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Abstract: 9 

Atmospheric pCO2 concentrations have been estimated for intervals of the Eocene 10 

using various models and proxy information. Here we reconstruct late Eocene (~ 40.3 11 

Ma) pCO2 based on the fossil leaves of Nageia maomingensis Jin et Liu collected 12 

from the Maoming Basin, Guangdong Province, China. We first determine 13 

relationships between atmospheric pCO2 concentrations, stomatal density (SD) and 14 

stomatal index (SI) using “modern” leaves of N. motleyi (Parl.) De Laub, the nearest 15 

living species to the Eocene fossils. This work indicates that the SD inversely 16 

responds to pCO2, while SI has almost no relationship with pCO2. Eocene pCO2 17 

concentrations can be reconstructed based on a regression approach and the stomatal 18 

ratio method by using the SD. The first approach gives a pCO2 of 351.9 ± 6.6 ppmv, 19 

whereas the one based on stomatal ratio gives a pCO2 of 537.5 ± 56.5 ppmv. Here, we 20 

explored the potential of N. maomingensis in pCO2 reconstruction and obtained 21 
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different results according to different methods, providing a new insight for the 22 

reconstruction of paleoclimate and paleoenvironment in conifers.  23 

 24 

Keywords: pCO2, late Eocene, Nageia, Maoming Basin, South China. 25 

 26 

1 Introduction 27 

 28 

The Eocene (55.8-33.9 Ma) generally was much warmer than present-day, although 29 

temperatures varied significantly across this time interval (Zachos et al., 2008). 30 

Climate of the early Eocene was extremely warm, particularly during the early 31 

Eocene Climatic Optimum (EECO; 51 to 53 Ma), and the Paleocene-Eocene Thermal 32 

Maximum (PETM; ~55.9 Ma). However, global climatic conditions cooled 33 

significantly by the late Eocene (40 to 36 Ma). Indeed, small, ephemeral ice-sheets 34 

and Arctic sea ice likely existed during the latest Eocene (Moran et al., 2006; Zachos 35 

et al., 2008).  36 

Many authors have suggested that changes in temperature during the Phanerozoic 37 

were linked to atmospheric pCO2 (Petit et al., 1999; Retallack, 2001; Royer, 2006). 38 

Central to these discussions are records across the Eocene, as this epoch spans the last 39 

major change from a “greenhouse” world to an “icehouse” world. The Eocene pCO2 40 

record remains incomplete and debated (Kürschner et al., 2001; Royer et al., 2001; 41 

Beerling et al., 2002; Greenwood et al., 2003; Royer, 2003). Most pCO2 42 

reconstructions have focused on the Cretaceous-Tertiary and Paleocene-Eocene 43 
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boundaries (65 to 50 Ma; Koch et al., 1992; Stott, 1992; Sinha and Stott, 1994; Royer 44 

et al., 2001; Beerling and Royer, 2002; Nordt et al., 2002; Royer, 2003; Fletcher et al., 45 

2008; Roth-Nebelsick et al., 2012; 2014; Grein et al., 2013; Huang et al., 2013; 46 

Maxbauer et al.,2014) and the middle Eocene (Maxbauer et al., 2014), while few 47 

reconstructions were conducted at the late Eocene. In addition, the pCO2 48 

reconstruction results have varied based on different proxies. Various methods having 49 

been used in pCO2 reconstruction mainly include the computer modeling methods: 50 

GEOCARB-I, GEOCARB-II, GEOCARB-III, GEOCARB-SULF and the proxies: ice 51 

cores, paleosol carbonate, phytoplankton, nahcolite, Boron, and stomata parameters. 52 

The abundance of stomatal cells can be measured on modern leaves and 53 

well-preserved fossil leaves. Various plants show a negative correlation between 54 

atmospheric CO2 concentration and stomatal density (SD), stomatal index (SI), or 55 

both. As such, these parameters have been determined in fossil leaves to reconstruct 56 

past pCO2; examples include Ginkgo (Retallack, 2001, 2009a; Beerling et al., 2002; 57 

Royer, 2003; Kürschner et al., 2008; Smith et al., 2010), Metasequoia (Royer, 2003; 58 

Doria et al., 2011), Taxodium (Stults et al., 2011), Betula (Kürschner et al., 2001; Sun 59 

et al., 2012), Neolitsea (Greenwood et al., 2003), and Quercus (Kürschner et al., 1996, 60 

2001), Laurus and Ocotea (Kürschner et al., 2008). Recently, positive correlations 61 

between stomatal index or stomatal frequency and pCO2 have been reported based on 62 

fossil Typha and Quercus (Bai et al., 2015; Hu et al., 2015). However, the tropical and 63 

subtropical moist broadleaf forest conifer tree Nageia has not been used previously in 64 

paleobotanical estimates of pCO2 concentration. 65 
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Herein, we firstly document correlations between stomatal properties and 66 

atmospheric CO2 concentrations using leaves of the extant species Nageia motleyi 67 

(Parl.) De Laub. that were collected over the last two centuries. This provides a 68 

training dataset for application to fossil representatives of Nageia. We secondly 69 

measure stomatal parameters on fossil Nageia leaves from the late Eocene of South 70 

China to estimate past CO2 levels. The work provides further insights for discussing 71 

Eocene climate change.  72 

 73 

2 Background 74 

 75 

2.1 Stomatal proxy in pCO2 research 76 

 77 

Stomatal information gathered from careful examination of leaves has been widely 78 

used for reconstructions of past pCO2 concentrations (Beerling and Kelly, 1997; Doria 79 

et al., 2011). The three main parameters are stomatal density (SD), which is expressed 80 

as the total number of stomata divided by area, epidermal density (ED), which is 81 

expressed as the total number of epidermal cells per area, and the stomatal index (SI), 82 

which is defined as the percentage of stomata among the total number of cells within 83 

an area [SI = SD×100 / (SD+ED)]. Woodward (1987) considered that both SD and SI 84 

had inverse relationships with atmospheric CO2 during the development of the leaves. 85 

Subsequently, McElwain (1998) created the stomatal ratio (SR) method to reconstruct 86 

pCO2. SR is a ratio of the stomatal density or index of a fossil [SD(f) or SI(f)] to that of 87 
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corresponding nearest living equivalent [SD(e) or SI(e)], expressed as follows: 88 

