecessary make thisto provide this conversion when the trees lived at <250 m in elevation. In this paper, the nearest 386 387 living equivalent species, Nageia motleyi, grows at $\frac{51}{5}$ m in elevation with P =99.599.9, suggesting that $CO_2$ concentration estimates were only underestimated by 388 0.50.1%. Consequently, no correction is needed for the reconstruction result in this 389 390 study. After being projected into a long-term carbon cycle model (GEOCARB III; Berner and Kothaval á 2001), the results of this study compares well with CO<sub>2</sub> 391 concentrations for corresponding age within their error ranges (Fig. 5). 392 393 **5** Discussion 394

| 396 | 5.1 Stomatal parameters response to CO <sub>2</sub>                                                 |
|-----|-----------------------------------------------------------------------------------------------------|
| 397 | Here, we find that SD decreases as atmospheric CO <sub>2</sub> concentrations increase,             |
| 398 | however, SI does not. Generally, SI is more sensitive in response to the atmospheric                |
| 399 | CO <sub>2</sub> concentration than SD (Beerling, 1999; Royer, 2001). However, the reverse case      |
| 400 | is not unfound. For example, Kouwenberg et al. (2003) reported that SD is better than               |
| 401 | SI in reflecting the negative relationships with CO <sub>2</sub> in conifer needles, accounting for |
| 402 | the special paralleled mode of the ordinary epidermal and stomatal formation.                       |
| 403 | Although Nageia is broad-leaved rather than needle-leaved, it also has well paralleled              |
| 404 | epidermal cells herein showing the different relationships between CO <sub>2</sub> and SD or SI.    |
| 405 | Compared with SD, the SDL has weaker correlation with $CO_2$ at a smaller $R^2$ . The               |
| 406 | SNL and TSDL have no response to the change of CO <sub>2</sub> . The insensitivity of SNL,          |
| 407 | SDL and TSDL might account for the characters of broad-leaved leaf shape and                        |
| 408 | paralleled epidermal cells. The SNL should be applied to conifer needles with single                |
| 409 | file of stomata (Kouwenberg et al., 2003). The SDL and TSDL were considered as the                  |
| 410 | most appropriate method when the stomatal rows grouped in bands in a hypo- or                       |
| 411 | amphistomatal conifer needle species (Kouwenberg et al., 2003). Considering all the                 |
| 412 | stomatal parameters above, SD appears to be the most sensitive to CO <sub>2</sub> .                 |
| 413 | The SD-CO <sub>2</sub> correlation shows one value from leaf No. 40798 offset from the              |
| 414 | others. The SI-CO <sub>2</sub> correlation shows different offset values in different leaf sides.   |
| 415 | The offset values might be affected by leaf maturity and light intensity. However, it is            |
| 416 | hard to distinguish whether a fossil leaf is young or mature, or live in the sunny or               |
| 417 | shady light regimes.                                                                                |

# 6 5.1 Stomatal parameters response to CO

| 418                                           | The $R^2$ value (0.5) of SD-CO <sub>2</sub> based on the adaxial side is higher than from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 419                                           | abaxial side and the combination of both sides, indicating that the correlation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 420                                           | SD-CO <sub>2</sub> is stronger than the others parameters herein. Therefore, the SD on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 421                                           | adaxial side is the best in reconstructing pCO <sub>2</sub> . The reconstruction result based on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 422                                           | regression approach is $351.9 \pm 6.6$ ppmv lower than the one based on the stomatal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 423                                           | ratio method (Table 6), and it is relatively lower than the results based on the other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 424                                           | proxies (Fig. 6; Freeman and Hayes, 1992; Pagani et al., 2005; Maxbauer et al., 2014).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 425                                           | However, the result based on stomatal ratio method is $537.5 \pm 56.5$ ppmv which is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 426                                           | closest to GEOCARB III (Fig. 5) and historical reconstruction trends (Fig. 6).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 427                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 428                                           | 5.1-2 Paleoclimate reconstructed history                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 429                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 429<br>430                                    | The pCO <sub>2</sub> <u>levels</u> throughout the Cenozoic <del>was were</del> relatively lower than the levels                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                               | The pCO <sub>2</sub> <u>levels</u> throughout the Cenozoic was were relatively lower than the levels through the Cretaceous (Ekart et al., 1999), but it is had an overall decreasing trend                                                                                                                                                                                                                                                                                                                                                                                  |
| 430                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 430<br>431                                    | through the Cretaceous (Ekart et al., 1999), but it is had an overall decreasing trend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 430<br>431<br>432                             | through the Cretaceous (Ekart et al., 1999), but it is had an overall decreasing trend<br>with some significantly changesincreases on short-time scales (e.g. in the earliest                                                                                                                                                                                                                                                                                                                                                                                                |
| 430<br>431<br>432<br>433                      | through the Cretaceous (Ekart et al., 1999), but it is had an overall decreasing trend<br>with some significantly changesincreases on short-time scales (e.g. in the earliest<br>Eocene and middle Miocene, Zachos et al., 2001, 2008; Wing et al., 2005; Lowenstein                                                                                                                                                                                                                                                                                                         |
| 430<br>431<br>432<br>433<br>434               | through the Cretaceous (Ekart et al., 1999), but it is had an overall decreasing trend<br>with some significantly changesincreases_on short-time scales (e,g. in the earliest<br>Eocene and middle Miocene, Zachos et al., 2001, 2008; Wing et al., 2005; Lowenstein<br>and Demicco, 2006; Fletcher et al., 2008; Zachos et al., 2008; Bijl et al., 2010; Kato et                                                                                                                                                                                                            |
| 430<br>431<br>432<br>433<br>434<br>435        | through the Cretaceous (Ekart et al., 1999), but it is had an overall decreasing trend<br>with some significantly changesincreases_on short-time scales (e.g. in the earliest<br>Eocene and middle Miocene, Zachos et al., 2001, 2008; Wing et al., 2005; Lowenstein<br>and Demicco, 2006; Fletcher et al., 2008; Zachos et al., 2008; Bijl et al., 2010; Kato et<br>al., 2011). There is a wide range in pCO <sub>2</sub> estimates for the Paleogene, reflecting both-                                                                                                     |
| 430<br>431<br>432<br>433<br>434<br>435<br>436 | through the Cretaceous (Ekart et al., 1999), but <u>it is had an overall decreasing trend</u><br>with some significant <del>ly changesincreases_on short-time scales</del> (e.g. in the earliest<br>Eocene and middle Miocene, Zachos et al., 2001, 2008; Wing et al., 2005; Lowenstein<br>and Demicco, 2006; Fletcher et al., 2008; Zachos et al., 2008; Bijl et al., 2010; Kato et<br>al., 2011). There is a wide range in pCO <sub>2</sub> estimates for the Paleogene, reflecting both-<br>problems in the various proxies. Both the fractionation of carbon isotopes by |

the Paleocene.

| 441 | Based on the measurements of palaeosol carbon isotopes, Cerling (1991) reported                 |
|-----|-------------------------------------------------------------------------------------------------|
| 442 | that $pCO_2$ levels for the Eocene and Miocene through to the present was lower than            |
| 443 | 700 ppmv. Fletcher et al. (2008) also showed that an atmospheric $CO_2$ levels of were          |
| 444 | approximately 680 ppmv by 60 million years ago. However, Stott (1992)                           |
| 445 | reconstructed pCO <sub>2</sub> as $450$ —550 ppmv for the early Eocene based on phytoplankton.  |
| 446 | Additionally, the reconstructions using the stomatal ratio method based on the leaves-          |
| 447 | of Ginkgo, Metasequoia, and Lauraceae <u>leaves</u> also revealed a low $pCO_2$ level           |
| 448 | between 300 and 500 ppmv during the early Eocene (Kürschner et al., 2001; Royer et              |
| 449 | al., 2001; Greenwood et al., 2003; Royer, 2003) except a single high estimate of about          |
| 450 | 800 ppmv near the Paleocene/Eocene boundary (Royer et al., 2001).                               |
| 451 | Subsequently, Smith et al. (2010) reconstructed the value of $pCO_2$ ranging from 580           |
| 452 | $\pm 40$ to 780 $\pm 50$ ppmv using the stomatal ratio method (recent standardization) based    |
| 453 | on both SI and SD. A climatic optimum occurred in the middle Eocene (MECO): the                 |
| 454 | reconstructed CO <sub>2</sub> concentrations are mainly between 700 and 1000 ppmv during the    |
| 455 | late middle Eocene climate transition (42-38 Ma) using stomatal indices of fossil               |
| 456 | Metasequoia needles, but concentrations declined to 450 ppmv toward the top of the              |
| 457 | investigated section (Doria et al., 2011). Jacques et al. (20122014) used CLAMP to              |
| 458 | calibrate climate change in Antarctica during the early-middle Eocene, suggesting a             |
| 459 | seasonal alternation of high- and low-pressure systems over Antarctica during the               |
| 460 | early-middle Eocene. Spicer et al. (2014) also reconstructed a relatively lower cool            |
| 461 | temperature than $\delta^{18}$ O records (Keating-Bitonti et al., 2011) in the middle Eocene of |

| 462 | Hainan Island, South China using CLAMP, indicating a not uniformly warm climate                                 |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 463 | in the low latitude during the Eocene. The two results of our study agree well with the                         |
| 464 | estimates of approximately the same period based on phytoplankton (Freeman and                                  |
| 465 | Hayes, 1992; Ekart et al., 1999; Pagani et al., 2005) and other stomatal studies-                               |
| 466 | (McElwain, 1998) (Fig. 5). The pCO <sub>2</sub> level showed an <u>An</u> overall decreasing trend <u>of</u>    |
| 467 | the pCO <sub>2</sub> level was presented after the MECO periodmiddle Eocene, indicating the                     |
| 468 | consistance with the pCO <sub>2</sub> -levels herein (Fig. 56; Retallack, 2009-b).                              |
| 469 | The ice-sheets started to appear in the Antarctic during the Late Eocene (Zachos et                             |
| 470 | al., 2001), then the temperature suffered an apparent further decrease from the late                            |
| 471 | Eccene to the early Oligocene (Roth-Nebelsick et al., 2004), which resulted in the                              |
| 472 | Antarctic being almost fully covered by ice-sheets. Subsequently, the climate                                   |
| 473 | variation was comparatively stable with a little wobbling in temperature during the                             |
| 474 | Oligocene period (Fig. 56), while a small and ephemeral Late Oligocene Warming                                  |
| 475 | was present in the latest part of the Oligocene, resulting in reducing the ice sheets in-                       |
| 476 | Antarctic ice sheets to a minimum and forming a brief period of glaciation at that time                         |
| 477 | (Zachos et al., 2001). During the Middle Miocene, a quick rise in temperature was                               |
| 478 | shown, which was followed by a small glaciation (Fig. 56; Zachos et al., 2001;                                  |
| 479 | Roth-Nebelsick et al., 2004; Beerling and Royer, 2011). Subsequently, the CO <sub>2</sub>                       |
| 480 | concentration decreased gradually and reached 280 ppmv until the period of the                                  |
| 481 | industrial revolution (Fig. $\frac{56}{2}$ ). Since then, however, the CO <sub>2</sub> concentration rebounded_ |
| 482 | to present day level.                                                                                           |
|     |                                                                                                                 |

