
 1 

Climate-vegetation modelling and fossil plant data suggest 1 

low atmospheric CO2 in the late Miocene (cp-2015-65) 2 

 3 
M. Forrest, J Eronen et al. 4 
 5 
We thank the reviewers for their insightful comments which have improved the 6 
manuscript considerably. Below we have answered their comments, and 7 
provided further information and data concerning how we have integrated their 8 
suggestions in the revised manuscript. A list of changes and the revised 9 
manuscript with changes marked follows the response to reviewers in this 10 
document. The reviewer comments are in black, our answers are in light blue.  11 
 12 
Reviewer #1 13 
 14 
General comments  15 
 16 
The paper presents the results from four simulations with the LPJ-GUESS 17 
dynamic global vegetation model (DGVM) driven with climate data for the 18 
Tortonian obtained from two AOGCM simulations using 280 and 450 ppm CO2. 19 
The resulting global vegetation distributions are compared with proxy data from 20 
about 170 sites (mostly located in temperate regions), with results from similar 21 
simulation studies, and with additional evidences on Tortonian vegetation e.g. 22 
from fossil mammals or phytoliths. Methodologically, the authors distinguish 23 
between an analysis at global scale (section 4.2) and an analysis at regional scale 24 
(section 4.3). While for the global analysis they introduce an “agreement index” 25 
to compare the site data with simulation data, the analysis at regional scale is 26 
almost completely qualitative. At both scales the authors conclude that paleo 27 
evidence is in better agreement with a lower CO2 value. By their particular 28 
simulation setup, they also conclude that its mostly the climate effect of CO2 that 29 
determines the resulting vegetation distribution and not the physiological effect 30 
of CO2 fertilization.  31 
 32 
There are only few studies of Tortonian climate taking advantage of the 33 
knowledge on vegetation-climate interactions encrypted in DGVMs. Insofar, the 34 
study provides a timely contribution to the research on pre-Quaternary climates. 35 
But methodologically the paper could be improved in three aspects: 36 
 37 
First, the statistics behind the comparison between fossil data and model results 38 
is not really convincing. Partly this may be because the authors tried to keep the 39 
presentation short, but more fundamentally, important aspects of a robustness 40 
analysis of their statistical approach are missing (details follow below).  41 
 42 
We had previously performed multiple robustness tests for the analysis but as 43 
the reviewer mentions, most of these were left out of the original manuscript 44 
because we wanted to keep the presentation short. We agree that these explore 45 
an important aspect of the novel method presented here. We have provided 46 
these robustness checks and addressed all of the more detailed points raised by 47 
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the reviewer below in supplementary information to the revised manuscript as 48 
requested. 49 
 50 
Second, the regional analysis (section 4.3) is rather unrelated to the global 51 
analysis (section 4.2), although it would be easy to repeat the statistical analysis 52 
performed globally also regionally. Surely, the data base is quite small for some 53 
continents, but by adding such an analysis one would get a clear impression why 54 
at a regional scale the study must stay qualitative.  55 
 56 
We think that the regional analyses and discussion of these are important and 57 
particularly interesting for researchers with a regional focus. We fully agree that 58 
applying the statistics at the regional scale might not be very meaningful, not 59 
only because of the small sample size (e.g. only three sites in Africa), but also 60 
because we cannot expect a global vegetation model driven by a global climate 61 
model to be very accurate at the regional scale. To illustrate the limited coverage 62 
of the fossil database, we have combined Table 2 and Table 3 of the original 63 
manuscript and included AI scores from all continents as well as the number of 64 
fossil sites in each region. The Central Europe region was enlarged compared to 65 
the previous version to include more data points; this does not affect the 66 
conclusions. Furthermore, for the discussion of regional scale aspects, we also 67 
rely on other independent evidence, such as fossil mammals, phytoliths and 68 
isotopes that indicate open conditions for North America.  69 
 70 
Third, in the regional discussion a clear concept is missing for judging whether 71 
the differences seen in PFT distribution, biome distribution, tree fraction, and 72 
grass fraction between the 280 ppm and the 450 ppm simulation results are 73 
large enough to allow an interpretation towards a higher or lower atmospheric 74 
CO2 concentration. Therefore, I do not see that this qualitative discussion is 75 