SR = SI(e) / SI(f))                                                    (1) 89 

The stomatal ratio method is a semi-quantitative method of reconstructing pCO2 90 

concentrations under certain standardizations. An example is the “Carboniferous 91 

standardization” (Chaloner and McElwain, 1997), where one stomatal ratio unit 92 

equals two RCO2 units:  93 

SR = 2 RCO2                                                                        (2) 94 

and the value of RCO2 is the pCO2 level divided by the pre-industrial atmospheric 95 

level (PIL) of 300 ppm (McElwain, 1998) or that of the year when the nearest living 96 

equivalent (NLE) was collected (Berner, 1994; McElwain, 1998): 97 

RCO2 = C(f) / 300 or RCO2 = C(f) / C(e)                                  (3) 98 

The estimated pCO2 level can then be expressed as follows: 99 

C(f) =0.5 ×C(e) × SD(e) / SD(f) or C(f) =0.5 ×C(e) × SI(e) / SI(f)                   (4) 100 

where C(f) is the pCO2 represented by the fossil leaf, and C(e) is the atmospheric CO2 101 

of the year when the leaf of the NLE species was collected (McElwain and Chaloner, 102 

1995, 1996; McElwain 1998). The equation adapts to the pCO2 concentration prior to 103 

Cenozoic. 104 

Another standardization, the “Recent standardization” (McElwain, 1998), is 105 

expressed as one stomatal ratio unit being equal to one RCO2 unit: 106 

SR = 1 RCO2                                                  (5) 107 

According to the equations stated above, the pCO2 concentration can be expressed 108 

as: 109 
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C(f) = Ce × SD(e) / SD(f) or C(f) = Ce × SI(e) / SI(f)                            (6) 110 

This standardization is usually used for reconstruction based on Cenozoic fossils 111 

(Chaloner and McElwain, 1997; McElwain, 1998; Beerling and Royer, 2002).   112 

Kouwenberg et al. (2003) proposed some special stomatal quantification methods 113 

for conifer leaves with stomata arranged in rows. The stomatal number per Length 114 

(SNL) is expressed as the number of abaxial stomata plus the number of adaxial 115 

stomata divided by leaf length in millimeters. Stomatal rows (SRO) is expressed as 116 

the number of stomatal rows in both stomatal bands. Stomatal density per length 117 

(SDL) is expressed as the equation SDL = SD × SRO. True stomatal density per 118 

length (TSDL) is expressed as the equation TSDL = SD × band width (in millimeters). 119 

The band width on Nageia motleyi leaves was measured as leaf blade width. 120 

 121 

2.2 Review of extant and fossil Nageia 122 

 123 

The genus Nageia, including seven living species, is a special group of 124 

Podocarpaceae, a large family of conifers mainly distributed in the southern 125 

hemisphere. Nageia has broadly ovate-elliptic to oblong-lanceolate, multiveined 126 

(without a midvein), spirally arranged or in decussate, and opposite or subopposite 127 

leaves (Cheng et al., 1978; Fu et al., 1999). Generally, Nageia is divided into Nageia 128 

Sect. Nageia and Nageia Sect. Dammaroideae (Mill 1999, 2001). Both sections are 129 

mainly distributed in southeast Asia and Australasia from north latitude 30° to nearly 130 

the equator (Fu, 1992; Fig. 1). Four species of the N. section Nageia -- Nageia nagi 131 
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(Thunberg) O. Kuntze, N. fleuryi (Hickel) De Laub., N. formosensis (Dummer) C. N. 132 

Page, and N. nankoensis (Hayata) R. R. Mill -- have hypostomatic leaves where 133 

stomata only occur on the abaxial side.One species of this section -- N. maxima (De 134 

Laub.) De Laub. -- is characterized by amphistomatic leaves, but where only a few 135 

stomata are found on the adaxial side (Hill and Pole, 1992; Sun, 2008). Both N. 136 

wallichiana (Presl) O. Kuntze and N. motleyi of the N. section Dammaroideae are 137 

amphistomatic with abundant stomata distributed on both sides of the leaf. This is 138 

especially true for N. motleyi, which has approximately equal stomata numbers on 139 

both surfaces (Hill and Pole, 1992; Sun, 2008). 140 

The fossil record of Nageia can be traced back to the Cretaceous. Krassilov (1965) 141 

described Podocarpus (Nageia) sujfunensis Krassilov from the Lower Cretaceous of 142 

Far East Russia. Kimura et al. (1988) reported Podocarpus (Nageia) ryosekiensis 143 

Kimura, Ohanaet Mimoto, an ultimate leafy branch bearing a seed, from the Early 144 

Barremian in southwestern Japan. In China, a Cretaceous petrified wood, Podocarpus 145 

(Nageia) nagi Pilger, was discovered from the Dabie Mountains in central Henan, 146 

China (Yang et al., 1990). Jin et al. (2010) reported a upper Eocene Nageia leaf 147 

named N. hainanensis Jin, Qiu, Zhu et Kodrul from the Changchang Basin of Hainan 148 

Island, South China. Recently, Liu et al. (2015) found another leaf species N. 149 

maomingensis Jin et Liu from upper Eocene of Maoming Basin, South China. 150 

Although some of the Nageia fossil materials described in the above studies 151 

(Krassilov, 1965; Jin et al., 2010; Liu et al., 2015) have well-preserved cuticles, these 152 

studies are mainly concentrated on morphology, systematics and phytogeography. 153 
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Here we try to reconstruct the pCO2 concentration based on stomatal data of 154 

Nageia maomingensis Jin et Liu. Among the modern Nageia species mentioned above, 155 

N. motleyi was considered as the NLE species of N. maomingensis (Liu et al., 2015). 156 

However, because of the species-specific inverse relationship between atmospheric 157 

