

Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes

April N. Abbott¹, Brian A. Haley^{1, 2} Aradhna K. Tripathi^{3,4}, Martin Frank²

13 1. CEOAS, OSU, 104 Ocean Admin. Bldg., Corvallis, OR 97209, USA

14 2. GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel,

15 Germany

16 3. Department of Earth and Space Sciences, Department of Atmospheric and Oceanic Sciences,

17 and Institute of the Environment and Sustainability, University of California, Los Angeles, CA

18 90095, USA

19 4. European Institute of Marine Sciences (IUEM), Université de Brest, UMR 6538, Domaines

20 Océaniques, Rue Dumont D'Urville, Plouzané, France

21

22 Corresponding author: bhaley@coas.oregonstate.edu

25 **ABSTRACT**

26 **Global warming during the Paleocene Eocene Thermal Maximum (PETM) ~55**

27 **million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere**

28 **system, as indicated by carbon isotopic data. Previous studies have argued for a role for**

29 **changing ocean circulation, possibly as a trigger or response to climatic changes. We use**

30 **neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water**

31 **circulation across the PETM. These records are derived by reductively leaching sediments**

32 **from seven globally distributed sites and comparing data with published data from fossil**

33 **fish debris to reconstruct past deep ocean circulation across the PETM. The Nd data for**

34 **the leachates are interpreted to be consistent with previous studies that have used fish teeth**

35 **and benthic foraminiferal $\delta^{13}\text{C}$ to constrain regions of convection. There is some evidence**

36 **from combining Nd isotope and $\delta^{13}\text{C}$ records that the three major ocean basins may not**

37 **have had substantial exchanges of deep waters. If the isotopic data are interpreted within**

38 **this framework, then the observed pattern may be explained if the strength of overturning**

39 **in each basin varied distinctly over the PETM, resulting in differences in deep-water aging**

40 **gradients between basins. Results are consistent with published interpretations from proxy**

41 **data and model simulations that suggest modulation of overturning circulation had an**

42 **important role for global recovery of the ocean-atmosphere system after the PETM.**

43

44

45 **1.0 Introduction**

46 The PETM represents a time of profound global change with deep sea temperatures
47 increasing 4-8°C (Katz et al., 1999; Kennett and Stott, 1991; Sluijs et al., 2006; Tripati and
48 Elderfield, 2004, 2005; Zachos et al., 2001, 2003, 2006), widespread biological extinctions (e.g.
49 Kennett and Stott, 1991), and ocean acidification marked by widespread carbonate dissolution
50 occurring ~ 55 Ma (Dickens, 2000; Kump et al. 2009; Ridgwell and Schmidt, 2010; Zachos et
51 al., 2005, 2008; Zeebe and Zachos, 2007). In general, the timing and global distribution of
52 temperature records across the PETM are consistent with strong greenhouse forcing (Kennett and
53 Stott, 1991; Tripati and Elderfield, 2004, 2005; Zachos et al., 2001, 2003; Sluijs et al., 2007)
54 although the amount of carbon released, the type of carbon (Zeebe et al., 2009), and the possible
55 role of other forcing agents (e.g., water vapor, aerosol loading, surface albedo feedbacks) is
56 unclear (Bowen et al., 2004; Lunt et al., 2012). Changes in deep ocean circulation, orbital cycles,
57 and volcanic exhalations are proposed causes of the initial warming (e.g., Kennett and Stott,
58 1991; Bice and Marotzke, 2002; Dickens et al., 1995; Lunt et al., 2011, 2012; McInerney and
59 Wing, 2011 Nunes and Norris, 2006; Sluijs et al., 2007; Tripati and Elderfield, 2005; Winguth et
60 al., 2010; Zachos et al., 2001). Climate simulations even suggest that the magnitude and pacing
61 of the PETM and subsequent smaller events (ETM2 and ETM3) can be explained by orbitally
62 induced changes in water temperature and circulation controlling the destabilization of methane
63 hydrates (e.g. Lunt et al., 2010).

64 A striking characteristic of the PETM is a pronounced global negative stable carbon
65 isotope ($\delta^{13}\text{C}$) excursion (CIE) (Kennett and Stott, 1991; Koch et al., 1992; Bowen et al., 2001;
66 Nunes and Norris, 2006; McCarren et al., 2008; McInerney and Wing, 2011; Zachos et al.,
67 2001). This isotopic excursion resulted from a rapid release (in less than 10,000 years) of carbon

68 from an isotopically light reservoir, likely resulting from the warming climate (e.g., Farley and
69 Eltgroth, 2003; Murphy et al., 2010; Röhl et al., 2007). Based on basinal gradients of available
70 benthic $\delta^{13}\text{C}$ data (Nunes and Norris, 2006; Tripati and Elderfield, 2005), widespread carbonate
71 dissolution (Dickens, 2000; Kump et al. 2009; Ridgwell and Schmidt, 2010; Zachos et al., 2005,
72 2008), inferred deep-sea carbonate ion gradients (Zeebe and Zachos, 2007), as well as numerical
73 modeling studies (Bice and Marotzke, 2002; Lunt et al., 2012), it has been argued that a change
74 in thermohaline circulation may have been associated with the PETM. Such studies have
75 postulated circulation regimes fundamentally different than the modern ocean operating before
76 and after the PETM (Kennett and Stott, 1991, Lunt et al., 2011). Specifically, studies have
77 proposed the existence of Southern Ocean deep-water formation (Kennett and Stott, 1991) based
78 on high-resolution carbon isotope records that are used to infer basinal deep-water aging
79 gradients (Nunes and Norris, 2006; Tripati and Elderfield, 2005) and have suggested intermittent
80 deep water formation in the North Pacific based on a fully coupled atmosphere-ocean general
81 circulation model based on pCO₂ simulations (Lunt et al., 2011). It is hypothesized that due to
82 gradual changes in the temperature and hydrology of high-latitude surface waters, these
83 southern-sourced waters were displaced during the PETM with the development of convection in
84 the northern hemisphere (Alexander et al., 2015; Bice and Marotzke, 2002; Nunes and Norris,
85 2006; Tripati and Elderfield, 2005). The combination of warmer deep water and circulation
86 changes may have served as a trigger or amplifier of the massive carbon release that resulted in
87 the global CIE, possibly through the destabilization of methane hydrates (e.g. Bice and
88 Marotzke, 2002; Lunt et al., 2011).

89 However, interpreting past benthic $\delta^{13}\text{C}$ records in benthic foraminifera of the PETM as a
90 strict indicator of thermohaline circulation is complicated by possible contributions of

91 fractionated carbon sources (Kurtz et al., 2003), changes in marine productivity (Paytan et al.,
92 2007), deep water carbon export (McCarren et al., 2008), extinction and migration events of the
93 biota, and potential signal loss through dissolution in highly corrosive bottom waters (Alexander
94 et al., 2015; McCarren et al., 2008; Pagani et al., 2006; Zeebe and Zachos, 2007). In contrast,
95 the geochemical cycling of Nd in the oceans allows Nd isotopes to be used as a quasi-
96 conservative tracer of water mass distributions that is generally not affected by biogeochemical
97 processes that can be used to reconstruct past ocean circulation (e.g., Frank, 2002; Goldstein et
98 al., 2003; Thomas, 2004).

99 Published records of past seawater Nd isotope compositions (ε_{Nd}) extracted from fossil
100 fish teeth serve as a quasi-conservative proxy for past deep-water mass distributions and mixing
101 and do not show evidence for changes at the PETM. Specifically, the low-resolution ε_{Nd} data
102 from fish teeth have been interpreted as possibly reflecting an uninterrupted contribution from a
103 Southern Ocean deep-water source in multiple basins across the PETM (Thomas et al., 2003).
104 This apparent disparity between proxy data may reflect the non-conservative nature of
105 interpreting benthic foraminiferal $\delta^{13}\text{C}$, or could arise from the low-resolution nature of the
106 published Nd isotope records.

107 To address whether there is Nd isotope evidence for changes in water mass distributions,
108 we developed high-resolution records of the ε_{Nd} composition of Fe-Mn leachates from seven
109 sites and compare these results to published ε_{Nd} data for fish teeth (Thomas et al., 2003) and
110 benthic foraminiferal $\delta^{13}\text{C}$ (Nunes and Norris, 2006; Tripati and Elderfield, 2005; Zachos et al.,
111 2001). The Nd isotope composition of Fe-Mn oxide leachates from core-top sediments has been
112 used to accurately reconstruct bottom water values (Rutberg et al., 2000; Bayon et al., 2002;
113 Gutjahr et al., 2007). This technique has also been applied to downcore sediments to study

114 variations in bottom water circulation during the Pleistocene (Rutberg et al., 2000; Piotrowski et
115 al., 2004, 2005, 2008). Measurements on older sediments ranging from Cenozoic (Martin et al.,
116 2010) to Cretaceous (Martin et al., 2012) in age has shown that sequences from multiple
117 localities can preserve a Nd isotope signal similar to fish teeth and can be used to develop much
118 higher-resolution paleoceanographic records.