appropriate to vote for or against a high or low CO2. Instead, I would suggest to 76 
consider this qualitative regional analysis to be a check for the consistency of the 77 
continental vegetation patterns seen in their simulations with results from 78 
simulations of other groups and with evidences from aditional fossil data.  79 
 80 
We thank the reviewer for raising this point. We agree that we might have 81 
stretched the regional interpretation in the manuscript. We have corrected this 82 
in the revised version, focusing more on evaluation compared to other studies 83 
and discussing the differences between the 280ppm and 450 ppm scenarios, but 84 
only mention an indication of lower or higher CO2 concentrations when the 85 
pattern is very clear, such as in North America, where the more open vegetation 86 
under low CO2 clearly corresponds better with the paleobotanical data and other 87 
independent sources of evidence. We now focus more on how well our model 88 
produces the regional and continental vegetation patterns during the Miocene 89 
(as compared to paleobotanical evidence and other modelling studies). The 90 
proxy data include well-known samples from fossil mammals, isotope data and 91 
sedimentary records from Europe and North America.  92 
 93 
 94 
 95 
More detailed comments  96 
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 97 
1. Visual inspection suggests that the difference in biome distribution between 98 
simulated and reconstructed potential vegetation for today (Figs. S1A and S1B in 99 
the Supplement) is larger then the simulated Tortonian differences between low 100 
and high CO2 (Figs. 1A and 1B). If this were true, the authors should explain why 101 
they can derive the main result of their paper from simulations that are within 102 
the range of model errors. I suggest that the authors apply a rigorous 103 
similarity/dissimilarity statistics to their biome distributions to quantify the 104 
model errors and compare them with the size of the signal they intend to 105 
interprete.  106 
 107 
We agree that in its original form the manuscript does not present sufficient 108 
analysis of the model uncertainties and signal size. We were reluctant to use the 109 
statistical similarity/dissimilarity metrics to analyse biomes for our main 110 
comparison for reasons that we outline below. However, we agree with the 111 
reviewer that a statistical comparison can provide useful insights. Therefore, we 112 
have now evaluated our simulations with Cohen’s Kappa statistic, which is a 113 
standard for comparing modelled biomes. The results show acceptable 114 
agreement between our present day simulation and the reconstructed potential 115 
natural vegetation. We have also used Kappa to quantify the difference between 116 
the modelled biomes and find that our model setup can distinguish the two 117 
Tortonian scenarios from each other and from the present day control run. The 118 
results are detailed below and in the supplementary material accompanying the 119 
revised version of the manuscript.   120 
 121 
Drawbacks of using Cohen’s Kappa for biome comparisons 122 
 123 
The first drawback of comparing Kappa scores for biomes is that Kappa does not 124 
include any “degree of difference” mechanism which can be important when 125 
considering more than two categories. For example, there is a much smaller 126 
conceptual difference between a “tropical grassland” and a “tropical savanna” 127 
than there is between a “tropical grassland” and a “boreal evergreen forest”, but 128 
that difference is treated identically when calculating Cohen’s Kappa. This can be 129 
ameliorated to some extent by aggregating to megabiomes as done by Pound et 130 
al. (2011) (an approach we now follow), but is inevitably present to some extent. 131 
A weighting can also be attempted, but this introduces subjective decisions. 132 
 133 
The second argument against comparing potential natural vegetation (PNV) 134 
biome distributions using Kappa is that PNV biome classifications themselves 135 
introduce uncertainty. Potential natural vegetation cannot be measured directly 136 
(it no longer exists due to human influence) and so must be reconstructed.  137 
There is uncertainty in such reconstructions as evidenced by the differences 138 
between PNV biome maps: for example, the horn of Africa is predominantly 139 
covered by “tropical deciduous forest” in Haxeltine and Prentice (1996), but is 140 
dominated by “dense shrublands” in Ramankutty and Foley (1999). Similarly, the 141 
extent of the “tropical deciduous forest” biome in Southern Africa varies 142 
considerably between the two maps. Even the biomes categories themselves 143 
vary between the maps as different authors make different distinctions. Our 144 
experience is that kappa statistics applied to compare different PNV maps can 145 
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indicate as bad agreement as the one between a model and a PNV reconstruction, 146 