483 In conclusion, although various results were made by different pCO<sub>2</sub> reconstruction

| 484 | proxies at the same time, their entire decreasing tendency of $pCO_2$ level are                |
|-----|------------------------------------------------------------------------------------------------|
| 485 | remarkably consistent with each other since the Eocene (Fig. $56$ ). Furthermore, ig. 6        |
| 486 | shows that during the Eocene the temperature was higher than at present. The                   |
| 487 | reconstructed pCO <sub>2</sub> concentration of 351.9 $\pm$ 6.6 ppmv based on the regression   |
| 488 | approach SD of fossil Nageia are 391.0 $\pm$ 41.1 ppmv and 386.5 $\pm$ 27.8 is ppmv,           |
| 489 | showing shows a remarkably low pCO <sub>2</sub> level during the early late Eocene. The result |
| 490 | based on the stomatal ratio method of 537.5 $\pm$ 56.5 ppmv is closely consistent with         |
| 491 | the pCO <sub>2</sub> changes over the geological ages (Fig. 6).                                |
| 492 |                                                                                                |
| 493 | 5.2 Implications from Nageia motleyi ecology                                                   |
| 494 |                                                                                                |
| 495 | Nageia motleyi is restrictedly distributed in the southern half of Malay Peninsula,            |
| 496 | adjacent Sumatra, and southern Borneo (Fig. 1a) with the mean annual temperature of            |
| 497 | ca. 25–30 ℃ which is higher than South China (ca. 20–25 ℃; Fig. 1a). This species is-          |
| 498 | generally scattered in the canopy of primary and secondary rainforests on massive-             |
| 499 | substrates and situations from well-drained, even arid, slopes to waterlogged peat-            |
| 500 | swamps at elevations of 15-500 (~1000) m (Eckenwalder, 2009) and in Borneo-                    |
| 501 | surviving where there is deep peat in a mixed ramin-peat swamp, ridges, and hill sides         |
| 502 | in bindang-dipterocarp forest, and 1,000 m on podsolic sandy loam (Coomes and                  |
| 503 | Bellingham, 2011). All the living ecological characteristics of N. motleyi provide a           |
| 504 | significant implication that the temperature during the Late Eocene might have been-           |
| 505 | similar to that in the area where N. motleyi grows today.                                      |

| 506 | Palynological assemblages from the late Eocene of Maoming Basin of Guangdong-                      |
|-----|----------------------------------------------------------------------------------------------------|
| 507 | (Aleksandrova et al., 2012) suggest that the Youganwo Formation was humid, and the-                |
| 508 | Huangniuling Formation had an increase of average annual temperatures and                          |
| 509 | humidity during this period. Additionally, according to the winged fruits Shorea-                  |
| 510 | maomingensis Feng, Kodrul et Jin (Dipterocarpaceae) recovered from the late Eocene-                |
| 511 | of the Huangniuling Formation of the Maoming Basin and the living conditions of                    |
| 512 | modern Shorea, Feng et al. (2013) point out the occurrence of seasonally dry climate-              |
| 513 | at that time and a temperature higher than today.                                                  |
| 514 | In this article, we reconstructed the pCO <sub>2</sub> of the late Eocene as $391.0 \pm 41.1$ ppmv |
| 515 | and 386.5 $\pm$ 27.8 ppmv, which are distinctly higher than the CO <sub>2</sub> level of           |
| 516 | 289.23-313.73 ppmv from extant leaves collected from 1968 to 1955 (Table 1), but                   |
| 517 | similar to the extant CO <sub>2</sub> concentration of 387.35–401.52 ppmv from 2009 to 2015-       |
| 518 | (Brown, 2010; Pieter and Keeling, 2015). Compares with the reconstruction results in-              |
| 519 | figure 5, our estimates show comparatively low pCO <sub>2</sub> concentration during the late-     |
| 520 | Eccene. Combined with the low pCO2 and the living conditions of N. sect.                           |
| 521 | Dammaroideae (adapted to warm areas of East Asia) (Fig. 1), we conclude that the                   |
| 522 | other factors may have played a role in the global climate changing process. Owing to              |
| 523 | the totally decreasing trend of the global climate change from the late Eocene-                    |
| 524 | reconstructed based on the proxies of stomata, paleosols, phytoplankton and B/Ca-                  |
| 525 | (Fig. 5), the plants of N. Sect. Demmaroideae migrated toward south and ultimately-                |
| 526 | disappeared from South China (Fig. 1).                                                             |
| 527 |                                                                                                    |

### 528 6 Conclusion

| 525 |                                                                                                              |
|-----|--------------------------------------------------------------------------------------------------------------|
| 530 | In this study, we reconstructed the late Eocene $pCO_2$ based on the fossil leaves of                        |
| 531 | Nageia maomingensis Jin et Liu from the late Eocene of Maoming Basin, Guangdong                              |
| 532 | Province, China. Nageia is a special element in conifers by its broad multi-veined leaf                      |
| 533 | that lacks mid-vein. The stomatal data analysis suggests that only stomatal densities                        |
| 534 | (SD) from both sides of Nageia motleyi leaves have significant negative correlations                         |
| 535 | with the atmospheric CO <sub>2</sub> concentration. The SD from the adaxial side gives the best              |
| 536 | correlation to the CO <sub>2</sub> . Based on SDs, the pCO <sub>2</sub> concentration is reconstructed using |
| 537 | both the regression approach and the stomatal ratio method. The pCO <sub>2</sub> result based on             |
| 538 | the regression approach is $351.9 \pm 6.6$ ppmv, showing a relatively lower CO <sub>2</sub> level.           |
| 539 | The reconstructed result based on the stomatal ratio method is $537.5 \pm 56.5$ ppmv                         |
| 540 | consistent with the variation trends based on the other proxies. Here, we explored the                       |
| 541 | potential of <i>N. maomingensis</i> in pCO <sub>2</sub> reconstruction and obtained different results        |
| 542 | according to different methods, providing a new insight for the reconstruction of                            |
| 543 | paleoclimate and paleoenvironment in conifers. The stomatal data analysis suggests                           |
| 544 | only the stomatal densities from both sides of Nageia motleyi leaves have significant                        |
| 545 | negative correlations with the atmospheric CO <sub>2</sub> concentration, suggesting that we                 |
| 546 | can estimate the pCO2 of the Eocene in South China based on the stomatal densities-                          |
| 547 | of the Eocene fossil leaves of N. maomingensis and their nearest living equivalent                           |
| 548 | species N. motleyi. Based on the stomatal ratio method, pCO <sub>2</sub> concentration of the late           |
| 549 | Eccene of Macming Basin, Guangdong Province, is reconstructed as $391.0 \pm 41.1$                            |
|     |                                                                                                              |

| 550 | ppmv (based on the adaxial side of leaf cuticles) and 386.5 $\pm$ 27.8 ppmv (based on the         |
|-----|---------------------------------------------------------------------------------------------------|
| 551 | abaxial side of leaf cuticles), showing low pCO <sub>2</sub> levels during the globally warm      |
| 552 | epoch of the Eocene, which is significantly higher than the historical CO <sub>2</sub> .          |
| 553 | concentrations from 1868 to 1955 (around the industrial atmospheric level, 300 ppmv)              |
| 554 | and similar to the concentration of today.                                                        |
| 555 |                                                                                                   |
| 556 | Acknowledgements. This study was supported by the National Natural Science                        |
| 557 | Foundation of China (Grant No. 41210001, 41572011), the National Basic Research-                  |
| 558 | Program of China (973 Program) (Grant No. 2012CB822003), State Key Laboratory-                    |
| 559 | of Palacobiology and Stratigraphy (Nanjing Institute of Geology and Palacontology,                |
| 560 | CAS) (Grant No. 123110), the Fundamental Research Funds for the Central                           |
| 561 | Universities (Grant No.121gjc04), and the Guangdong Provincial Natural Science-                   |
| 562 | Foundation of China (Grant No.10151027501000020), the Key Project of Sun Yat-sen                  |
| 563 | University for inviting foreign teachers <del>, the Scientific Research Fund, Hongda Zhang,</del> |
| 564 | Sun Yat-sen University, and the State Scholarship Fund of China Scholarship Council-              |
| 565 | (CSC) (File No. 201306380046). We greatly thank the Sun Yet-sen (SYS) University-                 |
| 566 | Herbarium and the Herbarium of the V.L. Komarov Botanical Institute of the Russian                |
| 567 | Academy of Sciences (LE) for their permission to examine and collect extant Nageia                |
| 568 | specimens. We also express sincere gratitude to Prof. Sun Tongxing (Yancheng                      |
| 569 | Teachers University), Dr. David Boufford (Harvard University) and Dr. Richard                     |
| 570 | Chung Cheng Kong (Forest Research Institute Malaysia) for providing extant N.                     |
| 571 | motleyi leaves from the herbarium of the Royal Botanic Garden at Edinburgh (E), the               |

| 572 | Harvard University Herbaria (A/GH) and the herbarium of Forest Research Institute                   |
|-----|-----------------------------------------------------------------------------------------------------|
| 573 | Malaysia (KEP). We sincerely appreciate the guidance of Chengqian Wang (Harbin                      |
| 574 | Institute of Technology) on preparing Figs. $3-\underline{56}$ . We also offer sincere gratitude to |
| 575 | Professor Prof. Steven R. Manchester and Mr. Terry Lott (Florida Museum of Natural                  |
| 576 | History, University of Florida) for suggestions and modificationand Ms. Margaret-                   |
| 577 | Joyner (US) for editing.                                                                            |

| 578 | References |  |
|-----|------------|--|
| 5/8 | References |  |

| 579 | Aleksandrova, G. N., Kodrul, T. M., Liu, X. Y., Song, Y. S., and Jin, J. H.:-                |
|-----|----------------------------------------------------------------------------------------------|
| 579 | Arcksandrova, G. W., Kodrul, T. M., Elu, A. T., Song, T. S., and Jin, J. H.                  |
| 580 | Palynological characteristics of the upper part of the Youganwo Formation and                |
| 581 | lower part of the Huangniuling Formation, Maoming Basin, South China, in:-                   |
| 582 | Proceedings, The 2nd Sino Russian Seminar on Evolution and Development of                    |
| 583 | Eastern Asia Flora based on Palaeobotanical Data, Sun Yat-sen University,                    |
| 584 | Guangzhou, China, 3–15, 2012.                                                                |
| 585 | Bai, Y. J., Chen, L. Q., Ranhotra, S. P., Wang, Q., Wang, Y. F., Li, C. S.:                  |
| 586 | Reconstructing atmospheric CO <sub>2</sub> during the Plio–Pleistocene transition by fossil  |
| 587 | <i>Typha</i> . Global Change Biology, 21, 874–881, doi:10.1111/gcb.12670, 2015.              |
| 588 | Barnett, T. P., Pierce, D. W., and Schnur, R.: Detection of anthropogenic climate-           |
| 589 | change in the world's oceans, Science, 292, 270-274,                                         |
| 590 | doi:10.1126/science.1058304, 2001.                                                           |
| 591 | Beerling, D. J.: Stomatal density and index: theory and application, in: Jones, T. P.,       |
| 592 | and Rowe, N. P., (Eds.), Fossil Plants and Spores: Modern Techniques,                        |
| 593 | Geological Society, London, 251–256, 1999.                                                   |
| 594 | Beerling, D. J., and Kelly, C. K.: Stomatal density responses of temperate woodland          |
| 595 | plants over the past seven decades of CO <sub>2</sub> increase: A comparison of salisbury    |
| 596 | (1927) with contemporary data, American Journal of Botany, 84, 1572–1583,                    |
| 597 | <u>1997.</u>                                                                                 |
| 598 | Beerling, D. J., and Royer, D. L.: Reading a CO <sub>2</sub> signal from fossil stomata, New |
| 599 | Phytologist, 153, 387-397, doi:10.1046/j.0028-646X.2001.00335.x, 2002.                       |

- 600 Beerling, D. J., and Royer, D. L.: Convergent Cenozoic CO<sub>2</sub> history, Natural
- 601 Geoscience, 4, 418–420, doi:10.1038/ngeo1186, 2011.
- 602 Beerling, D. J., Chaloner, W. G., Huntley, B., Pearson, J. A., Tooley, M. J., and
- 603 Woodward, F. I.: Variations in the stomatal density of *Salix herbacea* L. under
- the changing atmospheric  $CO_2$  concentrations of late- and post-glacial time,
- 605 Philosophical Transactions of the Royal Society of London, ser. B. 336, 215–224,
- 606 doi:10.1098/rstb.1992.0057, 1992.
- 607 Beerling, D. J., Fox, A., and Anderson, C. W.: Quantitative uncertainty analyses of
- 608 <u>ancient atmospheric CO<sub>2</sub> estimates from fossil leaves, American Journal of</u>
- 609 <u>Science</u>, 309, 775–787, doi:10.2475/09.2009.01, 2009.
- 610 Beerling, D. J., Lomax, B. H., Royer, D. L., Upchurch Jr., G. R., and Kump, L. R.: An
- $atmospheric pCO_2$  reconstruction across the Cretaceous-Tertiary boundary from
- 612 leaf megafossils, Proceedings of the National Academy of Sciences of the United

613 States of America, 99, 7836–7840, doi:10.1073/pnas.122573099, 2002.

- 614 Berner, R. A.: GEOCARB II: A revised model of atmospheric CO<sub>2</sub> over Phanerozoic
- 615 time, American Journal of Science, 294, 56–91,<u>-dd</u>oi:10.2475/ajs.294.1.56,
- 616 1994.
- 617 Berner, R. A., and Kothaval á, Z.: GEOCARB III: A revised model of Atmospheric
- $CO_2$  over Phanerozoic time, American Journal of Science, 301, 182–204,
- 619 doi:10.2475/ajs.301.2.182, 2001.
- 620 Bijl, P. K., Houben, A. J. P., Schouten, S., Bohaty, S. M., Sluijs, A., Reichart, G.,
- 621 Sinninghe Damst é, J. S., and Brinkhuis, H.: Transient Middle Eocene