119

120 **2. Materials and Methods**

121 *2.1 Sample and locality information*

122 Details on the core locations, depths and paleo-depths are given in Table 1. Sites were
123 located at similar water depths during the PETM, with paleodepths between 2400 and 3200 m in
124 the Pacific, between 1900 and 2000 m in the North Atlantic, and between 1900 and 3400 m in
125 the Southern and Indian Oceans (Table 1). Sources for the carbon isotope data referred to in this
126 study is reported in this table. The age models used to plot all the data (including $\delta^{13}\text{C}$) are
127 shown in Table 2, and are derived from the information given in the publications of the $\delta^{13}\text{C}$ data
128 (Thomas et al., 2003; Nunes and Norris, 2006; Tripati and Elderfield, 2005). For completeness,
129 we show in Table 2 the core depth-age curve fits that describe the age models for each core,
130 where:

$$131 \text{Age (Myr)} = m(\text{Core Depth in mbsf}) + b.$$

132 Several segments are listed if sedimentation rates varied down core (the depth ranges of
133 these segments are listed in Table 2). In all cases, simple linear sedimentation rates were used.
134 These age models were also used to calculate the ages used here for the fish teeth/debris data
135 (Thomas et al., 2003).

136

137 2.2 Sample preparation

138 Freeze-dried sediment samples were obtained from the Integrated Ocean Drilling
139 Program (IODP). One to two grams dry weight of sediment was then rinsed with ultra-high
140 purity (Milli-Q) water, and then processed following established sediment leaching protocols
141 (e.g., Bayon et al., 2002, 2004; Haley et al., 2008a; Jacobsen and Wasserburg, 1979; Martin et
142 al., 2010; Piotrowski et al., 2008; Rutberg et al., 2000; Scher and Martin, 2006). Briefly, we
143 thoroughly rinse the sediments with Milli-Q water, leach with buffered acetic acid for 2.5 hours
144 and collect the leachate, then rinse thoroughly with Milli-Q again before the reduction of early
145 diagenetic metal oxide coatings that carry the bottom water Nd isotope signatures with a dilute
146 buffered hydroxylamine.HCl-acetic acid solution. This buffered hydroxylamine.HCl-acetic acid
147 solution leaches the authigenic metal oxide coatings, which are then removed from the sediment
148 and run through standard chromatographic procedures to extract a pure Nd solution for mass
149 spectrometric analyses (AG 50W X12 resin for cation separation followed by di-2-ethylexyl-
150 phosphate resin for rare earth element separation; see Gutjahr et al. 2007 for details). Many of
151 the initial acetic leachates were run through the same chromatographic procedures for the same
152 Nd analysis. ε_{Nd} of the first (buffered acetic) and second (hydroxylamine.HCl) leachates were
153 dominantly within error of each other (0.5 ε_{Nd}), thus we consider our hydroxylamine.HCl leaches
154 to reliably reflect bottom water signatures. The reliability of these signatures is further supported
155 by recent publications demonstrating the validity of hydroxylamine.HCl leaches in the absence
156 of volcanic material (e.g. Khélifi and Frank, 2014; Böhm et al., 2015). Still potential
157 uncertainties are associated with leaching sediments that may have undergone late stage
158 diagenesis, although to our knowledge no concrete examples exist in the literature for the
159 influence of late stage diagenesis on the recorded ε_{Nd} signature. For this reason we focus our

160 interpretations on the relative changes in the Nd isotope signature rather than on absolute values.
161 All sediments that could be sampled from the seven sites were analyzed and are presented here.
162 No additional sediment was available to alter or repeat the leaching procedure after our original
163 analysis (pre 2012) to account for new findings in leaching methods (Molina-Kescher et al.,
164 2014; Wilson et al., 2012).

165

166 *2.3 Sample analysis*

167 Nd was analyzed on two instruments: a Triton Thermal-Ionization Mass Spectrometer at
168 IFM-GEOMAR, using $^{146}\text{Nd}/^{144}\text{Nd} = 0.7219$ to correct for instrument fractionation, and a Nu
169 Instruments multi-collector inductively coupled mass spectrometer at Oregon State University.
170 Nd isotopes are expressed in ε_{Nd} notation, defined as the deviation of measured $^{143}\text{Nd}/^{144}\text{Nd}$ ratios
171 from a bulk Earth value of CHUR (chondritic uniform reservoir) in the 5th decimal place
172 (Thomas et al., 2003). Long-term reproducibility of a Nd standard solution (SPEX source) gave a
173 2σ error of 0.5 ε_{Nd} units representing the total error of analyses and normalization, exactly as the
174 samples. Analyses of the JNd_i standard used for normalization had a lower 2σ error of 0.3 ε_{Nd}
175 units. Nd isotope data are not corrected for decay of samarium given the limited temporal range
176 of the data and the lack of constraints on sample Sm/Nd isotope ratios. Nd isotope corrections for
177 the PETM are typically small (<0.5 ε_{Nd} units; Thomas et al. 2003) and therefore do not influence
178 our interpretations.

179

180 **3. Results and Discussion**

181 We have applied a leaching technique (Gutjahr et al., 2007; Haley et al., 2008a; Haley et
182 al., 2008b; Rutberg et al., 2000) that allows the extraction of past bottom water Nd isotope

183 compositions from the Fe-Mn oxide component of marine sediments, expressed as ε_{Nd} units
184 (Jacobsen and Wasserburg, 1979). Such data can provide high-resolution records of changes in
185 past deep-water mass mixing and used to interpret changes in circulation (Martin et al., 2010,
186 2012; Piotrowski et al., 2004, 2005, 2008; Thomas et al., 2014). Below we compare results from
187 leachates to data from fish teeth. We also compare results to carbon isotope data from the same
188 cores. By combining high-resolution ε_{Nd} and benthic $\delta^{13}\text{C}$ records from the same locations it is
189 possible to elucidate the causes and controls of $\delta^{13}\text{C}$ variations in the past deep oceans
190 (Piotrowski et al., 2005). Our new isotopic Nd data are combined with existing $\delta^{13}\text{C}$ records and
191 published Nd isotope data from fossil fish teeth of the Atlantic, Indian and Southern Oceans
192 (Thomas et al., 2003), in order to reconstruct global Nd isotope distributions across the PETM at
193 a resolution comparable to the corresponding $\delta^{13}\text{C}$ data (Figure 1).

194

195 *3.1 Comparison of neodymium isotope data obtained using different archives*

196 Consistent with published results for a number of different sedimentary environments
197 (Martin et al., 2012), we find evidence (Figure 1) for a general agreement between Nd isotopic
198 data from sediment leaches and fish teeth (Thomas et al., 2003). There appears to be a small,
199 possibly systematic offset at Site 401, and at 690B. This may be the result of higher-order
200 variability at these locations, or the result of a temporal difference between the uptake or the
201 retention of Nd in teeth and the ferromanganese coatings during sedimentation and diagenesis, or
202 a combination of the two. In the first instance, model studies (Lunt et al., 2011; Winguth et al.,
203 2010) have confirmed that locations near the Antarctic continent, such as at Site 690B, were
204 sensitive to changes in climate conditions, and, as such, likely to have varied more substantially
205 during the PETM (55.14-55.23 Ma for this study based on the CIE; Figure 2). Due to limited

206 constraints of the offsets between fish teeth and leach records, we focus our interpretations on the
207 relative trends in the ε_{Nd} signatures and their relation to the CIE.

208

209 *3.2 Broad patterns in Nd isotope records*

210 The broad patterns in these data support previous studies that have inferred convection
211 occurred in the Southern Ocean, and that convection occurred in both the North and South
212 Pacific during the PETM. The ε_{Nd} records cover the three major ocean basins (Figure 2) and
213 reveal distinct and basin-specific changes in deep circulation across the PETM. These data
214 suggest that a change in ocean circulation may have triggered the carbon release associated with
215 the PETM. Specifically, leachate ε_{Nd} records from Pacific Site 1220 show a negative excursion
216 of ~ 2 units prior to the CIE while fish teeth ε_{Nd} records indicate a similarly sized excursion in the
217 Southern Ocean.