when biomes are not aggregated to coarser classes.  There are also subjective 147 
choices when classifying model output which introduces uncertainty. For 148 
example, how much tree LAI or tree cover constitutes a forest? How much for a 149 
savanna? The choices for these numbers are not well-motivated and can change 150 
the biome boundaries considerably.  Concerning the paleobotanical data, we 151 
deliberately did not derive biomes because classifying fossil sites into biomes 152 
introduces large uncertainty arising from interpreting the fossil record in terms 153 
of vegetation cover. 154 
 155 
These arguments are now included in Section 3.4.1 of the revised manuscript. 156 
 157 
 158 
Quantifying Model Uncertainty using Kappa  159 
 160 
We have compared our present day control run with a reconstructed biome 161 
distribution (e.g. Hickler et al. 2006) using Cohen’s Kappa. To mitigate the 162 
sources of uncertainty listed above, the data were aggregated to megiobiomes 163 
following the approach of Harrison and Prentice (2003) and Pound et al. (2011). 164 
The results show acceptable agreement between our present-day simulation and 165 
the PNV reconstruction, with a Kappa score of 0.62, constituting “good” 166 
agreement by Monserud and Leemans (1992) However, the pure numbers 167 
should not be over-interpreted for the reasons we outlined above. This result 168 
and method are described in Section S3 of the supplementary material 169 
accompanying the revised version of the manuscript. We have also included a 170 
mention that a more detailed examination of the biomes produced by LPJ-GUESS 171 
(without the modifications for this study) has been done by Smith et al. (2014, 172 
their Figure 2(C)) 173 
 174 
 175 
Quantifying Effect Size using Kappa 176 
 177 
Comparing the megabiome distribution from 280ppm and 450ppm Tortonian 178 
runs gives a Kappa of 0.70. Given that these biome maps are produced with 179 
identical methodologies (they use the same model structure differing only by the 180 
effect of CO2 concentration on vegetation and climate, they utilise the same 181 
biome classification and hence have the same subjective choices, and they 182 
involve no data-originating uncertainty), we argue that we do see a sufficiently 183 
large signal for our interpretations. 184 
 185 
Furthermore, the Kappa between the Tortonian 280ppm megabiomes and the 186 
PGF control run megabiomes is 0.64. Considering again that these maps are 187 
produced with identical methodologies, this indicates that we can distinguish 188 
Tortonian vegetation with 280ppm CO2 and present day vegetation (in answer to 189 
reviewer 2’s second point). Comparing the Tortonian 450ppm megabiomes and 190 
the PGF control run megabiomes gives a Kappa of 0.48. These scores are 191 
included in Section S3 of the revised supplementary material. 192 
 193 
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In summary, we believe that our vegetation model uncertainties are reasonable 194 
(given the uncertainty in the method of quantification) and our effect sizes are 195 
large enough to support our interpretation. We have included this information in 196 
the supplementary material. Note also that we used a DGVM that has been 197 
generally benchmarked and used for climate impact studies in a very large 198 
number of studies (see http://iis4.nateko.lu.se/lpj-guess/LPJ-199 
GUESS_bibliography.pdf for a list of LPJ-GUESS publications) 200 
 201 
 202 
 203 
2. The concept of the “Agreement Index” needs further explanation. I failed to 204 
understand how the “fractions” that characterize PFT status are obtained from 205 
LPJ-GUESS. It is said that they are derived from the LAI (p. 2249, line 19), but the 206 
authors did not explain this relation.  207 
 208 
We have included further elaboration of the method in the manuscript. To 209 
answer the reviewer briefly here: the “fraction” (or “relative abundance”) of a 210 
PFT in a gridcell is the LAI of the PFT in the gridcell divided by the total LAI in 211 
the gridcell. The LAI values are the growing season maximum values and they 212 
are averaged over a 30 simulation year period.  213 
 214 
 215 
 216 
3. In view of the various problems with paleo-botanical data, there is indeed no 217 
ideal way to compare them with model results. And surely the Agreement index 218 
(AI) introduced by the authors could be one way to quantify agreement. 219 
Nevertheless, this index is based on a number of arbitrary decisions: (i) the 220 
choice of fractional ranges for the different PFT ’statuses’, (ii) the choice of 221 
numbers for the quantification of the different types of agreement (table 1); and 222 
(iii) the choice of the null hypothesis. To explain the latter a bit more: Instead of 223 
assuming that all possible values for the agreement (values -2 to 2) have equal 224 
probability, one could also assume that all fractional values for the “data” and the 225 