- atmospheric  $CO_2$  and temperature variations, Science, 330, 819–821,
- 623 doi:10.1126/science.1193654, 2010.
- 624 Brown, L. R.: Atmospheric carbon dioxide concentration, 1000-2009 (Supporting
- 625 data), in: Brown, L. R., (Eds.), World on the Edge: How to Prevent
- 626 Environmental and Economic Collapse. Chapter 4 Data: Rising Temperatures,
- 627 Melting Ice, and Food Security, Earth policy institute, Norton, W.W. & Company,
- 628 New York, London (<u>http://www.earth-policy.org/books/wote/wote\_data</u>), 2010.
- 629 Cerling, T. E.: Carbon dioxide in the atmosphere: evidence from Cenozoic and
- 630 Mesozoic palaeosols, American Journal of Science, 291, 377–400,
- 631 doi:10.2475/ajs.291.4.377, 1991.
- 632 Cerling, T. E.: Use of carbon isotopes in paleosols as an indicator of the  $P(CO_2)$  of the
- paleoatmosphere, Global Biogeochemical Cycles, 6, 307–314,
- 634 doi:10.1029/92GB01102, 1992.
- 635 Chaloner, W. G., and McElwain, J. C.: The fossil plant record and global climate
- change, Review of Palaeobotany and Palynology, 95, 73–82,
- 637 doi:10.1016/S0034-6667(96)00028-0, 1997.
- 638 Cheng, W. C., Fu, L. K., and Chao, C. S.: *Podocarpus* (Podocarpaceae), in: Cheng,
- 639 Wanch ün, and Fu, Likuo, (Eds.), Flora of China, Science Press, Beijing, 7,
- 640 398–422, 1978 (in Chinese).
- 641 Coomes, D. A., and Bellingham, P. J.: Temperate and tropical podocarps: How-
- 642 ecologically alike are they, Smithsonian Contributions to Botany, 95, 119–140,
- 643 doi:10.5479/si.0081024X.95.119, 2011.

| 644 | Crowley, T. J.: Causes of climate change over the past 1000 years, Science, 289,        |
|-----|-----------------------------------------------------------------------------------------|
| 645 | <del>270-277, doi:10.1126/science.289.5477.270, 2000.</del>                             |
| 646 | DeConto, R. M., Galeotti S., Pagani M., Tracy, D., Schaefer, K., Zhang, T. J., Pollard, |
| 647 | D. and Beerling, D. J.: Past extreme warming events linked to massive carbon-           |
| 648 | release from thawing permafrost. Nature, 484, 87-91, doi:10.1038/nature10929,           |
| 649 | <del>2012.</del>                                                                        |
| 650 | Doria, G., Royer, D. L., Wolfe, A. P., Fox, A., Westgate, J. A., and Beerling, D. J.:   |
| 651 | Declining atmospheric CO <sub>2</sub> during the Late Middle Eocene climate transition, |
| 652 | American Journal of Science, 311, 63–75, doi:10.2475/01.2011.03, 2011.                  |
| 653 | Eckenwalder, J. E.: Conifers of the world: the complete reference, Timber Press,        |
| 654 | Portland London, 352–357, 2009.                                                         |
| 655 | Ekart, D. D., Cerling, T. E., Montanez, I. P., and Tabor, N. J.: A 400 million year     |
| 656 | carbon isotope record of pedogenic carbonate: implications for paleoatmospheric         |
| 657 | carbon dioxide, American Journal of Science, 299, 805-827,                              |
| 658 | doi:10.2475/ajs.299.10.805, 1999.                                                       |
| 659 | Feng, X. X., Tang, B., Kodual, T. M., and Jin J. H.: Winged fruits and associated       |
| 660 | leaves of Shorea (Dipterocarpaceae) from the Late Eocene of South China and             |
| 661 | their phytogeographic and paleoclimatic implications, American Journal of               |
| 662 | Botany, 100, 574–581, doi:10.3732/ajb.1200397, 2013.                                    |
| 663 | Fletcher, B. J., Brentnall, S. J., Anderson, C. W., Berner, R. A., and Beerling, D. J.: |
| 664 | Atmospheric carbon dioxide linked with Mesozoic and Early Cenozoic climate              |
| 665 | change, Nature Geoscience, 1, 43-48, doi:10.1038/ngeo.2007.29, 2008.                    |

| 666 | Freeman, K. H., and Hayes, J. M.: Fractionation of carbon isotopes by phytoplankton        |
|-----|--------------------------------------------------------------------------------------------|
| 667 | and estimates of ancient CO <sub>2</sub> levels, Global Biogeochemical Cycles, 6, 185–198, |
| 668 | doi:10.1029/92GB00190, 1992.                                                               |
| 669 | Fu, D. Z.: Nageiaceae – a new gymnosperm family, Acta Phytotaxonomica Sinica, 30,          |
| 670 | 515–528, 1992 (in Chinese with English summary).                                           |
| 671 | Fu L. K., Li Y., and Mill, R. R.: Podocarpaceae, in: Wu Z. Y., and Raven, P. H., (Eds.),   |
| 672 | Flora of China, Science Press, Beijing, 4, 78–84, 1999.                                    |
| 673 | Gale, J.: Availability of carbon dioxide for photosynthesis at high altitudes: theoretical |
| 674 | considerations, Ecology, 53, 494-497, doi:10.2307/1934239, 1972.                           |
| 675 | Greenwood, D. G., Scarr, M. J., and Christophel, D. C.: Leaf stomatal frequency in the     |
| 676 | Australian tropical rain forest tree Neolitseadealbata (Lauraceae) as a proxy              |
| 677 | measure of atmospheric $pCO_2$ , Palaeogeography, Palaeoclimatology.                       |
| 678 | Palaeoecology, 196, 375–393, doi:10.1016/S0031-0182(03)00465-6, 2003.                      |
| 679 | Grein, M., Oehm, C., Konrad, W., Utescher, T., Kunzmann, L., and Roth-Nebelsick,           |
| 680 | A.: Atmospheric CO <sub>2</sub> from the late Oligocene to early Miocene based on          |
| 681 | photosynthesis data and fossil leaf characteristics, Palaeogeography,                      |
| 682 | Palaeoclimatology, Palaeoecology, 374, 41–51,                                              |
| 683 | doi:10.1016/j.palaeo.2012.12.025, 2013.                                                    |
| 684 | Henderiks, J., and Pagani, M.: Coccolithophore cell size and the Paleogene decline in      |
| 685 | atmospheric CO <sub>2</sub> , Earth and Planetary Science Letters 269, 575–583,            |
| 686 | doi:10.1016/j.eps1.2008.03.016, 2008.                                                      |
| 687 | Harries, J. E., Brindley, H. E., Sagoo, P. J., and Bantges, R. J.: Increases in greenhouse |

| -   |                                                                                         |
|-----|-----------------------------------------------------------------------------------------|
| 688 | forcing inferred from the outgoing long wave radiation spectra of the Earth in 1970-    |
| 689 | and 1997, Nature, 410, 355-357, doi:10.1038/35066553, 2001.                             |
| 690 | Hill, R. S., and Pole, M. S.: Leaf and shoot morphology of extant Afrocarpus, Nageia    |
| 691 | and Retrophyllum (Podocarpaceae) species, and species with similar leaf                 |
| 692 | arrangement, from Tertiary sediments in Australasia, Australian Systematic              |
| 693 | Botany, 5, 337–358, doi:10.1071/SB9920337, 1992.                                        |
| 694 | Hu, J. J., Xing, Y. W., Turkington, R., Jacques, F. M. B. Su, T., Huang, Y. J. and Zhou |
| 695 | Z. K.: A new positive relationship between pCO <sub>2</sub> and stomatal frequency in   |
| 696 | Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO <sub>2</sub> levels     |
| 697 | Annals of Botany, 1-12, doi:10.1093/aob/mcv007, 2015.                                   |
| 698 | Huang, C., Retallack, G. J., Wang, C., and Huang, Q.: Paleoatmospheric pCO <sub>2</sub> |
| 699 | fluctuations across the Cretaceous-Tertiary boundary recorded from paleosol             |
| 700 | carbonates in NE China, Palaeogeography, Palaeoclimatology, Palaeoecology,              |
| 701 | 385, 95–105, doi.org/10.1016/j.palaeo.2013.01.005, 2013.                                |
| 702 | Jacques, F. M. B., Shi, G. L., Li, H. M., and Wang, W. M.: An Early-Middle Eocene       |
| 703 | Antarctic summer monsoon: Evidence of 'fossil climates', Gondwana Research,             |
| 704 | 25, 1422–1428, doi:10.1016/j.gr.2012.08.007-(Accepted manuscript), 20122014.            |
| 705 | Jin, J. H., Qiu, J., Zhu, Y. A., and Kodrul, T. M.: First fossil record of the genus    |
| 706 | Nageia (Podocarpaceae) in South China and its phytogeographic implications,             |
| 707 | Plant Systematics and Evolution, 285, 159–163, doi:10.1007/s00606-010-0267-4,           |
| 708 | 2010.                                                                                   |
| 709 | Jones, H. G.: Plants and microclimate, Cambridge UK Cambridge University Press,         |

710 1–428, 1992.

| 711 | Kato, Y., Fujinaga, K., and Suzuki, K.: Marine Os isotopic fluctuations in the Early       |
|-----|--------------------------------------------------------------------------------------------|
| 712 | Eocene greenhouse interval as recorded by metalliferous umbers from a Tertiary             |
| 713 | ophiolite in Japan, Gondwana Research, 20, 594–607,                                        |
| 714 | doi:10.1016/j.gr.2010.12.007, 2011.                                                        |
| 715 | Keating-Bitonti, C. R., Ivany, L. C., Affek, H. P., Douglas, P., and Samson, S. D.:        |
| 716 | Warm, not super-hot, temperatures in the early Eocene subtropics, Geology 39,              |
| 717 | <u>771–774, doi: 10.1130/G32054.1, 2011.</u>                                               |
| 718 | Kimura, T., Ohana, T., and Mimoto, K.: Discovery of a podocarpaceous plant from            |
| 719 | the Lower Cretaceous of Kochi Prefecture, in the outer zone of southwest Japan,            |
| 720 | Proceedings of the Japan Academy, ser. B, 64, 213–216, doi:10.2183/pjab.64.213,            |
| 721 | 1988.                                                                                      |
| 722 | Koch, P. L., Zachos, J. C., and Gingerich, P. D.: Correlation between isotope records      |
| 723 | in marine and continental carbon reservoirs near the Palaeocene/Eocene                     |
| 724 | boundary, Nature, 358, 319-322, doi:10.1038/358319a0, 1992.                                |
| 725 | Kouwenberg, L. L. R., McElwain J. C., Kürschner, W. M., Wagner, F., Beerling, S. J.,       |
| 726 | Mayle, F. E., and Visscher, H.: stomatal frequency adjustment of four conifer              |
| 727 | species to historical changes in atmospheric CO <sub>2</sub> , American Journal of Botany, |
| 728 | 90, 610–619, 2003.                                                                         |
| 729 | Körner, Ch., and Cochrane, P. M.: Stomatal responses and water relations of                |
| 730 | Eucalyptus pauciflora in summer along an elevational gradient, Oecologia, 66,              |
| 731 | 443-455, doi:10.1007/BF00378313, 1985.                                                     |

- 732 Krassilov, V. A.: New coniferales from Lower Cretaceous of Primorye, Botanical
- 733 Journal, 50, 1450–1455 (in Russia), 1965.
- 734 Kürschner, W. M., van der Burgh, J., Visscher, H., and Dilcher, D. L.: Oak leaves as
- biosensors of Late Neogene and Early Pleistocene paleoatmospheric CO<sub>2</sub>
- concentrations, Marine Micropaleontology, 27, 299–312,
- doi:10.1016/0377-8398(95)00067-4, 1996.
- 738 Kürschner, W. M., Wagner, F., Dilcher, D. L., and Visscher, H.: Using fossil leaves for
- 739 the reconstruction of Cenozoic paleoatmospheric  $CO_2$  concentrations, in:
- 740 Gerhard, L. C., Harrison, W. E., Hanson, B. M., (Eds.), Geological Perspectives
- of Global Climate Change, APPG Studies in Geology, 47, Tulsa, 169–189, 2001.
- 742 Kürschner, W. M., Kvaček, Z., and Dilcher, D. L.: The impact of Miocene
- atmospheric carbon dioxide fluctuations on climate and the evolution of
- terrestrial ecosystems, Proceedings of the National Academy of Sciences of the
- 745 United States of America, 105, 449–453, doi:-10.1073/pnas.0708588105, 2008.
- 746 Levitus, S., Antonov, J. I., Wang, J., Delworth, T. L., Dixon, K. W., and Broccoli, A. J.:
- 747 Anthropogenic warming of Earth's climate system, Science, 292, 267–270,
   748 doi:10.1126/science.1058154, 2001.
- 749 Liu, X. Y., Gao, Q., and Jin, J. H.: Late Eocene leaves of Nageia Gaertner (section
- *Dammaroideae* Mill) from Maoming Basin, South China and their implications
  on phytogeography, Journal of Systematics and Evolution, <u>53, 297–307, doi:-</u>
- 752 10.1111/jse.12133, 2015.
- 753 Lowenstein, T. K., and Demicco, R. V.: Elevated Eocene atmospheric CO<sub>2</sub> and its