CO2 partial pressure and SD (Woodward and Bazzaz, 1988), it is necessary to explore 158 

whether the SD and SI of N. motleyi show negative correlations with the CO2 159 

concentration before applying the stomatal method. Both N. maomingensis and N. 160 

motleyi are amphistomatic, suggesting that both upper and lower surfaces of the leaf 161 

are needed to estimate the pCO2 concentrations.  162 

 163 

3 Material and methods 164 

 165 

3.1 Extant leaf preparation 166 

 167 

We examined 12 specimens of extant Nageia motleyi from different herbaria (Table 168 

1). We removed one or two leaves from each specimen, and took three fragments 169 

(0.25 mm
2
) from every leaf (Fig. 2a) and numbered them for analysis.  170 

The numbered fragments were boiled for 5-10 min in water. Subsequently, after 171 

being macerated in a mixed solution of 10% acetic acid and 10% H2O2 (1:1) and 172 

heated in the thermostatic water bath at 85 C for 8.5 hours; the reaction was stopped 173 

when the specimens fragments turned white and semitransparent; The cuticles were 174 

then rinsed with distilled water until the pH of the water became neutral. After that the 175 



9 
 

cuticles were treated in Schulze’s solution (one part of potassium chlorate saturated 176 

solution and three part of concentrated nitric acid) for 30 min, rinsed in water, and 177 

then treated with 8% KOH (up to 30 min) and the abaxial and adaxial cuticles were 178 

separated with a hair mounted on needle. Finally, the cuticles were stained with 1% 179 

Safranin T alcoholic solution for 5 min, sealed with Neutral Balsam and observed 180 

under LM. 181 

 182 

3.2 Fossil leaf preparation 183 

 184 

Maoming Basin (21°42'33.2"N, 110°53'19.4"E) is located in southwestern 185 

Guangdong, South China including Cretaceous and Tertiary strata. Tertiary strata are 186 

fluvial and lacustrine sedimentary units, divided into the Gaopengling, Laohuling, 187 

Shangcun, Huangniuling and Youganwo formations in descending order, aged from 188 

late Eocene to early Oligocene (Wang et al., 1994). 189 

Four fossil leaves of Nageia maomingensis were recovered from the Youganwo 190 

(MMJ1-001) and Huangniuling (MMJ2-003, MMJ2-004 and MMJ3-003) formations 191 

of Maoming Basin, South China (Fig. 1B, 1C in Liu et al., 2015). The age from 192 

Youganwo to Huangniuling formations is late Eocene (~ 40.3 Ma). Precise 193 

information regarding locations is provided by Liu et al., (2015). Macrofossil 194 

cuticular fragments were taken from the middle part of each fossil leaf (Fig. 2c) and 195 

treated with Schulze’s solution for approximately 1h and 5–10% KOH for 30 min (Ye, 196 

1981). The cuticles were observed and photographed under a Carl Zeiss Axio Scope 197 
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A1 light microscope (LM). All fossil specimens and cuticle slides are housed in the 198 

Museum of Biology of Sun Yat-sen University, Guangzhou, China. 199 

 200 

3.3 Stomatal counting strategy and calculation methods 201 

 202 

The basic stomatal parameters, SD, ED and SI, were counted based on analyzing 203 

pictures taken with a light microscope (LM). A total of 2816 pictures (200× 204 

magnification of Zeiss LM) of cuticles from 21 leaves of N. motleyi were counted. 205 

Each counting field was 0.366 mm
2
. We used a standard sampling protocol (Poole and 206 

Kürschner, 1999), counting all full stomata in the image plus stomata straddling the 207 

left and top margins, as presented in Figure 2(b), and (d). 208 

The SNL, SRO, SDL, and TSDL were also determined based on LM images. A 209 

total of 2293 pictures (200× magnification of Zeiss LM) of the cuticles from 21 leaves 210 

of N. motleyi were counted. Each counting field was 0.366 mm
2
. None of the 211 

aforementioned counting areas overlapped and they were larger than the minimum 212 

area (0.03 mm
2
) for statistics (Poole and Kürschner, 1999). In this study, the stomatal 213 

data of both surfaces are applied in pCO2 reconstruction because both the fossil and 214 

NLE species are amphistomatic. 215 

 216 

 217 

4 Results 218 

 219 



11 
 

4.1 Correlations between the CO2 concentrations and stomatal parameters of 220 

Nageia motleyi 221 

 222 

The SD and SI data of the adaxial sides of N. motleyi leaves are presented in Table 223 

2. The SDs and SIs average 62.28 mm
-2

 and 3.30 %, respectively. However, the SDs 224 

and SIs data of the abaxial sides, summarized in Table 3, give higher average values 225 

(70.03 mm
-2

 in SDs and 3.90 % in SIs) than those from the adaxial sides. The 226 

combined SD and SI of the adaxial and abaxial surfaces average 66.14 mm
-2

and 227 

3.60 %, respectively (table 4). 228 

Fig. 3 shows the relationships between the stomatal parameters (SD and SI) of 229 

modern N. motleyi and the atmospheric CO2 concentration (SD-CO2 relationship and 230 

SI-CO2 relationship). R
2
 values in the SD-CO2 relationship from the adaxial and 231 

abaxial surfaces of N. motley are up to 0.4667 and 0.3824 (Fig. 3a, b), suggesting that 232 

the stomatal densities of N. motleyi are inverse to the CO2 concentrations. However, 233 

Fig. 3c and d indicate no relationship between the SIs and CO2 concentrations for the 234 

extremely low level of the R
2
 values

 
(0.2558 and 0.0248). Figs. 3e and 3f based on the 235 

combined data also show that SD inversely responds to the atmospheric CO2 236 

concentration (R
2
 =0.4421), while SI has almost no relationship with the atmospheric 237 

CO2 concentration (R
2
 =0.1177).  238 

The mean values of SNL, SDL and TSDL are 9.81, 326.39 and 1226.93 no.∙mm
-1

, 239 

respectively (Table 5). Fig. 4 shows the relationships between SNL (SDL, TSDL) and 240 

CO2 concentrations. The low R
2
 values in the Fig. 4a and 4c indicate that SNL (R

2
 = 241 
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0.0643) and TSDL (R
2
 = 0.0788) have no relationship with the CO2 concentration in 242 

this study. Fig. 4b shows that there is a weak reverse relevance between SDL and the 243 