218 Southern Sites 527 (subtropical South Atlantic) and 690 (Atlantic sector of the Southern
219 Ocean) fluctuated (1 to 1.3 ε_{Nd} units) around a mean ε_{Nd} of ~ -9 throughout the record, with
220 indications of a switch to in-phase co-variation during and after the PETM, also reflected by the
221 evolution of Site 213 (Figure 2). The ε_{Nd} records for eastern North Atlantic Site 401 stabilize at
222 ~ -9.3 during the PETM and then at ~ -8.2 post-PETM, with the trend towards radiogenic values
223 occurring at the end of the PETM. While the fish teeth ε_{Nd} record is not a step-function, the
224 observed magnitude and direction of change in leachate ε_{Nd} signatures is consistent with those
225 changes reported from fish teeth ε_{Nd} signatures (Thomas et al., 2003) (Figure 2). Deep waters at
226 central (western) Atlantic Site 1051B, located near the proto-Caribbean, had a more positive ε_{Nd}
227 (~ -8) than Site 401 prior to the PETM, but post-PETM ε_{Nd} from both sites converged. The

228 record from Site 1051B exhibits similarities to post-PETM data from Site 401, which could
229 reflect more intense mixing within the North Atlantic following the recovery (Figure 2). Pacific
230 sites 1209B and 1220B were more radiogenic than the other basins (ϵ_{Nd} from -6 to -2). With the
231 exception of one data point (-2.1 ϵ_{Nd} at 55.02 Ma), the western Pacific (Site 1209B) had a
232 remarkably constant ϵ_{Nd} signature of -3.7 pre- and post-PETM. In contrast, the eastern Pacific
233 (Site 1220B) ϵ_{Nd} shows a short excursion from ~-4 to ~-5.5 ϵ_{Nd} at the onset of the PETM and
234 remained near unradiogenic end member values post-PETM ($\epsilon_{\text{Nd}} = -5$) (Figure 2).

235

236 *3.3 A conceptual model to explain the records*

237 The dissimilarities between the ϵ_{Nd} records confirm that the globally similar CIE
238 dominantly reflects a change in source of oceanic carbon (Thomas et al., 2002). This change is
239 not directly from a volcanic or extra-terrestrial source, as these would also be seen in the ϵ_{Nd} records
240 (Cramer and Kent, 2005). However, the ϵ_{Nd} data also clearly indicate that changes in water mass
241 distributions and mixing were associated with the PETM and suggest a fundamentally different
242 circulation system than present, with intermittent deep-water formation in the North Pacific,
243 must have existed during the PETM if we interpret the ϵ_{Nd} record as strictly indicative of
244 circulation. Without a change in circulation, we would expect that the ϵ_{Nd} signals would remain
245 constant over the entire record or show a slow and predictable trend with any changes other than
246 circulation that may have occurred simultaneously (e.g. differing weathering inputs). Figure 3
247 illustrates our reconstruction of the evolution of global deep-water mass exchange during the
248 PETM, based on the interpretation of the global ocean as three distinct deep-water basins: the
249 “Southern Ocean,” the North Atlantic and the Pacific. While in this model we hypothesize the

250 basins only had restricted water mass exchange between them, we cannot eliminate the
251 possibility of unrestricted exchange since similar scale inter-basinal differences in ε_{Nd} are
252 observed in the modern ocean without this restriction.

253 This conceptual model, based on both $\delta^{13}\text{C}$ and ε_{Nd} data, supports changes in areas of
254 convection that are consistent with simulations of the PETM with coupled climate models (Lunt
255 et al., 2012, Thomas et al., 2014) and with a comprehensive climate model (Winguth et al.,
256 2010). It is impossible to interpret from the Nd isotope data alone whether there was reduced or
257 increased overturning associated with carbon release, as these data reflect water mass geometries
258 and not rates of overturning. It is of note that model simulations support a weakening of the
259 meridional overturning circulation with increased greenhouse gases, which might result in a
260 water mass geometry similar to what is reconstructed. However, changes in the exchange
261 between ocean basins will be dependent on several factors, including buoyancy-induced and
262 wind-stress induced changes in overturning, as well as topography. Below we discuss whether
263 there is evidence for changes in ventilation from basinal deep-water aging gradients, and what
264 the nature of topographic barriers may have been to produce the observed patterns in the data.

265

266 *3.3.1. Southern records*

267 An ε_{Nd} signature of -9.2 in the “Southern Ocean” most likely reflects an Antarctic margin
268 source, similar to present day Antarctic-sourced intermediate waters (Stichel et al., 2012;
269 Thomas et al., 2003). In agreement with previous inferences from $\delta^{13}\text{C}$ data (Tripati and
270 Elderfield, 2005; Zeebe and Zachos, 2007), such a deep-water source can readily explain the
271 post-PETM similarity of the ε_{Nd} records from both the Southern Atlantic (Site 527) and Indian
272 Ocean (Site 213) with the Atlantic sector of the Southern Ocean (Site 690) (Figure 3). There are

273 indications that the co-variation of ϵ_{Nd} at Sites 213, 527, and 690 was enhanced immediately
274 before, during, and following the PETM, which could be consistent with intensification of
275 Southern Ocean-sourced ventilation (Figure 2a). Furthermore, ϵ_{Nd} signatures from fish teeth
276 from site 690 and 527 suggest rapid changes in circulation leading into and during the early part
277 of the PETM (Figure 1). The previously proposed formation of low-latitude Tethyan deep-water
278 (e.g., Cope and Winguth, 2011; Huber and Sloan, 2001), or slower overturning circulation
279 (Winguth et al., 2010) are unlikely to have generated such range and similarity in evolution of
280 ϵ_{Nd} signatures at these three sites. Furthermore, numerical simulations indicate strong
281 overturning circulation with multiple deep convection sites provide the best match to the ϵ_{Nd}
282 record (Thomas et al., 2014).

283

284 *3.3.2. Atlantic Ocean records*

285 The contrast in ϵ_{Nd} trends between the Southern Ocean ϵ_{Nd} records and those of the North
286 Atlantic (Figure 2) indicates that there was little exchange between these basins. The young
287 Mid-Atlantic Ridge (MAR) between Africa and South America most likely represented an
288 efficient barrier for north-south intermediate and deep-water exchange (Bice and Marotzke,
289 2002). This hypothesis differs from previous interpretations of overturning circulation in the
290 Atlantic (Bice and Marotzke, 2002; Nunes and Norriz, 2006; Thomas et al., 2003), but confirms
291 recent modeling results (Winguth et al., 2010). The differences between the two North Atlantic
292 ϵ_{Nd} records can be readily explained by a weak North Atlantic deep-water overturning cell,
293 resulting in higher sensitivity to local changes in Nd inputs or locally variable deep-water
294 masses. Assuming weak, low-latitude, halothermally-driven downwelling in the North Atlantic

295 basin, we would expect Site 401 to show a different ϵ_{Nd} evolution compared to Site 1051B,
296 which is indeed documented in Figure 2. The contrasting North Atlantic ϵ_{Nd} records (Figure 2c)
297 also support model predictions (Winguth et al., 2010) that the North Atlantic was well-stratified
298 until after the PETM, which is reflected by the convergence of the Nd isotope records indicating
299 more efficient vertical mixing. This stratification was potentially interrupted briefly near the
300 onset of the PETM. Specifically, ϵ_{Nd} signatures from fish teeth from site 401 indicate the
301 Atlantic may have experienced rapid circulation changes early in the PETM (Figure 1) with ϵ_{Nd}
302 briefly shifting from ~ -9 to ~ -10 . A caveat is that while it is possible that bathymetric barrier
303 impeded exchange within the Atlantic, the isotopic composition of modern North Atlantic Deep
304 Water increases by about 1 ϵ_{Nd} units from the North ($-11.5 \epsilon_{\text{Nd}}$) to South Atlantic ($-10.5 \epsilon_{\text{Nd}}$;
305 Lacan et al., 2012), which is a similar magnitude as the offset observed in these data ($< 1 \epsilon_{\text{Nd}}$
306 unit).

307

308 3.3.3. Pacific Ocean records

309 The distinct ϵ_{Nd} records of the Pacific point to restricted Pacific intermediate water mass
310 exchange with the “Southern Ocean” (Figure 3). In this case, a possible barrier preventing
311 substantial exchange between the Southern Ocean and Pacific Ocean might have been the
312 shallow seas between southern Asia and Australia (Bice and Marotzke, 2002). Within the
313 Pacific Ocean, times of convergent ϵ_{Nd} can be explained by a weakened southern Pacific
314 ventilation which would allow northern Pacific water to influence both sites. With intensified
315 Southern Ocean sourced ventilation, Pacific Site 1220B ϵ_{Nd} would have diverged from the
316 signatures of the northern source (Bice and Marotzke, 2002).

317 It follows that a Pacific circulation pattern, consistent with both $\delta^{13}\text{C}$ and ϵ_{Nd} data, must
318 involve distinct southern- and northern-Pacific sources of deep waters, as predicted in previous
319 studies (Lunt et al., 2011; Thomas, 2004; Thomas et al., 2008; Winguth et al., 2010). A sudden
320 shift in the ϵ_{Nd} record at site 1220 immediately prior to the PETM may reflect the sudden onset
321 of deep-water formation in the North Pacific (Figure 3). The initial change in ϵ_{Nd} from ~ -4 to \sim
322 -6 at Site 1220B is recorded stratigraphically below the negative carbon isotope excursion,
323 consistent with the hypothesis that circulation changes triggered PETM carbon release.
324 Alternatively, the more negative ϵ_{Nd} at the beginning of the PETM may reflect a dramatic change
325 in ventilation from a southern source that occurred just prior to the PETM. Also possible, the ϵ_{Nd}
326 record at site 1220 may record significant changes in deep-ocean redox conditions due to its
327 abyssal location in the tropical Pacific and the well-documented changes in dissolved
328 oxygenation at the onset of the PETM. In that case, this Nd isotope shift might simply reflect the
329 progression of a redox front in sediments. Unfortunately, no additional samples are available
330 from site 1220B to further investigate these trends.

