Response to Referees and Revised Manuscript

Herein we provide a detailed point-by-point response to all referee comments and specify all changes in the revised manuscript. The response to the Referees is structured as: (1) comments from Referees, (2) author's response, (3) author's changes in manuscript. We also include a marked-up manuscript version showing the changes made (using track changes in Word). This version should be combined with your response file so that the Editor can clearly identify what changes have been made.

Response to Referees

Referee 1

Comment 1: A new multi-proxy record of the PETM from a deep sea core in high southern paleolatitudes is very welcome and adds to our understanding of this very large and still enigmatic climate perturbation. The authors should be congratulated for finding the PETM in such an old drill-core. There can be little doubt that the data should be published and the study is suitable for Climate of the Past. However the data set is moderately complex and (I think) difficult to interpret unambiguously, hence the challenge is to distil the salient points as clearly as possible for the wider community interested in this event, and for comparing records. Hopefully the review process can help with that. Some of my comments are relatively minor and can probably be dealt with quite easily but I have two more substantive issues to deal with first.

Response 1: Agreed, thank-you.

Comment 2: The relation between the bulk d13C record and the so-called 'onset' of the PETM, and what happens near the base of the event. <u>The PETM is by definition a warming event hence its onset</u> (for me) is, perforce, the bit where it gets hotter, i.e. where the d18O goes negative (and is also seen in the Mg:Ca excursion in this study). This is the interval 457.25-457.29 m which corresponds to a 4cm chunk of core. However even the 'intermediate' bulk d18O and whole foram values from within this chunk may be affected by differential diagenesis, as the paper rightly points out, and some bioturbation mixing is also likely given the burrows, <u>so it is not clear that the real 'onset' of the thermal maximum is sampled at all in this drill core</u>. The paper mentions almost in passing that the portion directly below the PE boundary (457.3-457.58) has sparse and poorly preserved foraminifera (p. 256 line 3-4) <u>but offers no explanation</u>. This suggests the possibility, even likelihood, of <u>dissolution burn-down</u> caused by a transient rise in the carbonate compensation depth during the real onset, also the time of the benthic extinction, and what the core records would therefore be renewed sedimentation onto a dissolution surface / semi-hiatus.

Most previous records of the PETM have the onset of warming coincident with a large and abrupt negative carbon isotope excursion (CIE), so that the onset of the CIE is pretty much coincident with the onset of the PETM - the coupled excursions mentioned in the introduction. But this record is quite different, basically un-coupled, and I have to admit to being puzzled by the run of intermediate bulk d13C values through most of what appears to be the body of the PETM, even while bulk d18O is becoming slightly more positive. This, for me, is the enigmatic aspect of the record and the discussion (Section 3.3) does not wrestle it down sufficiently.

Part of the problem (I contend) is that the authors refer to the gradually decreasing bulk d13C values as the 'onset of the PETM' (in title, abstract line 8; discussion in Section3.3) which only confuses matters. The d18O and Mg:Ca show that this interval is in fact the 'body' of the thermal maximum. It may be the onset of the CIE at this location, I grant, but I doubt whether it correlates with the onset of the CIE everywhere else. Why the bulk d13C values are a run of intermediates is difficult to explain, especially given the foram d13C values around 457.22 m appear to be more or less 'fully negative' and similar to those above from around 467.03 m.

I do not offer an explanation for this conundrum, all I can think of is some far-fetched ideas, but the authors need to tackle it head on, and perhaps take the opportunity of clarifying what they mean by onset of the PETM / CIE / event and making sure the text is clear throughout. Incidentally, the claim that the 'onset' lasts 50-100 kyr in other sites (p. 258, line 4) contrasts with what I think most people would think of as around 10-20 kyr or less, with the 'body' being about 150-200 kyr (the Mead Stream section is also peculiar).

Also incidentally, if the lower carbonate content is because of reduced carbonate flux then <u>the PETM</u> <u>here would also represent more time than an interpolated or extrapolated age model</u>, possible equivalent to much of the body of the PETM (see also my comment on cycles below).

Response 2: We admit that we have used the term "onset" too loosely in this article. Strictly speaking we argue that the recovery interval is missing, and so what is preserved is the onset plus at least part of the core of the PETM. We will revise use of "onset" throughout the text. However, we still contend that the bulk d13C record is consistent with a relatively complete PETM. There is certainly an interval below the PETM where carbonate content is lower than background for the Paleocene, but the d13C is very stable through the upper 50 cm of Paleocene sediment, with no evidence for "burn down" affecting the d13C record and hence no basis to infer a hiatus at the base of the PETM.

The stepped decrease in d13C that occurs between the true onset at 457.27 mbsf and the core of the PETM at 457.1 mbsf is not that unusual. As well as Mead Stream, it has been widely discussed for ODP Site 690 (Bains et al., 1999; Stoll, 2005; Zachos et al. 2005; Sluijs et al. 2007), and has led to speculation that the PETM carbon release may have occurred in pulses (Sluijs et al., 2007). A point that we emphasise in the revised MS is that the three steps in the CIE at DSDP 277 correspond reasonably well with the three maxima in Mag Sus and Fe. Therefore, we can be reasonably confident that we have CIE steps A-C of Zachos et al. (2005) that span cycles 1-3 of Röhl et al. (2007), and therefore our PETM interval probably spans the interval from the base of cycle 1 to the base of cycle 4 or the first ~66 kyr of the PETM (Röhl et al. 2007). Stoll (2005) has shown that the bulk carbonate d13C is a good representation of the coccolith record at ODP 690, which also has a 3-stepped CIE very comparable to Site 277 and Mead Stream. We note that Site 690 is considered to be one of the most expanded records of the PETM and was used to calibrate deeper water records in the South Atlantic where burn-down effects are greater (Zachos et al., 2005).

Differences between the bulk carbonate and single foram signals for the PETM are also well known at ODP 690. As at DSDP 277, Acarinina records a strong CIE at the onset of the PETM. Stoll (2005) has an extensive discussion on this topic but no definitive answer. All we need to say here is that Site 277 is not unusual in having a stepped bulk carbonate CIE. This is why we focus more on the much more pronounced bulk carbonate oxygen isotope excursion (OIE). We tend to agree with the referee's comment that the fact the PETM is a warming event is often overlooked. Nevertheless, since first identified, the PETM has consistently been defined by the carbon isotope excursion (CIE) that provides a less ambiguous way of correlating the event between geographic regions and of subdividing components of the event than the variable oxygen isotope excursion or other climate proxies (e.g. Bains et al., 1999; Zachos et al., 2005; Sluijs et al., 2007; McInerney and Wing, 2011; Dunkley Jones et al, 2013). The P/E boundary is defined by the CIE (Aubry et al. 2007), not the associated temperature shift or other climate-related phenomena. There are many locations world-wide where the location of the PETM is fixed only by the CIE, with very little known about the accompanying changes in temperature. It is also worth making the point that in the case of modern global warming, associated climate change exhibits considerable geographic variation whereas the steady increase in atmospheric CO2 is uniform across regions. This is nicely demonstrated by the compilation undertaken by Dunkley Jones et al. (2013).

Changes to MS (with reference to underlined comments): We reduce reference to "onset" in the MS and clarify where appropriate that we are referring to the onset and body of the CIE (up to the CIE minimum, **Fig. 7**; **Lines 392-393**) but note that the PETM is defined by the CIE, not by warming (Line 107). We argue that neither bioturbation nor burndown can explain the "uncoupled" isotope record or the pre-PETM interval (Lines 465-472). We show that the isotope records for Site 277 and Mead are not that unusual but very similar to Site 690 (Lines 473-499). We reassess the age based on correlation with precession cycles (Lines 432-435).

Comment 3: Foram preservation and diagenesis: The authors indulge in quite an extended discussion about possible diagenetic effects on foram tests and d180 and Mg:Ca. They assert, reasonably I suspect, that the preservation is better in the PETM than below and above because of inhibited recrystallization related to the higher clay content. I have often wondered whether such an effect might be at play in some PETM records which go from chalk to clay (if not cheese) - and indeed other such events such as the Mediterranean sapropels. To demonstrate this effect would be very neat. However the reader cannot evaluate the likelihood of this because no SEM evidence is presented. This paper would benefit hugely from a comparative textural study of the foram walls in internal section under high powered SEM so that the extent of recrystallization can be visually assessed relative to published criteria (which we have produced for just this kind of material -Pearson, P.N., and Burgess, C.E. 2008. Foraminifer shell preservation and diagenesis: comparison of high latitude Eocene sites. Pp. 59-72 in Austin, W.E.N. and James, R. H. (eds.), Biogeochemical Controls on Palaeoceanographic Proxies. Geological Society Special Publication 303: 59-72. Doi: 10.1144/SP303.5). This work has been done ('stringent [SEM] screening criteria were applied to exclude zones within test walls that show evidence of diagenetic alteration' - p.252, l. 5-6) so it really should be shown. Actually I will challenge the authors: given that the carbonate content is fairly high even within the PETM, I predict that all forams at this site will show clear evidence of diagenetic alteration on a micron scale throughout their entire walls (although the effect maybe variable) - I do not believe you can exclude recrystallization at this site - so go prove me wrong by illustrating the typical biogenic microgranular texture of a well-preserved foram!

It would also be nice to see what is causing the reputed poorer preservation of the forams immediately below the PETM - are they dissolved? In short, I think we should be moving away from near-meaningless phrases like 'carbonate microfossils are moderately well preserved' (p. 256, line 3)

and 'relatively well preserved tests' (p. 258, line 23) to something much better documented, but for that we need the SEM images.

Response 3: We are forced to admit that upon review of our SEMs, all the forams in this record are affected by diagenesis, with clear evidence of overgrowths and recrystallisation. We cannot confidently use visual examination as a basis for stating that the forams in the PETM are any better preserved than below or above the PETM. The "stringent" criteria referred to in the text relates to geochemical criteria. Specifically in relation to diagenesis, this means we have not used specimens or parts of LA-ablation profiles with Sr/Ca values lower than 0.8 or higher than 1.6 in the determination of paleotemperatures from Mg/Ca ratios. Following the recommendation of Referee 2, we have constructed cross-plots to show how these criteria are applied (**new Fig. 3**).

These cross-plots explore the relationship between Mg/Ca ratios, silicate contamination and diagenesis. The full dataset consists of average elemental ratios across selected integrated laser ablation profiles (visually screened for the effects of silicate contamination and diagenesis). This dataset has been first plotted as cross-plots of Al/Ca and Mg/Ca for Cibicides and Acarinina (the only two genera that have records spanning the entire studied interval). The data have been colour coded to differentiate samples from within the PETM and the pre-PETM interval extending down to 462.2 m. A significant linear correlation is observed for both genera, confirming that silicate contamination results in anomalously high Mg/Ca values where Al/Ca >4 (3.4 and 3.7 being the calculated screening limits with method explained in the MS). For Cibicides, silicate contamination is seen to be more common within the PETM than in the pre-PETM interval or elsewhere in the record. This is consistent with other evidence for an increase in clay within the PETM. This pattern is also evident for Acarinina but Al/Ca values are generally higher and more pre-PETM samples show evidence of silicate contamination. This may reflect differences in morphology, with the smoother surface of Cibicides providing fewer opportunities for clay particles to become fixed to the test wall.

The second set of cross plots consists of data that has first been screened for silicate contamination using the screening limit of Al/Ca > 3.4 or 3.7. The Sr/Ca ratio is used as a proxy for diagenesis, with the typical ratio in Eocene foraminifera being 1 to 1.4 (Creech et al., 2010) and the values < 0.8 or > 1.6 are considered to reflect dissolution or recrystallization (Eggins et al., 2003; see also Kozdon et al., 2013). Linear regression lines are shown for the three groups and the correlation co-efficient is added where it is significant. For Cibicides, most values lie within the screening limits but there are some significant differences in the clusters of PETM and pre-PETM samples. First, we note that the overall trend for all the samples is roughly horizontal, suggesting that the Sr/Ca ratio is generally stable around ~1 for varying Mg/Ca. However, we observe that there is a weak negative trend and stronger and steeper negative trend for PETM and pre-PETM samples, respectively. This suggests that diagenesis has a significant effect on pre-PETM Mg/Ca values for Cibicides, and may also have a small effect on PETM values. The net effect would be to introduce a warm bias to pre-PETM temperatures, and possibly also to some PETM temperatures.

For Acarinina, a clearer relationship is observed between Sr/Ca and Mg/Ca. The effects of diagenesis appear more evident, overall, probably reflecting the thinner test and greater surface area relative to the smooth walled Cibicides. The overall trend is consistent with predictions and observation form other studies: a negative correlation indicates that as diagenesis progresses Sr/Ca decreases and

Mg/Ca increases (Eggins et al. 2003; Kozdon et al. 2013). The slope of the trend lines indicate that the pre-PETM interval is most affected by diagenesis, and the PETM is the least affected. As for Cibicides, this implies that temperatures based on the Mg/Ca are significantly overestimated in the pre-PETM interval and also, but to a lesser extent, overestimated in the PETM.

In summary, we have shown how screening has been applied to exclude samples with significant levels of silicate contamination and diagenesis. We have shown that diagenesis tends to be higher in the pre-PETM interval than in the PETM. We have shown that Acarinina is more affected by both silicate contamination and diagenesis than Cibicides. And we have shown how diagenetic effects may affect temperature estimates (even for samples within the screening limits), probably overestimating pre-PETM temperatures relative to the PETM.

Therefore, although we lack visual evidence to support our hypothesis that the extreme OIE at the "onset" of the PETM in this record is an artefact of preservation changes across the P/E boundary, we do have geochemical evidence in the form of Sr/Ca ratios. In addition we observe and increase in the d18O gradient between bulk carbonate and benthic foraminifera: from <0.6 in all but one sample below the PETM to >1.1 in 2 of 3 samples within the PETM. A low gradient is also observed above the PETM (0.23 – 0.42).

We have added a supplementary figure to show the general distinctions between moderate and poor preservation, based on SEM images and LA-ICPMS profiles, but acknowledge that others may term these preservation states, poor and very poor.

Changes to MS: it is beyond the scope of the current study to include detailed study of wall texture ("stringent criteria" referred to geochemical screening), but we have included SEM images of whole tests (**Fig. S1**) and accept that preservation is generally poor to moderate (**Lines 353, 449-454**).

Comment 4: p. 246, line 3. Reword? These references are compilations, not original studies, but in any case all early Paleogene pCO2 reconstructions are very uncertain - and yet the statement seems to take it as fact.

Response 4: Insert "is inferred to have" (Line 45).

Comment 5: p. 250, line 9. *Acarinina* is spelt wrong. Were species combined in these analyses? We know *Acarinina* species can differ quite a bit in habitat, so it would be better to stick to species where possible as in the trace elements.

Response 5: Move the text from Mg/Ca methods to this location (Lines 151-166), and revise to say: "Individual specimens from five foraminiferal genera were used for stable isotope analysis and elemental geochemistry. Specimens were selected for analysis based on visual assessment of their preservation under a stereo microscope. Wherever possible, analyses were performed on Morozovella aequa, Acarinina coalingensis, Subbotina patagonica, S. roesnasensis, and Cibicides proprius/praemundus. The following species were substituted when these species were not available: Morozovella subbotinae, M. acuta, M. apanthesma, Acarinina soldadoensis, A subsphaerica, A. esnaensis, A. nitida and Cibicidides tholus. The stable isotope signature of Acarinina soldadoensis, A subsphaerica, A. nitida and all species of Morozovella indicates they were mixed layer dwellers (Olsson et al., 1999; Quillévéré and Norris, 2003), and therefore are appropriate indicators of near surface conditions. Subbotina patagonica is inferred to have had a deep planktonic habitat (Pearson et al., 2006), within the thermocline. There is no data on the habitat of S. roesnasensis."

Comment 6: p. 256, line 12. The missing NP7 and NP8 are not shown on the log on Figure 2, where the zones are combined. Hence the text says something important that is absent from the fig.

Response 6: The zones are missing, so they are not shown on Fig. 2. An unconformity is shown to lie between NP6 and NP9, which is consistent with the text.

Comment 7: p. 256. Can you say something about planktonic forams in the PETM? Did you find any excursion taxa or influx of warm forms?

Response 7: Yes, this important text to be added (Lines 338-341). "The genus Morozovella has its lowest occurrence at the base of the PETM and greatest diversity within the PETM. Two species of Morozovella are restricted to the PETM: M. aequa and M. velascoensis. The latter species has rarely been found outside the PETM in the SW Pacific but M. aequa ranges into the middle late Eocene on mainland New Zealand (Hornibrook et al. 1989)."

Comment 8: p. 257, line 9. Can you prove the Fe record is cyclical by power spectra? Are these cycles likely obliquity? If so you have virtually all the PETM here, not the 'onset'!

Response 8: There are two few cycles present for spectral analysis or to conclude that there are four obliquity cycles. However, we have commented earlier on the likelihood that that they correspond to the precession cycles described by Röhl et al. (2007). Reword statement of duration of onset and body based on correlation with Site 690 (Lines 359-361, 396-403).

Comment 9: p. 257, line 18. This positive shift in d180 of 0.4 per mil is not obvious to me on Fig 2. I wonder if this is a burn-down dissolution effect, also the enigmatic peak in Fe and mag. susc. which you say the cause is unknown.

Response 9: The shift is there, but not obvious how this could be due to burn down. Also as discussed there is no equivalent shift in d13C. We interpret it as suggesting pre-PETM cooling (also noted at Site 690). The enigmatic shift in FE and mag sus is well below the PETM (Lines 377-385, slightly reworded; Lines 433-440, more commentary)

Comment 10: p. 260. "Benthic foraminifera tests are dense [true] and thus less prone to recrystallization [not true?]" This has been claimed many times, and I blame myself partly for it, as we all hoped it would be true, but whenever we have actually studied the tests they are in fact just as recrystallized as the plankton. Again, you could substantiate this with SEMs or omit the statement / claim.