| 754 | subsequent decline, Science, 313, 1928, doi:10.1126/science.1129555, 2006.              |
|-----|-----------------------------------------------------------------------------------------|
| 755 | Mann, M. E., Bradley, R. S., and Hughes, M. K.: Global-scale temperature patterns-      |
| 756 | and climate forcing over the past six centuries, Nature, 392, 779-787,                  |
| 757 | <del>doi:10.1038/33859, 1998.</del>                                                     |
| 758 | McElwain, J. C.: Do fossil plants signal palaeoatmospheric carbon dioxide               |
| 759 | concentration in the geological past, Philosophical Transactions of the Royal           |
| 760 | Society, Lond B, 353, 83-96, doi:10.1098/rstb.1998.0193, 1998.                          |
| 761 | McElwain, J. C., and Chaloner, W. G.: Stomatal density and index of fossil plants       |
| 762 | track atmospheric carbon dioxide in the Palaeozoic, Annals of Botany, 76,               |
| 763 | 389-395, doi:10.1006/anbo.1995.1112, 1995.                                              |
| 764 | McElwain, J. C., and Chaloner, W. G.: The fossil cuticle as a skeletal record of        |
| 765 | environmental changes, Palaios, 11, 376-388, doi: 10.2307/3515247, 1996.                |
| 766 | Mill, R. R.: A new combination in <i>Nageia</i> (Podocarpaceae): Novon, 9, 77–78, 1999. |
| 767 | Mill, R. R.: A new sectional combination in Nageia Gaertn (Podocarpaceae),              |
| 768 | Edinburgh Journal of Botany, 58, 499-501, doi:10.1017/S0960428601000804,                |
| 769 | 2001.                                                                                   |
| 770 | Mitchell, J. F. B., Karoly, D. J., Hegerl, G. C., Zwiers, F. W., Allen, M. R., and      |
| 771 | Marengo, J. : Detection of climate change and attribution of causes, in:-               |
| 772 | Houghton, J. T., Ding Y. H., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai-     |
| 773 | X. S., Maskell, K., and Johnson, C. A., (Eds.), Climate change 2001: The-               |
| 774 | scientific basis, Contribution of Working Group I to the Third Assessment Report        |
| 775 | of the Intergovernmental Panel on Climate Change: Cambridge University Press,           |
|     |                                                                                         |

| 776 | Cambridge, United Kingdom, 1-881, 2001.                                                 |
|-----|-----------------------------------------------------------------------------------------|
| 777 | Matsuo, H.: Catalogue of Trees in Ishikawa Prefecture. Part 1. Fossil species. Forestry |
| 778 | Inst., Ishikawa Prefecture, 35, (in Japanese), 1977.Maxbauer, D. P., Royer, D. L.,      |
| 779 | and LePage, B. A.: High Artic forests during the middle Eocene supported by             |
| 780 | moderate levels of atmospheric CO <sub>2</sub> , Geology, 42, 1027–1030,                |
| 781 | <u>doi:10.1130/G36014.1, 2014.</u>                                                      |
| 782 | Moran, K., Backman, J., Brinkhuis, H., Clemens, S. C., Cronin, T., Dickens, G. R.,      |
| 783 | Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R. W., Kaminski, M., King, J.,       |
| 784 | Koc, N., Krylov, A., Martinez, N., Matthiessen, J., McInroy, D., Moore, T.C.,           |
| 785 | <u>Onodera, J., O'Regan, M., Pälike, H., Rea, B., Rio, D., Sakamoto, T., Smith, D.</u>  |
| 786 | C., Stein, R., St John, K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M.,          |
| 787 | Yamamoto, M., Farrell, J., Frank, M., Kubik, P., Jokat, W., and Kristoffersen, Y.:      |
| 788 | The Cenozoic palaeoenvironment of the Arctic Ocean, Nature, 441, 601–605,               |
| 789 | doi:10.1038/nature04800, 2006.                                                          |
| 790 | Nordt, L., Atchley, S., and Dworkin, S. I.: Paleosol barometer indicates extreme        |
| 791 | fluctuations in atmospheric CO <sub>2</sub> across the Cretaceous-Tertiary boundary,    |
| 792 | <u>Geology, 30, 703–706, doi:10.1130/0091-7613(2002)030&lt;0703:PBIEFI&gt;</u>          |
| 793 | <u>2.0.CO;2, 2002.</u>                                                                  |
| 794 | Pagani, M., Arthur, M. A., and Freeman, K. H.: Miocene evolution of atmospheric         |
| 795 | carbon dioxide, Paleoceanography, 14, doi:10.1029/1999PA900006, 273–292,                |
| 796 | <u>1999.</u>                                                                            |
|     |                                                                                         |

Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S.: Marked decline

- in atmospheric carbon dioxide concentrations during the Paleocene, Science, 309,
- 799 600–603, doi:10.1126/science.1110063, 2005.
- Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide through the
- 801 Eocene-Oligocene climate transition, Nature, 461,
- 802 1110–1113, -doi:10.1038/nature08447, 2009.
- 803 Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender,
- 804 M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M.,
- 805 Legrand, M., Lipenkov, V. Y., Lorius, C., PÉpin, L., Ritz, C., Saltzman, E., and
- 806 <u>Stievenard, M.</u>: Climate and atmospheric history of the past 420,000 years from
- the Vostokicecore, Antarctica, Nature, 399, 429–436, doi:10.1038/20859, 1999.
- Pieter, T., and Keeling, R.: Recent monthly average Mauna Loa CO<sub>2</sub>, NOAA/ESRL,
  www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed March 2015)-, 2015.

810 Poole, I., and Kürschner, W. M.: Stomatal density and index: the practice, in: Jones,

- 811 T.P., and Rowe, N.P., (Eds.), Fossil Plants and Spores: Modern Techniques,
- 812 Geological Society, London, 257–260, 1999.
- Retallack, G. J.: A 300-million-year record of atmospheric carbon dioxide from fossil
  plant cuticles, Nature-, 411, 287–290, doi:10.1038/35077041, 2001.

815 Retallack, G. J.: Greenhouse crises of the past 300 million years, Geological Society

- of America Bulletin, 121, 1441–1455, doi:10.1130/B26341.1, 2009a.
- 817 Retallack, G. J.: Refining a pedogenic-carbonate CO<sub>2</sub> paleobarometer to quantify a
- 818 Middle Miocene greenhouse spike, Palaeogeography, Palaeoclimatology,
- Palaeoecology, 281, 57–65, doi:10.1016/j.palaeo.2009.07.011, 2009b.

| 820 | Roth-Nebelsicka, A., Utescher, T., Mosbrugger, V., Diester-Haass, L., and Walther, H.:         |
|-----|------------------------------------------------------------------------------------------------|
| 821 | Changes in atmospheric CO <sub>2</sub> concentrations and climate from the Late Eocene to      |
| 822 | Early Miocene: palaeobotanical reconstruction based on fossil floras from                      |
| 823 | Saxony, Germany, Palaeogeography, Palaeoclimatology, Palaeoecology, 205,                       |
| 824 | 43-67, doi:10.1016/j.palaeo.2003.11.014, 2004.                                                 |
| 825 | Roth-Nebelsick, A., Grein, M., Utescher, T., and Konrad, W.: Stomatal pore length              |
| 826 | change in leaves of Eotrigonobalanus furcinervis (Fagaceae) from the Late                      |
| 827 | Eccene to the Latest Oligocene and its impact on gas exchange and CO <sub>2</sub> .            |
| 828 | reconstruction, Review of Palaeobotany and Palynology, 174, 106–112,                           |
| 829 | doi:10.1016/j.revpalbo.2012.01.001, 2012.                                                      |
| 830 | Roth-Nebelsick, A., Oehm, C., Grein, M., Utescher, T., Kunzmann, L., Friedrich, JP.,           |
| 831 | and Konrad, W.: Stomatal density and index data of Platanus neptuni leaf fossils               |
| 832 | and their evaluation as a CO <sub>2</sub> proxy for the Oligocene, Review of Palaeobotany      |
| 833 | and Palynology, 206, 1–9, doi:10.1016/j.revpalbo.2014.03.001, 2014.                            |
| 834 | Royer, D. L.: Stomatal density and stomatal index as indicators of paleoatmospheric            |
| 835 | CO <sub>2</sub> concentration, Review of Palaeobotony and Palynology, 114, 1–28,               |
| 836 | doi:10.1016/S0034-6667(00)00074-9, 2001.                                                       |
| 837 | Royer, D. L.: Estimating Latest Cretaceous and Tertiary atmospheric CO <sub>2</sub> from       |
| 838 | stomatal indices, in: Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E.,              |
| 839 | (Eds.), Causes and Consequences of Globally Warm Climates in the Early                         |
| 840 | Paleocene, Geological Society of America Special Paper, 79–93, 2003.                           |
| 841 | Royer, D. L.: CO <sub>2</sub> -forced climate thresholds during the Phanerozoic, Geochimica et |

| 843 | Royer, D. L., Wing, S. L., Beerling, D. J., Jolley, D. W., Koch, P. L., Hickey, L. J., and      |
|-----|-------------------------------------------------------------------------------------------------|
| 844 | Berner, R. A.: Paleobotanical evidence for near present-day levels of atmospheric               |
| 845 | CO <sub>2</sub> during part of the Tertiary, Science, 292, 2310–2313,                           |
| 846 | doi:10.1126/science.292.5525.2310, 2001.                                                        |
| 847 | Rundgren, M., and Beerling, D. J.: A Holocene CO <sub>2</sub> record from the stomatal index of |
| 848 | subfossil Salix herbacea L. leaves from northern Sweden, The Holocene, 9,                       |
| 849 | 509–513, doi:10.1191/095968399677717287, 1999.                                                  |
| 850 | Seki, O, Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and Pancost, R.            |
| 851 | D.: Alkenone and boron-based Pliocene pCO <sub>2</sub> records, Earth and Planetary             |
| 852 | Science Letters, 292, 201-211, doi:10.1016/j.epsl.2010.01.037, 2010.                            |
| 853 | Sinha, A., and Stott, L. D.: New atmospheric pCO <sub>2</sub> estimates from paleosols during   |
| 854 | the late Paleocene/early Eocene global warming interval, Global and Planetary                   |
| 855 | Change, 9, 297-307, doi:10.1016/0921-8181(94)00010-7, 1994,                                     |
| 856 | Smith, R. Y., Greenwood, D. R., and Basinger, J.F.: Estimating paleoatmospheric                 |
| 857 | $pCO_2$ during the Early Eocene Climatic Optimum from stomatal frequency of                     |
| 858 | <i>Ginkgo</i> , Okanagan Highlands, British Columbia, Canada, Palaeogeography <u>.</u>          |
| 859 | Palaeoclimatology, Palaeoecology, 293, 120–131,                                                 |
| 860 | doi:10.1016/j.palaeo.2010.05.006, 2010.                                                         |
| 861 | Spicer, A. R., Herman, A. B., Liao, W. B., Spicer, T. E. V., Kodrul, T. M., Yang, J., and       |
| 862 | Jin, J. H.: Cool tropics in the middle Eocene: Evidence from the Changchang                     |
| 863 | Flora, Hainan Island, China, Palaeogeography, Palaeoclimatology, Palaeoecology,                 |
|     |                                                                                                 |

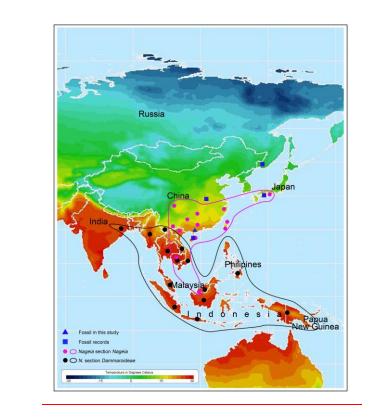
842 Cosmochimica Acta, 70, 5665–5675, doi:10.1016/j.gca.2005.11.031, 2006.

## 412, 1–16, doi:10.1016/j.palaeo.2014.07.011, 2014.

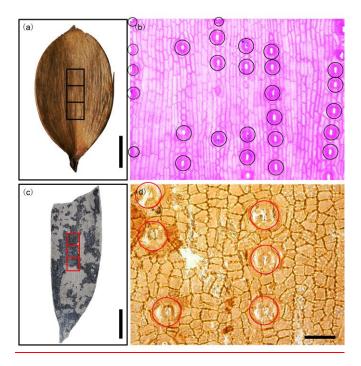
| 865 | Stott, L. D.: | : Higher temperat | ures and lower of | ceanic pCO <sub>2</sub> : A | A climate enigma at the |
|-----|---------------|-------------------|-------------------|-----------------------------|-------------------------|
|     |               |                   |                   |                             |                         |