331 However several factors suggest this Nd isotope shift reflects changes in bottom water
332 sourcing and not changes in the position of a sediment redox front. First, a ventilation change in
333 the deep Pacific is in agreement with interpretations of carbon isotope data that support a
334 reversal or large change in deep-water aging gradients between basins (Tripati and Elderfield,
335 2005). Secondly, carbonate geochemical data exist which suggest a reversal or dramatic change
336 in deep ocean carbonate saturation gradients between basins, consistent with a circulation change
337 (Zeebe and Zachos, 2007). Thirdly, substantially larger redox changes are observed in PETM
338 sequences from other basins (i.e., the South Atlantic; Chun et al., 2010) that do not exhibit

339 similar corresponding shifts in records of ϵ_{Nd} . Fourthly, similar types of changes are observed
340 during Cretaceous ocean anoxic events (Martin et al., 2012) where there also is no clear-cut
341 evidence for redox fronts driving the sediment leachate ϵ_{Nd} record. Finally, core photographs
342 show that transitions in sediment redox at Site 1220B are not directly coincident with the ϵ_{Nd}
343 change.

344 Thus we conclude these Nd isotope data are consistent with proxy data (Nunes and
345 Norris, 2006; Tripati and Elderfield, 2005; Zeebe and Zachos, 2007) and models (Bice and
346 Marotske, 2002; Lunt et al, 2011) and reflect a circulation change at the PETM. These data may
347 record a Pacific circulation ‘trigger’ for carbon release. Some simulations indicate that at the
348 PETM, a change in state of a Southern Pacific deep-water source could contribute to hydrate
349 destabilization, which these data may reflect. Such changes in Southern Ocean water mass
350 characteristics could ultimately have arisen from a gradual forcing such as volcanic outgassing
351 (Kennett and Stott, 1991; Bice and Marotske, 2002; Lunt et al., 2011; Tripati and Elderfield,
352 2005).

353

354 CONCLUSIONS

355 Our study provides new neodymium isotope data from Fe-Mn leachates constraining
356 changes in ocean circulation associated with the PETM. The novelty of these Nd isotope data
357 reflect advances in our ability to extract such data from pelagic sediments, which has opened
358 new avenues of paleoceanographic research. Using Nd isotopes, a proxy independent of carbon
359 cycle processes, we unravel oceanographic changes during the PETM and are able to isolate
360 competing factors controlling the carbon-isotope record during the PETM. In general, we find

361 these data are similar to results from fish teeth (a more widely used proxy), and discuss the
362 combined high-resolution records for seven sites.

363 The high-resolution combined Nd isotope records provide further evidence for changes in
364 thermohaline circulation associated with the PETM, as previously inferred from basinal carbon
365 isotope gradients (Nunes and Norris, 2006; Tripati and Elderfield, 2005) and constraints on deep-
366 water carbonate ion concentrations (Zeebe and Zachos, 2007). In addition, these new records
367 provide additional constraints on the timing and the nature of changes in circulation. The records
368 are consistent with variations in bottom water mass mixing in each basin associated with the
369 PETM, with water mass distributions implying intermediate and deep-water circulation changes.

370 We find that changes in deep ocean circulation occurred during the Paleocene-Eocene, and that
371 these circulation changes likely preceded the carbon release, based on ϵ_{Nd} shifts observed
372 stratigraphically below the carbon isotope excursion. Together with modeling results (Bice and
373 Marotzke, 2002; Lunt et al., 2011, 2012; Winguth et al., 2010) and Mg/Ca-based bottom water
374 temperature estimates (Tripati and Elderfield, 2005), Nd isotope data provide further evidence
375 for thermohaline changes that may have served as a “trigger” of carbon release.

376

377 **ACKNOWLEDGEMENTS**

378 Samples were provided by the Integrated Ocean Drilling Program. NSF grant 1147407 supported
379 the contributions of A.N.A. A.T. was supported by a NERC Fellowship, a Junior Research
380 Fellowship from Magdalene College, and the UCLA Division of Physical Sciences, and thanks
381 Alex Piotrowski for discussing this work and making some pilot measurements. C. Teschner, R.
382 Stumpf and J. Heinze are acknowledged for laboratory support and F. Hauff is thanked for
383 technical support of the mass spectrometer at GEOMAR, Kiel. This work was also supported by

384 the "Laboratoire d'Excellence" LabexMER (ANR-10-LABX-19) and co-funded by a grant from
385 the French government under the program "Investissements d'Avenir".

386

387 **REFERENCES CITED**

388

389 Alexander, K., Meissner, K.J., Bralower, T.J., 2015. Sudden spreading of corrosive bottom
390 water during the Palaeocene-Eocene Thermal Maximum. *Nat. Geo.*, **8**, 458-462. DOI:
391 10.1038/NGEO2430.

392 Bayon, G., German, C., Boella, R., Milton, J., Taylor, R., Nesbitt, R., 2002. An improved
393 method for extracting marine sediment fractions and its application to Sr and Nd isotopic
394 analysis. *Geochim. Cosmochim. Acta*, v. 187, p. 170–199.

395 Bayon, G., German, C.R., Burton, K.W., Nesbitt, R.W., & Rogers, N., 2004. Sedimentary Fe-
396 Mn oxyhydroxides as paleoceanographic archives and the role of Aeolian flux in regulating
397 oceanic dissolved REE. *Earth and Planetary Science Letters*, v. 224, p 477-492, doi:
398 10.1016/j.epsl.2004.05.033

399 Bice, K.L. & Marotzke, J., 2002, Could changing ocean circulation have destabilized methane
400 hydrate at the Paleocene/Eocene boundary? *Paleoceanography*, v. 17, p.1018,
401 doi.10.1029/2001pa000678.

402 Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., Fohlmeister, J., Frank, N.,
403 Andersen, M.B., & Deininger, M., 2015. Strong and deep Atlantic meridional
404 overturning circulation during the last glacial cycle. *Nature*, v.517, doi:
405 10.1038/nature14059

406 Bowen, G. J., Beerling, D. J., Koch, P. L., Zachos, J. C., & Quattlebaum, T., 2004. A humid
407 climate state during the Palaeocene/Eocene thermal maximum. *Nature*, v. 432(7016), p. 495-
408 499.

409 Bowen, G. J., Koch, P. L., Gingerich, P. D., Norris, R. D., Bains, S., & Corfield, R. M., 2001.
410 Refined isotope stratigraphy across the continental Paleocene-Eocene boundary on Polecat
411 Bench in the northern Bighorn Basin. *Paleocene-Eocene stratigraphy and biotic change in*
412 *the Bighorn and Clarks Fork basins, Wyoming. University of Michigan Papers on*
413 *Paleontology*, v. 33, p. 73-88.

414 Chun, C. O., Delaney, M. L., & Zachos, J. C., 2010. Paleoredox changes across the Paleocene-
415 Eocene thermal maximum, Walvis Ridge (ODP Sites 1262, 1263, and 1266): Evidence from
416 Mn and U enrichment factors. *Paleoceanography*, 25(4), DOI: 10.1029/2009PA001861.

417 Cope, J.T. & Winguth, A., 2011, On the sensitivity of ocean circulation to arctic freshwater input
418 during the Paleocene/Eocene Thermal Maximum. *Palaeogeography, Palaeoclimatology,*
419 *Palaeoecology*, v. 306, p. 82-94.

420 Cramer, B.S. & Kent, D.V., 2005, Bolide summer: The Paleocene/Eocene thermal maximum as
421 a response to an extraterrestrial trigger. *Palaeogeography, Palaeoclimatology,*
422 *Palaeoecology*, v. 224, p. 144-166, doi.10.1016/J.Paleo.2005.03.040.

423 Dickens, G.R., O'Niel, J.R., Rea, D.K., & Owen, R.M., 1995, Dissociation of oceanic methane
424 hydrate as a cause of the carbon isotope excursion at the end of the Paleocene.
425 *Paleoceanography*, v. 10, p. 965-971.

426 Dickens, G.R., 2000. Methane oxidation during the late Paleocene thermal maximum. *Bulletin*
427 *de la Société Géologique de France*, v. 171, p. 37-49.

428 Farley, K.A. & Eltgroth, S.F., 2003, An alternative age model for the Paleocene-Eocene thermal
429 maximum using extraterrestrial ${}^3\text{He}$. Earth and Planetary Science Letters, v. 208, p.135-148.