CO2 concentration (R
2
 = 0.3154). 244 

Compared with the SDL method, the SD-based method shows a larger R
2
 value, 245 

indicating a stronger relevance between the SD and CO2 concentrations. In this study, 246 

the pCO2 is reconstructed based on the regression equations of SD-CO2 relationship. 247 

Additionally, the stomatal ratio method can be also used in estimating pCO2 248 

concentration of the late Eocene based on stomatal densities (SDs) of the fossil 249 

species N. maomingensis and extant species N. motleyi. The SD results of specimen 250 

No. 18328 are selected to reconstruct the pCO2 concentration, because they are closest 251 

to the fitted equations in Fig. 3. This specimen was collected by Neth. Ind. For. 252 

Service from Riau on Ond. Karimon, Archipel. Ind., Malaysia, in 1934 at an altitude 253 

of 5 m and CO2 concentration of 306.46 ppmv (Brown, 2010). 254 

 255 

4.2 The pCO2 estimates results 256 

4.2.1 The regression approach 257 

The summary of stomatal parameters of the fossil Nageia and reconstruction results 258 

are provided in Tables 6‒8. The mean SD and SI values of the adaxial surface are 44.5 259 

mm
-2

 and 1.8 %, respectively (Table 6). The mean SD and SI values of the abaxial 260 

surface are 49.8 mm
-2

 and 2.07 %, respectively (Table 7).  261 

Based on the regression approach, the pCO2 was reconstructed as 351.9 ± 6.6 ppmv 262 

and 365.6 ± 7.6 ppmv according to the SD of adaxial and abaxial sides. The combined 263 
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SD value is an average of 46.6 mm
-2

 (Table 8), giving the reconstructed pCO2 of 264 

358.1 ± 5.0 ppmv. 265 

 266 

4.2.2 The stomatal ratio method 267 

Mean SR value of the adaxial side (SR=1.69 ± 0.18) is a little larger than that of the 268 

abaxial side (SR=1.60 ± 0.11) in fossil Nageia leaves (Tables 6 and 7). The pCO2 269 

reconstruction results are537.5 ± 56.5 ppmv (Table 6) and 496.1 ± 35.7 ppmv (Table 7) 270 

based on the adaxial and abaxial cuticles, respectively. Based on the combined SD of 271 

both leaf sides, the pCO2 result is 519.9 ± 35.0 ppmv. 272 

The partial pressure of CO2 decreases with elevation (Gale, 1972). Jones (1992) 273 

proposed that the relationship between elevation and partial pressure in the lower 274 

atmosphere can be expressed as P = –10.6E + 100, where E is elevation in kilometers 275 

and P is the percentage of partial pressure relative to sea level. Various studies 276 

corroborate that SI and SD of many plants have positive correlations with altitude 277 

(Körner and Cochrane, 1985; Woodward, 1986; Woodward and Bazzaz, 1988; 278 

Beerling et al., 1992; Rundgren and Beerling, 1999) while they are negatively related 279 

to the partial pressure of CO2 (Woodward and Bazzaz, 1988). Therefore, it is essential 280 

to take elevation calibration into account during pCO2 concentration estimates. 281 

However, Royer (2003) pointed out that it is unnecessary to provide this conversion 282 

when trees lived at <250 m in elevation. In this paper, the nearest living equivalent 283 

species, Nageia motleyi, grows at 5 m in elevation with P =99.9, suggesting that CO2 284 

concentration estimates were only underestimated by 0.1%. Consequently, no 285 
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correction is needed for the reconstruction result in this study. After being projected 286 

into a long-term carbon cycle model (GEOCARB III; Berner and Kothavalá, 2001), 287 

the results of this study compares well with CO2 concentrations for corresponding age 288 

within their error ranges (Fig. 5). 289 

 290 

5 Discussion 291 

5.1 Stomatal parameters response to CO2 292 

Here, we find that SD decreases as atmospheric CO2 concentrations increase, 293 

however, SI does not. Generally, SI is more sensitive in response to the atmospheric 294 

CO2 concentration than SD (Beerling, 1999; Royer, 2001). However, the reverse case 295 

is not unfound. For example, Kouwenberg et al. (2003) reported that SD is better than 296 

SI in reflecting the negative relationships with CO2 in conifer needles, accounting for 297 

the special paralleled mode of the ordinary epidermal and stomatal formation. 298 

Although Nageia is broad-leaved rather than needle-leaved, it also has well paralleled 299 

epidermal cells herein showing the different relationships between CO2 and SD or SI. 300 

Compared with SD, the SDL has weaker correlation with CO2 at a smaller R
2
. The 301 

SNL and TSDL have no response to the change of CO2. The insensitivity of SNL, 302 

SDL and TSDL might account for the characters of broad-leaved leaf shape and 303 

paralleled epidermal cells. The SNL should be applied to conifer needles with single 304 

file of stomata (Kouwenberg et al., 2003). The SDL and TSDL were considered as the 305 

most appropriate method when the stomatal rows grouped in bands in a hypo- or 306 

amphistomatal conifer needle species (Kouwenberg et al., 2003). Considering all the 307 
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stomatal parameters above, SD appears to be the most sensitive to CO2. 308 

The SD-CO2 correlation shows one value from leaf No. 40798 offset from the 309 

others. The SI-CO2 correlation shows different offset values in different leaf sides. 310 

The offset values might be affected by leaf maturity and light intensity. However, it is 311 

hard to distinguish whether a fossil leaf is young or mature, or live in the sunny or 312 

shady light regimes. 313 

The R
2
 value (0.5) of SD-CO2 based on the adaxial side is higher than from the 314 

abaxial side and the combination of both sides, indicating that the correlation of 315 

SD-CO2 is stronger than the others parameters herein. Therefore, the SD on the 316 

adaxial side is the best in reconstructing pCO2. The reconstruction result based on the 317 

regression approach is 351.9 ± 6.6 ppmv lower than the one based on the stomatal 318 

ratio method (Table 6), and it is relatively lower than the results based on the other 319 

proxies (Fig. 6; Freeman and Hayes, 1992; Pagani et al., 2005; Maxbauer et al., 2014). 320 

However, the result based on stomatal ratio method is 537.5 ± 56.5 ppmv which is 321 

closest to GEOCARB III (Fig. 5) and historical reconstruction trends (Fig. 6). 322 