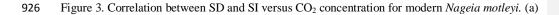
- end of the Paleocene Epoch, Paleoceanography, 7, 395–404,
- doi:10.1029/92PA01183, 1992.
- 868 Stults, D. Z., Wagner-Cremer, F., and Axsmith, B. J.: Atmospheric paleo-CO<sub>2</sub>
- 869 estimates based on *Taxodium distichum* (Cupressaceae) fossils from the Miocene
- and Pliocene of Eastern North America, Palaeogeography Palaeoclimatology
- 871 Palaeoecology, 309, 327–332, doi:10.1016/j.palaeo.2011.06.017, 2011.
- 872 Sun, B. N., Ding, S. T., Wu, J. Y., Dong, C., Xie, S. P., and Lin, Z. C.: Carbon isotope
- and stomatal data of Late Pliocene Betulaceae leaves from SW China:
- 874 Implications for palaeoatmospheric CO<sub>2</sub>-levels, Turkish Journal of Earth
- 875 Sciences, 21, 237–250, doi:10.3906/yer-1003-42, 2012.
- 876 Sun, T. X.: Cuticle micromorphology of Nageia, Journal of Wuhan Botanical
- 877 Research, 26, 554–560, doi:10.3969/j.issn.2095-0837.2008.06.002, 2008 (in
- 878 Chinese with English abstract).
- 879 Tripati, A. K., Roberts, C. D., and Eagle, R. A.: Coupling of CO<sub>2</sub> and ice sheet
- stability over major climate transitions of the last 20 million years, Science, 326,
- 881 1394–1397, doi:10.1126/science.1178296, 2009.
- 882 <u>Van der Burgh, J., Visscher, H., Dilcher, D. L., and Kürschner, W. M.:</u>
- 883 Paleoatmospheric signatures in Neogene fossil leaves, Science, 260, 1788–1790,
- 884 <u>doi:10.1126/science.260.5115.1788, 1993.</u>
- 885 Wang, J. D., Li, H. M., and Zhu Z. Y.: Magnetostratigraphy of Tertiary rocks from

| 886 | Maoming Basin, Guangdong province, China, Chinese Journal of Geochemistry,                       |
|-----|--------------------------------------------------------------------------------------------------|
| 887 | <u>13, 165–175, doi:10.1007/BF02838516, 1994.</u>                                                |
| 888 | Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., and Freeman, K.        |
| 889 | <u>H.</u> : Transient floral change and rapid global warming at the Paleocene-Eocene             |
| 890 | boundary, Science, 310, 993–996, <u>doi:10.1126/science.1116913,</u> 2005.                       |
| 891 | Woodward, F. I.: Ecophysiological studies on the shrub Vaccinium myrtillus L. taken              |
| 892 | from a wide altitudinal range, Oecologia, 70, 580–586, doi:10.1007/BF00379908,                   |
| 893 | 1986.                                                                                            |
| 894 | Woodward, F. I.: Stomatal numbers are sensitive to increases in CO <sub>2</sub> concentration    |
| 895 | from pre-industrial levels, Nature, 327, 617-618, doi:10.1038/327617a0, 1987.                    |
| 896 | Woodward, F. I., and Bazzaz, F. A.: The responses of stomatal density to CO <sub>2</sub> partial |
| 897 | pressure, Journal of Experimental Botany, 39, 1771-1781,                                         |
| 898 | doi:10.1093/jxb/39.12.1771, 1988.                                                                |
| 899 | Yang, J. J., Qi, G. F., and Xu, R. H.: Studies on fossil woods excavated from the Dabie          |
| 900 | mountains, Scientia Silvae Sinicae, 26, 379–386, 1990 (in Chinese with English                   |
| 901 | abstract).                                                                                       |
| 902 | Ye, M. N.: On the preparation methods of fossil cuticle. Palaeontological Society of             |
| 903 | China (Ed.), Selected papers of the 12th Annual conference of the                                |
| 904 | Palaeontological Society of China, Science Press, Beijing, 170–179, 1981 (in                     |
| 905 | Chinese).                                                                                        |
| 906 | Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms,                 |


aberrations in global climate 65 Ma to present, Science, 292, 686–693,

908 doi:10.1126/science.1059412, 2001.


| 909 | Zachos, J., Dickens. | G. R. and Zeebe | , R. E.: An early | y Cenozoic p | perspective on |
|-----|----------------------|-----------------|-------------------|--------------|----------------|
|     |                      |                 |                   |              |                |


- 910 greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283,
- 911 <u>doi:10.1038/nature06588, 2008.</u>

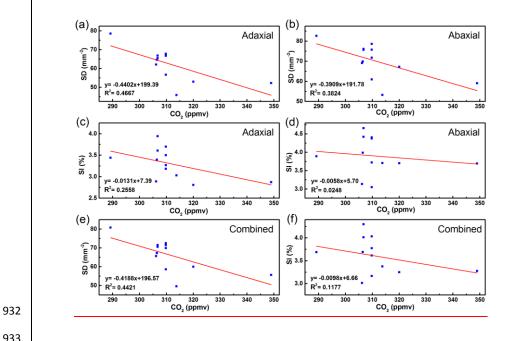
- 913 Figure 1. Map showing the distribution of extant and fossil *Nageia* and their mean annual
- 914 temperature (Modified after the map from
- 915 <u>http://www.sage.wisc.edu/atlas/maps.php?datasetid=35&includerelatedlinks=1&dataset=35</u>).

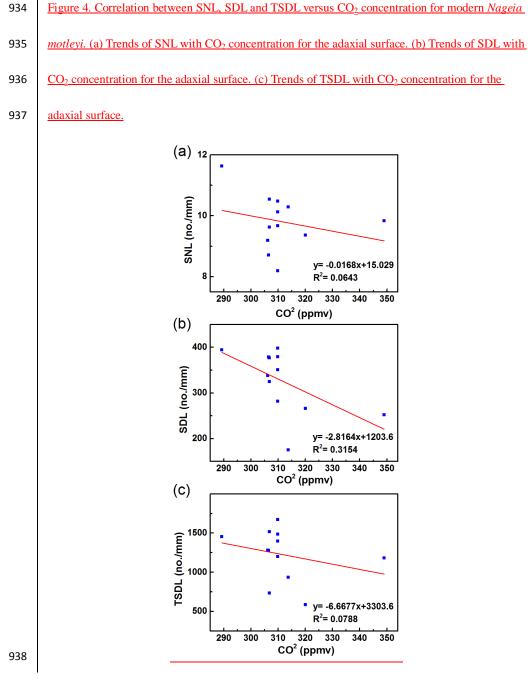


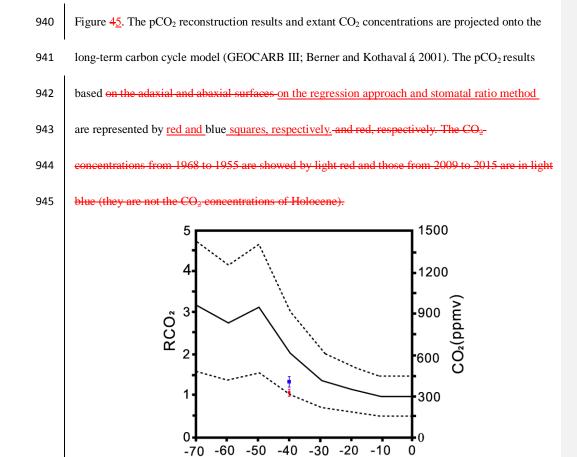
- 918 Figure 2. Sampling areas and counting rules are shown. (a) *Nageia motleyi* (Parl.) De Laub.leaf.
- 919 Black squares in the middle of the leaf show the sampling areas for preparing the cuticles. (b) The
- 920 abaxial side of the cuticle from *N. motleyi* leaf. Black circles show the counted stomatal
- 921 complexes. (c) N. maomingensis Jin et Liu. Red squares in the middle of the leaf indicate the
- 922 sampling areas. (d) The abaxial side of the fossil cuticle. Red circles show the counted stomatal
- 923 complexes. Scale bars: (a) and (c) = 1 cm; (b) and (d) = 50  $\mu$ m.



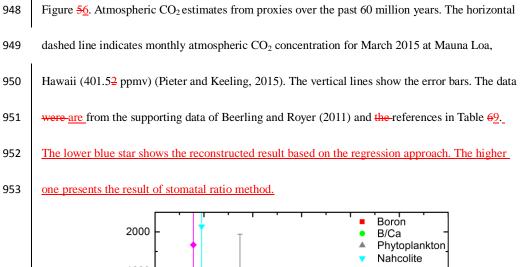


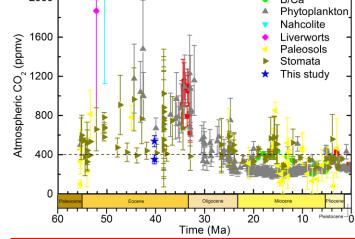

Trends of SD with CO<sub>2</sub> concentration for the adaxial surface. (b) Trends of SD with CO<sub>2</sub> 927


928 concentration for the abaxial surface. (c) Trends of SI with CO<sub>2</sub> concentration for the adaxial


929 surface. (d) Trends of SI with CO<sub>2</sub> concentration for the abaxial surface. (e) Trends of SD with

930 CO<sub>2</sub> concentration for the combined data of both leaf surfaces. (f) Trends of SI with CO<sub>2</sub>








Time (Ma)





| 955 Table 1. Modern <i>Nageia motleyi</i> (Parl.) De Laub samples and atmospheric CO <sub>2</sub> valu | lues of their collection dates from ice core data (Brown, 2010). |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|

| Herbarium       | Collection-              | Collecting levelity                                          | Collectors              | Number of    | <b>Collection</b> | <del>CO</del> 2-  |
|-----------------|--------------------------|--------------------------------------------------------------|-------------------------|--------------|-------------------|-------------------|
|                 | number                   | Collecting locality                                          | Concetors               | leaf samples | date              | <del>(ppmv)</del> |
| LE              | <del>No. 2649</del>      | Malaysia                                                     | <del>Beccari, O.</del>  | 4            | <del>1868</del>   | <del>289.23</del> |
| <del>A/GH</del> | <del>No. bb. 17229</del> | 150 m, Riau on Ond. Karimon, Archipel. Ind.                  | Neth. Ind. For. Service | 2            | <del>1932</del>   | <del>306.19</del> |
| <del>A/GH</del> | <del>No. bb. 18328</del> | 5 m, Z. O. afd. v. Borneo Tidoengsche Landen, Archipel. Ind. | Neth. Ind. For. Service | 2            | <del>1934</del>   | <del>306.46</del> |
| <del>A/GH</del> | <del>No. bb. 21151</del> | 500 m, Z. O. afd. Borneo, Poeroek Tjahoe Tahoedjan,          | Neth. Ind. For. Service | 2            | <del>1936</del>   | <del>306.76</del> |
|                 |                          | Archipel. Ind.                                               |                         |              |                   |                   |
| Đ               | <del>No. bb. 40798</del> | 51 m, Kuala Trengganu-Besut Road, Bukit Bintang Block,       | Sinclair, J. and Kiah   | 2            | <del>1955</del>   | <del>313.73</del> |
|                 |                          | Gunong Tebu Forest reserve, Malaysia                         | <del>bin, Salleh</del>  |              |                   |                   |

Note: A/GH - Harvard University Herbarium, Harvard University, 22 Divinity Avenue, Cambridge, Massachusetts 02138, USA (www.huh.harvard.edu).

E The Herbarium of Royal Botanic Garden, Edinburgh EH3 5LR, Scotland, UK (www.rbge.org.uk).

LE - The Herbarium of the V.L. Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Street 2, Saint Petersburg 197376, Russia (www.binran.ru).

| <u>Herbarium</u> | Collection<br>number | Collecting locality                                          | Collectors              | <u>Number of</u><br>leaf samples | Collection<br>date | <u>CO2</u><br>(ppmv) |
|------------------|----------------------|--------------------------------------------------------------|-------------------------|----------------------------------|--------------------|----------------------|
| <u>LE</u>        | <u>No. 2649</u>      | <u>Malaysia</u>                                              | Beccari, O.             | <u>1</u>                         | <u>1868</u>        | 289.23               |
| <u>A/GH</u>      | <u>No. bb. 17229</u> | 150 m, Riau on Ond. Karimon, Archipel. Ind.                  | Neth. Ind. For. Service | <u>2</u>                         | <u>1932</u>        | <u>306.19</u>        |
| <u>A/GH</u>      | <u>No. bb. 18328</u> | 5 m, Z. O. afd. v. Borneo Tidoengsche Landen, Archipel. Ind. | Neth. Ind. For. Service | <u>2</u>                         | <u>1934</u>        | <u>306.46</u>        |
| <u>A/GH</u>      | <u>No. bb. 21151</u> | 500 m, Z. O. afd. Borneo, Poeroek Tjahoe Tahoedjan,          | Neth. Ind. For. Service | <u>2</u>                         | <u>1936</u>        | <u>306.76</u>        |
|                  |                      | Archipel. Ind.                                               |                         |                                  |                    |                      |
| <u>KEP</u>       | <u>No. 30887</u>     | <u>Kata Tinggi, Johor, Malaysia</u>                          | Corner, E.J.H.          | <u>1</u>                         | <u>1936</u>        | <u>306.76</u>        |
| <u>KEP</u>       | <u>No. 57329</u>     | Batang Padang, Perak, Malaysia                               | <u>Unkonwn</u>          | <u>2</u>                         | <u>1947</u>        | <u>309.82</u>        |
| <u>KEP</u>       | <u>No. 57330</u>     | Batang Padang, Perak, Malaysia                               | <u>Unkonwn</u>          | <u>2</u>                         | <u>1947</u>        | <u>309.82</u>        |
| <u>KEP</u>       | <u>No. 55897</u>     | Batang Padang, Perak, Malaysia                               | <u>Unkonwn</u>          | <u>2</u>                         | <u>1947</u>        | <u>309.82</u>        |
| <u>KEP</u>       | <u>No. 61064</u>     | Batang Padang, Perak, Malaysia                               | Syed Woh                | <u>2</u>                         | <u>1947</u>        | <u>309.82</u>        |

| <u>E</u>                                                                                                                                    | <u>No. bb. 40798</u>                                                                                                                                                | 51 m, Kuala Trengganu-Besut Road, Bukit Bintang Block, | Sinclair, J. and Kiah | <u>2</u> | <u>1955</u> | <u>313.73</u> |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------|----------|-------------|---------------|--|--|
|                                                                                                                                             |                                                                                                                                                                     | Gunong Tebu Forest reserve, Malaysia                   | bin, Salleh           |          |             |               |  |  |
| <u>KEP</u>                                                                                                                                  | <u>No. 80548</u>                                                                                                                                                    | Gombak, Selangor, Malaysia                             | <u>Rahim</u>          | <u>1</u> | <u>1965</u> | <u>320.04</u> |  |  |
| <u>KEP</u>                                                                                                                                  | <u>No. 33343</u>                                                                                                                                                    | Jelebu, Negeri Sembilan, Malaysia                      | <u>Yap, S.K.</u>      | <u>2</u> | <u>1987</u> | <u>348.98</u> |  |  |
| Note: A/GH—Harvard University Herbarium, Harvard University, 22 Divinity Avenue, Cambridge, Massachusetts 02138, USA (www.huh.harvard.edu). |                                                                                                                                                                     |                                                        |                       |          |             |               |  |  |
| <u>E—</u> T                                                                                                                                 | E-The Herbarium of Royal Botanic Garden, Edinburgh EH3 5LR, Scotland, UK (www.rbge.org.uk).                                                                         |                                                        |                       |          |             |               |  |  |
| <u>LE</u> —                                                                                                                                 | LE—The Herbarium of the V.L. Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Street 2, Saint Petersburg 197376, Russia (www.binran.ru). |                                                        |                       |          |             |               |  |  |