430 Frank, M., 2002, Radiogenic isotopes: Tracers of past ocean circulation and erosional input.
431 Review of Geophysics, v. 40(1), p.1001, doi.10.1029/2000RG000094.

432 Goldstein, S.L., Hemming, S.R., Heinrich, D.H., & Karl, K.T., 2003, Long-lived Isotopic
433 Tracers in Oceanography, Paleoceanography, and Ice-sheet Dynamics. Treatise on
434 Geochemistry (ed. Elderfield, H.) 453-489.

435 Gutjahr, M., *et al.*, 2007, Reliable extraction of a deepwater trace metal isotope signal from Fe-
436 Mn oxyhydroxide coatings of marine sediments. Chemical Geology, v. 242, p. 351-370,
437 doi.10.1016/J.Chemgeo.2007.03.021.

438 Haley, B.A., Frank, M., Spielhagen, R.F., & Fietzke, J., 2008a, Radiogenic isotope record of
439 Arctic Ocean circulation and weathering inputs of the past 15 million years.
440 Paleoceanography, v. 23, doi.10.1029/2007PA001486.

441 Haley, B.A., Frank, M., Spielhagen, R.F., & Eisenhauer, A., 2008b, Influence of brine formation
442 on Arctic Ocean circulation over the past 15 million years. Nature Geoscience, v. 1, p. 68-
443 72, doi.10.1038/Ngeo.2007.5.

444 Higgins, J.A. & Schrag, D.P., 2006, Beyond methane: Towards a theory for the Paleocene-
445 Eocene Thermal Maximum. Earth and Planetary Science Letters, v. 245, 523-537,
446 doi.10.1016/J.EPSL.2006.03.009.

447 Huber, M., & Sloan, L.C., 2001, Heat transport, deep waters, and thermal gradients: Coupled
448 simulation of an Eocene Greenhouse Climate. Geophysical Research Letters, v. 28, p. 3481-
449 3484.

450 Jacobsen, S.B. & Wasserburg, G.J., 1979, Mean Age of Mantle and Crustal Reservoirs. *Journal*
451 *of Geophysical Research*, v. 85, p. 7411-7427.

452 Katz, M.E., Pak, D.K., Dickens, G.R., & Miller, K.G., 1999. The source and fate of massive
453 carbon input during the latest Paleocene thermal maximum. *Science*, v. 286, p. 1531-1533.

454 Kennett, J.P. & Stott, L.D., 1991, Abrupt deep-sea warming, palaeoceanographic changes and
455 benthic extinctions at the end of the Palaeocene. *Nature*, v. 353, p. 225-229.

456 Khélifi, N., and Frank, M., 2014. A major change in North Atlantic deep water circulation 1.6
457 million years ago. *Climates of the Past*, v. 10, p 1441-1451. doi 10.5194/cp-10-1441-2014

458 Koch, P. L., Zachos, J. C., & Gingerich, P. D., 1992. Correlation between isotope records in
459 marine and continental carbon reservoirs near the Paleocene Eocene boundary. *Nature*, v.
460 358, p. 319-322.

461 Kump, L., Bralower, T., & Ridgewell, A., 2009. Ocean acidification in deep time.
462 *Oceanography*, v. 22, p 94-107.

463 Kurtz, A.C., Kump, L.R., Arthur, M.A., Zachos, J.C., & Paytan, A., 2003, Early Cenozoic
464 decoupling of the global carbon and sulfur cycles. *Paleoceanography* v. 18, p. 1090,
465 doi.10.1029/2003pa000908.

466 Lacan, F., Tachikawa, K., Jeandel, C., 2012, Neodymium isotopic composition of the oceans: A
467 compilation of seawater data. *Chemical Geology* v 300-301, 177-184.

468 Lunt, D.J., Ridgwell, A., Sluijs, A., Zachos, J., Hunter, S., & Haywood, A., 2011, A model for
469 orbital pacing of methane hydrate destabilization during the Palaeogene. *Nature Geoscience*,
470 v. 4, p. 775-778, doi.10.1038/Ngeo1266.

471 Lunt, D. J., Dunkley Jones, T., Heinemann, M., Huber, M., LeGrande, A., Winguth, A., Loptson,
472 C., Marotzke, J., Roberts, C. D., Tindall, J., Valdes, P., and Winguth, C., 2012, A model-data

473 comparison for a multi-model ensemble of early Eocene atmosphere-ocean simulations:
474 EoMIP, Clim. Past, v. 8, p.1717-1736, doi:10.5194/cp-8-1717-2012.

475 Martin, E.E., Blair, S.W., Kamenov, G.D., Scher, H.D., Bourbon, E., Basak, C., and Newkirk,
476 D.N., 2010. Extraction of Nd isotopes from bulk deep sea sediments for paleoceanographic
477 studies on Cenozoic time scales. Chem. Geol., v. 269, p. 414-431.

478 Martin, E.E., MacLeod, K.G., Berrocoso, A.J., & Bourbon, E., 2012. Water mass circulation on
479 Demerara Rise during the Late Cretaceous based on Nd isotopes. Earth and Planetary
480 Science Letters, v. 327-328, p. 111-120.

481 McCarren, H., Thomas, E., Hasegawa, T., Rohl, U., & Zachos, J.C., 2008, Depth dependency of
482 the Paleocene-Eocene carbon isotope excursion: Paired benthic and terrestrial biomarker
483 records (Ocean Drilling Program Leg 208, Walvis Ridge). Geochemistry Geophysics
484 Geosystems, v. 9, doi.10.1029/2008gc002116: Q10008.

485 McInerney, F.A., Wing, S.L., 2011. The Paleocene-Eocene Thermal Maximum: A Perturbation
486 of Carbon Cycle, Climate, and Biosphere with Implications for the Future, Annual Review of
487 Earth and Planetary Sciences, v. 39, p. 489-516.

488 Molina-Kescher, M., Frank, M., and Hathorne, E., 2014. South Pacific dissolved Nd isotope
489 compositions and rare earth element distributions: Water mass mixing versus biogeochemical
490 cycling. Geochimica et Cosmochimica Acta, v. 127, p 171-189. doi:
491 10.1016/j.gca.2013.11.038

492 Murphy, B.H., Farley, K.A., & Zachos, J.C., 2010, An extraterrestrial ^3He -based timescale for
493 the Paleocene-Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266.
494 Geochimica et Cosmochimica Acta, v. 74, p. 5098-5108.

495 Nunes, F. & Norris, R.D., 2006, Abrupt reversal in ocean overturning during the
496 Palaeocene/Eocene warm period. *Nature*, v. 439, p. 60-63, doi.10.1038/Nature04386.

497 Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Sinnghe-
498 Damste, J., & Dickens, G. R., 2006. Arctic hydrology during global warming at the
499 Palaeocene/Eocene thermal maximum. *Nature*, v. 442(7103), p. 671-675.

500 Paytan, A., Averyt, K., Faul, K., Gray, E., and Thomas, E., 2007, Barite accumulation, ocean
501 productivity, and Sr/Ba in barite across the Paleocene-Eocene Thermal Maximum: *Geology*,
502 v. 35, p. 1139-1142, doi: 10.1130/G24162A.1.

503 Piotrowski, A. M., Goldstein, S. L., Hemming, S. R., & Fairbanks, R. G., 2004. Intensification
504 and variability of ocean thermohaline circulation through the last deglaciation. *Earth and
505 Planetary Science Letters*, 225(1), 205-220.

506 Piotrowski, A.M., Goldstein, S.L., Hemming, S.R., & Fairbanks, R.G., 2005, Temporal
507 relationships of carbon cycling and ocean circulation at glacial boundaries. *Science*, v. 307,
508 p.1933-1938, doi.10.1126/Science.1104883.

509 Piotrowski, A. M., Goldstein, S. L., Hemming, S., Fairbanks, R. G., & Zylberberg, D. R., 2008.
510 Oscillating glacial northern and southern deep water formation from combined neodymium
511 and carbon isotopes. *Earth and Planetary Science Letters*, 272(1), 394-405.

512 Ridgewell, A., & Schmidt, D.N., 2010. Past constraints on the vulnerability of marine calcifiers
513 to massive carbon dioxide release. *Nature Geoscience*, v. 3., p. 196-200.

514 Röhl, U., Westerhold, T., Bralower, T.J., & Zachos, J.C., 2007, On the duration of the
515 Paleocene-Eocene thermal maximum (PETM). *Geochemistry Geophysics Geosystems*, v. 8,
516 Q12002.

517 Rutberg, R.L., Hemming, S.R., & Goldstein, S.L., 2000, Reduced North Atlantic Deep Water
518 flux to the glacial Southern Ocean inferred from neodymium isotope ratios. *Nature*, v. 405,
519 p. 935-938.

520 Scher, H.D., & Martin, E.E., 2006, Timing and climatic consequences of the opening of Drake
521 Passage. *Science*, v. 312, p. 428-430, doi.10.1126/Science.1120044.