 323 

5.2 Paleoclimate reconstructed history 324 

 325 

The pCO2 levels throughout the Cenozoic were relatively lower than through the 326 

Cretaceous (Ekart et al., 1999), but had an overall decreasing trend with some 327 

significant increases on short-time scales (e.g. in the earliest Eocene and middle 328 

Miocene, Zachos et al., 2001, 2008; Wing et al., 2005; Lowenstein and Demicco, 329 
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2006; Fletcher et al., 2008; Bijl et al., 2010; Kato et al., 2011). There is a wide range 330 

in pCO2 estimates for the Paleogene, reflecting problems in the various proxies. Both 331 

the fractionation of carbon isotopes by phytoplankton (Freeman and Hayes, 1992) and 332 

analysis of paleosol (fossil soil) carbonates (Ekart et al., 1999) demonstrate that 333 

carbon dioxide levels were less than 1000 ppmv before the Cretaceous-Tertiary 334 

boundary and have been decreasing since the Paleocene.  335 

Based on the measurements of palaeosol carbon isotopes, Cerling (1991) reported 336 

that pCO2 levels for the Eocene and Miocene through to the present was lower than 337 

700 ppmv. Fletcher et al. (2008) also showed that atmospheric CO2 levels were 338 

approximately 680 ppmv by 60 million years ago. However, Stott (1992) 339 

reconstructed pCO2 as 450‒550 ppmv for the early Eocene based on phytoplankton. 340 

Additionally, reconstructions using the stomatal ratio method based on Ginkgo, 341 

Metasequoia, and Lauraceae leaves also revealed a low pCO2 level between 300 and 342 

500 ppmv during the early Eocene (Kürschner et al., 2001; Royer et al., 2001; 343 

Greenwood et al., 2003; Royer, 2003) except a single high estimate of about 800 344 

ppmv near the Paleocene/Eocene boundary (Royer et al., 2001).  345 

Subsequently, Smith et al. (2010) reconstructed the value of pCO2 ranging from 580 346 

± 40 to 780 ± 50 ppmv using the stomatal ratio method (recent standardization) based 347 

on both SI and SD. A climatic optimum occurred in the middle Eocene (MECO): the 348 

reconstructed CO2 concentrations are mainly between 700 and 1000 ppmv during the 349 

late middle Eocene climate transition (42–38 Ma) using stomatal indices of fossil 350 

Metasequoia needles, but concentrations declined to 450 ppmv toward the top of the 351 
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investigated section (Doria et al., 2011). Jacques et al. (2014) used CLAMP to 352 

calibrate climate change in Antarctica during the early-middle Eocene, suggesting a 353 

seasonal alternation of high- and low-pressure systems over Antarctica during the 354 

early-middle Eocene. Spicer et al. (2014) also reconstructed a relatively lower cool 355 

temperature than δ
18

O records (Keating-Bitonti et al., 2011) in the middle Eocene of 356 

Hainan Island, South China using CLAMP, indicating a not uniformly warm climate 357 

in the low latitude during the Eocene. An overall decreasing trend of the pCO2 level 358 

was presented after the middle Eocene (Fig. 6; Retallack, 2009b).  359 

The ice-sheets started to appear in the Antarctic during the Late Eocene (Zachos et 360 

al., 2001), then the temperature suffered an apparent further decrease from the late 361 

Eocene to the early Oligocene (Roth-Nebelsick et al., 2004), which resulted in the 362 

Antarctic being almost fully covered by ice-sheets. Subsequently, the climate 363 

variation was comparatively stable with a little wobbling in temperature during the 364 

Oligocene period (Fig. 6), while a small and ephemeral Late Oligocene Warming was 365 

present in the latest part of the Oligocene, resulting in reducing the Antarctic ice 366 

sheets to a minimum and forming a brief period of glaciation at that time (Zachos et 367 

al., 2001). During the Middle Miocene, a quick rise in temperature was shown, which 368 

was followed by a small glaciation (Fig. 6; Zachos et al., 2001; Roth-Nebelsick et al., 369 

2004; Beerling and Royer, 2011). Subsequently, the CO2 concentration decreased 370 

gradually and reached 280 ppmv until the period of the industrial revolution (Fig. 6). 371 

Since then, however, the CO2 concentration rebounded to present day level. 372 

In conclusion, although various results were made by different pCO2 reconstruction 373 
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proxies at the same time, their entire decreasing tendency of pCO2 level are 374 

remarkably consistent with each other since the Eocene (Fig. 6). Fig. 6 shows that 375 

during the Eocene the temperature was higher than at present. The reconstructed pCO2 376 

of 351.9 ± 6.6 ppmv based on the regression approach is shows a remarkably low 377 

pCO2 level during the early late Eocene. The result based on the stomatal ratio 378 

method of 537.5 ± 56.5 ppmv is closely consistent with the pCO2 changes over the 379 

geological ages (Fig. 6). 380 

 381 

 382 

 383 

6 Conclusion 384 

 385 

In this study, we reconstructed the late Eocene pCO2 based on the fossil leaves of 386 

Nageia maomingensis Jin et Liu from the late Eocene of Maoming Basin, Guangdong 387 

Province, China. Nageia is a special element in conifers by its broad multi-veined leaf 388 

that lacks mid-vein. The stomatal data analysis suggests that only stomatal densities 389 

(SD) from both sides of Nageia motleyi leaves have significant negative correlations 390 

with the atmospheric CO2 concentration. The SD from the adaxial side gives the best 391 

correlation to the CO2. Based on SDs, the pCO2 concentration is reconstructed using 392 

both the regression approach and the stomatal ratio method. The pCO2 result based on 393 

the regression approach is 351.9 ± 6.6 ppmv, showing a relatively lower CO2 level. 394 

The reconstructed result based on the stomatal ratio method is 537.5 ± 56.5 ppmv 395 
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consistent with the variation trends based on the other proxies. Here, we explored the 396 

potential of N. maomingensis in pCO2 reconstruction and obtained different results 397 

according to different methods, providing a new insight for the reconstruction of 398 

paleoclimate and paleoenvironment in conifers.  399 
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 707 