KEP-Kepong Herbarium, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia (http://www.frim.gov.my/).

| <b>Collection</b>        | Collection     | CO <sub>2</sub> (ppmv)       |              | <u> </u>     | $SD (mm^{-2})$ |               |               |              |              | <u>SI (%)</u> |               |            |
|--------------------------|----------------|------------------------------|--------------|--------------|----------------|---------------|---------------|--------------|--------------|---------------|---------------|------------|
| number                   | <u>date</u>    | <u>eo<sub>2</sub> (ppmv)</u> | <u>x</u>     | <u></u>      | <u>s.e.</u>    | <u>t*s.e.</u> | <u>n</u>      | <u>x</u>     | <u></u>      | <u>s.e.</u>   | <u>t*s.e.</u> | <u>n</u>   |
| <u>No.2649</u>           | <u>1868</u>    | <u>289.23</u>                | <u>78.60</u> | <u>15.44</u> | <u>1.41</u>    | <u>2.76</u>   | <u>120</u>    | <u>3.44</u>  | <u>0.66</u>  | <u>0.06</u>   | <u>0.12</u>   | <u>120</u> |
| No.bb.17229              | <u>1932</u>    | <u>306.19</u>                | <u>62.14</u> | <u>17.20</u> | <u>1.78</u>    | <u>3.50</u>   | <u>93</u>     | <u>2.89</u>  | <u>0.68</u>  | <u>0.07</u>   | <u>0.14</u>   | <u>93</u>  |
| <u>No.bb.18328</u>       | <u>1934</u>    | <u>306.46</u>                | <u>64.57</u> | <u>15.05</u> | <u>1.58</u>    | <u>3.11</u>   | <u>90</u>     | <u>3.39</u>  | <u>1.01</u>  | <u>0.11</u>   | <u>0.21</u>   | <u>90</u>  |
| <u>No.bb.21151</u>       | <u>1936</u>    | <u>306.76</u>                | <u>65.45</u> | <u>11.14</u> | <u>1.17</u>    | <u>2.30</u>   | <u>90</u>     | <u>3.94</u>  | <u>0.74</u>  | <u>0.08</u>   | <u>0.15</u>   | <u>90</u>  |
| <u>No.SFN30887</u>       | <u>1936</u>    | <u>306.76</u>                | <u>66.90</u> | <u>16.10</u> | <u>1.27</u>    | <u>2.49</u>   | <u>161</u>    | <u>3.61</u>  | <u>0.92</u>  | <u>0.07</u>   | <u>0.14</u>   | <u>161</u> |
| <u>No.61064</u>          | <u>1947</u>    | <u>309.82</u>                | <u>56.71</u> | <u>16.81</u> | <u>1.95</u>    | <u>3.83</u>   | <u>74</u>     | <u>3.27</u>  | <u>1.26</u>  | <u>0.15</u>   | <u>0.29</u>   | <u>74</u>  |
| <u>No.57330</u>          | <u>1947</u>    | <u>309.82</u>                | <u>67.37</u> | <u>15.97</u> | <u>2.04</u>    | <u>4.01</u>   | <u>61</u>     | <u>3.70</u>  | <u>0.82</u>  | <u>0.10</u>   | <u>0.20</u>   | <u>61</u>  |
| <u>No.57329</u>          | <u>1947</u>    | <u>309.82</u>                | <u>67.85</u> | <u>15.61</u> | <u>1.70</u>    | <u>3.34</u>   | <u>84</u>     | <u>3.50</u>  | <u>0.90</u>  | <u>0.10</u>   | <u>0.20</u>   | <u>84</u>  |
| <u>No.55897</u>          | <u>1947</u>    | <u>309.82</u>                | <u>66.74</u> | <u>14.10</u> | <u>1.78</u>    | <u>3.48</u>   | <u>63</u>     | <u>3.18</u>  | <u>0.66</u>  | 0.08          | <u>0.16</u>   | <u>63</u>  |
| <u>No.40798</u>          | <u>1955</u>    | <u>313.73</u>                | <u>45.89</u> | <u>13.81</u> | <u>1.12</u>    | <u>2.20</u>   | <u>151</u>    | <u>3.03</u>  | <u>0.87</u>  | <u>0.07</u>   | <u>0.14</u>   | <u>151</u> |
| No.KEP80548              | <u>1965</u>    | <u>320.04</u>                | <u>52.94</u> | <u>11.25</u> | <u>0.85</u>    | <u>1.67</u>   | <u>175</u>    | <u>2.81</u>  | <u>0.61</u>  | <u>0.05</u>   | <u>0.09</u>   | <u>175</u> |
| No.FRI33343              | <u>1987</u>    | <u>348.98</u>                | <u>52.25</u> | <u>12.05</u> | <u>0.77</u>    | <u>1.51</u>   | <u>242</u>    | <u>2.87</u>  | <u>0.69</u>  | <u>0.04</u>   | <u>0.09</u>   | <u>242</u> |
| Mean                     | =              | =                            | <u>62.28</u> | <u>14.54</u> | <u>1.45</u>    | <u>2.85</u>   | <u>117</u>    | <u>3.30</u>  | <u>0.52</u>  | 0.08          | <u>0.16</u>   | <u>117</u> |
| <u>Note: x</u> —mean; σ– | standard devia | tion; s.e. —stand            | ard error of | mean; n—     | numbers of     | photos cou    | nts (40×); t• | s.e.— 95% co | onfidence ir | nterval.      |               |            |

957 Table 2. Summary of stomatal parameters of the adaxial surface form from modern *Nageia motleyi* (Parl.) De Laub.

| Collection         | Collection  | <u>CO<sub>2</sub> (ppmv)</u> –   |              | <u>SI</u>    | <u>D (mm<sup>-2</sup>)</u> |               |            |             | <u>SI (%)</u> |             |               |   |  |  |
|--------------------|-------------|----------------------------------|--------------|--------------|----------------------------|---------------|------------|-------------|---------------|-------------|---------------|---|--|--|
| number             | <u>date</u> | <u>CO<sub>2</sub> (ppiiiv)</u> – | <u>x</u>     | <u></u>      | <u>s.e.</u>                | <u>t*s.e.</u> | <u>n</u>   | <u>x</u>    | <u></u>       | <u>s.e.</u> | <u>t*s.e.</u> | ] |  |  |
| <u>No.2649</u>     | <u>1868</u> | <u>289.23</u>                    | <u>82.71</u> | <u>12.23</u> | <u>1.02</u>                | <u>2.00</u>   | <u>144</u> | <u>3.89</u> | <u>0.58</u>   | <u>0.05</u> | <u>0.09</u>   | 1 |  |  |
| No.bb.17229        | <u>1932</u> | <u>306.19</u>                    | <u>69.16</u> | <u>14.23</u> | <u>1.48</u>                | <u>2.90</u>   | <u>93</u>  | <u>3.13</u> | <u>0.58</u>   | <u>0.06</u> | <u>0.12</u>   |   |  |  |
| No.bb.18328        | <u>1934</u> | <u>306.46</u>                    | <u>69.92</u> | <u>14.38</u> | <u>1.52</u>                | <u>2.97</u>   | <u>90</u>  | <u>3.99</u> | <u>1.08</u>   | <u>0.11</u> | <u>0.22</u>   | 1 |  |  |
| <u>No.bb.21151</u> | <u>1936</u> | <u>306.76</u>                    | <u>75.68</u> | <u>15.74</u> | <u>1.66</u>                | <u>3.25</u>   | <u>90</u>  | <u>4.66</u> | <u>0.88</u>   | <u>0.09</u> | <u>0.18</u>   |   |  |  |
| <u>No.SFN30887</u> | <u>1936</u> | <u>306.76</u>                    | <u>76.18</u> | <u>12.51</u> | <u>0.99</u>                | <u>1.93</u>   | <u>161</u> | <u>4.42</u> | <u>0.89</u>   | <u>0.07</u> | <u>0.14</u>   | 1 |  |  |
| <u>No.61064</u>    | <u>1947</u> | <u>309.82</u>                    | <u>60.93</u> | <u>11.02</u> | <u>1.39</u>                | <u>2.72</u>   | <u>63</u>  | <u>3.05</u> | <u>0.62</u>   | <u>0.08</u> | <u>0.15</u>   |   |  |  |
| <u>No.57330</u>    | <u>1947</u> | <u>309.82</u>                    | <u>75.82</u> | <u>14.14</u> | <u>1.82</u>                | <u>3.58</u>   | <u>60</u>  | <u>4.38</u> | <u>0.84</u>   | <u>0.11</u> | <u>0.21</u>   |   |  |  |
| <u>No.57329</u>    | <u>1947</u> | <u>309.82</u>                    | <u>71.74</u> | <u>16.84</u> | <u>1.75</u>                | <u>3.42</u>   | <u>93</u>  | <u>3.72</u> | <u>0.62</u>   | <u>0.06</u> | <u>0.13</u>   |   |  |  |
| <u>No.55897</u>    | <u>1947</u> | <u>309.82</u>                    | <u>78.63</u> | <u>13.41</u> | <u>1.75</u>                | <u>3.42</u>   | <u>59</u>  | <u>4.41</u> | <u>1.00</u>   | <u>0.13</u> | <u>0.26</u>   |   |  |  |
| <u>No.40798</u>    | <u>1955</u> | <u>313.73</u>                    | <u>53.22</u> | <u>13.88</u> | <u>1.12</u>                | <u>2.19</u>   | <u>155</u> | <u>3.71</u> | <u>0.93</u>   | 0.07        | <u>0.15</u>   | - |  |  |
| No.KEP80548        | <u>1965</u> | <u>320.04</u>                    | <u>67.22</u> | <u>13.97</u> | <u>1.07</u>                | <u>2.09</u>   | <u>171</u> | <u>3.70</u> | <u>0.80</u>   | <u>0.06</u> | <u>0.12</u>   | - |  |  |
| No.FRI33343        | <u>1987</u> | <u>348.98</u>                    | <u>59.09</u> | <u>12.10</u> | <u>0.79</u>                | <u>1.55</u>   | <u>233</u> | <u>3.69</u> | <u>0.86</u>   | <u>0.06</u> | <u>0.11</u>   |   |  |  |
| Mean               | =           | =                                | <u>70.03</u> | <u>13.70</u> | <u>1.36</u>                | <u>2.67</u>   | <u>118</u> | <u>3.90</u> | <u>0.81</u>   | <u>0.08</u> | <u>0.16</u>   | - |  |  |

959Table 3. Summary of stomatal parameters of the abaxial surface form from modern Nageia motleyi (Parl.) De Laub.