522 Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Damsté, J. S. S., Dickens, J.
523 & Moran, K., 2006. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene
524 thermal maximum. *Nature*, v. 441(7093), p. 610-613.

525 Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S.M., John, C.M., Zachos, J.C., Reichart, G.-J.,
526 Sinninghe Damsté, J. S., Crouch, E.M., and Dickens, G.R., 2007, Environmental precursors
527 to rapid light carbon injection at the Palaeocene/Eocene boundary. *Nature*, v. 450, p. 1218-
528 1221.

529 Stichel, T., Frank., M., Rickli, J., & Haley, B.A., 2012, The hafnium and neodymium isotope
530 composition of seawater in the Atlantic sector of the Southern Ocean. *Earth and Planetary
531 Science Letters*, v. 317-318, p. 282-294.

532 Storey, M., Duncan, R.A., & Swisher, C.C., 2007, Paleocene-Eocene thermal maximum and the
533 opening of the northeast Atlantic. *Science*, v. 316, p. 587-589,
534 doi.10.1126/Science.1135274.

535 Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T. R., &
536 Rey, S. S., 2004, Release of methane from a volcanic basin as a mechanism for initial Eocene
537 global warming. *Nature*, v. 429, p. 542-545, doi.10.1038/Nature02566.

538 Thomas, D.J., Zachos, J.C., Bralower, T.J., Thomas, E., & Bohaty, S., 2002, Warming the fuel
539 for the fire: Evidence for the thermal dissociation of methane hydrate during the Paleocene-
540 Eocene thermal maximum. *Geology*, v. 30, p. 1067-1070.

541 Thomas, D.J., Bralower, T.J., & Jones, C.E., 2003, Neodymium isotopic reconstruction of late
542 Paleocene-early Eocene thermohaline circulation. *Earth and Planetary Science Letters*, v
543 209, p. 309-322, doi.10.1016/S0012-821x(03)00096-7.

544 Thomas, D.J., 2004, Evidence for deep-water production in the North Pacific Ocean during the
545 early Cenozoic warm interval. *Nature*, v. 430, p. 65-68, doi.10.1038/nature02639.

546 Thomas, D.J., Lyle, M., Moore, T.C., & Rea, D.K., 2008, Paleogene deepwater mass
547 composition of the tropical Pacific and implications for thermohaline circulation in a
548 greenhouse world. *Geochemistry Geophysics Geosystems*, v. 9, doi.Q02002
549 10.1029/2007gc001748.

550 Thomas, D.J., Korty, R., Huber M., Schubert, J.A., Haines, B., 2014. Nd isotopic structure of
551 the Pacific Ocean 70-30 Ma and numerical evidence for vigorous ocean circulation and
552 ocean heat transport in a greenhouse world. *Paleoceanography*, **29**, 454–469,
553 doi:10.1002/2013PA002535.

554 Tripati, A.K. & Elderfield, H., 2004, Abrupt hydrographic changes in the equatorial Pacific and
555 subtropical Atlantic from foraminiferal Mg/Ca indicate greenhouse origin for the thermal
556 maximum at the Paleocene-Eocene Boundary. *Geochemistry Geophysics Geosystems*, v. 5,
557 Q02006.

558 Tripati, A. & Elderfield, H., 2005, Deep-sea temperature and circulation changes at the
559 Paleocene-Eocene thermal maximum. *Science*, v. 308, p. 1894-1898,
560 doi.10.1126/Science.1109202.

561 Wilson, D.J., Piotrowski, A.M., Galy, A., and McCave, I.N., 2012. A boundary exchange
562 influence on deglacial neodymium isotope records from the deep western Indian Ocean.
563 Earth and Planetary Science Letters, v 341-344, p 35-47. doi: 10.106/j.epsl.2012.06.009

564 Winguth, A., Shellito ,C., Shields, C., & Winguth, C., 2010, Climate Response at the Paleocene-
565 Eocene Thermal Maximum to Greenhouse Gas Forcing-A Model Study with CCSM3.
566 Journal of Climatology, v. 23, p. 2562-2584, doi.10.1175/2009jcli3113.1.

567 Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K., 2001, Trends, rhythms, and
568 aberrations in global climate 65 Ma to present. Science, v. 292, p. 686-693.

569 Zachos JC, *et al.*, 2003, A transient rise in tropical sea surface temperature during the Paleocene-
570 Eocene Thermal Maximum. Science, v. 302, p. 1551-1554, doi.10.1126/Science.1090110.

571 Zachos, J.C., Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E.,
572 Nicolo, M., Raffi, I., Lourens, L.J., McCarren, H., & Kroon, D., 2005. Rapid Acidification
573 of the Ocean During the Paleocene-Eocene Thermal Maximum. Science, v. 308, p. 1611-
574 1615.

575 Zachos, J. C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S. &
576 Bralower, T. J., 2006. Extreme warming of mid-latitude coastal ocean during the Paleocene-
577 Eocene Thermal Maximum: Inferences from TEX86 and isotope data. *Geology* v. 34, no. 9,
578 p. 737-740.

579 Zachos, J.C., Dickens, G.R., & Zeebe, R.E., 2008. An early Cenozoic perspective on greenhouse
580 warming and carbon-cycle dynamics. *Nature*, v. 451, p. 279-283.

581 Zeebe, R.E. & Zachos, J.C., 2007, Reversed deep-sea carbonate ion basin gradient during
582 Paleocene-Eocene thermal maximum. *Paleoceanography*, v. 22, p. 3201.

583 Zeebe, R.E., Zachos, J.C., & Dickens, G.R., 2009, Carbon dioxide forcing alone insufficient to
584 explain Palaeocene-Eocene Thermal Maximum warming. *Nature Geoscience*, v. 2, p. 576-
585 580, doi.10.1038/ngeo578.

586

587

588

589

590

591

592 **Figure Captions:**

593

594 **Figure 1:** Sediment leach ε_{Nd} and available fish teeth ε_{Nd} data from 55.1 to 55.4 Ma for all three
595 ocean basins. Sediment ε_{Nd} values are connected with a dotted line and fish teeth data are
596 represented by unconnected dots. The green shaded area represents the PETM as marked by the
597 carbon isotope excursion from each core. These data sources are generally consistent, although
598 higher-order differences, likely intrinsic to the natures of the archival sources, are present.

599

600 **Figure 2:** Nd and C isotope data (ε_{Nd} and $\delta^{13}\text{C}$) across the PETM from the Southern Ocean (a),
601 Pacific Ocean (b), and Atlantic Basins (c). The sediment leach ε_{Nd} are shown with circles and
602 solid lines; the fish teeth/debris ε_{Nd} from Thomas et al. (2003) are shown as dots. All data are
603 presented on directly comparable scales for both ε_{Nd} and $\delta^{13}\text{C}$. The sample ages are based on the
604 $\delta^{13}\text{C}$ age models. In (b) the age model of Site 1209B has been slightly adjusted (second x axis)
605 such that the $\delta^{13}\text{C}$ excursion coincides with the age of the PETM in the other cores. The shaded
606 vertical bar indicates the timing of the PETM as defined by the CIE in the cores.

607

608 **Figure 3:** A conceptual model of the intermediate/deep-water mixing changes across the PETM
609 as inferred from ε_{Nd} records of intermediate/deep-water mass geometries. Arrow boldness
610 reflects overturning circulation that could produce water mass geometries. Dashed arrows
611 represent weak overturning. *Italicized numbers* indicate the interpreted ε_{Nd} from each site for the
612 time period. The arrow directions reflect our interpretation of the general direction of flow, and
613 are not meant to be viewed as precise flow-paths. The paleogeographic distribution of the
614 continents is from Ocean Drilling Stratigraphic Network (ODSN).

615

616 **List of tables**

617

618 **Table 1:** Core information; all cores were collected as part of the Integrated Ocean
619 Drilling Program (IODP).