Figure 1. Map showing the distribution of extant and fossil Nageia and their mean annual 708 

temperature (Modified after the map from 709 

http://www.sage.wisc.edu/atlas/maps.php?datasetid=35&includerelatedlinks=1&dataset=35). 710 

 711 

712 
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Figure 2. Sampling areas and counting rules are shown. (a) Nageia motleyi (Parl.) De Laub.leaf. 713 

Black squares in the middle of the leaf show the sampling areas for preparing the cuticles. (b) The 714 

abaxial side of the cuticle from N. motleyi leaf. Black circles show the counted stomatal 715 

complexes. (c) N. maomingensis Jin et Liu. Red squares in the middle of the leaf indicate the 716 

sampling areas. (d) The abaxial side of the fossil cuticle. Red circles show the counted stomatal 717 

complexes. Scale bars: (a) and (c) = 1 cm; (b) and (d) = 50 µm. 718 

 719 

720 
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Figure 3. Correlation between SD and SI versus CO2 concentration for modern Nageia motleyi. (a) 721 

Trends of SD with CO2 concentration for the adaxial surface. (b) Trends of SD with CO2 722 

concentration for the abaxial surface. (c) Trends of SI with CO2 concentration for the adaxial 723 

surface. (d) Trends of SI with CO2 concentration for the abaxial surface. (e) Trends of SD with 724 

CO2 concentration for the combined data of both leaf surfaces. (f) Trends of SI with CO2 725 

concentration for the combined data of both leaf surfaces. 726 

 727 

728 
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Figure 4. Correlation between SNL, SDL and TSDL versus CO2 concentration for modern Nageia 729 

motleyi. (a) Trends of SNL with CO2 concentration for the adaxial surface. (b) Trends of SDL with 730 

CO2 concentration for the adaxial surface. (c) Trends of TSDL with CO2 concentration for the 731 

adaxial surface. 732 

 733 

734 
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Figure 5. The pCO2 reconstruction results and extant CO2 concentrations are projected onto the 735 

long-term carbon cycle model (GEOCARB III; Berner and Kothavalá, 2001). The pCO2 results 736 

based on the regression approach and stomatal ratio method are represented by red and blue 737 

squares, respectively. 738 

 739 

740 
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Figure 6. Atmospheric CO2 estimates from proxies over the past 60 million years. The horizontal 741 

dashed line indicates monthly atmospheric CO2 concentration for March 2015 at Mauna Loa, 742 

Hawaii (401.5 ppmv) (Pieter and Keeling, 2015). The vertical lines show the error bars. The data 743 

are from the supporting data of Beerling and Royer (2011) and references in Table 9. The lower 744 

blue star shows the reconstructed result based on the regression approach. The higher one presents 745 

the result of stomatal ratio method. 746 

 747 
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Table 1. Modern Nageia motleyi (Parl.) De Laub samples and atmospheric CO2 values of their collection dates from ice core data (Brown, 2010). 748 

 749 

Herbarium 
Collection 

number 
Collecting locality Collectors 

Number of 

leaf samples  

Collection 

date 

CO2 

(ppmv) 

LE No. 2649 Malaysia Beccari, O. 1 1868 289.23 

A/GH No. bb. 17229 150 m, Riau on Ond. Karimon, Archipel. Ind. Neth. Ind. For. Service 2 1932 306.19 

A/GH No. bb. 18328 5 m, Z. O. afd. v. Borneo Tidoengsche Landen, Archipel. Ind. Neth. Ind. For. Service 2 1934 306.46 

A/GH No. bb. 21151 500 m, Z. O. afd. Borneo, Poeroek Tjahoe Tahoedjan, 

Archipel. Ind. 

Neth. Ind. For. Service 2 1936 306.76 

KEP No. 30887 Kata Tinggi, Johor, Malaysia Corner, E.J.H. 1 1936 306.76 

KEP No. 57329 Batang Padang, Perak, Malaysia Unkonwn 2 1947 309.82 

KEP No. 57330 Batang Padang, Perak, Malaysia Unkonwn 2 1947 309.82 

KEP No. 55897 Batang Padang, Perak, Malaysia Unkonwn 2 1947 309.82 

KEP No. 61064 Batang Padang, Perak, Malaysia Syed Woh 2 1947 309.82 

E No. bb. 40798 51 m, Kuala Trengganu-Besut Road, Bukit Bintang Block, 

Gunong Tebu Forest reserve, Malaysia 

Sinclair, J. and Kiah 

bin, Salleh 

2 1955 313.73 

KEP No. 80548 Gombak, Selangor, Malaysia Rahim 1 1965 320.04 

KEP No. 33343 Jelebu, Negeri Sembilan, Malaysia Yap, S.K. 2 1987 348.98 

Note: A/GH—Harvard University Herbarium, Harvard University, 22 Divinity Avenue, Cambridge, Massachusetts 02138, USA (www.huh.harvard.edu). 

E—The Herbarium of Royal Botanic Garden, Edinburgh EH3 5LR, Scotland, UK (www.rbge.org.uk). 

LE—The Herbarium of the V.L. Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Street 2, Saint Petersburg 197376, Russia (www.binran.ru). 

KEP—Kepong Herbarium, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia (http://www.frim.gov.my/). 

http://www.huh.harvard.edu/
http://www.rbge.org.uk/
http://www.binran.ru/
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Table 2. Summary of stomatal parameters of the adaxial surface from modern Nageia motleyi (Parl.) De Laub. 750 

Collection 

number 

Collection 

date 
CO2 (ppmv) 