| 960 | Table 4 |
|-----|---------|
|     |         |

| Table 4. Summar    | ry of stomatal | parameters of                   | the combi    | ned data of  | the adaxia           | <u>l and abax</u> | ial surface | es from mode | ern <i>Nageic</i> | <u>ı motleyi (</u> | Parl.) De     | Laub.      |  |  |
|--------------------|----------------|---------------------------------|--------------|--------------|----------------------|-------------------|-------------|--------------|-------------------|--------------------|---------------|------------|--|--|
| Collection         | Collection     | <u>CO<sub>2</sub> (ppmv)</u> –  |              | <u>S1</u>    | $D (\text{mm}^{-2})$ |                   |             |              | <u>SI(%)</u>      |                    |               |            |  |  |
| number             | date           | <u>CO<sub>2</sub> (ppinv)</u> – | <u>x</u>     | <u></u>      | <u>s.e.</u>          | <u>t*s.e.</u>     | <u>n</u>    | <u>x</u>     | <u></u>           | <u>s.e.</u>        | <u>t*s.e.</u> | <u>n</u>   |  |  |
| <u>No.2649</u>     | <u>1868</u>    | <u>289.23</u>                   | <u>80.84</u> | <u>13.74</u> | <u>0.85</u>          | <u>1.66</u>       | <u>264</u>  | <u>3.69</u>  | <u>0.66</u>       | <u>0.04</u>        | <u>0.08</u>   | <u>264</u> |  |  |
| No.bb.17229        | <u>1932</u>    | <u>306.19</u>                   | <u>65.65</u> | <u>16.13</u> | <u>1.18</u>          | <u>2.32</u>       | <u>186</u>  | <u>3.01</u>  | <u>0.64</u>       | <u>0.05</u>        | <u>0.09</u>   | <u>186</u> |  |  |
| No.bb.18328        | <u>1934</u>    | <u>306.46</u>                   | <u>67.24</u> | <u>14.92</u> | <u>1.11</u>          | <u>2.18</u>       | <u>180</u>  | <u>3.69</u>  | <u>1.08</u>       | <u>0.08</u>        | <u>0.16</u>   | <u>180</u> |  |  |
| <u>No.bb.21151</u> | <u>1936</u>    | <u>306.76</u>                   | <u>70.57</u> | <u>14.53</u> | <u>1.08</u>          | <u>2.12</u>       | <u>180</u>  | <u>4.30</u>  | <u>0.89</u>       | <u>0.07</u>        | <u>0.13</u>   | <u>180</u> |  |  |
| <u>No.SFN30887</u> | <u>1936</u>    | <u>306.76</u>                   | <u>71.54</u> | <u>15.12</u> | <u>0.84</u>          | <u>1.65</u>       | <u>322</u>  | <u>4.01</u>  | <u>0.99</u>       | <u>0.05</u>        | <u>0.11</u>   | <u>322</u> |  |  |
| <u>No.61064</u>    | <u>1947</u>    | <u>309.82</u>                   | <u>58.65</u> | <u>14.54</u> | <u>1.24</u>          | <u>2.43</u>       | <u>137</u>  | <u>3.17</u>  | <u>1.02</u>       | <u>0.09</u>        | <u>0.17</u>   | <u>137</u> |  |  |
| <u>No.57330</u>    | <u>1947</u>    | <u>309.82</u>                   | 71.56        | <u>15.61</u> | <u>1.42</u>          | <u>2.78</u>       | <u>121</u>  | <u>4.03</u>  | <u>0.89</u>       | <u>0.08</u>        | <u>0.16</u>   | <u>121</u> |  |  |
| <u>No.57329</u>    | <u>1947</u>    | <u>309.82</u>                   | <u>69.90</u> | <u>16.33</u> | <u>1.23</u>          | <u>2.41</u>       | <u>177</u>  | <u>3.62</u>  | <u>0.77</u>       | <u>0.06</u>        | <u>0.11</u>   | <u>177</u> |  |  |
| <u>No.55897</u>    | <u>1947</u>    | <u>309.82</u>                   | <u>72.49</u> | <u>14.95</u> | <u>1.35</u>          | <u>2.65</u>       | <u>122</u>  | <u>3.77</u>  | <u>1.04</u>       | <u>0.09</u>        | <u>0.18</u>   | <u>122</u> |  |  |
| <u>No.40798</u>    | <u>1955</u>    | <u>313.73</u>                   | <u>49.60</u> | <u>14.31</u> | <u>0.82</u>          | <u>1.60</u>       | <u>306</u>  | <u>3.37</u>  | <u>0.96</u>       | <u>0.05</u>        | <u>0.11</u>   | <u>306</u> |  |  |
| No.KEP80548        | <u>1965</u>    | <u>320.04</u>                   | <u>60.00</u> | <u>14.53</u> | <u>0.78</u>          | <u>1.53</u>       | <u>346</u>  | <u>3.25</u>  | <u>0.84</u>       | <u>0.05</u>        | <u>0.09</u>   | <u>346</u> |  |  |
| <u>No.FRI33343</u> | <u>1987</u>    | <u>348.98</u>                   | <u>55.61</u> | <u>12.53</u> | <u>0.58</u>          | <u>1.13</u>       | <u>475</u>  | <u>3.28</u>  | <u>0.88</u>       | <u>0.04</u>        | <u>0.08</u>   | <u>475</u> |  |  |
| Mean               | =              | =                               | <u>66.14</u> | <u>14.77</u> | <u>1.04</u>          | <u>2.08</u>       | <u>235</u>  | <u>3.60</u>  | <u>0.89</u>       | <u>0.06</u>        | <u>0.12</u>   | <u>235</u> |  |  |

Table 4. Summary of stomatal parameters of the adaxial surface of fossil Nageia and pCO<sub>2</sub> [ $C_{\oplus}$ ] estimates results.

*Note: x*—mean; σ—standard deviation; s.e. —standard error of mean; n— numbers of photos counts (40×); t · s.e. — 95% confidence interval.

| 964 | Table 5. Summary of stomatal parameters of the abaxial surface of fossil Nageia and pCO <sub>2</sub> [ $C_{(f)}$ ] estimates results. |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                       |

|     |                              | -                               |                      |                               |
|-----|------------------------------|---------------------------------|----------------------|-------------------------------|
| 965 | Table 5. Summary of stomatal | parameters from modern Nageia m | otleyi (Parl.) De La | ub (Kouwenberg et al., 2003). |
|     |                              |                                 |                      |                               |

|   |                      |                    | •                    |              | · · · ·       |                |            |
|---|----------------------|--------------------|----------------------|--------------|---------------|----------------|------------|
|   | Collection<br>number | Collection<br>date | <u>CO2</u><br>(ppmv) | <u>SNL</u>   | <u>SDL</u>    | <u>TSDL</u>    | <u>n</u>   |
|   | <u>No.2649</u>       | <u>1868</u>        | <u>289.23</u>        | <u>11.64</u> | <u>394.38</u> | <u>1455.10</u> | <u>264</u> |
|   | No.bb.17229          | <u>1932</u>        | <u>306.19</u>        | <u>9.19</u>  | <u>337.98</u> | <u>1280.12</u> | <u>186</u> |
|   | <u>No.bb.18328</u>   | <u>1934</u>        | <u>306.46</u>        | <u>8.71</u>  | <u>378.92</u> | <u>1277.63</u> | <u>180</u> |
|   | No.bb.21151          | <u>1936</u>        | <u>306.76</u>        | <u>9.62</u>  | <u>376.93</u> | <u>1517.21</u> | <u>180</u> |
|   | <u>No.SFN30887</u>   | <u>1936</u>        | <u>306.76</u>        | <u>10.55</u> | <u>325.08</u> | <u>735.38</u>  | <u>240</u> |
|   | <u>No.61064</u>      | <u>1947</u>        | <u>309.82</u>        | <u>8.19</u>  | 282.04        | <u>1200.66</u> | <u>133</u> |
|   | <u>No.57330</u>      | <u>1947</u>        | <u>309.82</u>        | <u>9.67</u>  | <u>397.83</u> | <u>1397.33</u> | <u>119</u> |
| ĺ | <u>No.57329</u>      | <u>1947</u>        | <u>309.82</u>        | <u>10.13</u> | <u>350.98</u> | <u>1672.50</u> | <u>176</u> |
|   | <u>No.55897</u>      | <u>1947</u>        | <u>309.82</u>        | <u>10.48</u> | <u>379.06</u> | <u>1486.13</u> | <u>122</u> |
|   | <u>No.40798</u>      | <u>1955</u>        | <u>313.73</u>        | <u>10.29</u> | <u>175.14</u> | <u>933.85</u>  | <u>305</u> |
|   | No.KEP80548          | <u>1965</u>        | <u>320.04</u>        | <u>9.36</u>  | <u>266.16</u> | <u>585.72</u>  | <u>263</u> |
|   | No.FRI33343          | <u>1987</u>        | <u>348.98</u>        | <u>9.84</u>  | <u>252.20</u> | <u>1181.51</u> | <u>125</u> |
|   | Mean                 | =                  | =                    | <u>9.81</u>  | <u>326.39</u> | <u>1226.93</u> | <u>191</u> |
|   |                      |                    |                      |              |               |                |            |

| Proxies                                                                                        |                                          |                                                                                                                                        |                                                                             |                                                                         |                                    |                                          | +                                                           | Referen                                           | <del>ces</del>                                                 |                                                                                                                                |                                                                 |                                                                                            |                                            |                                               |                                  |
|------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------|------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|----------------------------------|
| Boron                                                                                          | Pearson et a                             | <del>1., 2009; S</del>                                                                                                                 | <del>seki et al.</del>                                                      | <del>, 2010</del>                                                       |                                    |                                          |                                                             |                                                   |                                                                |                                                                                                                                |                                                                 |                                                                                            |                                            |                                               |                                  |
| <del>B/Ca</del>                                                                                | Tripati et al.                           | <del>, 2009</del>                                                                                                                      |                                                                             |                                                                         |                                    |                                          |                                                             |                                                   |                                                                |                                                                                                                                |                                                                 |                                                                                            |                                            |                                               |                                  |
| <b>Phytoplankton</b>                                                                           | Freeman and                              | -<br>veman and Hayes, 1992; Stott, 1992; Pagani et al., 1999, 2005; Henderiks and Pagani, 2008; Seki et al., 2010                      |                                                                             |                                                                         |                                    |                                          |                                                             |                                                   |                                                                |                                                                                                                                |                                                                 |                                                                                            |                                            |                                               |                                  |
| Nahcolite                                                                                      | Lowenstein-                              | owenstein and Demicco, 2006                                                                                                            |                                                                             |                                                                         |                                    |                                          |                                                             |                                                   |                                                                |                                                                                                                                |                                                                 |                                                                                            |                                            |                                               |                                  |
| <b>Liverworts</b>                                                                              | Fletcher et a                            | etcher et al., 2008                                                                                                                    |                                                                             |                                                                         |                                    |                                          |                                                             |                                                   |                                                                |                                                                                                                                |                                                                 |                                                                                            |                                            |                                               |                                  |
| <b>Paleosols</b>                                                                               | Cerling, 199                             | orling, 1992; Koch et al., 1992; Ekart et al., 1999; Retallack, 2009b; Royer et al., 2001                                              |                                                                             |                                                                         |                                    |                                          |                                                             |                                                   |                                                                |                                                                                                                                |                                                                 |                                                                                            |                                            |                                               |                                  |
| Stomata                                                                                        | Van der Bur                              | der Burgh et al., 1993; Kürschner et al., 1996; McElwain, 1998; Kürschner et al., 2001; Greenwood et al., 2003; Royer, 2003; Kürschner |                                                                             |                                                                         |                                    |                                          |                                                             |                                                   |                                                                |                                                                                                                                |                                                                 |                                                                                            |                                            |                                               |                                  |
|                                                                                                | at al 2008.                              | <b>D</b> oorling                                                                                                                       | at al 200                                                                   |                                                                         | ar at al.                          | 2001; Retal                              | llock 20                                                    | 000.50                                            | nith at al                                                     | 2010· D                                                                                                                        | oria et al                                                      | 2011                                                                                       |                                            |                                               |                                  |
|                                                                                                | <del>et al., 2008,</del>                 | Deerning                                                                                                                               | <del>et al., 200</del>                                                      | $\mathcal{P}, \mathbf{Roy}$                                             | <i>i ct ai.</i> , <i>2</i>         | 2001, Reta                               | nack, 20                                                    | 07a, 51                                           | inui ci ai                                                     | ., 2010, D                                                                                                                     | or in or un                                                     | , 2011                                                                                     |                                            |                                               |                                  |
| Table 6. Summa                                                                                 |                                          |                                                                                                                                        |                                                                             | -                                                                       |                                    |                                          |                                                             |                                                   |                                                                |                                                                                                                                |                                                                 |                                                                                            |                                            |                                               |                                  |
| Table 6. Summa                                                                                 |                                          |                                                                                                                                        |                                                                             | he aday                                                                 |                                    |                                          |                                                             | <i>eia</i> an                                     |                                                                |                                                                                                                                | timates r                                                       |                                                                                            | <u>ppmv)</u>                               | <u>C<sub>(f)</sub> (p</u>                     | opmv                             |
| Table 6. Summa                                                                                 |                                          |                                                                                                                                        | ters of t                                                                   | he aday                                                                 |                                    |                                          | ssil Nag                                                    | <i>eia</i> an                                     |                                                                | $[C_{(f)}]$ est                                                                                                                | timates r                                                       | esults.                                                                                    | <u>ppmv)</u><br><u>t*s.e</u>               | <u><u>C<sub>(f)</sub> (p</u><br/><u>x</u></u> |                                  |
| <u>Species</u>                                                                                 | ary of stomata                           | l parame                                                                                                                               | ters of t<br>SD (mi                                                         | he adax $m^{-2}$                                                        | <u>xial surf</u>                   | ace of fos                               | ssil Nag<br>SI (%                                           | <u>eia an</u>                                     | d pCO <sub>2</sub>                                             | [C <sub>(f)</sub> ] es                                                                                                         | timates r<br><u>R</u>                                           | <u>pCO<sub>2</sub>(j</u>                                                                   |                                            |                                               | <u>opmv</u><br><u>t</u>          |
| Species<br>MMJ1-001 I                                                                          | ary of stomata                           | l parame                                                                                                                               | <u>ters of t</u><br><u>SD (m</u><br><u>σ</u>                                | he adax<br>m <sup>-2</sup> )<br><u>s.e.</u>                             | <u>xial surf</u>                   | $\frac{2}{x}$                            | ssil Nag<br>SI (%<br><u>o</u>                               | <u>eia an</u><br>5)<br><u>s.e.</u>                | <u>d pCO<sub>2</sub><br/>n</u>                                 | $\frac{[C_{(f)}] \text{ est}}{\underline{x}}$                                                                                  | timates r<br>R<br>t*s.e                                         | $\frac{pCO_2(1)}{x}$                                                                       | <u>t*s.e</u>                               | <u>x</u>                                      | <u>t</u>                         |
| Species           MMJ1-001         I           MMJ2-003         I                              | ary of stomata<br>Age<br>Late Eocene     | <u>x</u><br><u>52.5</u>                                                                                                                | <u>ters of t</u><br><u>SD (m</u><br><u>a</u><br><u>17.1</u>                 | $\frac{he adax}{m^{-2}}$ $\frac{s.e.}{3.1}$                             | <u>n</u><br>30                     | $\frac{\underline{x}}{\underline{2.08}}$ | <u>ssil Nag</u><br><u>SI (%</u><br><u>0.7</u>               | <u>eia an</u><br>5)<br><u>s.e.</u><br><u>0.1</u>  | <u>d pCO<sub>2</sub></u><br><u>n</u><br><u>30</u>              | $\frac{[C_{(f)}] \text{ est}}{\underline{x}}$ $\frac{\underline{x}}{\underline{1.35}}$                                         | $\frac{\text{timates r}}{\text{R}}$ $\frac{\text{t*s.e}}{0.19}$ | $\frac{pCO_2(1)}{\underline{x}}$ $\frac{333.6}{\underline{x}}$                             | <u>t*s.e</u><br><u>13.9</u>                | <u>x</u><br><u>412.1</u>                      | <u>t</u><br><u>(</u><br><u>1</u> |
| Species           MMJ1-001         I           MMJ2-003         I           MMJ2-004         I | Age<br>Age<br>Late Eocene<br>Late Eocene | <u>x</u><br><u>52.5</u><br><u>42.3</u>                                                                                                 | <u>ters of t</u><br><u>SD (mr</u><br><u>σ</u><br><u>17.1</u><br><u>12.9</u> | he adax<br>m <sup>-2</sup> )<br><u>s.e.</u><br><u>3.1</u><br><u>2.4</u> | <u>n</u><br><u>30</u><br><u>30</u> | <u>x</u><br><u>2.08</u><br><u>1.80</u>   | <u>ssil Nag</u><br><u>SI (%</u><br><u>0.7</u><br><u>0.6</u> | <u>eeia an</u><br>5)<br><u>s.e.</u><br>0.1<br>0.1 | <u>d pCO<sub>2</sub></u><br><u>n</u><br><u>30</u><br><u>30</u> | $\frac{[C_{ff}] \text{ est}}{\frac{\underline{S}}{\underline{S}}}$ $\frac{\underline{X}}{\underline{1.35}}$ $\underline{1.75}$ | timates r<br>R<br>t*s.e<br>0.19<br>0.39                         | $\frac{\underline{pCO_2(1)}}{\underline{x}}$ $\frac{\underline{333.6}}{\underline{356.8}}$ | <u>t*s.e</u><br><u>13.9</u><br><u>10.5</u> | <u>x</u><br><u>412.1</u><br><u>536.1</u>      | <u>t</u>                         |