Response 10: Unnecessary sentence deleted (Line 533)

Comment 11: p. 262. Is there any paleontological evidence for a change in fossil assemblage that perhaps might be related to the subtropical gyre?

Response 11: Incoming of Morozovella and diversity of the genus to be noted here (Line 633-634).

Comment 12: In summary this is a fascinating new record from the high southern latitude but the text needs to be clearer regarding what is meant by the onset of the event; and images from the textural-diagenetic SEM study that has been done would improve the case for understanding what has been observed regarding foram test preservation and quantifying the temperature excursion.

Response 12: Endeavoured to address these issues in further discussion of the effects of diagenesis but have not included detailed SEMs of test walls. Whole test SEMs and Element/Ca profiles serve to (new Fig. 3) illustrate issues with silicate contamination and diagenesis.

Referee 2

Comment 1: A sediment core drilled in 1973 on the western margin of the Campbell Plateau by the Deep Sea Drilling Project (DSDP Site 277) was re-examined by Hollis et al. Within the past 40 years, a large number of studies was published based on material from this core, however, Hollis et al. are the first to discover that the PETM is preserved in a 34 cm-thick interval within these sediments. The authors used an innovative multi-proxy, multi-instrument approach (in situ measurements of trace elements in individual planktic and benthic foraminiferal shells by LA-ICP MS, d180 and d13C analyses in bulk carbonate and foraminiferal shells, XRF scans of core sections, measurements of carbonate content and magnetic susceptibility) to delineate the PETM recorded in these sediments and to compile a robust paleorecord by combining data created by this multi-proxy approach to assess the degree of alteration of foraminiferal shells and exclude Mg/Ca measurements from samples that underwent significant diagenesis.

While this study certainly warrants publication and is suitable for the journal "Climate of the Past", I highly encourage the authors to address the potential impact of diagenesis on the Mg/Ca, d18O, and d13C values in more detail. According to the authors (page 250, lines 6 ff.), "samples were selected based on light microscope assessment of preservation, which was subsequently confirmed by SEM". In my experience, this approach of sample screening is not sufficient. Within the past years, I analyzed hundreds of foraminiferal shells in high magnification by SEM and screened more than one thousand polished chamber wall cross-sections in epoxy mounts using SE, BSE, and CL detectors in order to locate suitable, well preserved domains for SIMS analyses. Thereby, I realized that it is practically impossible to estimate the actual preservational state of 'frosty' foraminiferal shells from their outer appearance. Two shells, that appear to feature the same preservational state, may turn out to be altered to completely different degrees when examining their polished chamber wall cross sections. Thus, my concern is that differential diagenesis within the studied core section may have been overseen. For example, it was shown in previous studies that foraminiferal shells at the PETM onset may be altered to a larger degree due to the effect of 'burn-down' (e.g. Walker and Kasting, 1992; Kozdon et al., 2013). Hollis et al. emphasize a different trend in PETM-warming at DSDP Site 277 compared to other sites, but I am not convinced that the data shown in this study exclude the possibility that part of this observation could also be caused by differential diagenesis within the core. However, the laser ablation data provide a great wealth of information that can be used to assess foraminiferal diagenesis in more detail, and I am surprised that the authors didn't explore all the benefits of this in situ approach. Based on the method description and the data presented in Fig. 3, the Element/Calcium ratios of the three laser ablation analyses (=profiles through chamber wall)

for each shell were simply averaged. If the (averaged) AI/Ca and Sr/Ca ratios exceeded certain threshold values, the shell was considered to be significantly affected by alumina-silicate contamination and/or diagenesis, consequently, the Mg/Ca ratio was not used for climate reconstruction. In my opinion, there is much more to explore. While the laser is 'drilling' through the foraminiferal chamber wall (with an ablation rate of 0.2-0.3 μm/s), the Element/Ca ratios are measured in real time (with a few seconds delay, as the ablated material needs to pass through tubes and the spray chamber before being ionized in the plasma). Therefore, it is possible to compute elemental concentration profiles through foraminiferal chamber walls at micrometer resolution. These laser ablation profiles provide detailed insights in the degree of diagenesis and/or recrystallization, as demonstrated in previous studies (e.g. Hathorne et al., 2003; Regenberg et al., 2007; Pena et al., 2008; van Raden et al., 2011). In processing these LA depth-profiles, it should be possible to determine if diagenesis and/or alumina-silicate contamination affects only on the outer and inner surface of the shells, or if these 'unwanted' phases penetrate deeper into the chamber wall. These information can also be used to locate domains that are less affected by diagenesis than the remaining shell (likely the inner part of the chamber wall). Would it be possible to compile - for comparison - an alternative Mg/Ca record using exclusively data from less altered portions of the shell? These are just suggestion, but I think they are worthwhile to explore. There are certainly more information in the data set than shown/discussed by the authors. Is it also possible to show some representative laser ablation profiles in the supplementary material?

Response 1: The referee asks that we give greater consideration to the potential impacts of diagenesis on Mg/Ca, d18O and d13C. We have addressed this in our response to Referee 1, who made a similar general comment. It is important to note that the aim of the foraminiferal isotope analysis was to provide constraints on the bulk isotope and Mg/Ca data. Based on the relatively poor preservation of the material, we fully expected to find the data somewhat compromised by diagenesis. We recognise that there may well be scope for further detailed work on the isotopic character of the foraminifera in this record of the type that the referee has pioneered, but this is outside the aims of the current study.

For LA-ICPMS analysis, we have improved the description of methods to clarify that we followed exactly the approach the referee recommends (Lines 204-229). After visual examination and cleaning, specimens were ablated. The LA depth profiles were then carefully screened to identify and exclude zones of contamination, diagenesis, or elemental anomalies of uncertain origin (Fig. S1). After this process, average values were determined for the selected segments on the profiles, not the entire profiles (Data plotted in new Fig. 3). Further screening was then performed on these average values to derive the Mg/Ca values used for temperature reconstructions (New Fig. 4 and S2). We agree that further study should be undertaken on the profiles to directly quantify diagenetic variation through this interval. However, this is outside the scope of the current study.

Other comments:

- Hollis et al. analyzed nine element by LA-ICP MS (Mg, Al, Si, Ca, Ti, Mn, Zn, Sr, and Ba), however, only Al/Ca, Sr/Ca and Mg/Ca ratios were used to assess the degree of diagenesis. What about Mn/Ca and Ba/Ca? The authors themselves cite studies using Mn/Ca and Ba/Ca ratios to evaluate contamination or diagenesis of foraminiferal shells. As the mechanisms of diagenesis are very

complex and site-specific, it may be possible that the data are not conclusive, however, results from other Element/Ca ratios should be at least briefly mentioned.

We could add Mn/Ca and Ba/Ca plots to Fig. 3 but they don't add much to the record as they show very similar trends to Al/Ca. We have included them in **Fig. S2**. Further discussion of other elements is outside the scope of this paper. Note that we also have a full suite of XRF data for the PETM interval that is not discussed here.

Furthermore, the authors emphasize a positive linear correlation between measured Al/Ca and Mg/Ca ratios. This linear correlation is difficult to identify from the data shown in Fig. 3. Therefore, I suggest to include an Al/Ca:Mg/Ca cross plot in the supplementary material - Page 259, lines 23-26:

We found the suggestion of adding cross-plots most helpful. Although they were part of our working files, we have not interrogated them sufficiently and are very pleased to see how well they appear to resolve questions relating to diagenesis (new Fig. 3, **Lines 230-241, 503-527**)

The observation that the Mg concentration is not being reset during shell recrystallisation is important and confirms in situ measurements of Mg/Ca ratios in diagenetic overgrowth that approach the values of biogenic foraminiferal calcite (Kozdon et al., 2013). However, these findings contradict the results of inorganic precipitation experiments showing about an order of magnitude more Mg in diagenetic than in biogenic calcite (e.g. Mucci and Morse, 1983; Oomori et al., 1987), and I encourage the authors to take this opportunity and emphasize the difference between diagenesis in the sediment column and the results from inorganic precipitation experiment. Some scientists still believe that non-elevated Mg/Ca ratios are an indicator for good preservation.

We agree that our results are in good agreement with Kozdon et al. (2013), with very similar relationships between Sr/Ca and Mg/Ca, and an order of magnitude lower than the changes observed in laboratory experiments (Lines 515-517, compare our new Fig. 3 with Kozdon et al. 2013, Fig. 6)

Page 259, line 22: it shall read "Fig. 4d".

Corrected

Fig. 4d: is it possible to add a horizontal axis for d18O and Mg/Ca?

We think this is unnecessary because Mg/Ca is shown in Fig. 4c and d180 in Fig. 2 but yes, it's possible (at least for d180).

1	Onset of the The Paleocene-Eocene Thermal Maximum at DSDP Site 277, in the southern
2	Pacific Ocean (DSDP Site 277, Campbell Plateau, southern Pacific Ocean)
3	
4	C.J. Hollis ¹ , B.R. Hines ² , K. Littler ^{3,4} , V. Villasante-Marcos ⁵ , D.K. Kulhanek ⁶ , C.P. Strong ¹ , J. C.
5	Zachos ³ , S.M. Eggins ⁷ , L. Northcote ⁸ , A. Phillips ¹
6	
7	¹ GNS Science, PO Box 30-368, Lower Hutt 5040, New Zealand
8	² School of Geography, Environment & Earth Sciences, Victoria University of Wellington,
9	New Zealand
10	³ Earth & Planetary Sciences, University of California – Santa Cruz, California 95060, USA
11	⁴ Camborne School of Mines, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
12	⁵ Observatorio Geofísico Central, Instituto Geográfico Nacional, 28014 Madrid, Spain
13	⁶ International Ocean Discovery Program, Texas A&M University, College Station, TX 77845-
14	9547, USA
15	⁷ Research School of Earth Sciences, The Australian National University, Canberra 0200, ACT,
16	Australia
17	⁸ National Institute of Water and Atmosphere, PO Box 14901, Wellington, New Zealand
18	
19	ABSTRACT
20	Re-examination of a-sediment cores collected by the from Deep Sea Drilling Project (DSDP) Site 277
21	on the western margin of the Campbell Plateau , Southwest Pacific Ocean (paleolatitude of ~65°S),
22	has identified an intact Paleocene-Eocene (P-E) boundary overlain by a 34 cm-thick record of the
23	initial phase of the Paleocene-Eocene Thermal Maximum (PETM) within nannofossil chalk. The upper
24	part of the PETM is truncated, either due to drilling disturbance or a sedimentary hiatus. An intact
25	record of the onset of the PETM is indicated by a gradual decrease in δ^{13} C values over 20 cm,
26	followed by a 14 cm interval in which δ^{13} C is 2‰ lighter than uppermost Paleocene values. After
27	accounting for effects of diagenetic alteration, we use δ^{18} O and Mg/Ca values from foraminiferal
28	tests to determine that intermediate and surface waters warmed by $\sim \frac{5}{5}$ 6° at the onset of the PETM
29	prior to the full development of the negative δ^{13} C excursion. After this initial warming, sea
30	temperatures were relatively stable through the PETM, but declined abruptly across the
31	unconformity horizon that truncates the event at this site. Mg/Ca analysis of foraminiferal tests
32	indicate peak intermediate and surface water temperatures of ~19°C and ~32°C, respectively. These

Formatted: Line spacing: 1.5 lines Formatted: Header distance from edge: 1.25 cm, Footer distance from edge: 1.25 cm 33

temperatures may be influenced by residual diagenetic factors, changes in ocean circulation,

34 enhanced poleward ocean heat transport during the PETM and surface water values may also be

35 biased towards warm season temperatures.

36

37 1. Introduction

- Stable isotope analysis of foraminiferal tests from sediments cored at DSDP Site 277 (Shackleton and -38 39 Kennett, 1975) provided the first paleotemperature record for the Paleogene of the Southern Ocean and laid the foundation for many subsequent studies of the regional paleoclimate and 40 41 paleoceanography (e.g., Kennett 1977, 1980; Kennett and Shackleton, 1976; Hornibrook, 1992; 42 Nelson and Cook, 2001). Over the last decade, there has been renewed interest in the early 43 Paleogene (66 to 35 Ma) climate history of the Southern Ocean, partly driven by a societal 44 imperative to understand how the Antarctic ice sheet will respond to anthropogenic global warming 45 (e.g., Joughin et al., 2014). The early Paleogene was the last time that Earth is inferred to have 46 experienced greenhouse gas levels in excess of ~600 ppm CO₂ (Zachos et al., 2008; Beerling and 47 Royer, 2011), and therefore provides insight into a climate state that civilization may experience in coming centuries. One event in particular has been touted as a geological analogue for greenhouse 48 49 gas-driven global warming: the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma). This event 50 was a short-lived (~220 kyrs) perturbation to the climate and carbon cycle in which global 51 temperatures rose by 4–5°C within a few thousand years (Sluijs et al., 2007; McInerney and Wing, 52 2011; Dunkley-Jones et al., 2013; Schmidt, 2014), with warming of up to 8°C in higher latitudes and some coastal settings (Thomas et al., 2002; Sluijs et al., 2006, 2011; Zachos et al., 2006; Hollis et al., 53 2012; Frieling et al., 2014). Multiple lines of evidence suggest that this warming may have been 54 55 driven by a rapid injection of greenhouse gases, possibly sourced from submarine gas hydrates, as 56 evidenced by coupled negative excursions in oxygen and carbon isotopes (Dickens et al., 1995, 57 1997). Several other potential sources of the light carbon have also been implicated to account for all or part of the carbon isotope (δ^{13} C) excursion (Dickens, 2003, 2011; Kent et al., 2003; Svensen et 58 al., 2004; Higgins and Schrag, 2006; De Conto et al., 2012). 59 60 The PETM has been identified in several sites in the Southwest Pacific, including onshore 61 records in both siliciclastic and pelagic bathyal sections in eastern New Zealand (Kaiho et al., 1996; 62 Crouch et al., 2001; Hancock et al., 2003; Hollis et al., 2005a, b, 2012; Nicolo et al., 2010), nonmarine to marginal marine sediments in western New Zealand (Handley et al., 2011) and in shelfal 63 64 sediments at Ocean Drilling Program (ODP) Site 1172, offshore eastern Tasmania (Sluijs et al., 2011).
- 65 Here we report a new record of the PETM in pelagic bathyal sediments at DSDP Site 277, at a similar

Formatted: Indent: First line: 0 cm, Line spacing: 1.5 lines

paleolatitude to Site 1172 (~65°S). These two sites represent the southernmost records of the PETM
in the Pacific Ocean (Fig. 1).

Initial studies of Site 277 suggested that the Paleocene-Eocene (P-E) boundary occurred 68 69 within a gap between cores 43 and 44 (Kennett et al., 1975). A subsequent biostratigraphic review of the site (Hollis et al., 1997) revealed that the boundary was lower in the drillhole, potentially within 70 a relatively continuous interval preserved in core 45. Detailed re-sampling confirmed the location of 71 72 the P-E boundary (Fig. 2), based on the highest occurrence (HO) of benthic foraminifer Stensionina 73 beccariformis at 457.3 mbsf (277-45-3, 80 cm). High resolution stable isotope analysis of bulk carbonate confirms that this horizon marks the base of a 34 cm-thick negative excursion in $\delta^{13}C$ (CIE) 74 that defines the PETM (Fig. 2Aubry et al., 2007). 75 76 DSDP Site 277 was drilled on the western margin of the Campbell Plateau in a water depth 77 of 1214 m as part of DSDP Leg 29 (Kennett et al., 1975). Paleogene sedimentation occurred in fully 78 oceanic conditions well above the lysocline (Kennett et al., 1975), with benthic foraminiferal 79 assemblages indicating lower to middle bathyal water depths since the Paleocene (Hollis et al., 80 1997). In order to characterise sedimentary and identify the paleoceanographic changes associated with the PETM at this site we have undertaken a multidisciplinary study that includes foraminiferal 81 82 and calcareous nannofossil biostratigraphy, magnetic susceptibility, CaCO₃ content, elemental abundance using X-ray fluorescence (XRF), δ^{13} C and δ^{18} O analysis of bulk carbonate and 83 84 foraminifera, and single test analysis of foraminifera for Mg/Ca ratios by Laser Ablation Inductively 85 Coupled Plasma Mass Spectrometry (LA-ICPMS). 86 87 2. Material and Methods

88 2.1. Material

We analysed samples over a 45-m interval spanning the upper Paleocene to lower Eocene at DSDP Site 277 (470–425 mbsf). Average sample spacing was 20 cm over much of the interval, with a higher resolution of 2–3 cm sampling across the PETM within core-section 45-3 (~457.30–456.95 mbsf). In addition, this core-section was scanned for elemental abundance. Although the PETM interval is preserved, the overall record is discontinuous, with significant gaps between cores from core 42 to 45 (Fig. 2).