SD (mm
-2

)  SI (%) 

x σ s.e. t*s.e. n  x σ s.e. t*s.e. n 

No.2649 
 

1868 289.23 78.60 15.44 1.41 2.76 120  3.44 0.66 0.06 0.12 120 

No.bb.17229 
 

1932 306.19 62.14 17.20 1.78 3.50 93  2.89 0.68 0.07 0.14 93 

No.bb.18328 
 

1934 306.46 64.57 15.05 1.58 3.11 90  3.39 1.01 0.11 0.21 90 

No.bb.21151 
 

1936 306.76 65.45 11.14 1.17 2.30 90  3.94 0.74 0.08 0.15 90 

No.SFN30887 1936 306.76 66.90 16.10 1.27 2.49 161  3.61 0.92 0.07 0.14 161 

No.61064 1947 309.82 56.71 16.81 1.95 3.83 74  3.27 1.26 0.15 0.29 74 

No.57330 1947 309.82 67.37 15.97 2.04 4.01 61  3.70 0.82 0.10 0.20 61 

No.57329 1947 309.82 67.85 15.61 1.70 3.34 84  3.50 0.90 0.10 0.20 84 

No.55897 1947 309.82 66.74 14.10 1.78 3.48 63  3.18 0.66 0.08 0.16 63 

No.40798 
 

1955 313.73 45.89 13.81 1.12 2.20 151  3.03 0.87 0.07 0.14 151 

 No.KEP80548 1965 320.04 52.94 11.25 0.85 1.67 175  2.81 0.61 0.05 0.09 175 

 No.FRI33343 1987 348.98 52.25 12.05 0.77 1.51 242  2.87 0.69 0.04 0.09 242 

 Mean ‒ ‒ 62.28 14.54 1.45 2.85 117  3.30 0.52 0.08 0.16 117 

Note: x—mean; σ—standard deviation; s.e. —standard error of mean; n— numbers of photos counts (40×); t･s.e.— 95% confidence interval. 
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Table 3. Summary of stomatal parameters of the abaxial surface from modern Nageia motleyi (Parl.) De Laub. 751 

Collection 

number 

Collection 

date 
CO2 (ppmv) 

SD (mm
-2

)  SI (%) 

x σ s.e. t*s.e. n  x σ s.e. t*s.e. n 

No.2649 
 

1868 289.23 82.71 12.23 1.02 2.00 144  3.89 0.58 0.05 0.09 144 

No.bb.17229 
 

1932 306.19 69.16 14.23 1.48 2.90 93  3.13 0.58 0.06 0.12 93 

No.bb.18328 
 

1934 306.46 69.92 14.38 1.52 2.97 90  3.99 1.08 0.11 0.22 90 

No.bb.21151 
 

1936 306.76 75.68 15.74 1.66 3.25 90  4.66 0.88 0.09 0.18 90 

No.SFN30887 1936 306.76 76.18 12.51 0.99 1.93 161  4.42 0.89 0.07 0.14 161 

No.61064 1947 309.82 60.93 11.02 1.39 2.72 63  3.05 0.62 0.08 0.15 63 

No.57330 1947 309.82 75.82 14.14 1.82 3.58 60  4.38 0.84 0.11 0.21 60 

No.57329 1947 309.82 71.74 16.84 1.75 3.42 93  3.72 0.62 0.06 0.13 93 

No.55897 1947 309.82 78.63 13.41 1.75 3.42 59  4.41 1.00 0.13 0.26 59 

No.40798 
 

1955 313.73 53.22 13.88 1.12 2.19 155  3.71 0.93 0.07 0.15 155 

 No.KEP80548 1965 320.04 67.22 13.97 1.07 2.09 171  3.70 0.80 0.06 0.12 171 

 No.FRI33343 1987 348.98 59.09 12.10 0.79 1.55 233  3.69 0.86 0.06 0.11 233 

 Mean ‒ ‒ 70.03 13.70 1.36 2.67 118  3.90 0.81 0.08 0.16 118 

Note: x—mean; σ—standard deviation; s.e. —standard error of mean; n— numbers of photos counts (40×); t･s.e.— 95% confidence interval. 



43 
 

 752 

Table 4. Summary of stomatal parameters of the combined data of the adaxial and abaxial surfaces from modern Nageia motleyi (Parl.) De Laub. 753 

Collection 

number 

Collection 

date 
CO2 (ppmv) 

SD (mm
-2

)  SI (%) 

x σ s.e. t*s.e. n  x σ s.e. t*s.e. n 

No.2649 
 

1868 289.23 80.84 13.74 0.85 1.66 264  3.69 0.66 0.04 0.08 264 

No.bb.17229 
 

1932 306.19 65.65 16.13 1.18 2.32 186  3.01 0.64 0.05 0.09 186 

No.bb.18328 
 

1934 306.46 67.24 14.92 1.11 2.18 180  3.69 1.08 0.08 0.16 180 

No.bb.21151 
 

1936 306.76 70.57 14.53 1.08 2.12 180  4.30 0.89 0.07 0.13 180 

No.SFN30887 1936 306.76 71.54 15.12 0.84 1.65 322  4.01 0.99 0.05 0.11 322 

No.61064 1947 309.82 58.65 14.54 1.24 2.43 137  3.17 1.02 0.09 0.17 137 

No.57330 1947 309.82 71.56 15.61 1.42 2.78 121  4.03 0.89 0.08 0.16 121 

No.57329 1947 309.82 69.90 16.33 1.23 2.41 177  3.62 0.77 0.06 0.11 177 

No.55897 1947 309.82 72.49 14.95 1.35 2.65 122  3.77 1.04 0.09 0.18 122 

No.40798 
 

1955 313.73 49.60 14.31 0.82 1.60 306  3.37 0.96 0.05 0.11 306 

 No.KEP80548 1965 320.04 60.00 14.53 0.78 1.53 346  3.25 0.84 0.05 0.09 346 

 No.FRI33343 1987 348.98 55.61 12.53 0.58 1.13 475  3.28 0.88 0.04 0.08 475 

 Mean ‒ ‒ 66.14 14.77 1.04 2.08 235  3.60 0.89 0.06 0.12 235 

Note: x—mean; σ—standard deviation; s.e. —standard error of mean; n— numbers of photos counts (40×); t･s.e.— 95% confidence interval. 