“model” have equal probability which would give a different random distribution 226 
(“null” distribution) of AI values. In my opinion there is no good argument for 227 
either of the choices (i) to (iii). Therefore it is not clear whether the results based 228 
on the particular choices for the AI are robust. The authors claim to have 229 
addressed robustness with respect to (i), but did not present these results. 230 
Robustness with respect to all aspects should be demonstrated in the paper (or 231 
in appendices) by varying the particular assumptions (i) to (iii).  232 
 233 
Yes, we agree with the reviewer that we should have provided more information 234 
about the robustness of the method. We have addressed all of the above points 235 
and included our findings in Section S2 of the revised supplementary material. 236 
We have also significantly reworked the text discussing the quantification of 237 
agreement by chance. We realise that this text was too brief and did not clearly 238 
and fully describe the method, nor did it describe the possible choices or 239 
rationale for our choice. In particular, from this comment and comment 5, it 240 
appears that the reviewer misunderstood our method for estimating agreement 241 
by chance.  We hope we have corrected this failure of the text and can also add 242 

http://iis4.nateko.lu.se/lpj-guess/LPJ-GUESS_bibliography.pdf
http://iis4.nateko.lu.se/lpj-guess/LPJ-GUESS_bibliography.pdf
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that, somewhat fortuitously, the reviewer also suggested two alternative 243 
methods which we have now tested and discuss in the supplementary 244 
information.  245 
 246 
 247 
4. The arguments for introducing the new AI measure of data-model agreement 248 
(p. 2249, lines 13-17) are not convincing: The authors simply state a personal 249 
preference (“We prefer a metric that . . . ”) but do not explain why the other 250 
metrics (Salzmann et al. 2008; Pound et al. 2011; François et al. 2011) should be 251 
discarded. In fact, it would be good to know whether those other approaches 252 
would reveal similar results when applied to the data used by the authors. I 253 
personally feel, that in particular the method by Francois et al. (2011) is the most 254 
objective because it generally distrusts a comparison of data diversity with 255 
model abundances (in the terminology of the authors, p. 2248 bottom) by 256 
comparing only presence/absence. Moreover, if dispite all warnings such a 257 
diversityabundance comparison is attempted (as done by the authors with their 258 
Agreement Index), why not using the classical rank correlation which is known 259 
to be statistically robust?  260 
 261 
We thank the reviewer for pointing this out and agree we should be more exact 262 
in our reasons for developing the AI rather than using the other methods. We 263 
have included a more detailed discussion of the reasoning for not using existing 264 
methods or classical statistics in a revised draft of the manuscript and also 265 
present them below. As mentioned above, we will also provide additional 266 
statistical analyses of the AI method to prove the robustness of our results. 267 
 268 
Furthermore, we have calculated both Pearson’s product moment correlation 269 
coefficients and Spearman’s rank correlation coefficients for the 280ppm and 270 
450 ppm scenarios per PFT and for the entire dataset. These are now presented 271 
in the revised supplement to the main text (Section S1) and also summarised 272 
here for convenience in Fig 2. As mentioned in the original text, these do not 273 
prove to be particularly illuminating. The per-PFT coefficients do not show a 274 
consistent trend favouring a particular CO2 scenario.  Furthermore, the 275 
Spearman’s rank for the full dataset is virtually identical for both CO2 scenarios, 276 
but the Pearson’s coefficient indicates better correlation for the 280 ppm CO2 277 
scenario than for 450 ppm CO2 (0.53 vs. 0.42).  This could be interpreted as weak 278 
evidence that the 280 ppm CO2 scenario agrees better with the paleo-botanical 279 
data. We have included a brief discussion of these additional analyses in the 280 
supplementary material, and as indeed not all applied statistics clearly favor the 281 
low CO2 scenario, we will emphasize the uncertainties more. Note that we 282 
already formulated the title quite carefully, as: “Climate–vegetation modelling 283 
and fossil plant data suggest low atmospheric CO2 in the late Miocene.” The 284 
wording “suggest” should indicate that we cannot be sure, as often the case in 285 
paleoclimate research. However, one should keep in mind that our qualitative 286 
regional discussion (where supported by sufficient data) also tends to favor the 287 
low CO2 scenario.  288 
 289 
Regarding the other comparison methods; Salzmann et al. (2008) present a map 290 
of the inconsistency between model and data. Whilst a visual comparison is 291 