95

96 2.2. Methods

- 97 2.2.1. X-Ray fluorescence (XRF) core scanning
- 98 XRF data were acquired using an Avaatech XRF scanner with a Canberra X-PIPS silicon drift
 99 detector, model SXD 15C-150-500 150 eV resolution X-ray detector, which is housed at the

100	International Ocean Discovery Program (IODP) Gulf Coast Repository at Texas A&M University in	
101	College Station, Texas (Table <u>S</u> 1). This scanner is configured for analysis of split core section halves,	
102	with the X-ray tube and detector mounted on a moving track (Richter et al., 2006). Section 277-45-3	
103	was removed from the core refrigerator and allowed to equilibrate to room temperature prior to	
104	analysis. We leveled levelled all rock pieces within the section, as the detector requires a flush	
105	surface with no gaps between pieces, and then covered the section with 4 μm thick Ultralene plastic	
106	film (SPEX Centriprep, Inc.) to protect the detector. The section was scanned at 2 mm intervals using	
107	a voltage of 10 kV for elements Al, Si, P, S, Cl, Ar, K, Ca, Ti, Cr, Mn, Fe, Rh, and Ba. The scan was	
108	completed using a 1 mA tube current, no filter, and a detector live time of 30 s, with an $X +$ ray	
109	detection area of 2 mm in the downcore direction and 15 mm across the core. During measurement,	
110	intervals were skipped where gaps of more than 2 mm existed between pieces. Smaller gaps were	
111	noted so that suspect data across these gaps could be removed.	
112		
113	2.2.2. Rock magnetism	
114	Bulk magnetic susceptibility of a subset of discrete samples was measured at the	
115	Paleomagnetism Laboratory of the Complutense University of Madrid, Spain (Table S2). A KLY-4	
116	(Agico) susceptibility bridge was employed, with an applied magnetic field of 300 A/m. Due to the	
117	low ferromagnetic content of most of the samples, each sample was measured ten times and	
118	averaged. The error bars of the magnetic susceptibility data correspond to the standard deviation of	
119	the mean (1 σ) obtained during the averaging procedure.	
120		
121	2.2.3. Micropaleontology	
122	Calcareous nannofossil and foraminifera sample preparation and examination followed standard	
123	procedures. Samples for calcareous nannofossils were prepared using standard smear-slide	
124	techniques (Bown and Young, 1998). A small amount of sediment was mixed with a drop of water on	
125	a coverslip, distributed with a toothpick, and then dried on a hot plate. The coverslip was affixed to a	
126	glass microscope slide using Norland Optical Adhesive 61 and cured under an ultraviolet light. Slides	
127	were examined on a Leitz Ortholux II POL-BK microscope under cross-polarized and plane-	
128	transmitted lights. Nannofossil distribution was determined for 41 samples extending from	
129	Paleocene to the upper lower Eocene (Teurian to Mangaorapan New Zealand stages) (Table S3).	
130	Counts of 400 specimens were conducted at 1000× for each sample, followed by a scan of at least	
131	400 fields of view at 630× to look for rare taxa (Table 3).	
132	Foraminiferal distribution was determined for 59 samples extending from the Paleocene to late early.	
133	Eocene (Teurian to Mangaorapan local stages)spanning the same time interval (Table S4).	

Formatted: Indent: First line: 0 cm, Line spacing: 1.5 lines

134	-Foraminiferal biostratigraphy is correlated with New Zealand stages (Cooper, 2004) and
135	international biozones (Olsson et al., 1999; Pearson et al., 2006). New Zealand stage and biozone
136	boundaries are calibrated to the 2012 geological timescale (Gradstein et al., 2012) using criteria
137	described by Hollis-Raine et al. (20150) and Norris et al. (2014). Foraminiferal taxonomy is based on
138	Hornibrook et al. (1989). Biostratigraphic results for calcareous nannofossils are correlated to the
139	biostratigraphic zonation scheme of Martini (1970, 1971), calibrated to the 2012 geological
140	timescale (Gradstein et al., 2012). Taxonomic concepts for species are those given in Perch-Nielsen
141	(1985) and Bown (1998).
142	
143	2.2.4. Stable isotopes and carbonate content
144	Analysis for stable isotopes and carbonate content was undertaken at three laboratories.
145	Results are tabulated in Table §5. Bulk carbonate δ^{13} C and δ^{18} O measurements were undertaken at
146	the National Isotope Centre, GNS Science, Lower Hutt. Samples were analysed on the GVI IsoPrime
147	Carbonate Preparation System at a reaction temperature of 25°C and run via dual inlet on the
148	IsoPrime mass spectrometer. All results are reported with respect to VPDB, normalized to the GNS
149	marble internal standard with reported values of 2.04‰ for δ^{13} C and -6.40‰ for δ^{18} O. The external
150	precision (1 σ) for these measurements is 0.05‰ for δ^{13} C and 0.12‰ for δ^{18} O.
151	Individual specimens from five foraminiferal genera were used for stable isotope analysis
152	and elemental geochemistry. Specimens were selected for analysis based on visual assessment of
153	their preservation under a stereo microscope. Wherever possible, analyses were performed on
154	Morozovella aequa, Acarinina coalingensis, Subbotina patagonica, S. roesnasensis, and Cibicides
155	proprius/praemundus, and Stensioina beccariformis. The following species were substituted when
156	these species were not available: Morozovella subbotinae, M. acuta, M. apanthesma, Acarinina
157	soldadoensis, A subsphaerica, A. esnaensis, A. nitida and Cibicides tholus. The stable isotope
158	signature of Acarinina soldadoensis, A subsphaerica, A. nitida and all species of Morozovella
159	indicates they were mixed layer dwellers (Olsson et al., 1999; Quillévéré and Norris, 2003), and
160	therefore are appropriate indicators of near surface conditions. Subbotina patagonica is inferred to
161	have had a deeper planktonic habitat (Pearson et al., 2006), within the thermocline. There is no data
162	on the habitat of S. roesnasensis. Individual specimens from five foraminiferal genera were used for
163	δ^{13} C and δ^{19} O and Mg/Ca analysis. Samples were selected based on light microscope assessment of
164	preservation, which was subsequently confirmed by scanning electron microscope (SEM)
165	examination. The genera used include two near-surface dwelling genera, Morozovella and
166	Acaranina, the thermocline dweller Subbotina and two benthic genera, Cibicides and Stensioina.

167	Stable isotope analysis of foraminifera was carried out in the Stable Isotope Laboratory at the $\$	Formatted: Indent: First line: 0 cm,
168	University of California, Santa Cruz. Between 1 and 6 (average of 3) specimens of Cibicides, 1 and 5	Line spacing. 1.5 mes
169	(average of 3) specimens of Stensioina, 3–17 (average of 10) specimens of Acarinina, 2–10 (average	
170	of 4) specimens of Morozovella, and 1-8 (average of 5) specimens of Subbotina were used in each	
171	analysis. Specimens were first sonicated in deionised water to remove clay and detrital calcite.	
172	Isotopic measurements were carried out on a Thermo-Finnigan MAT253 mass spectrometer	
173	interfaced with a Kiel Device. The analytical precision (1 σ) is based on repeat analysis of an in-house	
174	standard (Carrara marble), calibrated to the international standards NBS18 and NBS19, and averages	
175	±0.05 ‰ for δ^{13} C and ±0.08 ‰ for δ^{18} O. All values are reported relative to VPDB. For the δ^{18} O values	
176	of Cibicides (= <u>Cibicidoides;</u> see Schweizer et al., 2009) and Stensioina, we apply an isotopic	Formatted: Font: Italic
177	correction factor of +0.28 (Katz et al., 2003).	
178	Paleotemperatures for both benthic and planktic taxa were calculated from δ^{18} O using the \checkmark	Formatted: Line spacing: 1.5 lines
179	equation of Kim and O'Neil (1997):	
180	$T(^{\circ}C) = 16.1 + -4.64(\delta^{i8}O_{M} - \delta^{i8}O_{SW}) + 0.09(\delta^{i8}O_{M} - \delta^{i8}O_{SW})^{2}$	
181	Equation 1	
182	Where $\delta^{18}O_M$ = measured value and $\delta^{18}O_{SW}$ = -1.2346‰, which is the inferred value for sea water	
183	under ice-free conditions (assuming ice-free ocean values of = -1‰). Planktic values are also	
184	corrected for adjusted for paleolatitude (Zachos et al. 1994; correction of -0.23‰) and ice-free	
185	conditions (assuming ice free ocean values of = 1‰).	
186	The carbonate content of dried powdered samples was determined at the National Institute	
187	of Water and Atmosphere (NIWA, Wellington) via gasometric quantitative analysis after acidification	
188	(Jones and Kaiteris, 1983), with a precision of $\pm 2\%$.	
189		
190	2.2.5. Elemental geochemistry and Mg/Ca analysis	
191	Foraminifera were picked from the 150–300 μm fraction of washed sediment samples and	
192	individually washed in ultra-pure (>18.2 m Ω) water and analytical grade methanol three times	
193	before being mounted on double-sided tape adhered to a glass slide. Wherever possible, the species	
194	Morozovella crater, Acarinina primitiva and Cibicides eocaenus were selected. Where these species	
195	were not available, M. lensiformis, A. collactea and C. truncatus were substituted. Subbotina was not	
196	subdivided beyond the genus level.	
197	Mg/Ca analysis was carried out on samples composed of 4–19 specimens for each of the selected	Formatted: Indent: First line: 0 cm,
198	genera in each sample (Table \underline{S} 6). Each foraminifer was analysed at least three times using a pulsed	Line spacing. 1.5 lines
199	Ar-F excimer laser (Lambda Physik LPFpro 205) with a 193 μm wavelength, 30 μm spot size, laser	
200	power of 3 J/cm ² and a repetition rate of 3 Hz, in conjunction with an ANU HelEx laser ablation cell,	

201	at the Research School of Earth Sciences of the Australian National University. An analysis of the
202	NIST-SRM610 silicate standard was taken between every 9–12 foraminifer analyses to correct for
203	elemental fractionation originating from laser ablation and mass-spectrometry effects.
204	The final three chambers of the final whorl in each specimen were analysed individually by \rightarrow
205	ablating slowly at a rate of 0.2–0.3 μms^{-1} to produce a separate trace element profile through the
206	wall of each chamber (Fig. S1). A Varian 820 ICPMS was used to measure abundances of the trace
207	metal isotopes ²⁴ Mg, ²⁷ Al, ²⁹ Si, ⁴⁷ Ti, ⁵⁵ Mn, ⁶⁶ Zn, ⁸⁸ Sr and ¹³⁸ Ba relative to ⁴³ Ca during ablation.
208	Elemental ratios reported in this study for each sample are the average values derived from of the
209	multiple <u>screened chamber profiles profile segments measured in individual for multiple</u> foraminifer
210	specimens of a given taxon. Laser ablation sites were selected using light microscopy and SEM
211	imaging to avoid zones of detrital contamination, recrystallization or test ornamentation which that
212	might cause irregular trace element/Ca profiles <u>(Fig. S1)</u> .
213	The extraction of a reliable paleotemperature record from variably preserved foraminifera is
214	dependent on the preservation of primary foraminiferal calcite, and its inherent geochemical
215	signature. In addition to using reflected light microscopy and SEM imaging to qualitatively screen
216	tests for preservation, stringent-Individual chamber profiles screening criteria were applied screened
217	to exclude zones with anomalously high Mg/Ca, Al/Ca, Mn/Ca or Ba/Ca ratios, which indicate
218	significant within test wall profiles that show evidence of diagenetic alteration or silicate
219	contamination as evident from anomalous Mg/Ca, Al/Ca, Mn/Ca, Ba/Ca and Sr/Ca ratios (Barker et
220	al., 2003; Greaves et al., 2005; Creech et al., 2010). Individual trace element <u>These</u> profiles typically
221	show zones of <u>enriched in substantially Mg, AI, Mn, and Ba elevated Mg/Ca, AI/Ca and Mn/Ca ratios</u>
222	on the outside and inside surfaces of the foraminifera test <u>chamber</u> wall, indicating siliciclastic
223	sediment contamination consistent with silicate contamination (Fig. S1) whereas-The Sr/Ca ratio is
224	used as an indicator of diagenetic alteration because the concentration of Sr may decrease or
225	increase during alteration or secondary calcification (Eggins et al., 2003; Kozdon et al., 2013). A ratio
226	of ~1.4 is typical for well-preserved tests (Creech et al., 2010). Therefore, typically occurs at uniform
227	levels throughout the test. Concentration may decrease or increase during alteration or secondary
228	calcification (Eggins et al., 2003). Thus, samples with Sr/Ca values outside the range of 0.8–1.6
229	mmol/mol were considered to be affected by diagenesis (Fig. <u>3</u> 3).
230	AI/Ca and Mg/Ca data show a positive linear correlation when plotted (Fig. 3), reflecting the
231	influence of alumino -silicate mineral contamination. This- <u>We have used contamination has been</u>
232	screened out using the method of Creech (2010); after Barker et al. <u>(</u> 2003) <u>to screen for this</u>
233	contamination. The AI/Mg composition of the contaminant phase was identified by plotting Mg/Ca
234	against AI/Ca and finding the slope of the linear regression. Once this Mg/AIAI/Mg composition had

235	been determined for each genus, the screening threshold was set by calculating the Al/Ca ratio at	
236	which paleotemperature estimates would be biased by more than 1 °C. This screening removes	
237	anomalously high Mg/Ca values and reduces the mean value for most samples (Fig. 4, S2). After the	
238	measurements have been screened for silicate contamination, the effects of diagenesis are more	
239	easily assessed (Fig. 3). A weak negative correlation between Sr/Ca and Mg/Ca suggests that	
240	diagenesis may also cause an increase in Mg/Ca values, especially in the planktic genus Acarinina.	Formatted: Font: Italic
241	The reasons for this correlation and implications are discussed below.	
242	This involved determining the corresponding Mg/Ca excess value by multiplying the	
243	observed mean Mg/Ca ratio for each species by the sensitivity of the paleotemperature calibration	
244	(i.e. an increase of 9% in Mg/Ca per 1 °C after Anand et al., 2003). Once determined the Mg/Ca	
245	excess value for each species is multiplied by the AI/Mg contaminant phase to determine the AI/Ca	
246	ratio at which the screening threshold is set. This methodology circumvents the inclusion of	
247	artificially inflated paleotemperature estimates arising from silicate contamination (Fig. 3). The	
248	resulting reduction in average Mg/Ca ratios of the screened compared to the unscreened and data is	
249	shown in Figure 3.	Comment [CH1]: Method is described
250	The application of these screening limits to trace element data means that no Mg/Ca marine	in Creech et al. (2010).
251	temperatures in this study should be overestimated by more than 1°C (as a result of post-mortem	
252	diagenetic effects or sedimentary contamination).	
253	Marine paleotemperatures are calculated using the exponential relationship between Mg/Ca	
254	and temperature (Equation 2). Because the planktic foraminifera used in this study are extinct, sea	
255	surface temperatures (SSTs) were calculated using a general calibration based on the mean	
256	calcification temperatures of nine modern planktic species (A = 0.09, B = 0.38; Anand et al., 2003).	
257	Sea floor temperatures (SFTs) were calculated using the calibration of Lear et al. (2002) based on	
258	three benthic <u>species of Cibicidoides/Cibicides</u> species (A = 0.109, B = 0.867).	
	$Mg/Ca_{test} = \left(\frac{Mg/Ca_{sw}^{t=t}}{Mg/Ca_{sw}^{t=1}}\right) \times Bexp^{AT}$	
259	Equation 2	
260	Marine temperature reconstructions based on early Eocene foraminiferal calcite have shown that a	
261	high (>3 mol/mol) Mg/Ca _{sw} value is necessary-<u>r</u>equired to reconcile Mg/Ca-derived	
262	paleotemperatures with those derived from δ^{18} O (Lear et al., 2002; Sexton et al., 2006). Such hHigh	
263	Mg/Ca _{sw} values are in line with modelled values from Wilkinson & Algeo (1989) but are at odds with	
264	several proxy studies (e.g., Horita et al., 2004; Coggon et al., 2010) and models-more recent	
265		
	modelling (e.g., Stanley & Hardie, 1998) that favour lower values for Mg/Ca _{sw} (<2 mol/mol). , but are	Formatted: Not Superscript/ Subscript

267	reconstructions (Hollis et al., 2012). Lower values of Paleogene Mg/Ca _{sw} (e.g., Stanley & Hardie,	
268	1998; Coggon et al., 2010) result in unrealistically high temperatures using Equation 2. However,	
269	recent studies (Hasuik & Lohmann, 2010, Evans & Müller, 2012) have shown reconciled the empirical	
270	relationship between $\delta_{\underline{L}}^{18}$ O and Mg/Ca paleotemperatures with these lower values for Mg/Ca _{sw} by	Formatted: Superscript
271	showing that a power law relationship distribution, rather than an exponential	
272	relationship <u>distribution</u> , may better describe <u>s</u> the relationship between Mg-partitioning and	
273	temperature in foraminiferal calcite(Equation 3).	
	$Mg/Ca_{test} = \left(\frac{B}{Mg/Ca_{sw}^{t=0^{H}}}\right) \times Mg/Ca_{sw}^{t=t^{H}}exp^{AT}$	
274	Equation 3	
275	In applying this method, it is possible to derive realistic paleotemperatures using a lower Eocene	
276	Mg/Ca _{sw} value that is consistent with Mg/Ca _{sw} proxy evidence. To apply this equation we use	
277	Exponential exponential and pre-exponential calibration constants from modern multispecies	
278	calibrations and paleotemperature values derived from oxygen isotopes can be utilised to estimate	
279	the function <i>H</i> for extinct foraminifera. Using pPublished data from well-preserved Eocene	
280	foraminifera at Hampden Beach (Burgess et al., 2008; Hollis et al., 2012) and Tanzania (Pearson et	
281	al., 2007), for which paired Mg/Ca and δ^{18} O data is available, it is possible<u>have been used</u> to derive	
282	the calibration correction constants (H) for the extinct species used in this study.	
283	In calculating the value of <i>H</i> , we have used an early Eocene Mg/Ca _{sw} value of 1.6 mol/mol	
284	(Stanley & Hardie, 1998; Evans & Müller, 2012) and a modern Mg/Ca _{sw} value of 5.17 mol/mol. Th <u>is</u> e	
285	values of H determined for Paleogene foraminifera in this study are an approximation that dovalue	
286	<u>does</u> not take into account the likely fine scale<u>possible</u> variability in Mg/Ca_{sw} values through the	
287	early Paleogene. The Mg/Ca-temperature calibrations of Anand et al. (2003) and Lear et al. (2002)	
288	have been used, although it is likely that the pre-exponential constant of Paleogene planktic	
289	foraminifera differed from that of the modern taxa. The <u>We calculate an H</u>value<u>s of <i>H</i> calculated <u>of</u></u>	
290	<u>20</u> for Paleogene planktic foraminifera, which is significantly are lower (H = 0.20) than that for the H	
291	<u>values for</u> modern taxon<u>p</u>lanktics , <u>such as</u> <i>Globigerina sacculifer (H</i> = 0.42; Hasuik & Lohmann,	
292	2010) , possibly due to differences in Mg/Ca-temperature calibration . For benthic foraminifera,	
293	Cramer et al. (2011) suggest that the value of <i>H</i> would be similar between <i>Cibicides</i> sp. and	
294	Oridorsalis umbonatus. Mg/Ca-derived temperature values are calculated using Equation 4.	Comment [CH2]: What is it
	$T = \frac{\ln\left(\frac{[Mg/Ca_{test}] \times [Mg/Ca_{sw}^{t=0}]^{H}}{B \times [Mg/Ca_{sw}^{t=t}]^{H}}\right)}{A}$	

Equation 4

Temperature values derived from Mg/Ca ratios of surface mixed-layer dwelling taxa used in this
 study are normalised to *Morozovella crater* following Creech et al. (2010).