620 **Table 2:** Age Models

621 **Table 3:** Summary of neodymium isotope data

Figure 1

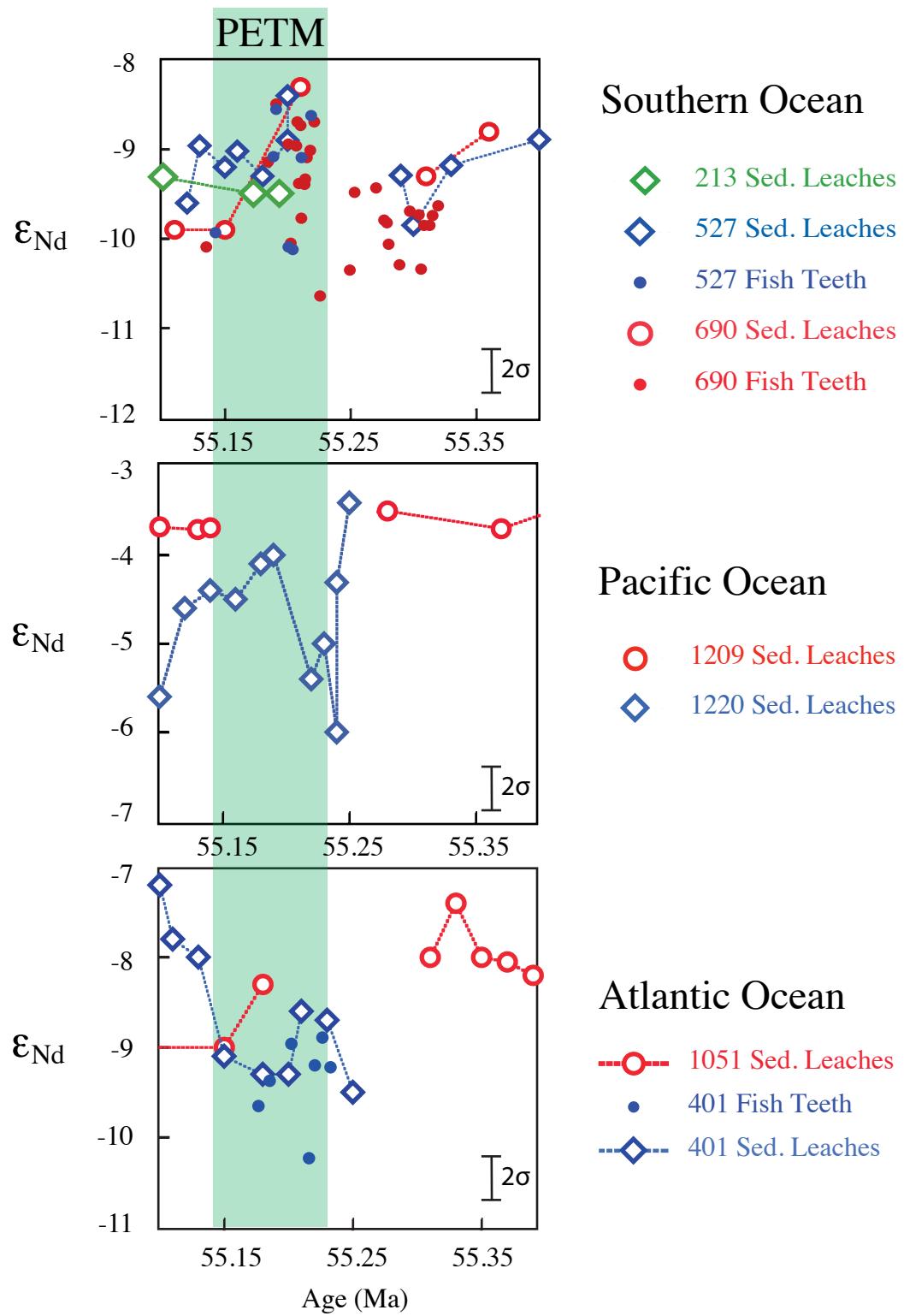


Figure 2

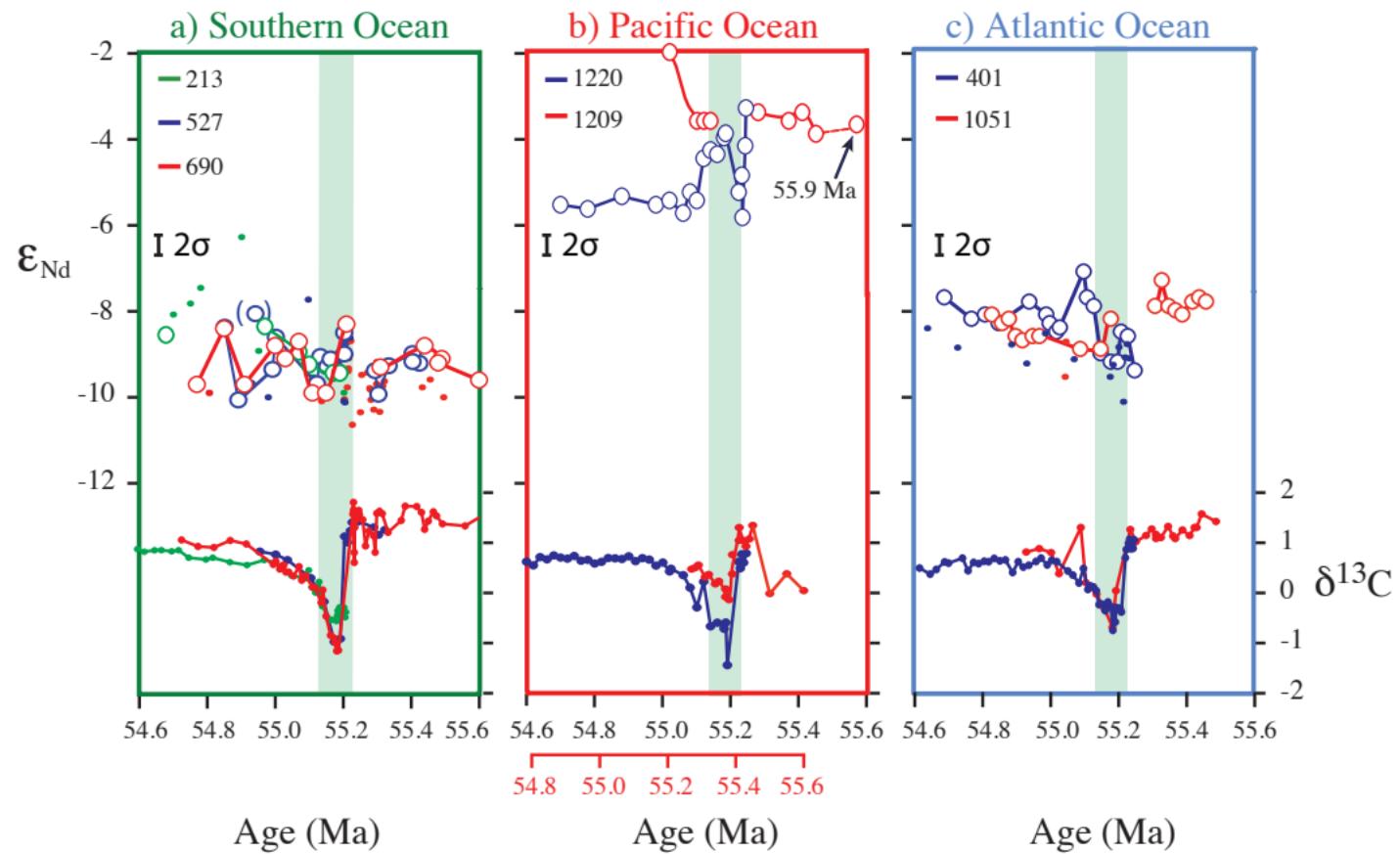
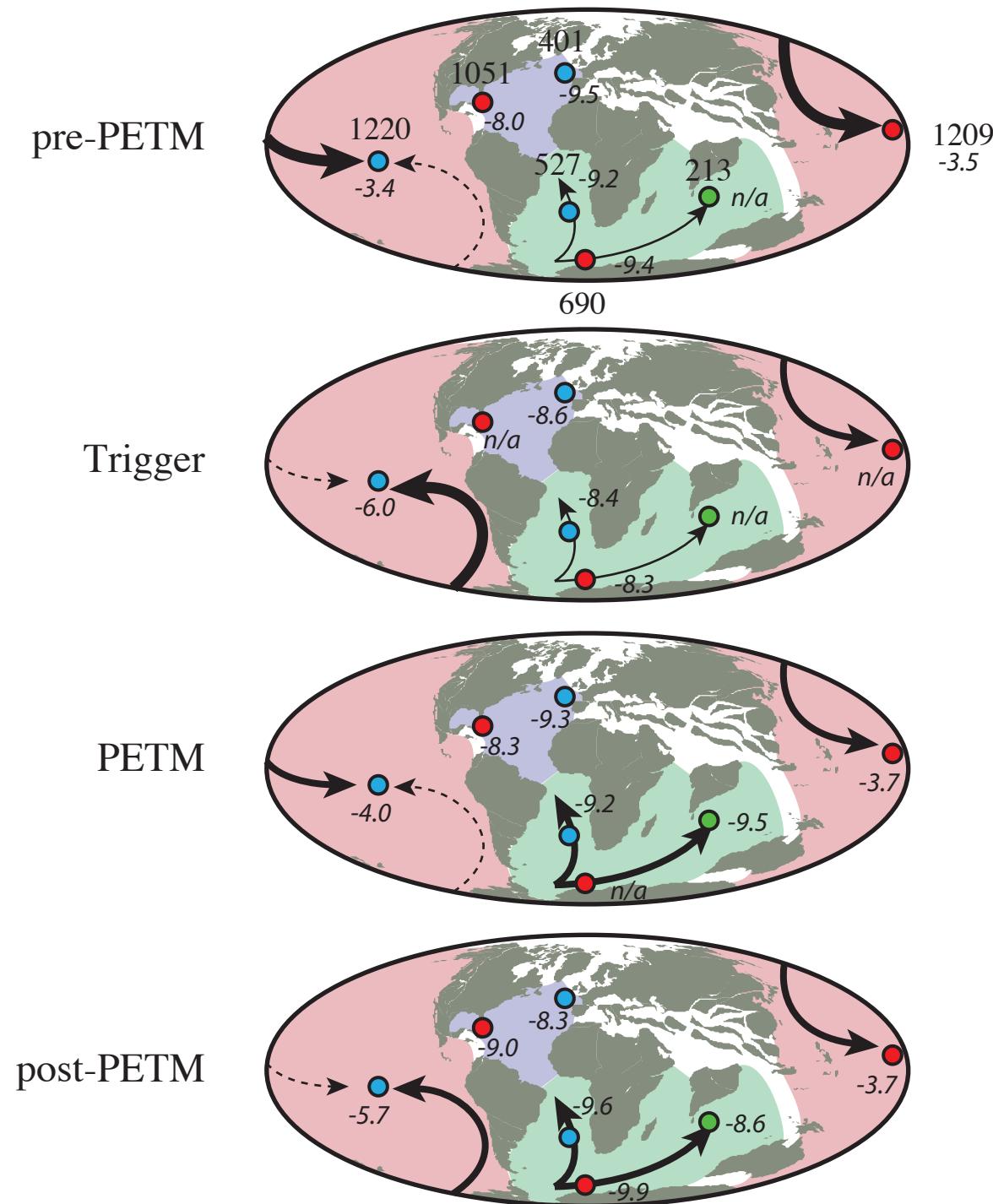