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useful, we wanted to add a quantitative method to discriminate between the two 292 
CO2 concentrations. The later study of Pound et al. (2011) uses Cohen’s Kappa to 293 
determine biome agreement, both the 27 ‘native’ biomes from BIOME4 and a 7 294 
“megabiome” classification. This does offer a single statistic which could be used 295 
for hypothesis testing. However, (as discussed extensively in point 1.) there are 296 
drawbacks to using Kappa to compare biome classifications and with biome 297 
classifications themselves. So whilst comparisons of biomes are clearly useful 298 
visual aids and can be a useful cross-check (see our response to point 1), we 299 
decided to use only information on PFT fractions for our main analysis and 300 
therefore minimize subjective choices and classifications.   301 
 302 
As the reviewer points out, the work of François et al. (2011) offers a method for 303 
determining agreement between paleobotanical data and simulated vegetation 304 
which percentage agreement per PFT based on presence/absence. These per-305 
PFT scores could conceivably be combined to produce overall agreement scores, 306 
taking care that PFTs which are mostly absent from the fossil record do not 307 
unduly affect the final result. However, our study is different in nature to that of 308 
François et al. The study of François et al. was a regional study with a relatively 309 
high degree of taxonomic precision (i.e. a more detailed PFT set), whereas our 310 
study is global with appropriately coarser taxonomic resolution (i.e. a relatively 311 
simpler global PFT set). By means of example, there are 8 purely temperate PFTs 312 
in the CARAIB version used in François et al. 2011 compared to only 2 in the 313 
default LPJ-GUESS  configuration and 4 in the configuration used in our study. 314 
Thus by exploiting a high degree of taxonomic precision, presence/absence data 315 
were used effectively in the regional study of François et al. In our global study, 316 
each PFT spans a much larger geographical extent and there are fewer PFTs at 317 
each site for which to make presence/absence comparison. Thus we expect the 318 
effective differentiating power of such presence/absence to be lesser. So rather 319 
than using detailed taxonomic resolution and presence/absence information, we 320 
sought to exploit the abundance/diversity fractions which we believe has useful 321 
information and so is worth attempting despite our previous warnings.  For this 322 
reason we developed the Agreement Index and introduced statuses beyond 323 
presence/absence. 324 
 325 
The Agreement Index also allows easy assignment of a zero-weighting when 326 
PFTs are absent from a site in both the fossil record and model (contribution in 327 
this case is zero). It also allows an (admittedly subjective) method to tackle the 328 
“degree of difference” effect which causes problems for Kappa analyses which 329 
involve more than two classifications with differing conceptual degrees of 330 
similarity, as mentioned in point 1. This is done by assigning the value -2 for very 331 
strong disagreement and the value +2 for correctly matching dominant PFTs, as 332 
this must necessarily include at least 50% of the PFT and defines predominant 333 
biome functioning. A similar effect could be achieved by weighting the Kappa 334 
scores depending on the degree of difference, but this would also require 335 
subjective choices. The subjective choices involved in this method are motivated 336 
in an obvious and transparent way and can be (and were) tested relatively easily 337 
(see point 3). 338 
 339 
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We have modified the text in the manuscript to explain the above arguments in 340 
more detail. 341 
 342 
 343 
5. With Fig. 2 the authors want to demonstrate that their results differ from the 344 
null hypothesis of random agreement. And indeed, the AI values for the 280 ppm 345 
and the 450 ppm simulation are well off their “null model”. But they did not 346 
demonstrate that the difference between the AI values obtained from their two 347 
simulations with different CO2 is significant. If naively one would add the spread 348 
of the null model to the AI values from the two simulations, they would be 349 
statistically indistinguishable. Therefore the authors must plot into Fig. 2 also the 350 
full distribution of their results for the two experiments to allow judgement of 351 
signifance concerning their difference – maybe the authors added those Z-scores 352 
exactly for that purpose, but it’s nor how they were computed. But plotting the 353 
individual distributions would in any case be more informative.  354 
 355 
We agree that we could have provided more information on the difference 356 
between the AI values from different models. It also appears that the text which 357 
explains the distribution in Fig 2 in the manuscript is unclear and we have 358 