Three types of error are applied to paleotemperatures derived from Mg/Ca ratios; the analytical error, sample error and a standard calibration error. The analytical error is accounted for in the data processing step, and typically produces very small uncertainties (± 1–3% 2se) associated with counting statistics during ablation and data acquisition. The sample error pertains to the 95% confidence interval calculated for the mean temperature value obtained from multiple analyses within a single sample, and is calculated by:

304

 $\overline{\mathcal{X}} \pm t \times \frac{\sigma}{\sqrt{n}}$ Equation 5

305 Where \bar{X} is the sample mean, *t* is the inverse of the Students' t-distribution, σ represents the 306 standard deviation and *n* is the number of analyses. The calibration error is the residual error of 307 ±1.6°C on the regression of the multispecies calibrations established by Lear et al. (2002) and Anand 308 et al. (2003). The cumulative error calculated from the sum of all three errors is applied to each 309 temperature value, providing upper and lower uncertainties.

310

311 3. Results and Discussion

312 3.1 Stratigraphy

313 The 45 m-thick studied interval (425–470 mbsf) consists of five cores, with significant gaps 314 due to poor recovery in three of the cores, which extend from middle Paleocene to lower Eocene 315 (Fig. 2). The sediments are greenish-white to greenish-grey nannofossil chalk, with higher clay 316 content in the upper Paleocene (core 46; 463–470 mbsf) and lowermost Eocene (core section 45-3; 317 456.96-457.3 mbsf)) and minor glauconite (cores 43-44) and chert nodules (cores 41-43) in the overlying Eocene. A record of "incipient chert" in core section 45–3 (Kennett et al., 19753) may have 318 319 been a misidentification of the darker-grey clay-rich sediments at the base of the PETM (Fig. 54). 320 Calcareous microfossils are only moderately well-preserved overall, although and there is an 321 interval directly below the Paleocene-Eocene boundary (457.3 to 457.58 mbsf) in which foraminifera 322 are poorly preserved and sparse. Planktic foraminifera are used to correlate the 45 m-thick studied 323 interval to New Zealand stages (Teurian to Mangaorapan) and to international foraminiferal zones 324 P4a-b to E7 (Fig. 2). Nannofossil assemblages over the same interval have been correlated with 325 nannofossil zones NP6 to NP12. Whereas previous studies indicated an undifferentiated upper Paleocene succession spanning Zone NP6-8 (Edwards and Perch-Nielsen, 1975; Hollis et al., 1997), 326 we infer a ~2 Myr hiatus near the top of Core 46 (463.49-463.16 mbsf), representing all of zones 327

328	NP7 and NP8. Immediately above the hiatus, <i>Discoaster multiradiatus</i> makes up ~2% of the	
329	assemblage, suggesting that the first appearance datum (FAD) of this zonal marker (and thus the	
330	base of lowermost part of Zone NP9) is missing. This horizon-lowest occurrence (LO) of D.	
331	multiradiatus marks the lowest occurrence (LO) of <i>Discoaster</i> at this site, includingcoincides with the	
332	LOs of <i>D. lenticularis</i> and <i>D. salisburgensis-in addition to <i>D. multiradiatus</i>.</i>	
333	The PETM is a 34 cm-thick interval within core 45 (457.3–456.96 mbsf) that is clearly	
334	delineated by a 40% decrease in carbonate content and 2–3‰ negative excursions in bulk carbonate	
335	δ^{13} C and δ^{18} O values (Fig. 2). The location of the PETM is confirmed by biostratigraphy. The Beenthic	
336	<u>F</u> foraminiferal <u>E</u> extinction <u>E</u> event (BFEE) is identified directly below the PETM at 457.3 mbsf based	
337	on the highest occurrences of the Stensioina beccariformis, Gyroidinoides globosus and G.	
338	subangulatus. The planktic foraminiferal genus Morozovella has its lowest occurrence at the base of	
339	the PETM and greatest diversity within the PETM. Morozovella aequa and M. velascoensis are	
340	restricted to the PETM. The latter species has rarely been found outside the PETM in the SW Pacific	
341	but <i>M. aequa</i> ranges into the middle late Eocene in New Zealand sections (Hornibrook et al. 1989).	
342	For nannofossils, taxa typical of the PETM in other regions, such as the <i>Rhomboaster</i> lineage,	
343	Discoaster araneus and D. anartios (e.g., Bybell and Self-Trail, 1994; Kahn and Aubry, 2004), do not	
344	occur at Site 277 are absent here. Instead, the nannofossil assemblage is characterized by deformed	
345	Discoaster specimens, many similar to Discoaster nobilis (e.g., Raffi and De Bernardi, 2008), as well	
346	as increased abundance of Coccolithus spp. and the presence of Fasciculithus spp. and Bomolithus	
347	supremus, which is restricted to the PETM interval at this site. Immediately above the PETM (456.92	
348	mbsf), the abundances of Fasciculithus spp. and Coccolithus spp. decrease significantly, with a	
349	concomitant increase in Zygrhablithus bijugatus. As discussed below, the stable isotope record	
350	through the P-E transition indicates that the PETM is truncated, with only the onset and body of the	
351	CIE represented by these 34 cm of sediment.	
352	An age-depth plot (Fig. S3) based on calcareous nannofossil and foraminiferal bioevents	
353	(Table S7) provides a preliminary guide to compacted sedimentation rates. This rate appears to have	
354	been relatively low in the Paleocene (0.4 to 0.45 cm/kyr) either side of the hiatus at ~463.4 mbsf, but	
355	approximately four times higher in the early Eocene (1.68 cm/kyr). However, a rather patchy	
356	distribution of events and uncertainty over the duration of hiatuses means that it is possible to	
357	construct an alternative age model in which rates were consistent across the Paleocene-Eocene	
358	transition (dashed line in Fig. S3). Although this implies that the sedimentation rate for the PETM	
359	interval could lie anywhere between the low Paleocene rate and the high Eocene rate, the lower	
360	rate is consistent with the duration of the CIE from onset to δ_1^{13} C minimum, i.e., ~45-66 kyrs (Röhl et	Formatted
361	<u>al., 2007).</u>	
	20	

d: Superscript

The base of the PETM coincides with a distinct colour change to a darker greenish-grey chalk 362 363 that grades back into greenish-white chalk over 15 cm (Fig. 54). This dark interval is also highly 364 burrowed. Burrowing is also evident in other parts of the core but it is less obvious in more pale 365 lithologies. XRF core scanning shows an increase in Fe content at the base of this interval, followed 366 by a cyclical decrease to background levels at 456.95 m (Fig. <u>54</u>A). <u>A.L</u>ower stratigraphic-resolution 367 analysis_record of magnetic susceptibility in discrete samples reveals a similar trend: a peak near the 368 base of the darker interval, followed by a quasi-cyclical decrease to background levels. The peaks 369 are inferred to represent intervals of higher clay content based on the parallel trends An increase in clay content is inferred from the coupled increases in Fe and magnetic susceptibility and the 370 decrease in carbonate content. Many of the other peaks and troughs in the Fe record below and 371 372 above the PETM are scanning artefacts related to core breaks. However, parallel peaks in magnetic susceptibility and Fe content in the lower part of core 45 (~457.7 mbsf) appears to be a robust signal 373 374 although the cause is unknown. There are no accompanying changes in isotopic signature or obvious 375 lithological changes at this level.

377 A 10 cm interval directly below the PETM also has a reduced carbonate concentration but there is no change in δ^{13} C (Fig. 2, 5B)and only a small positive shift in δ^{18} O of ~0.4‰ in both bulk and 378 379 foraminiferal calcite (Fig. 2). As there is no accompanying increase in magnetic susceptibility or Fe 380 content (Fig. 5A), the decrease in carbonate content seems to be due to an increase in silica, perhaps associated with the slight cooling indicated by a small positive shift in δ^{18} O of ~0.4‰ in both bulk 381 and foraminiferal calcite (Fig. 2, 5D)the positive shift in δ^{18} O. Although the silica is presumed to be 382 383 biogenic, siliceous microfossils have not been recovered from this interval. The cause of a peak in 384 magnetic susceptibility and Fe content in the lower part of core 45 is unknown. There are no 385 accompanying changes in isotopic signature and no obvious lithological changes.

376

386 An age-depth plot (Fig. 5) based on calcareous nannofossil and foraminiferal bioevents (Table 7) provides a preliminary guide to compacted sedimentation rates. This rate appears to have 387 388 been relatively low in the Paleocene (0.4 to 0.45 cm/kyr), either side of the hiatus at ~463.4 mbsf, 389 but approximately four times higher in the early Eocene (1.68 cm/kyr). However, a rather patchy 390 distribution of events and uncertainty over the presence and duration of hiatuses means that it is 391 possible to construct an alternative age model in which rates were consistent across the Paleocene-392 Eocene transition (dashed line in Fig. 5). Although this implies that the sedimentation rate for the 393 PETM interval could lie anywhere between the low Paleocene rate and the high Eocene rate, the lower rate is consistent with the duration of the onset known from other sites, i.e., 50-100 kyrs 394 395 (Zachos et al., 2008, 2010; Nicolo et al., 2010; McInerney and Wing, 2011).

396	For a sedimentation rate of 0.4 <mark>5</mark> cm/kyr, the 34 cm thick PETM interval represents ~ 85-<u>76</u>	
397	kyrs and the three peaks in Fe content represent a periodicity close to the precession band	
398	($\frac{19-22}{21}$ kyrs). Indeed, there is good agreement between the Fe cycles and δ^{13} C record at Site 277	
399	and ODP Site 690 (Röhl et al., 2007), where the negative CIE occurs over three steps and the δ^{13} C	
400	minimum (Horizon C of Zachos et al., 2005) occurs within the third Fe peak. Based on this correlation	
401	with Site 690, we infer that the interval from the CIE onset to the base of Cycle 4 is preserved at Site	
402	277, or the first 66 kyrs of the PETM (Röhl et al., 2007), implying a slight increase in sedimentation	
403	rate through the PETM (52 cm/kyr).	
404		
405	3.2. Stable isotopes and paleotemperatures	
406	Bulk carbonate stable isotopes display a significant offset between δ^{18} O and δ^{13} C minima, with the \checkmark	Formatted: Indent: First line: 0 cm,
407	δ^{18} O minimum occurring at the base of the PETM and the δ^{13} C minimum occurring at the top	Line spacing: 1.5 lines
408	following a gradual decline<u>in the upper part of the PETM</u> (Fig. 2, <u>5</u>4B). The negative 5¹²C	
409	excursion <u>CIE</u> of ~2‰ is slightly smaller than observed in most marine sectionsthe average for marine	
410	sections elsewhere (e.g., Nicolo et al., 2010; 2.7%; McInerney and Wing, 2011) and occurs gradually	
411	over the entire recovered<u>lower 20 cm of the</u> PETM-record. In contrast, the <u>3‰</u> negative <u>8¹⁸0</u>	
412	<u>excursion (δ¹⁸Ο excursionOIE)</u> is abrupt at the base of the PETM and is far larger in magnitude than is	
413	known elsewhere (e.g., Zachos et al., 2008; McInerney and Wing, 2011<u>Bains et al. 1999; Dunkley</u>	
414	Jones et al., 2013). If this a primary feature and due solely to a change in temperature, this 3%	
415	excursion would equate to ~12°C of warming (Fig. <u>5</u> 4D); however, it is most likely an artifact<u>artefact</u>	
416	of diagenesis <u>as is discussed below</u> .	
417	Examination of <u>foraminiferal </u> δ^{18} O values and Mg/Ca ratios within three genera of planktic 🔸	Formatted: Line spacing: 1.5 lines
418	foraminifera and one benthic genus provide insight into the nature of the diagenetic processhelp to	
419	separate the diagenetic effects from the paleotemperature record. As none of the foraminifera	
420	recovered in this study have "glassy" preservation (Sexton et al. 2006; Pearson and Burgess, 2008;	
421	Kozdon et al., 2013), all are assumed to have We suspect all shells have been altered to varying	
422	degrees. Based on visual and geochemical criteria, we were able to identify relatively well preserved	
423	tests. We selected the best preserved specimens for -lisotopic analysis of those tests (Fig. 2, 5B, 6).	
424	Our results indicate that show that their-normal surface to deep δ^{13} C gradients are preserved in the	
425	<u>foraminiferal tests, with</u> bulk <u>carbonate</u> δ ¹³ C values l <u>yingie within the range of, or slightly lighter</u>	
426	than,-planktic foraminiferal δ^{13} C throughout the studied interval, with the exception. An exception is	
427	noted in -of the base-basal of the CIEPETM where two values are more positive than planktic δ^{13} C	
428	(Fig. <u>5B, 66B</u>). <u>Benthic δ^{13}C values are >0.7‰ lighter than both planktic and bulk carbonate values,</u>	
429	apart from the basal PETM sample where a negative gradient of -0.37‰ occurs between Acarinina	Formatted: Font: Italic