 754 
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Table 5. Summary of stomatal parameters from modern Nageia motleyi (Parl.) De Laub (Kouwenberg et al., 2003). 755 

Collection 

number 

Collection 

date 

CO2 

(ppmv) 
SNL SDL TSDL n 

No.2649 
 

1868 289.23 11.64 394.38 1455.10 264 

No.bb.17229 
 

1932 306.19 9.19 337.98 1280.12 186 

No.bb.18328 
 

1934 306.46 8.71 378.92 1277.63 180 

No.bb.21151 
 

1936 306.76 9.62 376.93 1517.21 180 

No.SFN30887 1936 306.76 10.55 325.08 735.38 240 

No.61064 1947 309.82 8.19 282.04 1200.66 133 

No.57330 1947 309.82 9.67 397.83 1397.33 119 

No.57329 1947 309.82 10.13 350.98 1672.50 176 

No.55897 1947 309.82 10.48 379.06 1486.13 122 

No.40798 
 

1955 313.73 10.29 175.14 933.85 305 

 No.KEP80548 1965 320.04 9.36 266.16 585.72 263 

 No.FRI33343 1987 348.98 9.84 252.20 1181.51 125 

 Mean ‒ ‒ 9.81 326.39 1226.93 191 

 756 

 757 
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 758 

Table 6. Summary of stomatal parameters of the adaxial surface of fossil Nageia and pCO2 [C(f)] estimates results. 759 

Species Age 

 SD (mm
-2

)  SI (%)  SR  pCO2(ppmv)  C(f) (ppmv) 

 x σ s.e. n x σ s.e. n x t*s.e  x t*s.e  x t*s.e 

MMJ1-001 Late Eocene  52.5 17.1 3.1 30  2.08 0.7 0.1 30  1.35 0.19  333.6 13.9  412.1 62.0 

MMJ2-003 Late Eocene  42.3 12.9 2.4 30  1.80 0.6 0.1 30  1.75 0.39  356.8 10.5  536.1 126.2 

MMJ2-004 Late Eocene  39.9 13.6 2.5 30  1.66 0.6 0.1 30  1.81 0.32  362.4 11.0  554.3 101.9 

MMJ3-003a Late Eocene  43.2 17.7 3.2 30  1.67 0.7 0.1 30  1.84 0.43  354.8 14.4  564.6 135.7 

Mean Late Eocene  44.5 16.3 1.5 120  1.80 0.7 0.1 120  1.69 0.18  351.9 6.6  516.8 56.5 

 Note: x—mean; σ—standard deviation; s.e. —standard error of mean; n— numbers of photos counts (400×); t･s.e.— 95% confidence interval. pCO2— the 

result based the regression approach; C(f)— the result based on the stomatal method. 

 

 760 
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Table 7. Summary of stomatal parameters of the abaxial surface of fossil Nageia and pCO2 [C(f)] estimates results. 762 

Species Age 

 SD (mm
-2

)  SI (%)  SR  pCO2(ppmv)  C(f) (ppmv) 

 x σ s.e. n x σ s.e. n x t*s.e  x t*s.e  x t*s.e 

MMJ1-001 Late Eocene  47.7 17.7 3.2 30  2.11 0.8 0.2 30  1.66 0.23  368.6 16.2  515.6 72.3 

MMJ2-003 Late Eocene  50.9 18.3 3.3 30  2.12 0.8 0.1 30  1.57 0.23  360.9 16.6  486.0 70.7 

MMJ2-004 Late Eocene  48.2 15.8 2.9 30  2.14 0.7 0.1 30  1.63 0.25  367.4 14.5  504.6 77.3 

MMJ3-003a Late Eocene  48.9 12.6 2.7 22  1.85 0.5 0.1 22  1.52 0.19  365.4 13.5  472.3 59.0 

Mean Late Eocene  48.9 16.2 1.5 112  2.07 0.7 0.1 112  1.60 0.11  365.6 7.6  496.1 35.7 

 Note: x—mean; σ—standard deviation; s.e. —standard error of mean; n— numbers of photos counts (400×); t･s.e.— 95% confidence interval. pCO2— the 

result based the regression approach; C(f)— the result based on the stomatal method. 
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Table 8. Summary of stomatal parameters of the combined data of the adaxial and abaxial surfaces of fossil Nageia and pCO2 [C(f)] estimates 764 

results. 765 

Species Age 

 SD (mm
-2

)  SI (%)  SR  pCO2(ppmv)  C(f) (ppmv) 

 x σ s.e. n x σ s.e. n x t*s.e  x t*s.e  x t*s.e 

MMJ1-001 Late Eocene  50.1 17.5 2.3 60  2.09 0.8 0.1 60  1.50 0.15  349.7 10.6  471.2 47.8 

MMJ2-003 Late Eocene  46.5 16.3 2.1 60  1.96 0.7 0.1 60  1.67 0.24  358.3 9.8  524.1 75.7 

MMJ2-004 Late Eocene  44.0 15.8 2.0 60  1.90 0.7 0.1 60  1.73 0.17  364.3 9.5  542.9 52.6 

MMJ3-003a Late Eocene  45.6 16.1 2.2 52  1.75 0.6 0.1 52  1.73 0.28  360.5 10.4  544.6 88.3 

Mean Late Eocene  46.6 16.4 1.1 232  1.93 0.7 0.1 232  1.66 0.11  358.1 5.0  519.9 35.0 

 Note: x—mean; σ—standard deviation; s.e. —standard error of mean; n— numbers of photos counts (400×); t･s.e.— 95% confidence interval. pCO2— the 

result based the regression approach; C(f)— the result based on the stomatal method. 
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Table 9. pCO2 estimates proxies and corresponding references. 767 

Proxies References 

Boron Pearson et al., 2009; Seki et al., 2010 

B/Ca Tripati et al., 2009 

Phytoplankton Freeman and Hayes, 1992; Stott, 1992; Pagani et al., 1999, 2005; Henderiks and Pagani, 2008; Seki et al., 2010 

Nahcolite Lowenstein and Demicco, 2006 

Liverworts Fletcher et al., 2008 

Paleosols Cerling, 1992; Koch et al., 1992; Ekart et al., 1999; Royer et al., 2001; Nordt et al., 2002; Retallack, 2009b; Huang et al. 2013 

Stomata Van der Burgh et al., 1993; Kürschner et al., 1996, 2001, 2008; McElwain, 1998; Royer et al., 2001, 2003; Greenwood et al., 2003; Beerling 

et al., 2009; Retallack, 2009a; Smith et al., 2010; Doria et al., 2011; Roth-Nebelsick et al., 2012; 2014; Grein et al., 2013; Maxbauer et al., 

2014 
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