attempted to remedy this. To clarify here, each of the 25,000 frequency counts in 359 
Fig. 2 is the mean AI score from matching all 167 fossil sites to 167 random 360 
gridcells (not counts of the AI per site or AI per PFT). Thus there is no 361 
meaningful “full distribution” to plot on Fig. 2 for the two experiments because 362 
each experiment only yields a single frequency count of the type plotted in Fig 2 363 
(ie. the mean of all the 167 fossil sites compared to simulated vegetation). It may 364 
be that the “full distribution” to which the reviewer is referring is the ‘per site’ or 365 
‘per PFT’ AI values (or ‘per site per PFT’ AI values) but that quantifies a different 366 
variability from that in Fig 2. The variability in AI between sites is not 367 
inconsiderable (see Figure 1 in the original manuscript for an idea of the 368 
variability between sites) but we don’t believe this sheds any light on the issue of 369 
distinguishing the mean AI values of the two CO2 scenarios. Similar arguments 370 
apply for the distribution of AI per PFT.  371 
 372 
In the first instance, the distribution in Figure 2 shows the mean value of chance 373 
agreement. This seems to be clear enough, although we should add that this is 374 
only one particular method of estimating chance agreement. Many other 375 
methods are conceivable and a selection have been tested and are now reported 376 
in the supplementary information to the revised manuscript in answer to the 377 
reviewer’s point 3.(iii). One can then look at the AI values for each Tortonian 378 
scenario and conclude that both scenarios do indeed offer better agreement than 379 
chance. In the second instance, the standard deviation of the same distribution 380 
aims to quantify the natural variability in chance agreement and so give and idea 381 
of how much better the Tortonian scenarios are than random chance, and how 382 
much better one scenario is than the other. The traditional p-value interpretation 383 
is relative to the model used to estimate chance agreement. In the case of the 384 
method presented in the main text, this would be the probability of getting a 385 
random combination of gridcells giving better agreement than the Tortonian 386 
scenario. These are p < 10-8 and p < 10-13 for the 450 ppm scenario and the 280 387 
ppm scenario respectively. We can conclude, reassuringly but not surprisingly, 388 
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that both our reconstructions are very much better than chance. Furthermore, 389 
the 280 ppm scenario is clearly better than the 450 ppm but differences in such 390 
very small p-values are not helpful, so instead we report the difference in units of 391 
standard deviation (Z scores), in this case 1.7. We believe this difference 392 
sufficiently supports our conclusion that the 280 ppm run agrees better with the 393 
fossil record than the 450 ppm run. 394 
 395 
We realise that this logic relies on the assumption that matching random model 396 
gridcells to the fossil record gives an adequate representation of chance 397 
agreement. We chose this method to present in the main text because it will give 398 
ecologically consistent PFT compositions (no unrealistic combinations of boreal 399 
and tropical PFTs for example) and so is a more useful test than some random 400 
numbers (which could give such unrealistic combinations).  However, in the 401 
supplementary information to the revised manuscript we test other models of 402 
random chance and, with one exception, all other methods of estimating 403 
agreement by chance indicate that the 280 ppm simulation is better than chance 404 
agreement by at least 3 standard deviations (Z-score >3) the 450 ppm scenario is 405 
better by around 1.5 standard deviations, but generally much higher. 406 
 407 
 408 
 409 
Minor comments  410 
 411 
p. 2246, line 25: The authors note that they transfered the soil parameters of the 412 
AOGCM to LPJ-GUESS. This provokes the general question to what extent the 413 
water cycles in the AOGCM and LPJ-GUESS are consistent, and whether 414 
inconsistencies in evapotranspiration fluxes might affect the results for the 415 
vegetation distribution.  416 
 417 
Yes, in this model set-up each model has an independent hydrological cycle with 418 
different process representations, with the hydrological cycle of LPJ-GUESS being 419 
driven (in terms of input precipitation and temperature) by the climate from 420 
ECHAM5/MPIOM. It is certainly true that the evaporative fluxes will not be 421 
identical between the models, the different land surface properties and different 422 
process representations will guarantee that. However, the hydrological cycle of 423 
LPJ-GUESS is still fully internally consistent and has been benchmarked (as 424 
implemented in the related model LPJ-DGVM) in Gerten et al. 2004 and, for 425 
newer version of the LPJ-GUESS model, including the one we applied, by the LPJ-426 