430	and <u>Cibicides (Fig. 5B, 6B). The implication is that the onset of the CIE is recorded more strongly in</u>		Formatted: Font: Italic	
431	planktic foraminifera (i.e. surface water CIE of -1.85‰) than in either benthic foraminifera (deep			
432	water CIE of -0.55‰) or bulk carbonate (CIE of -0.34‰ across equivalent sample interval).			
433	If it were not for the large magnitude of the OIE across the same sample interval (-1.42‰,			
434	and -2.82‰ for the full OIE), we might argue for mixing across the boundary dampening the bulk			
435	carbonate CIE. However, the marked differences in the pattern of onset for the CIE and OIE suggest			
436	that there was no mixing of sediment across the boundary. Similarly, there is little evidence for the			
437	isotope record being affected by carbonate dissolution or burn-down (Dickens, 2000; Kozdon et al,			
438	2013) below the base of the PETM. A weak positive shift in pre-PETM δ^{18} O values and reduced			
439	carbonate content appears to reflect cooler conditions as the shift is accompanied by a cooling trend			
440	in the benthic Mg/Ca ratio (Fig. 5D-E).			
441	A similar offset between bulk and planktic δ^{13} C in the basal PETM was described for ODP			
442	Site 690, where Stoll (2005) showed close agreement between trends in stable isotopes for bulk			
443	carbonate, coccolith fractions and <i>Subbotina</i> but significant offsets with Acarinina, the latter	_	Formatted: Font: Italic	
444	recording an earlier CIE onset and a later OIE minimum. Stoll (2005) considered several possible		Formatted: Font: Italic	
445	causes for this offset and favoured differences in habitat and seasonal production. For Site 690, the			
446	correspondence between coccoliths and <u>Subbotina suggests that coccolith production may have</u>		Formatted: Font: Italic	
447	occurred at a lower level within the photic zone than the level preferred by Acarinina. For Site 277,		Formatted: Font: Italic	
447 448	occurred at a lower level within the photic zone than the level preferred by <u>Acarinina</u> . For Site 277, the δ^{13} C gradient suggests a similar explanation but a different relationship. During the PETM onset,		Formatted: Font: Italic	
447 448 449	occurred at a lower level within the photic zone than the level preferred by <u>Acarinina</u> . For Site 277, the δ^{13} C gradient suggests a similar explanation but a different relationship. During the PETM onset, coccolith production appears to have occurred at a shallower level than that preferred by planktic		Formatted: Font: Italic	
447 448 449 450	occurred at a lower level within the photic zone than the level preferred by <u>Acarinina</u> . For Site 277, the δ^{13} C gradient suggests a similar explanation but a different relationship. During the PETM onset, coccolith production appears to have occurred at a shallower level than that preferred by planktic foraminifera at this site. This may also explain why bulk carbonate δ^{18} O is more depleted than		Formatted: Font: Italic	
447 448 449 450 451	occurred at a lower level within the photic zone than the level preferred by <u>Acarinina</u> . For Site 277, the δ^{13} C gradient suggests a similar explanation but a different relationship. During the PETM onset, coccolith production appears to have occurred at a shallower level than that preferred by planktic foraminifera at this site. This may also explain why bulk carbonate δ^{18} O is more depleted than planktic values in this interval, i.e. coccolith production in shallower and warmer waters. Given that		Formatted: Font: Italic	
447 448 449 450 451 452	occurred at a lower level within the photic zone than the level preferred by <u>Acarinina</u> . For Site 277, the δ^{13} C gradient suggests a similar explanation but a different relationship. During the PETM onset, coccolith production appears to have occurred at a shallower level than that preferred by planktic foraminifera at this site. This may also explain why bulk carbonate δ^{18} O is more depleted than planktic values in this interval, i.e. coccolith production in shallower and warmer waters. Given that this relationship is only fully expressed at the PETM onset, we suggest that this might have been a		Formatted: Font: Italic	
447 448 449 450 451 452 453	occurred at a lower level within the photic zone than the level preferred by <u>Acarinina</u> . For Site 277, the δ^{13} C gradient suggests a similar explanation but a different relationship. During the PETM onset, coccolith production appears to have occurred at a shallower level than that preferred by planktic foraminifera at this site. This may also explain why bulk carbonate δ^{18} O is more depleted than planktic values in this interval, i.e. coccolith production in shallower and warmer waters. Given that this relationship is only fully expressed at the PETM onset, we suggest that this might have been a time of increased stratification and differentiation between water masses in the upper water column		Formatted: Font: Italic	
447 448 449 450 451 452 453 454	occurred at a lower level within the photic zone than the level preferred by <u>Acarinina</u> . For Site 277, the δ^{13} C gradient suggests a similar explanation but a different relationship. During the PETM onset, coccolith production appears to have occurred at a shallower level than that preferred by planktic foraminifera at this site. This may also explain why bulk carbonate δ^{18} O is more depleted than planktic values in this interval, i.e. coccolith production in shallower and warmer waters. Given that this relationship is only fully expressed at the PETM onset, we suggest that this might have been a time of increased stratification and differentiation between water masses in the upper water column at this site. Nunes and Norris (2006) used ageing gradients in benthic δ^{13} C to infer a switch in deep		Formatted: Font: Italic	
447 448 449 450 451 452 453 453 454	occurred at a lower level within the photic zone than the level preferred by <u>Acarinina</u> . For Site 277, the δ^{13} C gradient suggests a similar explanation but a different relationship. During the PETM onset, coccolith production appears to have occurred at a shallower level than that preferred by planktic foraminifera at this site. This may also explain why bulk carbonate δ^{18} O is more depleted than planktic values in this interval, i.e. coccolith production in shallower and warmer waters. Given that this relationship is only fully expressed at the PETM onset, we suggest that this might have been a time of increased stratification and differentiation between water masses in the upper water column at this site. Nunes and Norris (2006) used ageing gradients in benthic δ^{13} C to infer a switch in deep water formation across the P/E boundary from the Southern Ocean to the Northern Hemisphere.		Formatted: Font: Italic	
447 448 450 451 452 453 454 455 456	occurred at a lower level within the photic zone than the level preferred by <u>Acarinina</u> . For Site 277, the δ^{13} C gradient suggests a similar explanation but a different relationship. During the PETM onset, coccolith production appears to have occurred at a shallower level than that preferred by planktic foraminifera at this site. This may also explain why bulk carbonate δ^{18} O is more depleted than planktic values in this interval, i.e. coccolith production in shallower and warmer waters. Given that this relationship is only fully expressed at the PETM onset, we suggest that this might have been a time of increased stratification and differentiation between water masses in the upper water column at this site. Nunes and Norris (2006) used ageing gradients in benthic δ^{13} C to infer a switch in deep water formation across the P/E boundary from the Southern Ocean to the Northern Hemisphere. Our benthic δ^{13} C data from Site 277 support this hypothesis. Site 277 benthic d13C is 0.46% higher		Formatted: Font: Italic	
447 448 450 451 452 453 454 455 455 456 457	occurred at a lower level within the photic zone than the level preferred by <u>Acarinina</u> . For Site 277, the δ^{13} C gradient suggests a similar explanation but a different relationship. During the PETM onset, coccolith production appears to have occurred at a shallower level than that preferred by planktic foraminifera at this site. This may also explain why bulk carbonate δ^{18} O is more depleted than planktic values in this interval, i.e. coccolith production in shallower and warmer waters. Given that this relationship is only fully expressed at the PETM onset, we suggest that this might have been a time of increased stratification and differentiation between water masses in the upper water column at this site. Nunes and Norris (2006) used ageing gradients in benthic δ^{13} C to infer a switch in deep water formation across the P/E boundary from the Southern Ocean to the Northern Hemisphere. Our benthic δ^{13} C data from Site 277 support this hypothesis. Site 277 benthic d13C is 0.46‰ higher than values in the equatorial Pacific prior to the PETM but 0.12‰ lower within the PETM. It seems		Formatted: Font: Italic	
447 448 450 451 452 453 453 455 455 455 455	occurred at a lower level within the photic zone than the level preferred by <u>Acarinina</u> . For Site 277, the δ^{13} C gradient suggests a similar explanation but a different relationship. During the PETM onset, coccolith production appears to have occurred at a shallower level than that preferred by planktic foraminifera at this site. This may also explain why bulk carbonate δ^{18} O is more depleted than planktic values in this interval, i.e. coccolith production in shallower and warmer waters. Given that this relationship is only fully expressed at the PETM onset, we suggest that this might have been a time of increased stratification and differentiation between water masses in the upper water column at this site. Nunes and Norris (2006) used ageing gradients in benthic δ^{13} C to infer a switch in deep water formation across the P/E boundary from the Southern Ocean to the Northern Hemisphere. Our benthic δ^{13} C data from Site 277 support this hypothesis. Site 277 benthic d13C is 0.46‰ higher than values in the equatorial Pacific prior to the PETM but 0.12‰ lower within the PETM. It seems likely that comparable changes occurred in surface water circulation.		Formatted: Font: Italic	
447 448 450 451 452 453 454 455 456 457 458 459	occurred at a lower level within the photic zone than the level preferred by Acarinina. For Site 277,the δ^{13} C gradient suggests a similar explanation but a different relationship. During the PETM onset,coccolith production appears to have occurred at a shallower level than that preferred by plankticforaminifera at this site. This may also explain why bulk carbonate δ^{18} O is more depleted thanplanktic values in this interval, i.e. coccolith production in shallower and warmer waters. Given thatthis relationship is only fully expressed at the PETM onset, we suggest that this might have been atime of increased stratification and differentiation between water masses in the upper water columnat this site. Nunes and Norris (2006) used ageing gradients in benthic δ^{13} C to infer a switch in deepwater formation across the P/E boundary from the Southern Ocean to the Northern Hemisphere.Our benthic δ^{13} C data from Site 277 support this hypothesis. Site 277 benthic d13C is 0.46‰ higherthan values in the equatorial Pacific prior to the PETM but 0.12‰ lower within the PETM. It seemslikely that comparable changes occurred in surface water circulation.With the CIE onset seeming explicable in terms of relationships between coccolith and		Formatted: Font: Italic	
447 448 450 451 452 453 454 455 455 456 457 458 459 460	occurred at a lower level within the photic zone than the level preferred by Acarinina. For Site 277,the δ ¹³ C gradient suggests a similar explanation but a different relationship. During the PETM onset,coccolith production appears to have occurred at a shallower level than that preferred by plankticforaminifera at this site. This may also explain why bulk carbonate δ ¹⁸ O is more depleted thanplanktic values in this interval, i.e. coccolith production in shallower and warmer waters. Given thatthis relationship is only fully expressed at the PETM onset, we suggest that this might have been atime of increased stratification and differentiation between water masses in the upper water columnat this site. Nunes and Norris (2006) used ageing gradients in benthic δ ¹³ C to infer a switch in deepwater formation across the P/E boundary from the Southern Ocean to the Northern Hemisphere.Our benthic δ ¹³ C data from Site 277 support this hypothesis. Site 277 benthic d13C is 0.46% higherthan values in the equatorial Pacific prior to the PETM but 0.12‰ lower within the PETM. It seemslikely that comparable changes occurred in surface water circulation.With the CIE onset seeming explicable in terms of relationships between coccolith andforaminiferal niches and changes in ocean circulation, we turn our attention to the stepped decline		Formatted: Font: Italic	
447 448 450 451 452 453 453 454 455 455 456 457 458 459 460 461	occurred at a lower level within the photic zone than the level preferred by Acarinina. For Site 277, the δ^{13} C gradient suggests a similar explanation but a different relationship. During the PETM onset, coccolith production appears to have occurred at a shallower level than that preferred by planktic foraminifera at this site. This may also explain why bulk carbonate δ^{18} O is more depleted than planktic values in this interval, i.e. coccolith production in shallower and warmer waters. Given that this relationship is only fully expressed at the PETM onset, we suggest that this might have been a time of increased stratification and differentiation between water masses in the upper water column at this site. Nunes and Norris (2006) used ageing gradients in benthic δ^{13} C to infer a switch in deep water formation across the P/E boundary from the Southern Ocean to the Northern Hemisphere. Our benthic δ^{13} C data from Site 277 support this hypothesis. Site 277 benthic d13C is 0.46‰ higher than values in the equatorial Pacific prior to the PETM but 0.12‰ lower within the PETM. It seems likely that comparable changes occurred in surface water circulation. With the CIE onset seeming explicable in terms of relationships between coccolith and foraminiferal niches and changes in ocean circulation, we turn our attention to the stepped decline in the bulk carbonate CIE at Site 277. Stoll (2005) argued that a similar series of three steps in the		Formatted: Font: Italic	
 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 	occurred at a lower level within the photic zone than the level preferred by <i>Acarinina</i> . For Site 277, the δ^{13} C gradient suggests a similar explanation but a different relationship. During the PETM onset, coccolith production appears to have occurred at a shallower level than that preferred by planktic foraminifera at this site. This may also explain why bulk carbonate δ^{18} O is more depleted than planktic values in this interval, i.e. coccolith production in shallower and warmer waters. Given that this relationship is only fully expressed at the PETM onset, we suggest that this might have been a time of increased stratification and differentiation between water masses in the upper water column at this site. Nunes and Norris (2006) used ageing gradients in benthic δ^{13} C to infer a switch in deep water formation across the P/E boundary from the Southern Ocean to the Northern Hemisphere. Our benthic δ^{13} C data from Site 277 support this hypothesis. Site 277 benthic d13C is 0.46‰ higher than values in the equatorial Pacific prior to the PETM but 0.12‰ lower within the PETM. It seems likely that comparable changes occurred in surface water circulation. With the CIE onset seeming explicable in terms of relationships between coccolith and foraminiferal niches and changes in ocean circulation, we turn our attention to the stepped decline in the bulk carbonate CIE at Site 277. Stoll (2005) argued that a similar series of three steps in the bulk carbonate CIE seen at Site 690 reflect the greater capacity for coccoliths to record changes in		Formatted: Font: Italic	
 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 	occurred at a lower level within the photic zone than the level preferred by <i>Acarinina</i> . For Site 277, the δ^{13} C gradient suggests a similar explanation but a different relationship. During the PETM onset, coccolith production appears to have occurred at a shallower level than that preferred by planktic foraminifera at this site. This may also explain why bulk carbonate δ^{18} O is more depleted than planktic values in this interval, i.e. coccolith production in shallower and warmer waters. Given that this relationship is only fully expressed at the PETM onset, we suggest that this might have been a time of increased stratification and differentiation between water masses in the upper water column at this site. Nunes and Norris (2006) used ageing gradients in benthic δ^{13} C to infer a switch in deep water formation across the P/E boundary from the Southern Ocean to the Northern Hemisphere. Our benthic δ^{13} C data from Site 277 support this hypothesis. Site 277 benthic d13C is 0.46% higher than values in the equatorial Pacific prior to the PETM but 0.12‰ lower within the PETM. It seems likely that comparable changes occurred in surface water circulation. With the CIE onset seeming explicable in terms of relationships between coccolith and foraminiferal niches and changes in ocean circulation, we turn our attention to the stepped decline in the bulk carbonate CIE at Site 277. Stoll (2005) argued that a similar series of three steps in the bulk carbonate CIE seen at Site 690 reflect the greater capacity for coccoliths to record changes in ocean conditions at a finer scale than is possible from the less abundant foraminiferal fraction.		Formatted: Font: Italic	

Although we lack the resolution in the foraminiferal record to compare sites 277 and 690 in detail, 464 465 we observe the same trend and note a broad correlation with the three Fe peaks. It seems likely that these steps represent precessional modulation of the release of ¹³C-depleted carbon into the ocean 466 over ~60 kyrs (Röhl et al., 2007; Sluijs et al., 2007). 467 468 <u>3.3 Diagenetic modification of δ^{18} O values</u> 469 In contrastAs noted above, the the bulk_carbonate δ^{18} O values at Site 277 lie within the range 470 ofintergrade- between benthic and planktic foraminiferal S¹⁸Q-values in the Paleocene and in the 471 Eocene interval above the PETM (Fig. <u>66A, 6C</u>). Moreover, <u>several planktic foraminiferal δ^{18} O values</u> 472 are is only slightly ~0.3% lighter than benthic and bulk δ^{18} Ovalues in the Paleocene (Fig. 2, 66C). In 473 contrastConversely, all bulk carbonate δ^{18} O values lie within the range of planktic foraminiferal δ^{18} O 474 within the PETM (Fig. <u>66</u>B) and, indeed, bulk carbonate δ^{18} O is lighter than planktic foraminiferal 475 δ^{18} O in the basal PETM (Fig. 2, <u>5D</u>). 476 We believe contend that diagenetic effects explain these relationships. The bulk carbonate δ^{18} O has 477 478 been shifted toward heavier values during early diagenesis (at seafloor temperature) over much of 479 the section above and below the CIE (Schrag et al., 1995; Sexton et al., 1996; Kozdon et al, 2013), 480 whereas within the PETM interval the bulk and foraminiferal carbonate has appears to have 481 undergone little less diagenetic alteration. We suspect suggest that the increase in clay content, as 482 inferred from higher iron content (Fig. 4), in the PETM protected coccoliths and foraminifera slowed 483 from wholesalecarbonate recrystallization, thus preserving more of the original δ^{18} O signal in the 484 coccoliths and foraminifera within the PETM. The presence of Clay clay content serves to reduces 485 sediment porosity and retards carbonate recrystallization, almost completely in pure clays (e.g., Pearson et al., 2007; Burgess et al., 2008Sexton et al., 2006; Hollis et al., 2012). This explains the 486 larger magnitude of the bulk carbonate δ^{18} O excursion across the P-E boundary, with the δ^{18} O values 487 488 below the excursion having been altered toward heavier values (Fig. 2, 54D-E). Similarly, tThe planktonic planktic for a miniferal δ^{18} O values through the Paleocene Eocene 489 490 transition at DSDP. Site 277 are appear to be compromised to varying degrees by seafloor diagenesis 491 throughout the interval studies. Although-Ththee surface-to-deep temperature gradient may be 492 expected to be reduced in high latitude regions such as the Campbell Plateau. Mean annual 493 Subantarctic Water is ~6° warmer than Antarctic Intermediate Water in the present-day Southern Ocean (Carter et al., 1999). However, , the the very extremely small low planktic-benthic δ^{18} O offset 494 gradient in the Paleocene and post-PETM Eocene (0.8‰, 3°C) suggests alteration of planktic δ^{18} O 495 toward benthic values (Fig. 2, 5D, 6C). The gradient is only slightly higher in the PETM (1.1‰, 4°C), 496 suggesting that a cool bias affects all paleotemperatures derived from planktic δ^{18} O through the P-E 497

Formatted: Indent: First line: 0 cm, Line spacing: 1.5 lines Formatted: Font: Bold

499	temperature estimates derived from Mg/Ca ratios may be more reliable support our inference of a		
500	cool bias in planktic δ¹⁸O due to seafloor diagenesis. <u>but, as is discussed below, diagenesis may</u>		
501	result in a warm bias.		
502			
503	3.4. Diagenetic modification of Mg/Ca ratios		Formatted: Font: Bold
504	As for the impact of on Mg/Ca, there is limited opportunity for the Mg concentrations to be reset	\checkmark	Formatted: Font: Bold
505	during diagenetic test recrystallization, in part because the bulk of Mg of the sediment/pore water		Formatted: Indent: First line: 0 cm, Line spacing: 1.5 lines
506	system resides in the carbonate, whereas for oxygen isotopes, re equilibration with ample supply of		
507	oxygen (in pore water) is possible. There is evidence that diagenesis also has significant and specific		
508	effects on Mg/Ca values (Oomori et al., 1987; Kozdon et al., 2013). As noted earlier, we observe a		
509	distinct relationship between the Mg/Ca ratio and the geochemical proxy for diagenesis, the Sr/Ca		
510	ratio, once we have screened for silicate contamination (Fig. 3). For <u>Cibicides</u> , the full screened		Formatted: Font: Italic
511	dataset shows a roughly horizontal trend, with little change in Sr/Ca as Mg/Ca varies. This suggests		
512	that this genus is relatively immune to the effects of diagenesis, perhaps related to its relatively thick		
513	and smooth wall. However, if we consider Paleocene and PETM samples separately, we observe that		
514	Paleocene analyses tend to have lower Sr/Ca ratios than PETM samples and exhibit a weak trend in		
515	which Mg/Ca increases as Sr/Ca decreases. This general relationship has also been identified by		
516	Kozdon et al. (2013) as a guide to diagenetic alteration, albeit the impact on Mg/Ca ratios is an order		
517	of magnitude smaller than found in laboratory experiments (Oomori et al., 1987). The trend is more		
518	obvious in Acarinina at Site 277, probably because the thinner-walled and more irregular test		Formatted: Font: Italic
519	provides more surfaces for interaction with pore waters and hence facilitates diagenetic alteration.		
520	For the full data set, a significant negative correlation is observed, with Mg/Ca increasing as Sr/Ca		
521	decreases. A weaker trend is evident in the PETM data but a much stronger trend is shown by the		
522	Paleocene data. From these observations we can draw the following conclusions: (i) <u>Acarinina is</u>		Formatted: Font: Italic
523	more prone to diagenesis than <i>cibicides</i> , (ii) diagenesis is greater in the Paleocene than in the PETM,		Formatted: Font: Italic
524	and (iii) diagenesis causes an increase in the Mg/Ca ratio and implies that paleotemperatures may be		
525	overestimated for some taxa, such as Acarinina, and in some intervals such as the Paleocene at this		Formatted: Font: Italic
526	site. This may explain why the SST estimates for the Paleocene based on Acarinina Mg/Ca ratios are		Formatted: Font: Italic
527	higher than expected (Fig. 5D, E).		
528			
529	3.5. Paleotemperature		Formatted: Font: Bold