Figure 3

Table 1 Site Descriptions

Core	Modern Latitude and Longitude and depth (m)			Paleo-Depth (m)	$\delta^{13}\text{C}$ data reference
213	10°12.7'S	93°53.8'E	5601	3000	Thomas et al., 2003
401	47°25.7'N	8°48.6'W	2495	1900	Thomas et al., 2003
527	28° 2.5'S	1°45.8'E	4428	3400	Thomas et al., 2003
690B	65° 9.6'S	1°12.3'E	2914	1900	Thomas et al., 2003
1051B	30° 3.2'N	76°21.5'W	1981	2000	Thomas et al., 2003
1209B	32°39.1'N	158°30.4'E	2387	2400	Tripati and Elderfield, 2005
1220B	10°10.6'N	142°45.5'W	5218	3200	Tripati and Elderfield, 2005

Table 2 Sample Description and ϵ_{Nd}

Hole	Core Section	Depth Interval (cm)		ϵ_{Nd}	age Ma
		upper	lower		
1220B	20X-1	65	67	-5.70	54.70
1220B	20X-1	85	87	-5.80	54.78
1220B	20X-1	110	112	-5.50	54.88
1220B	20X-1	135	137	-5.70	54.98
1220B	20X-1	145	147	-5.60	55.02
1220B	20x-2	5	7	-5.90	55.06
1220B	20x-2	10	12	-5.40	55.08
1220B	20x-2	15	17	-5.60	55.10
1220B	20x-2	20	22	-4.60	55.12
1220B	20x-2	25	27	-4.40	55.14
1220B	20x-2	30	32	-4.50	55.16
1220B	20x-2	35	37	-4.10	55.18
1220B	20x-2	40	42	-4.00	55.19
1220B	20x-2	80	82	-5.40	55.22
1220B	20x-2	90	92	-5.00	55.23
1220B	20x-2	93	94	-6.00	55.24
1220B	20x-CCW	5	6	-4.31	55.24
1220B	20x-CCW	6	7	-3.41	55.25
1209B	22H-1	12	14	-2.10	55.02
1209B	22H-1	39	40	-3.68	55.10
1209B	22H-1	47	48	-3.71	55.13
1209B	22H-1	48	49	-3.69	55.14
1209B	22R-1	84	86	-3.50	55.28
1209B	22R-1	108	110	-3.70	55.37
1209B	22R-1	120	122	-3.50	55.41
1209B	22R-1	132	134	-4.00	55.45
1209B	22R-1	148	150	-3.70	55.85
0690B	18H-5	36	37	-9.70	54.77
0690B	18H-6	30	31	-8.40	54.84
0690B	18H-6	110	111	-9.70	54.91
0690B	19H-1	30	31	-8.80	55.00
0690B	19H-1	65	66	-9.10	55.03
0690B	19H-1	137	138	-8.70	55.07
0690B	19H-2	47	48	-9.90	55.11
0690B	19H-2	109	110	-9.90	55.15
0690B	19H-3	69	71	-8.30	55.21
0690B	19H-4	66	67	-9.30	55.31
0690B	19H-5	6	7	-8.80	55.36
0690B	19H-5	65	66	-9.10	55.44
0690B	19H-5	106	107	-9.20	55.48
0690B	20H-1	3	4	-9.63	55.53
0690B	20H-1	140	141	-9.84	55.80
0690B	20H-2	111	112	-9.20	56.17
527	24R-1	11	12	-8.27	54.85
527	24R-1	31	32	-9.98	54.89
527	24R-1	53	54	-7.95	54.94
527	24R-1	81	82	-9.26	54.99
527	24R-1	100	102	-8.50	55.00
527	24R-1	140	142	-9.60	55.12
527	24R-2	11	12	-8.96	55.13
527	24R-2	41	42	-9.20	55.15
527	24R-2	87	88	-9.02	55.16
527	24R-2	24	27	-9.30	55.18
527	24R-2	30	33	-8.90	55.20
527	24R-2	47	48	-8.40	55.20
527	24R-3	59	60	-9.29	55.29
527	24R-3	81	82	-9.85	55.30
527	24R-3	121	122	-9.18	55.33
527	24R-4	10	11	-8.89	55.40
527	24R-4	40	41	-9.12	55.42
527	24R-4	80	81	-9.08	55.40
213	16-3	48	49	-8.60	54.69
213	16-4	8	9	-8.40	54.97
213	16-4	49	50	-9.00	55.08
213	16-4	58	59	-9.30	55.10
213	16-4	90	91	-9.50	55.17
213	16-4	99	100	-9.50	55.19
1051B	59X-2	110	111	-8.23	54.50
1051B	59X-2	139	140	-8.41	54.60
1051B	59X-3	26	27	-8.26	54.76
1051B	59X-3	46	47	-8.65	54.80
1051B	59X-3	67	68	-8.81	54.90
1051B	59X-3	87	88	-8.75	54.94
1051B	59X-3	120	120	-8.70	54.97
1051B	60X-1	65	65	-9.00	55.09
1051B	60X-1	119	120	-9.00	55.15
1051B	60X-1	145	145	-8.30	55.18
1051B	60X-2	56	56	-8.00	55.31
1051B	60X-2	64	66	-7.40	55.33
1051B	60X-2	74	75	-8.00	55.35
1051B	60X-2	84	85	-8.05	55.37
1051B	60X-2	93	94	-8.20	55.39
1051B	60X-2	109	110	-7.89	55.42
1051B	60X-2	118	119	-7.79	55.44
1051B	60X-2	142	143	-7.93	55.52
401	14R-1	45	47	-7.80	54.69
401	14R-1	100	101	-8.26	54.77
401	14R-1	125	126	-8.24	54.81
401	14R-1	146	147	-8.40	54.85
401	14R-2	50	52	-7.90	54.94
401	14R-2	83	85	-8.20	54.99
401	14R-2	91	93	-8.40	55.00
401	14R-2	100	102	-8.60	55.02
401	14R-2	110	112	-8.50	55.03
401	14R-2	148	150	-7.20	55.10
401	14R-3	8	8	-7.80	55.11
401	14R-3	21	23	-8.00	55.13
401	14R-3	31	33	-9.10	55.15
401	14R-3	52	54	-9.30	55.18
401	14R-3	84	86	-9.30	55.20
401	14R-3	90	92	-8.60	55.21
401	14R-3	122	124	-8.70	55.23
401	14R-3	148	150	-9.50	55.25

Table 3 Age model description

Core	Age model segment	Core depth (MBSF)		Curve definition	
		start	end	m	b
1209B	a	210.72	211.24	0.3539	-19.317
	b	211.26	211.40	2.5000	-472.660
213	a	145.13	147.35	0.2541	+17.727
	b	147.41	147.64	0.1193	+37.590
401	a	198.54	201.97	0.1640	+22.054
	b	202.02	202.98	0.0656	+41.922
1220B	a	197.55	199.20	0.4009	-24.697
	b	199.25	199.93	0.0955	+36.159
527	a	199.63	200.71	0.2027	+14.491
	b	200.89	202.76	0.0700	+41.129
690B	a	162.80	170.69	0.0646	+44.199
	b	170.71	170.76	0.0453	+47.528
	c	170.84	172.49	0.1923	+22.416
	d	172.95	179.80	0.1167	+35.192
1051B	a	510.17	512.35	0.1164	-4.439
	b	512.40	513.80	0.2100	-52.412