968 Table 6. The pCO<sub>2</sub> estimates proxies and corresponding references.

result based the regression approach;  $C_{(i)}$ — the result based on the stomatal method.

970

| 972 | Table 7. Sun      | <u>imary of stomata</u> | <u>i parame</u>            | eters of t  | ne abaz     | <u>ciai sur</u> | lace of tos  | <u>sn na</u> g | <u>geta an</u> | <u>a pco</u> 2 | $\underline{C_{(f)}}$ es | timates i                | esuits.      |                            |              |                |
|-----|-------------------|-------------------------|----------------------------|-------------|-------------|-----------------|--------------|----------------|----------------|----------------|--------------------------|--------------------------|--------------|----------------------------|--------------|----------------|
|     | Service           | A ===                   | $\underline{SD} (mm^{-2})$ |             |             | _               | <u>SI (9</u> | <u>6)</u>      |                | <u>S</u>       | <u>R</u>                 | <u>рСО<sub>2</sub>(р</u> | <u>omv)</u>  | <u>C<sub>(f)</sub> (pr</u> | <u>omv)</u>  |                |
|     | <u>Species</u>    | Age                     | <u>x</u>                   | <u>σ</u>    | <u>s.e.</u> | <u>n</u>        | <u>x</u>     | <u>σ</u>       | <u>s.e.</u>    | <u>n</u>       | <u>x</u>                 | <u>t*s.e</u>             | <u>x</u>     | <u>t*s.e</u>               | <u>x</u>     | <u>t*s.e</u>   |
|     | <u>MMJ1-001</u>   | Late Eocene             | <u>47.7</u>                | <u>17.7</u> | <u>3.2</u>  | <u>30</u>       | <u>2.11</u>  | <u>0.8</u>     | <u>0.2</u>     | <u>30</u>      | <u>1.66</u>              | <u>0.23</u>              | <u>368.6</u> | <u>16.2</u>                | <u>515.6</u> | <u>72.3</u>    |
|     | <u>MMJ2-003</u>   | Late Eocene             | <u>50.9</u>                | <u>18.3</u> | <u>3.3</u>  | <u>30</u>       | <u>2.12</u>  | <u>0.8</u>     | <u>0.1</u>     | <u>30</u>      | <u>1.57</u>              | <u>0.23</u>              | <u>360.9</u> | <u>16.6</u>                | <u>486.0</u> | <u>70.7</u>    |
|     | <u>MMJ2-004</u>   | Late Eocene             | <u>48.2</u>                | <u>15.8</u> | <u>2.9</u>  | <u>30</u>       | <u>2.14</u>  | <u>0.7</u>     | <u>0.1</u>     | <u>30</u>      | <u>1.63</u>              | <u>0.25</u>              | <u>367.4</u> | <u>14.5</u>                | <u>504.6</u> | <u>77.3</u>    |
|     | <u>MMJ3-003a</u>  | Late Eocene             | <u>48.9</u>                | <u>12.6</u> | <u>2.7</u>  | <u>22</u>       | <u>1.85</u>  | <u>0.5</u>     | <u>0.1</u>     | <u>22</u>      | <u>1.52</u>              | <u>0.19</u>              | <u>365.4</u> | <u>13.5</u>                | <u>472.3</u> | <u>59.0</u>    |
|     | Mean              | Late Eocene             | <u>48.9</u>                | <u>16.2</u> | <u>1.5</u>  | <u>112</u>      | <u>2.07</u>  | <u>0.7</u>     | <u>0.1</u>     | <u>112</u>     | <u>1.60</u>              | <u>0.11</u>              | <u>365.6</u> | <u>7.6</u>                 | <u>496.1</u> | <u>35.7</u>    |
|     | <u>Note: x</u> —m | ean; σ—standard d       | leviation;                 | s.e. —st    | andard      | error of        | mean; n-     | numbe          | rs of pl       | notos con      | unts (400                | ×); t•s.e                | — 95% con    | fidence in                 | nterval. pCO | <u>2</u> — the |

972 Table 7. Summary of stomatal parameters of the abaxial surface of fossil *Nageia* and pCO<sub>2</sub>  $[C_{(f)}]$  estimates results.

result based the regression approach;  $C_{(f)}$  the result based on the stomatal method.

| a .               |                    | <u>SD (mm<sup>-2</sup>)</u> |                 |             |            |              | <u>SI (</u> 9 | <u>6)</u>   |            | <u>S</u>         | <u>R</u>     | <u>pCO<sub>2</sub>(</u> | <u>ppmv)</u> | <u><i>C<sub>(f)</sub></i> (p</u> | <u>pmv)</u>               |
|-------------------|--------------------|-----------------------------|-----------------|-------------|------------|--------------|---------------|-------------|------------|------------------|--------------|-------------------------|--------------|----------------------------------|---------------------------|
| <u>Species</u>    | Age                | <u>x</u>                    | <u>σ</u>        | <u>s.e.</u> | <u>n</u>   | <u>x</u>     | <u></u>       | <u>s.e.</u> | <u>n</u>   | <u>x</u>         | <u>t*s.e</u> | <u>x</u>                | <u>t*s.e</u> | <u>x</u>                         | <u>t*s.e</u>              |
| <u>MMJ1-001</u>   | Late Eocene        | <u>50.1</u>                 | <u>17.5</u>     | <u>2.3</u>  | <u>60</u>  | <u>2.09</u>  | <u>0.8</u>    | <u>0.1</u>  | <u>60</u>  | <u>1.50</u>      | <u>0.15</u>  | 349.7                   | <u>10.6</u>  | <u>471.2</u>                     | <u>47.8</u>               |
| <u>MMJ2-003</u>   | Late Eocene        | <u>46.5</u>                 | <u>16.3</u>     | <u>2.1</u>  | <u>60</u>  | <u>1.96</u>  | <u>0.7</u>    | <u>0.1</u>  | <u>60</u>  | <u>1.67</u>      | <u>0.24</u>  | <u>358.3</u>            | <u>9.8</u>   | <u>524.1</u>                     | <u>75.7</u>               |
| <u>MMJ2-004</u>   | Late Eocene        | <u>44.0</u>                 | <u>15.8</u>     | <u>2.0</u>  | <u>60</u>  | <u>1.90</u>  | <u>0.7</u>    | <u>0.1</u>  | <u>60</u>  | <u>1.73</u>      | <u>0.17</u>  | <u>364.3</u>            | <u>9.5</u>   | <u>542.9</u>                     | <u>52.6</u>               |
| <u>MMJ3-003a</u>  | Late Eocene        | <u>45.6</u>                 | <u>16.1</u>     | <u>2.2</u>  | <u>52</u>  | <u>1.75</u>  | <u>0.6</u>    | <u>0.1</u>  | <u>52</u>  | <u>1.73</u>      | <u>0.28</u>  | <u>360.5</u>            | <u>10.4</u>  | <u>544.6</u>                     | <u>88.3</u>               |
| Mean              | Late Eocene        | <u>46.6</u>                 | <u>16.4</u>     | <u>1.1</u>  | <u>232</u> | <u>1.93</u>  | <u>0.7</u>    | <u>0.1</u>  | <u>232</u> | <u>1.66</u>      | <u>0.11</u>  | <u>358.1</u>            | <u>5.0</u>   | <u>519.9</u>                     | <u>35.0</u>               |
| <u>Note: x</u> —m | ean; σ—standard o  | deviation;                  | s.e. —st        | andard      | error of   | mean; n-     | - numbe       | rs of pl    | notos co   | <u>unts (400</u> | ×); t•s.e    | <u>— 95% co</u>         | nfidence     | interval. pCC                    | <u>D<sub>2</sub>— the</u> |
| result based      | the regression app | roach; C <sub>(f</sub>      | <u>— the re</u> | sult bas    | ed on the  | e stomatal r | nethod.       |             |            |                  |              |                         |              |                                  |                           |

974 Table 8. Summary of stomatal parameters of the combined data of the adaxial and abaxial surfaces of fossil *Nageia* and pCO<sub>2</sub> [ $C_{(f)}$ ] estimates 975 results.

## **977** <u>Table 9. pCO<sub>2</sub> estimates proxies and corresponding references.</u>

| Proxies              | References                                                                                                                                      |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Boron                | <u>Pearson et al., 2009; Seki et al., 2010</u>                                                                                                  |
| <u>B/Ca</u>          | Tripati et al., 2009                                                                                                                            |
| <b>Phytoplankton</b> | Freeman and Hayes, 1992; Stott, 1992; Pagani et al., 1999, 2005; Henderiks and Pagani, 2008; Seki et al., 2010                                  |
| Nahcolite            | Lowenstein and Demicco, 2006                                                                                                                    |
| <b>Liverworts</b>    | Fletcher et al., 2008                                                                                                                           |
| Paleosols            | Cerling, 1992; Koch et al., 1992; Ekart et al., 1999; Royer et al., 2001; Nordt et al., 2002; Retallack, 2009b; Huang et al. 2013               |
| <u>Stomata</u>       | Van der Burgh et al., 1993; Kürschner et al., 1996, 2001, 2008; McElwain, 1998; Royer et al., 2001, 2003; Greenwood et al., 2003; Beerling      |
|                      | et al., 2009; Retallack, 2009a; Smith et al., 2010; Doria et al., 2011; Roth-Nebelsick et al., 2012; 2014; Grein et al., 2013; Maxbauer et al., |
|                      | <u>2014</u>                                                                                                                                     |