498 transition at this site. The degree of this bias is uncertain. The warmer paleot Moreover,

530	Consistent with the expected preservation biases, SST estimates of 26–27°C derived from the Mg/Ca
531	ratios of <i>Acarinina</i> are markedly warmer than the temperatures of 14–17°C derived from planktic
532	δ ¹² Ο.
533	Benthic foraminifera test are dense and thus less prone to recrystalization. Taking into account
534	these numerous complications, we can make some general observations on temperature changes
535	through the P-E transition at Site 277. Estimates for SFT from benthic foraminiferal δ^{18} O and Mg/Ca
536	are remarkably relatively consistent at 12–153°C for the late Paleocene (Fig. 54D), with coolest SFTs
537	of 11-12°C occurring in the uppermost 10 cm of Paleocene where carbonate content is also lower
538	than background. Benthic δ^{18} O and Mg/Ca values indicate SFT warmed by ~5–6°C across the P-E
539	boundary, with SFTs of up to ~19°C in the basal PETM. There is little evidence for further warming of
540	SFT in the body of the PETM. Following the PETM, SFT drops abruptly by ~5°C and remains stable at
541	~13°C in the overlying Eocene interval (Fig. 5D-E). Diagenesis may explain why some Paleocene
542	Mg/Ca ratios yield higher SFTs than the benthic δ^{18} O values.
543	The SST record across the P-E boundary is much more difficult to interpret. The small offset
544	between benthic and planktic δ^{18} O (~3°C) combined with the large offset between planktic δ^{18} O and
545	Mg/Ca values (~12°C) in the Paleocene, are likely consequences of diagenetic alteration, with the
546	actual SST lying somewhere between 15 and 27°C (Fig. 5D). Similarly, the degree of warming across
547	the PETM may be accentuated for δ^{18} O but effectively dampened for Mg/Ca due to the effects
548	discussed above. For this reason, the observation that the relative SST increase is ~5-6°C for both
549	proxies (Fig. 5E) is difficult to explain even though it is consistent with the SFT record. Diagenetic
550	effects appear to decrease across the P-E boundary, based on our analysis of the benthic-planktic
551	δ^{18} O gradient and the Sr/Ca ratio. Therefore, we would predict that the relative increase in SST
552	across the boundary would be greater for planktic δ^{18} O than for Mg/Ca. It may be that the patchy
553	nature of the record through this interval is masking these relationships. Irrespective of the true
554	magnitude of SST change across the P-E boundary, planktic Mg/Ca ratios indicate warmest SSTs in
555	the lower PETM, stable SSTs through the body of the PETM (albeit ~3°C cooler) and an abrupt ~4°C
556	cooling directly above the PETM.
557	ThisThe 5-6°C increase in SST is similar to other PETM records. At ODP Site 1172, the TEX ₈₆
558	record indicates that SST increased by 6°C across the P/E boundary (Sluijs et al., 2011) and SST
559	during the PETM was 3–4°C warmer than average Paleocene values (Fig. <u>77)</u> . Elsewhere,
560	temperature anomalies within the PETM range from +4–5°C in low latitudes (Zachos et al., 2003; Aze
561	et al., 2014) to +8°C in high latitudes (Thomas et al., 2002; Frieling et al., 2014) and some low
562	latitude coastal sites (Zachos et al., 2006).

563	planktic foraminiferal δ¹⁸O values in the PETM yield SSTs of 26°C, whereas Mg/Ca ratios →	Formatted: Line spacing: 1.5 lines
564	within the PETM yield much warmer SST estimates of 28–32°C (Fig. 4D). The peak SSTs of ~32° within	
565	the PETM are consistent with TEX ₈₆ -based SSTs from the PETM at ODP Site 1172 (Sluijs et al., 2011)	
566	and in the mid-Waipara section, eastern South Island, New Zealand (Hollis et al, 2012). At these	
567	locations, the two calibrations for TEX $_{86}$ introduced by Kim et al. (2010) yield peak SSTs for the PETM	
568	of 32–34°C (TEX ₈₆ ^H) or 26–28°C (TEX ₈₆ ^L). Although the TEX ₈₆ ^L calibration was considered more	
569	suitable for this region based on comparisons with other SST proxies (Hollis et al., 2012), a new	
570	Bayesian approach to TEX $_{ m 86}$ calibrations (Tierney and Tingley, 2014) yields temperatures for the	
571	PETM that are very similar to the TEX $_{86}^{H}$ calibration. These PETM SSTs are also consistent with the	
572	SST estimates of 26°C that were derived from TEX ₈₆ and $U_{37}^{\kappa'}$ for the late Eocene at Site 277 (Liu et al,	
573	2009), given that deep sea temperatures cooled by ~8°C through the Eocene (Zachos et al., 2008).	
574	There is considerable debate about the veracity of such high temperature estimates in high	
575	latitude regions, with concerns raised about calibrations, seasonal bias and <u>archaeol</u> physiology ical	
576	processes (e.g. Hollis et al., 2012; Taylor et al. 2013; Inglis et al., submitted under revision .).	
577	However, the consistency between SSTs derived from Mg/Ca and TEX ₈₆ (Burgess et al., 2008; Hollis	
578	et al., 2012) suggests that the high temperatures are due to factors that the proxies may have in	
579	common, such as a warm-season bias, rather than problems with respective calibrations or	
580	physiological factors.	
581		
582	3.63. Pattern of PETM initiationComparison with other PETM records	
583	Complications relating to diagenetic overprinting have been discussed and partly resolved in the	Formatted: Indent: First line: 0 cm,
584	previous section. To circumvent additional uncertainties surrounding absolute temperature	Line spacing. 1.5 mes
585	e stimates based on δ¹⁸0 values and Mg/Ca ratios (Cramer et al., 2011; Evans and Müller, 2012;	
586	Dunkley-Jones et al., 2013), it is helpful to consider temperature trends relative to mean values for	
587	the Paleocene (Fig. 4E). For both proxies, SFTs increase by 5–6°C at the onset of the PETM, remain	
588	relatively stable through the PETM and decline abruptly across the unconformity that truncates the	
589	top of the event. Because the relative temperature trends shown by planktic δ^{18} O are inferred to be	
590	compromised by diagenesis, Mg/Ca ratios provide a more reliable guide to changes in local SST. In	
591	the basal part of the PETM, there are few planktic records that fall below the screening limit for	
592	Al/Ca (Fig. 3). Those specimens of <i>Acarinina</i> that are judged to be reliable indicate initial warming of	
593	SSTs by ~6°C. For the upper part of the PETM, still likely representing the onset phase, Mg/Ca ratios	
594	f or both A<i>carinina</i> and <i>Morozovella</i> consistently indicate SSTs that are ~2°C above average	
595	Paleocene values for Acarinina (Fig. 4D). Although this increase is within the error range for these	
596	measurements, the consistency between samples gives us reasonable confidence in the overall	

597	increase in temperature. This increase in SST is similar to other PETM records. At ODP Site 1172, the	Comment [CH3]: T
598	TEX _{sc} record indicates that SST increased by 6°C across the P/E boundary and SST during the PETM	the previous section
599	was 3-4°C warmer than average Paleocene values (Fig. 7). Elsewhere, temperature anomalies within	
600	the PETM range from +4-5°C in low latitudes (Zachos et al., 2003; Aze et al., 2014) to +8°C in high	
601	latitudes (Thomas et al., 2002; Frieling et al., 2014) and some low latitude coastal sites (Zachos et al.,	
602	2006).	
603	More detailedA comparison of the PETM record at DSDP Site 277 with nearby records at Mead	
604	Stream (Hollis et al., 2005a; Nicolo et al., 2010) and ODP Site 1172 (Sluijs et al., 2011) reveals several	
605	significant features (Fig. 77). Firstly, there seems little doubt that only the onset of the PETM-CIE is	
606	preserved at Site 277. The pattern of decreasing $\delta^{13}C$ is very similar to the expanded onset at Mead	
607	Stream. As noted above, the stepped decrease in δ^{13} C is also observed at ODP Site 690 (Röhl et al.,	
608	2007). However, the pattern of warming at Site 277 is quite different from the other sites Site 1172.	
609	At Site 277, the most pronounced increase in temperatures occurs at the base of the PETM and is	
610	associated with a weak negative δ^{13} C excursion. Higher in the PETM, temperatures remain stable or	
611	decrease slightly as $\delta^{13}C$ decreases. At Site 1172, the TEX_{86} record indicates pronounced warming at	
612	the base of the PETM but SST continues to increase and peaks just above the δ^{13} C minimum. No	
613	direct measurements of temperature have been obtained from the indurated lithologies at Mead	
614	Stream. However, changes in radiolarian assemblages identify a definite peak in low-latitude species,	
615	also directly above the δ^{13} C minimum (red star in Fig. 7) (Hollis, 2006).	
616	The implication of these differences between SW Pacific sites is that the primary warming $\$ $ imes$	Formatted: Line spa
617	pulse occurred in both intermediate and surface waters at the initiation of the PETM on the	
618	Campbell Plateau, whereas this initial event was only the precursor to progressive warming in the	
619	continental margin settings to the west and north (Fig. 1). A similar pattern of warming is evident in	
620	the Atlantic Ocean, where the δ_{L}^{18} O records for ODP sites 690 and 1051 suggest that peak warming	Formatted: Superso
621	occurred at the onset of the PETM in the southern Atlantic (Site 690) but at the same level as the CIE	
622	minimum in the western North Atlantic (Bains et al., 1999; Stoll, 2005). It is important to note that	
623	₩ <u>W</u> e cannot be sure that there was not a second warming pulse above the onset of the PETM on the	
624	Campbell Plateau because the main phase of the PETM does not appear to be preserved at Site 277.	
625	However, it is equally important to note that the absolute SST values at Site 277 are similar to the	
626	peak SSTs at Site 1172, i.e. 30–32°C. Therefore, we need to explain how the Campbell Plateau	
627	warmed at the start of the PETM and stayed warm through the onset, while the East Tasman Plateau	
628	warmed to a lesser extent initially but then continued to warm into the main phase of the PETM,	
629	with both sites experiencing at least seasonal SST maxima in excess of 30°C. We speculate that the	
630	gradual warming that followed Southern Ocean cooling at 59 Ma (Hollis et al., 2014) exceeded a	

acing: 1.5 lines

cript

631	threshold at the start of the PETM that caused the southward expansion of the subtropical-tropical		
632	gyre over the Campbell Plateau. This gyre was sustained through the PETM onset but resulted in no		
633	additional warming at this location. It is notable that several warm-water species of Morozovella are		
634	restricted to the PETM at Site 277. The influence of the gyre may have also reached the East Tasman		
635	Plateau but an additional factor continued to warm the region into the main phase of the PETM.		
636	This factor may have been a proto-Eastern Australian Current, intensifying its southwestern reach		
637	during times of extreme warming (e.g. Cortese et al., 2013).		
638			
639	4. Conclusions		
640	Part of the motivation in undertaking this study and presenting these results is that there is interest		Formatted: Indent: First line: 0 cm,
641	in re-drilling this site as part of IODP Proposal 567 (Paleogene South Pacific APC Transect) using new		Line spacing: 1.5 lines
642	technology that will greatly improve the quantity and quality of core recovery. We have shown that		
643	even with this improved recovery, extracting a paleoclimate record will still be complicated by		
644	diagenesis, recrystallization and hiatuses. In order to recover a more reliable climate proxy records		
645	for the Paleogene of this region, we recommend consideration of alternative or additional Campbell		
646	Plateau sites where sedimentation rates and clay input is predicted to have been higher than at Site		
647	277 (Cook et al., 1999). Nevertheless, we have also illustrated how a multi-proxy approach can be		
648	used to extract a climate history from this complicated record with due consideration of the effects		
649	of differential diagenesis, both between taxonomic groups and across stratigraphic horizons.		
650	The onset of the PETM is recorded in a 34 cm thick interval within core 45 at DSDP Site 277.		Formatted: Line spacing: 1.5 lines
651	A significant and rapid warming of surface and deep waters at the onset of the PETM at Site 277		
652	parallels a pronounced decline in carbonate concentration and a modest initial negative $\delta^{13}C$		
653	excursion of ~1‰. The full extent of the 2‰ negative $\delta^{13}C$ excursion occurred gradually over an		
654	interval in which temperatures remained stable or declined slightly. Therefore, it would seem that		
655	an initial carbon perturbation had a pronounced effect on southern Pacific Ocean circulation,		
656	causing poleward expansion of warm surface and intermediate waters. In contrast, the full		
657	expression of the event had no-little additional effect, perhaps because a threshold was exceeded at		
658	the initial event.		
659			
660	Supplementary material related to this article is available online at:		Formatted: Font: Bold
661	•		Formatted: Indent: First line: 0 cm, Line spacing: 1.5 lines
662	Acknowledgements. This research relied on archival DSDP samples and data provided by the		Formatted: Line spacing: 1.5 lines
663	International Ocean Discovery Program (IODP) and was funded by the New Zealand Government	\checkmark	Formatted: Font: Not Bold, Italic
664	through the GNS Science Global Change through Time Programme (540GCT12, 540GCT62). We thank		Formatted: Indent: First line: 0 cm, Line spacing: 1.5 lines
I			

665	Paul Pearson and Reinhard Kozdon for very constructive reviews, Appy Sluijs for editorial handling,
666	and Randall McDonnell (GNS Science) for technical support.
667	 ▲(
668	Figure Captions
669	Figure 1. Location of DSDP Site 277 on a tectonic reconstruction for the southwest Pacific during the
670	early Eocene (~54 Ma) (Cande and Stock, 2004). Other localities mentioned in the text are also
671	shown: ODP Site 1172, Campbell Island (CI), Tawanui (TW), Mid-Waipara River (MW) and Clarence
672	Valley (CV).
673	
674	Figure 2. Biostratigraphy, lithologies, carbonate content and stable isotopes from bulk carbonate
675	and foraminifera across the Paleocene-Eocene transition at DSDP Site 277. Abbreviations:
676	Mangaorapan local stage (Dm); Paleocene Eocene Thermal Maximum (PETM), Benthic Foraminiferal
677	Extinction Event (BFEE).
678	
679	Figure 3. Trace element-depth plot for Acarinina and Cibicides across the PETM interval, showing all
680	the measured Mg/Ca, Al/Ca and Sr/Ca values measured, and the corresponding decrease of the
681	mean Mg/Ca value when Al/Ca and Sr/Ca screening protocols are imposed on the raw dataset. The
682	pink shaded areas show the data points removed by the application of the screening limits, with the
683	consequent decrease in Mg/Ca ratio (and therefore temperature) shown by the black circles (median
684	of unscreened Mg/Ca) and the orange and blue diamonds (mean screened Mg/Ca ratios for
685	Acarining and Cibicides respectively). Note the change in scale on the horizontal axes for Mg/Ca and
686	Al/Ca between the Acarinina and Cibicides records.
687	
688	Figure 4. Variation in (A) Fe content and magnetic susceptibility; (B) δ^{13} C; (C) Mg/Ca ratios; (D)
689	paleotemperatures derived from δ^{48} O values and Mg/Ca ratios; and (E) changes in paleotemperature
690	relative to average Paleocene values.
691	
692	Figure 5. Age/depth plot for the Paleocene–Eocene transition at DSDP Site 277. Abbreviations for
693	species names are explained in Table 7.
694	
695	Figure 6. Cross plot of stable isotope (δ^{13} C, δ^{18} O) values for bulk carbonate, <i>Cibicides, Acarinina</i> and
696	Morozovella within the Paleocene, Paleocene Eocene Thermal Maximum (PETM), and overlying
697	Eocene.
698	

Formatted: Line spacing: 1.5 lines

699	Figure 7- Comparison of records of the Paleocene - Eocene thermal maximum (PETM) at DSDP Site
700	277, ODP Site 1172 and Mead Stream. Symbols for DSDP Site 277 as in Fig. 4. Note the bulk
701	carbonate δ^{18} O record is not plotted as a guide for relative temperature change at DSDP 277
702	because the record is inferred to be affected by diagenesis. The Red star marks single incursion of
703	low latitude radiolarians at Mead Stream (Hollis, 2006).
704	
705	Supplementary Tables
706	Table 1. X-ray fluorescence
707	Table 2. Rock magnetism
708	Table 3. Distribution of calcareous nannofossils
709	Table 4. Distribution of foraminifera
710	Table 5. Stable isotopes and carbonate concentration
711	Table 6. Foraminiferal Mg/Ca ratios
712	Table 7. Microfossil and carbon isotope datums
713	
714	References
715	Anand, P., Elderfield, H., Conte, M.H., 2003. Calibration of Mg/Ca thermometry in planktonic
716	foraminifera from a sediment trap time series. Paleoceanography 18 <u>(2)</u> , 1050 <u>, doi:</u>
717	<u>10.1029/2002pa000846-</u>
718	Aubry, MP., Ouda, K., Dupuis, C., Berggren, W.A. and Van Couvering, J.A., 2007. The Global
719	Standard Stratotype-section and Point (GSSP) for the base of the Eocene Series in the
720	Dababiya section (Egypt). Episodes 30, 271-286.
721	Aze, T., Pearson, P.N., Dickson, A.J., Badger, M.P.S., Bown, P.R., Pancost, R.D., Gibbs, S.J., Huber, B.T.,
722	Leng, M.J., Coe, A.L., Cohen, A.S., Foster, G.L., 2014. Extreme warming of tropical waters
723	during the Paleocene–Eocene Thermal Maximum. Geology 42, 739-742.
724	Bains, S., Corfield, R.M. and Norris, R.D., 1999. Mechanisms of climate warming at the end of the
725	Paleocene. Science 285, 724-727.
726	Barker, S., Greaves, M., Elderfield, H., 2003. A study of cleaning procedures used for foraminiferal Formatted: Line spacing
727	Mg/Ca paleothermometry. Geochemistry, Geophysics, Geosystems 4, 8407,
728	doi:8410.1016/j.quascirev.2004.8407.8016.
729	Beerling, D.J., Royer, D.L., 2011. Convergent Cenozoic CO2 history. Nature Geoscience 4, 418-420.
730	Bown, P.R. (Ed.), 1998. Calcareous Nannofossil Biostratigraphy. Kluwer Academie, London, 315p.
731	Bown, P.R., Young, J.R., 1998. Techniques. In: Bown, P.R. (Ed.), Calcareous Nannofossil
732	Biostratigraphy. Kluwer Academie, London, 16–28.

1.5 lines

733	Burgess, C.E., Pearson, P.N., Lear, C.H., Morgans, H.E.G., Handley, L., Pancost, R.D., Schouten, S.,	
734	2008. Middle Eocene climate cyclicity in the southern Pacific: Implications for global ice	
735	volume. Geology 36, 651-654.	
736	Bybell, L.M., Self-Trail, J., M, 1994. Evolutionary, biostratigraphic, and taxonomic study of calcareous	
737	nannofossils from a continuous Paleocene-Eocene boundary section in New Jersey. US	
738	Geological Survey Professional Paper 1554, 114 p.	
739	Carter, R.M., McCave, I.N., Richter, C. et al., 1999. Proceedings of the Ocean Drilling Program, initial	
740	reports, volume 181: Southwest Pacific gateways, Sites 1119-1125.	
741	Coggon, R.M., Teagle, D.A.H., Smith-Duque, C.E., Alt, J.C., Cooper, M.J., 2010. Reconstructing Past	
742	Seawater Mg/Ca and Sr/Ca from Mid-Ocean Ridge Flank Calcium Carbonate Veins. Science	
743	327, 1114-1117.	
744	Cook, R.A., Sutherland, R. and Zhu, H. (1999) Cretaceous-Cenozoic geology and petroleum systems	
745	of the Great South Basin, New Zealand. Institute of Geological & Nuclear Sciences	
746	Monograph 20. Institute of Geological and Nuclear Sciences, Lower Hutt, 190 pp.	
747	Cooper, R.A., 2004. The New Zealand Geological Timescale.Institute of Geological and Nuclear	Formatted: Line spacing: 1.5 lines
748	Sciences Monograph 22. Institute of Geological and Nuclear Sciences, Lower Hutt, 284 pp.	
749	Cortese, G., Dunbar, G.B., Carter, L., Scott, G., Bostock, H., Bowen, M., Crundwell, M., Hayward,	
750	B.W., Howard, W., Martinez, J.I., Moy, A., Neil, H., Sabaa, A. and Sturm, A., 2013. Southwest	
751	Pacific Ocean response to a warmer world: insights from Marine Isotope Stage 5e.	
752	Paleoceanography 28, 1–14, doi:10.1002/palo.20052.	
753	Cramer, B.S., Miller, K.G., Barrett, P.J., Wright, J.D., 2011. Late Cretaceous-Neogene trends in deep	
754	ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal	
755	geochemistry (${ m I\!P}^{18}$ O and Mg/Ca) with sea level history. Journal of Geophysical Research -	
756	Oceans 116, C12023.	
757	Creech, J.B., Baker, J.A., Hollis, C.J., Morgans, H.E.G., Smith, E.G.C., 2010. Eocene sea temperatures	
758	for the mid-latitude southwest Pacific from Mg/Ca ratios in planktonic and benthic	
759	foraminifera. Earth and planetary science letters 299(3/4), 483-495;	
760	doi:410.1016/j.epsl.2010.1009.1039.	
761	Crouch, E.M., Heilmann-Clausen, C., Brinkhuis, H., Morgans, H.E.G., Egger, H., Schmitz, B., 2001.	
762	Global dinoflagellate event associated with the late Paleocene thermal maximum. Geology	
763	29, 315-318.	
764	Crouch, E.M., Dickens, G.R., Brinkhuis, H., Aubry, M.P., Hollis, C.J., Rogers, K.M., Visscher, H., 2003.	
765	The Apectodinium acme and terrestrial discharge during the Paleocene-Eocene thermal	
766	maximum : new palynological, geochemical and calcareous nannoplankton observations at	

767	Tawanui, New Zealand. Palaeogeography, palaeoclimatology, palaeoecology 194(4), 387-	
768	403.	
769	Dickens, G.R., 2003. Rethinking the global carbon cycle with a large, dynamic and microbially	
770	mediated gas hydrate capacitor. Earth and Planetary Science Letters 213, 169-183.	
771	Dickens, G.R., 2011. Down the Rabbit Hole: toward appropriate discussion of methane release from	
772	gas hydrate systems during the Paleocene-Eocene thermal maximum and other past	
773	hyperthermal events. Clim. Past 7, 831-846.	
774	Dickens, G.R., Castillo, M.M., Walker, J.C.G., 1997. A blast of gas in the latest Paleocene: Simulating	
775	first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259-262.	
776	Dickens, G.R., O'Neil, J.R., Rea, D.K., Owen, R.M., 1995. Dissociation of oceanic methane hydrate as a	
777	cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10,	
778	965-972.	
779	Dunkley Jones, T., Lunt, D.J., Schmidt, D.N., Ridgwell, A., Sluijs, A., Valdes, P.J., and Maslin, M., 2013.	
780	Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene	
781	Thermal Maximum, Earth Sci. Rev., 125, 123-145, doi: 10.1016/j.earscirev.2013.07.004.	
782	Eggins, S., De Deckker, P., Marshall, J., 2003. Mg/Ca variation in planktonic foraminifera tests:	Formatted: Line
783	implications for reconstructing palaeo-seawater temperature and habitat migration. Earth	
784	and Planetary Science Letters 212, 291-306, doi:210.1016/S0012-1821X(1003)00283-00288.	
785	Evans, D., Müller, W., 2012. Deep time foraminifera Mg/Ca paleothermometry: Nonlinear correction	
786	for secular change in seawater Mg/Ca. Paleoceanography 27, PA4205.	
787	Frieling, J., Iakovleva, A.I., Reichart, GJ., Aleksandrova, G.N., Gnibidenko, Z.N., Schouten, S., Sluijs,	
788	A., 2014. Paleocene–Eocene warming and biotic response in the epicontinental West	
789	Siberian Sea. Geology 42, 767-770.	
790	Gradstein, F.M., Ogg, J.G., Schmitz, M., Ogg, G., 2012. The Geologic Time Scale 2012. Elsevier Science	
791	BV, Oxford, UK.	
792	Greaves, M., Barker, S., Daunt, C., Elderfield, H., 2005. Accuracy, standardization, and interlaboratory	
793	calibration standards for foraminiferal Mg/Ca thermometry. Geochemistry, Geophysics,	
794	Geosystems 6, doi:10.1029/2004GC000790.	
795	Hancock, H.J.L., Dickens, G.R., Strong, C.P., Hollis, C.J., Field, B.D., 2003. Foraminiferal and carbon	
796	isotope stratigraphy through the Paleocene-Eocene transition at Dee Stream, Marlborough,	
797	New Zealand. New Zealand Journal of Geology and Geophysics 46, 1-19.	
798	Handley, L., Crouch, E.M., Pancost, R.D., 2011. A New Zealand record of sea level rise and	
799	environmental change during the Paleocene-Eocene Thermal Maximum. Palaeogeography,	
800	Palaeoclimatology, Palaeoecology 305, 185-200.	

33

spacing: 1.5 lines

801 Hasiuk, F.J., Lohmann, K.C., 2010. Application of calcite Mg partitioning functions to the 802 reconstruction of paleocean Mg/Ca. Geochimica et Cosmochimica Acta 74, 6751-6763. Higgins, J.A., Schrag, D.P., 2006. Beyond methane: Towards a theory for the Paleocene-Eocene 803 804 Thermal Maximum. Earth and Planetary Science Letters 245, 523-537. Hollis, C.J., 2006. Radiolarian faunal change across the Paleocene-Eocene boundary at Mead Stream, 805 806 New Zealand. Eclogae Geologicae Helvetiae 99, S79-S99. Hollis, C.J., Dickens, G.R., Field, B.D., Jones, C.J., Strong, C.P., 2005a. The Paleocene-Eocene transition 807 808 at Mead Stream, New Zealand: a southern Pacific record of early Cenozoic global change. 809 Palaeogeography, Palaeoclimatology, Palaeoecology 215, 313-343. 810 Hollis, C.J., Field, B.D., Jones, C.M., Strong, C.P., Wilson, G.J., Dickens, G.R., 2005b. Biostratigraphy 811 and carbon isotope stratigraphy of uppermost Cretaceous-lower Cenozoic in middle 812 Clarence valley, New Zealand. Journal of the Royal Society of New Zealand 35, 345-383. 813 Hollis, C.J., Taylor, K.W.T., Handley, L., Pancost, R.D., Huber, M., Creech, J., Hines, B., Crouch, E.M., 814 Morgans, H.E.G., Crampton, J.S., Gibbs, S., Pearson, P., Zachos, J.C., 2012. Early Paleogene 815 temperature history of the Southwest Pacific Ocean: reconciling proxies and models. Earth 816 and Planetary Science Letters 349-350, 53-66. 817 Hollis, C.J., Waghorn, D.B., Strong, C.P., Crouch, E.M., 1997. Integrated Paleogene biostratigraphy of 818 DSDP site 277 (Leg 29): foraminifera, calcareous nannofossils, Radiolaria, and palynomorphs. 819 Institute of Geological & Nuclear Sciences science report 97/7, 1-73. 820 Hollis, C.J., Beu, A.G., Crampton, J.S., Crundwell, M.P., Morgans, H.E.G., Raine, J.I., Jones, C.M., Boves, A.F., 2010. Calibration of the New Zealand Cretaceous Cenozoic timescale to 821 822 GTS2004. GNS Science Report 2010/43, 20 p. Hollis, C.J., Tayler, M.J.S., Andrew, B., Taylor, K.W., Lurcock, P., Bijl, P.K., Kulhanek, D.K., Crouch, 823 824 E.M., Nelson, C.S., Pancost, R.D., Huber, M., Wilson, G.S., Ventura, G.T., Crampton, J.S., 825 Schiøler, P., Phillips, A., 2014. Organic-rich sedimentation in the South Pacific Ocean 826 associated with Late Paleocene climatic cooling. Earth-Science Reviews 134, 81-97. Horita, J., Zimmermann, H., Holland, H.D., 2002. Chemical evolution of seawater during the 827 828 Phanerozoic: Implications from the record of marine evaporites. Geochimica et 829 Cosmochimica Acta 66, 3733-3756. 830 Hornibrook, N.de_B., 1992. New Zealand Cenozoic marine paleoclimates : a review based on the distribution of some shallow water and terrestrial biota, in: Tsuchi, R., Ingle, J.C. (Eds.), 831 832 Pacific Neogene: environment, evolution and events. University of Tokyo Press, Tokyo, pp. 83-106. 833

834	Hornibrook, N.deB., Brazier, R.C., Strong, C.P., 1989. Manual of New Zealand Permian to Pleistocene
835	foraminiferal biostratigraphy. New Zealand Geological Survey Paleontological Bulletin 56,
836	175 р.
837	Inglis, G.N., Farnsworth, A., Lunt, D., Foster, G.L., Hollis, C.J., Pagani, M., Jardine, P.E., Pearson, P.N.,
838	Markwick, P., Raynman, L., Galsworthy, A.M.J., Pancost, R.D., in review. Descent towards the
839	Icehouse: Eocene sea surface cooling inferred from GDGT distributions. Paleoceanography.
840	Jones, G.A., Kaiteris, P., 1983. A vacuum-gasometric technique for rapid and precise analysis of
841	calcium carbonate in sediment and soils. Journal of Sedimentary Petrology 53, 655-660.
842	Joughin, I., Smith, B.E., Medley, B., 2014. Marine Ice Sheet Collapse Potentially Under Way for the
843	Thwaites Glacier Basin, West Antarctica. Science 344, 735-738.
844	Kahn, A., Aubry, MP., 2004. Provincialism associated with the Paleocene/Eocene thermal
845	maximum: temporal constraint. Marine Micropaleontology 52, 117-131.
846	Kaiho, K., Arinobu, T., Ishiwatari, R., Morgans, H.E.G., Okada, H., Takeda, N., Tazaki, K., Zhou, G.,
847	Kajiwara, Y., Matsumoto, R., Hirai, A., Niitsuma, N., Wada, H., 1996. Latest Paleocene benthic
848	foraminiferal extinction and environmental changes at Tawanui, New Zealand.
849	Paleoceanography 11, 447-465.
850	Katz, M.E., Katz, D.R., Wright, J.D., Miller, K.G., Pak, D.K., Shackleton, N.J. and Thomas, E., 2003. Early
851	Cenozoic benthic foraminiferal isotopes: Species reliability and interspecies correction
852	factors. Paleoceanography 18 (2), 1024, doi: 10.1029/2002PA000798.
853	Kennett, J.P., 1975. Initial reports of the Deep Sea Drilling Project, volume 29. US Govt Printing
854	Office, Washington.
855	Kennett, J.P., 1977. Cenozoic evolution of Antarctic glaciation, the Circum-Antarctic Ocean, and their
856	impact on global paleoceanography. Journal of Geophysical Research 82, 3843-3860.
857	Kennett, J.P., 1980. Paleoceanographic and biogeographic evolution of the Southern Ocean during
858	the Cenozoic, and Cenozoic microfossil datums. Palaeogeography, Palaeoclimatology,
859	Palaeoecology 31, 123-152.
860	Kent, D.V., Cramer, B.S., Lanci, L., Wang, D., Wright, J.D., Van der Voo, R., 2003. A case for a comet
861	impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion.
862	Earth and Planetary Science Letters 211, 13-26.
863	Kim, ST., O'Neil, J.R., 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic
864	carbonates. Geochimica et Cosmochimica Acta 61, 3461-3475.
865	Kim, JH., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N., Hopmans,
866	E.C., Damsté, J.S.S., 2010. New indices and calibrations derived from the distribution of

867	crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature	
868	reconstructions. Geochimica et Cosmochimica Acta 74, 4639-4654.	
869	Kozdon, R., Kelly, D.C., Kitajima, K., Strickland, A., Fournelle, J.H. and Valley, J.W., 2013. In situ $\delta_{\underline{1}}^{18}$ O	Formatted: Superscript
870	and Mg/Ca analyses of diagenetic and planktic foraminiferal calcite preserved in a deep-sea	
871	record of the Paleocene-Eocene thermal maximum. Paleoceanography 28, 517-528.	
872	Lear, C.H., Rosenthal, Y., Slowey, N., 2002.Benthic foraminiferal Mg/Ca-paleothermometry: a 🗾 🔸	Formatted: Line spacing: 1.5 lines
873	revised core-top calibration. Geochimica et Cosmochimica Acta 66, 3375-3387.	
874	Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S.R., Leckie, R.M.,	
875	Pearson, A., 2009. Global Cooling During the Eocene-Oligocene Climate Transition. Science	
876	323, 1187-1190.	
877	Martini, E., 1970. Standard Paleogene calcareous nannoplankton zonation. Nature 226, 560–561.	
878	Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In:	
879	Farinacci, A. (Ed.), Proceedings of the Planktonic Conference II, Roma, 1970. Edizioni	
880	Tecnoscienze, Rome, 739–785.	
881	McInerney, F.A., Wing, S.L., 2011. The Paleocene-Eocene Thermal Maximum: A Perturbation of	
882	Carbon Cycle, Climate, and Biosphere with Implications for the Future. Annual Review of	
883	Earth and Planetary Sciences 39, 489-516.	
884	Nelson, C.S., Cooke, P.J., 2001. History of oceanic front development in the New Zealand sector of	
885	the Southern Ocean during the Cenozoic: a synthesis. New Zealand journal of geology and	
886	geophysics 44(4), 535-553.	
887	Nicolo, M.J., Dickens, G.R., Hollis, C.J., Zachos, J.C., 2007. Multiple early Eocene hyperthermals : their	
888	sedimentary expression on the New Zealand continental margin and in the deep sea.	
889	Geology 35(8), 699-702; doi:610.1130/G23648A.23641.	
890	Nicolo, M.J., Dickens, G.R., Hollis, C.J., 2010. South Pacific intermediate water oxygen depletion at	
891	the onset of the Paleocene-Eocene thermal maximum as depicted in New Zealand margin	
892	sections. Paleoceanography 25, PA4210, doi:4210.1029/2009PA001904.	
893	Norris, R.D., Wilson, P.A., Blum, P., and Expedition 342 Scientists, 2014. Proceedings of the IODP.	
894	342, doi:10.2204/iodp.proc.2342.2014.	
895	Nunes, F. and Norris, R.D., 2006. Abrupt reversal in ocean overturning during the	
896	Palaeocene/Eocene warm period. Nature (London) 439, 60-63.	
897	Olsson, R.K., Hemleben, C., Berggren, W.A., Huber, B.T., 1999. Atlas of Paleocene planktonic	
898	Foraminifera. Smithsonian Contributions to Paleobiology 85, 252 p.	
899	Oomori, T., H. Kaneshima, Y. Maezato, and Y. Kitano, 1987. Distribution coefficient of Mg ²⁺ ions	Formatted: Superscript
900	between calcite and solution at 10–50°C, Marine Chemistry, 20, 327–336.	Formatted: Line spacing: 1.5 lines
	25	

901	Pearson, P.N. and Burgess, C.E., 2008. Foraminifer test preservation and diagenesis: comparison of	
902	high latitude Eocene sites, Geological Society, London, Special Publications 303(1), 59-72.	
903	_Pearson, P.N., Olsson, R.K., Huber, B.T., Hemleben, C., Berggren, W.A., 2006. Atlas of Eocene	Formatted: Line spacing: 1.5 line
904	Planktonic Foraminifera, Cushman Foundation Special Publication no. 41, 514 p.	
905	Pearson, P.N., van Dongen, B.E., Nicholas, C.J., Pancost, R.D., Schouten, S., Singano, J.M., Wade, B.S.,	
906	2007. Stable warm tropical climate through the Eocene Epoch. Geology 35, 211-214.	
907	Perch-Nielsen, K., 1985. Cenozoic calcareous nannofossils. In: Bolli, H.M., Saunders, J.B., and Perch-	
908	Nielsen, K. (Eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge, 427–554.	
909	Quillévéré, F., Norris, R.D., 2003. Ecological development of acarininids (planktonic foraminifera) and	
910	hydrographic evolution of Paleocene surface waters. GSA Special Papers 369, 223-238.	
911	Raine, J.I., Beu, A.G., Boyes, A.F., Campbell, H.J., Cooper, R.A., Crampton, J.S., Crundwell, M.P., Hollis,	
912	C.J., Morgans, H.E.G., 2015. Revised calibration of the New Zealand Geological Timescale:	
913	NZGT2015/1. GNS Science Report 2012/39, 1-53.	
914	Raffi, I., De Bernardi, B., 2008. Response of calcareous nannofossils to the Paleocene-Eocene	
915	Thermal Maximum: Observations on composition, preservation and calcification in	
916	sediments from ODP Site 1263 (Walvis Ridge—SW Atlantic). Marine Micropaleontology 69,	
917	119-138.	
918	Rampino, M.R., 2013. Peraluminous igneous rocks as an indicator of thermogenic methane release	
919	from the North Atlantic Volcanic Province at the time of the Paleocene–Eocene Thermal	
920	Maximum (PETM). Bulletin of Volcanology 75, 1-5.	
921	Richter, T.O., van der Gaast, S., Kaster, B., Vaars, A., Gieles, R., de Stigter, H.C., De Haas, H., van	
922	Weering, T.C.E., 2006. The Avaatech XRF core scanner: technical description and applications	
923	to NE Atlantic sediments. Geological Society of London, Special Publications 267, 39–50.	
924	doi:10.1144/GSL.SP.2006.267.01.03	
925	Röhl, U., Westerhold, T., Bralower, T.J. and Zachos, J.C., 2007. On the duration of the Paleocene-	
926	Eocene thermal maximum (PETM). Geochemistry, Geophysics, Geosystems 8, doi:	
927	<u>10.1029/2007GC001784</u>	
928	Dunkley Jones, T., Lunt, D.J., Schmidt, D.N., Ridgwell, A., Sluijs, A., Valdes, P.J., and Maslin, M.:	
929	Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene	
930	Thermal Maximum, Earth Sci. Rev., 125, 123–145, doi: 10.1016/j.earscirev.2013.07.004,	
931	<u>2013.</u>	
932	Schmidt, G.A., Annan, J.D., Bartlein, P.J., Cook, B.I., Guilyardi, E., Hargreaves, J.C., Harrison, S.P., 🔸	Formatted: Line spacing: 1.5 line
933	<u>Kageyama, M., LeGrande, A.N., Konecky, B., Lovejoy, S., Mann, M.E., Masson-Delmotte, V.,</u>	
934	<u>Risi, C., Thompson, D., Timmermann, A., Tremblay, L.B., and Yiou, P., 2014: Using palaeo-</u>	

935	climate comparisons to constrain future projections in CMIP5, Clim. Past 10, 221-250, doi:
936	<u>10.5194/cp-10-221-2014, 2014.</u>
937	Schrag, D.P., 1999. Effect of diagenesis on the isotopic record of late Paleogene tropical sea surface
938	temperatures. Chemical Geology 161, 215-224.
939	Schrag, D.P., DePaolo, D.J., Richter, F.M., 1995. Reconstructing past sea surface temperatures:
940	Correcting for diagenesis of bulk marine carbonate. Geochimica et Cosmochimica Acta 59,
941	2265-2278.
942	Schweizer, M., Pawlowski, J., Kouwenhoven, T. and van der Zwaan, B., 2009. Molecular phylogeny of
943	common cibicidids and related Rotaliida (Foraminifera) based on small subunit rDNA
944	sequences. The Journal of Foraminiferal Research 39, 300-315.
945	Sexton, P.F., Wilson, P.A., Pearson, P.N., 2006. Microstructural and geochemical perspectives on
946	planktic foraminiferal preservation: "Glassy" versus "Frosty". Geochemistry, Geophysics,
947	Geosystems - G ³ 7, doi: 10.1029/2006GC001291.
948	Shackleton, N.J., Kennett, J.P., 1975. Paleotemperature history of the Cenozoic and the initiation of
949	Antarctic glaciation : oxygen and carbon isotope analyses in DSDP sites 277, 279, and 281.
950	Initial reports of the Deep Sea Drilling Project 29, 743-755.
951	Slotnick, B.S., Dickens, G.R., Nicolo, M., Hollis, C.J., Crampton, J.S., Zachos, J.C., Sluijs, A., 2012.
952	Numerous large amplitude variations in carbon cycling and terrestrial weathering
953	throughout the latest Paleocene and earliest Eocene. Journal of Geology 120, 487-505.
954	Sluijs, A., Bowen, G., Brinkhuis, H., Lourens, L., Thomas, E., 2007. The Palaeocene-Eocene Thermal
955	Maximum super greenhouse: biotic and geochemical signatures, age models and
956	mechanisms of global change, in: Willliams, M. et al. (Eds.), Deep time perspectives on
957	climate change: marrying the signal from computer models and biological proxies. The
958	Geological Society of London, Special Publication, pp. 323-347.
959	Sluijs, A., Bijl, P.K., Schouten, S., Roehl, U., Reichart, G.J., Brinkhuis, H., 2011. Southern ocean
960	warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum.
961	Clim. Past 7, 47-61.
962	Stanley, S.M., Hardie, L.A., 1998. Secular oscillations in the carbonate mineralogy of reef-building
963	and sediment-producing organisms driven by tectonically forced shifts in seawater
964	chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 144, 3-19.
965	Stoll, H.M., 2005. Limited range of interspecific vital effects in coccolith stable isotopic records
966	during the Paleocene-Eocene thermal maximum. Paleoceanography 20, doi:
967	<u>10.1029/2004PA001046</u>

968	Svensen, H., 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global	
969	warming. Nature 429, 542-545.	
970	Taylor, K.W.R., Huber, M., Hollis, C.J., Hernandez-Sanchez, M.T., Pancost, R.D., 2013. Re-evaluating	
971	modern and Palaeogene GDGT distributions: Implications for SST reconstructions. Global	
972	and Planetary Change 108, 158-174.	
973	Tierney, J.E., Tingley, M.P., 2014. A Bayesian, spatially-varying calibration model for the TEX_{86} proxy.	
974	Geochimica et Cosmochimica Acta 127, 83-106.	
975	Villasante-Marcos, V., Hollis, C.J., Dickens, G.R., Nicolo, M.J., 2009. Rock magnetic properties across	
976	the Paleocene-Eocene Thermal Maximum in Marlborough, New Zealand. Geologica Acta	
977	7(1/2), 229-242.	
978	Wilkinson, B.H., Algeo, T.J., 1989. The sedimentary carbonate record of calcium magnesium cycling.	
979	American Journal of Science 289, 1158-1194.	
980	Zachos, J.C., Stott, L.D., Lohmann, K.C., 1994. Evolution of early Cenozoic marine temperatures.	
981	Paleoceanography 9, 353-387.	
982	Zachos, J.C., Pagani, M., Sloan, L.C., Thomas, E., Billups, K., 2001. Trends, rhythms, and aberrations in	
983	global climate 65[thinsp]Ma to present. Science 292, 686-693.	
984	Zachos, J.C., Wara, M.W., Bohaty, S., Delaney, M.L., Petrizzo, M.R., Brill, A., Bralower, T.J., Premoli-	
985	Silva, I., 2003. A transient rise in tropical sea surface temperature during the Paleocene-	
986	Eocene thermal maximum. Science 302, 1551-1554.	
987	Zachos, J.C., Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E., Nicolo, M.,	
988	Raffi, I., Lourens, L.J., McCarren, H., Kroon, D., 2005. Rapid acidification of the ocean during	
989	the Paleocene-Eocene Thermal Maximum. Science 308, 1611-1615.	
990	Zachos, J.C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S.J., Bralower,	
991	T.J., 2006. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene	
992	Thermal Maximum: Inferences from TEX ₈₆ and isotope data. Geology 34, 737-740.	For
993	Zachos, J.C., Dickens, G.R., Zeebe, R.E., 2008. An early Cenozoic perspective on greenhouse warming	
994	and carbon-cycle dynamics. Nature 451, 279-283.	
995	Zachos, J.C., McCarren, H., Murphy, B., Röhl, U., Westerhold, T., 2010. Tempo and scale of late	
996	Paleocene and early Eocene carbon isotope cycles: Implications for the origin of	
997	hyperthermals. Earth and Planetary Science Letters 299, 242-249.	
998		
999	Dunkley Jones, T., Lunt, D.J., Schmidt, D.N., Ridgwell, A., Sluijs, A., Valdes, P.J., and Maslin, M.: Climate model	
1000	and proxy data constraints on ocean warming across the Paleocene Eocene Thermal Maximum, Earth	
1001	Sci. Rev., 125, 123-145, doi: 10.1016/j.earscirev.2013.07.004, 2013.	

Formatted: Subscript

1002	Schmidt, G.A., Annan, J.D., Bartlein, P.J., Cook, B.I., Guilyardi, E., Hargreaves, J.C., Harrison, S.P., Kageyama, M.,		
1003	LeGrande, A.N., Konecky, B., Lovejoy, S., Mann, M.E., Masson Delmotte, V., Risi, C., Thompson, D.,		
1004	Timmermann, A., Tremblay, L.B., and Yiou, P.: Using palaeo climate comparisons to constrain future		
1005	projections in CMIP5, Clim. Past 10, 221-250, doi: 10.5194/cp 10-221-2014, 2014.		
1006			
1007	Figure Captions		
1008	Figure 1. Location of DSDP Site 277 on a tectonic reconstruction for the southwest Pacific during the		
1009	early Eocene (~54 Ma) (after Cande and Stock, 2004). Other localities mentioned in the text are also		
1010	shown: ODP Site 1172, Campbell Island (CI), Tawanui (TW), Mid-Waipara River (MW) and Mead		
1011	<u>Stream (MS).</u>		
1012			
1013	Figure 2. Biostratigraphy, lithologies, carbonate content (B) and stable isotopes from bulk carbonate		
1014	and foraminifera (A, C, D) across the Paleocene-Eocene transition at DSDP Site 277. Abbreviations:		
1015	Mangaorapan local stage (Dm); Paleocene Eocene Thermal Maximum (PETM), Benthic Foraminiferal		
1016	Extinction Event (BFEE). In (A) the new bulk carbonate δ^{18} O record is plotted alongside the		
1017	uncorrected, mixed planktic and benthic δ^{18} O values of Shackleton and Kennett (1975); in (D) and		
1018	subsequent figures, benthic δ^{18} O values include a correction factor of 0.28‰ (Katz et al., 2003).		
1019			
1020	Figure 3. Cross-plots of Mg/Ca, Al/Ca and Sr/Ca with areas outside the screening limit shaded pink.	Formatted: Line spacing: 1.5	lines
1021	All results are shown for the AI/Ca-Mg/Ca cross plots. For Sr/Ca-Mg/Ca cross plots, we only include		
1022	measurements that lies within the screening limit for AI/Ca in order to exclude the effects of silicate		
1023	contamination. Only R ² values significant at the 95% confidence interval are shown for the trend		
1024	lines.		
1025	Figure 4. Trace element-depth plots for <i>Acarinina</i> (A-C) and <i>Cibicides</i> (D-F) across the PETM		
1026	interval, showing all measured Mg/Ca, Al/Ca and Sr/Ca values, and the decrease in mean Mg/Ca		
1027	value when AI/Ca and Sr/Ca screening protocols are imposed. Areas outsides the screening limits are		
1028	shaded pink. Note change in scale on horizontal axes for Mg/Ca and Al/Ca for Acarinina and		
1029	<u>Cibicides.</u>		
1030			
1031	Figure 5. Variation in (A) Fe content and magnetic susceptibility; (B) δ^{13} C; (C) Mg/Ca ratios; (D)		
1032	paleotemperatures derived from δ^{18} O values and Mg/Ca ratios; and (E) changes in paleotemperature		
1033	relative to average Paleocene values.		
1034			

1035	Figure 6. Cross plot of stable isotope (δ^{13} C, δ^{18} O) values for bulk carbonate, <i>Cibicides</i> , <i>Acarinina</i> and	
1036	Morozovella within the Paleocene, Paleocene Eocene Thermal Maximum (PETM), and overlying	
1037	Eocene.	
1038		
1039	Figure 7. Comparison of records of the Paleocene–Eocene thermal maximum (PETM) at DSDP Site	
1040	277, ODP Site 1172 and Mead Stream. Symbols for DSDP Site 277 as in Fig. 4. Note the bulk	
1041	carbonate δ^{18} O record is not plotted as a guide for relative temperature change at DSDP 277	
1042	because the record is inferred to be affected by diagenesis. The Red star marks a single occurrence	
1043	of low-latitude radiolarians in the P-E transition interval at Mead Stream (Hollis, 2006).	
1044	+	Formatted: Line spacing: 1.5 lines
1045	<u>Supplement of</u>	Formatted: Font: 14 pt, Italic
1046	The Paleocene-Eocene Thermal Maximum at DSDP Site 277, Campbell Plateau, southern	Formatted: Font: Italic
1047	Pacific Ocean	Pormatted. Tont. 12 pt
10/18	Hollis et al. (c. hollis@gns.cri.nz)	
1040		
1049		
1050	Figure S1. Scanning electron microscope (SEM) images of moderately and poorly preserved	 Formatted: Font: Bold
1051	foraminifera specimens from DSDP Site 277 and corresponding trace element/Ca profiles through	
1052	the test wall. For moderately preserved Morozovella aegua (A), the profile selected during the	
1053	screening process is highlighted by the grey bar. Note the elevated trace element/Ca ratios on the	
1054	exterior of the test and the increase in AI/Ca ratio on the interior of the test. Ti/Ca displays a patchy	
1055	distribution as it is approaching the resolvable limit. Other trace element/Ca profiles are for	
1056	moderately preserved Acarinina (B); moderately preserved Subbotina (C); moderately preserved	
1057	Cibicides (D); poorly preserved Morozovella aequa (E), showing evidence of sediment infilling and	
1058	calcite overgrowths, with trace element/Ca ratios are substantially elevated above those of biogenic	
1059	calcite and an unusual Ba/Ca profile; poorly preserved Acarinina (F) displaying coarsely crystalline	
1060	diagenetic outgrowths; poorly preserved Subbotina (G) with a 'chalky' outer appearance and an	
1061	anomalous Ba/Ca peak; and poorly preserved Cibicides (H) with a coarse, granular texture	
1062	uncharacteristic of this species and attributed to micron-scale recrystallization.	
1063	Figure S2 Trace element-depth plots for <i>Acarining</i> and <i>Cibicides</i> across the PETM interval showing	
1064	all measured Mg/Ca Al/Ca Mn/Al Ba/Al and Sr/Ca values and the decrease in mean Mg/Ca value	
1065	when AI/Ca and Sr/Ca screening protocols are imposed. Areas outsides the screening limits are	
1002	when Ay ea and Stylea screening protocols are imposed. Areas outsides the screening littles die	

1066	shaded pink. Note change in scale on horizontal axes for Mg/Ca and Al/Ca for Acarinina and	
1067	<u>Cibicides.</u>	
1068		
1069	Figure 7. Age/depth plot for the Paleocene–Eocene transition at DSDP Site 277. Abbreviations for	
1070	species names are explained in Table S7.	
1071	<u>ary Tables</u>	 Formatted: Font: Not Bold
1072	Table <u>S</u> 1. X-ray fluorescence	
1073	Table S2. Rock magnetism	 Formatted: Font: Bold
1074	Table S3. Distribution of calcareous nannofossils	 Formatted: Font: Bold
1075	Table S4. Distribution of foraminifera	 Formatted: Font: Bold
1076	Table S5. Stable isotopes and carbonate concentration	 Formatted: Font: Bold
1077	Table S6. Foraminiferal Mg/Ca ratios	 Formatted: Font: Bold
1078	Table S7. Microfossil and carbon isotope datums	 Formatted: Font: Bold
1079	*	Formatted: Line spacing: 1.5 lines