GUESS consortium (unpublished). Given the wide-ranging applications of LPJ-427 
GUESS and LPJ-DGVM, we are confident that the representation of the 428 
hydrological cycle, including the evapotranspiration fluxes, to be sufficiently 429 
well-modelled to reproduce the broad patterns of Tortonian vegetation at this 430 
relatively coarse global scale.  The study of the different hydrological in different 431 
models is an interesting topic in itself, especially the hydrological cycles in the 432 
models have been designed with very different aims in mind, but beyond the 433 
scope of the current work. Double simulations of the hydrology are inherent in 434 
each application of a DGVM driven by a GCM and cannot be avoided. The 435 
alternative approach would have been to use an existing land surface (and 436 
vegetation model) fully embedded within a GCM, but the land surface schemes of 437 
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GCMs do commonly used more simplified representations of the vegetation and 438 
simulated vegetation patterns have not been evaluated as extensively as for the 439 
LPJ-GUESS model.  As this is standard procedure, we don’t believe it is necessary 440 
to mention in the main text. 441 
 442 
 443 
p. 2247, lines 18-28: The authors describe a number of modifications they 444 
introduced to LPJ-GUESS, but not why these modifications were necessary for 445 
their study. For the modified bioclimatic limits they claim improvements for 446 
present day biome distribution (lines 18-20) but do not demonstrate the 447 
improvements. It is only claimed (p. 2248, lines 11-12) that the modern biomes 448 
are reproduced “reasonable well”. For such a claim one needs a measure, but this 449 
is not provided. Moreover, the main issue of the study depends on the model’s 450 
reaction to changing climate and CO2. Therefore, some comments why the 451 
authors trust the model’s response to such changes would be helpful.  452 
 453 
With regard to the bioclimatic limits, the main effect was to remove treeless 454 
areas in South China, Argentina and Florida (see Smith et al. 2014, Figure 2(C) 455 
for the model version which does not include nitrogen limitation). This was an 456 
artifact whereby in these areas it was too warm for temperate trees to establish, 457 
but too cold for tropical trees, which resulted in treeless belts. In other words, 458 
there was a mistake in the model, which we corrected, with the main result that 459 
the model correctly simulates forests in south-eastern Asia.  The other changes 460 
to bioclimactic limits were made for consistency with Sitch et al. (2003) and 461 
make very little difference. The introduction of Temperate Needle-leaved 462 
Evergreen (TeNE) trees, and the splitting of shade-Intolerant boreal/temperate 463 
Broadleaved Summergreen trees (IBS) into Temperate shade-Intolerant 464 
Broadleaved Summergreen trees (TeIBS) and Boreal shade-Intolerant 465 
Broadleaved Summergreen (BIBS) was intended to better compare the model 466 
results to the fossil record and because we believe that, with these changes, 467 
functional characteristics of the global vegetation are represented more 468 
appropriately. We have now described the reasoning for these changes in more 469 
detail in the revised text. With regards to the model’s ability to capture present 470 
day biomes, we refer to our answer to point 1 which includes a Kappa measure 471 
and higher resolution maps for a more detailed visual comparison.  We have also 472 
mentioned in the supplementary material (section C3 where model evaluation is 473 
discussed) that the biomes produced by LPJ-GUESS without our modifications 474 
can be seen in Smith et al. (2014) (their Figure 2(C)).  475 
 476 
Furthermore, we have included text to mention that LPJ-GUESS (and the closely 477 
related LPJ-DGVM model) has been benchmarked against various observations 478 
including, for example,  NPP (e.g. Zaehle et al., 2005; Hickler et al., 2006), 479 
modelled PNV (Hickler et al. 2006; Smith et al. 2014), stand-scale and 480 
continental-scale evapotranspiration (AET) and runoff (Gerten et al., 2004), 481 
vegetation greening trends in high  northern latitudes (Lucht et al., 2002) and the 482 
African Sahel (Hickler et al., 2005), stand-scale leaf area index (LAI) and gross 483 
primary productivity (GPP; Arneth et al., 2007), forest stand structure and 484 
development (Smith et al., 2001, 2014; Hickler et al., 2004), global net ecosystem 485 
exchange (NEE) variability (Ahlström et al. 2012, 2015) and CO2 fertilisation 486 
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experiments (e.g. Hickler et al. 2008; Zaehle et al. 2014; Medlyn et al. 2015). 487 
Many of these benchmarks are constantly repeated by the LPJ-GUESS consortium 488 
(of which Hickler is a member, unpublished). Regarding the CO2 response, the 489 
model without nitrogen limitation most likely overestimates CO2 fertilisation 490 
(see e.g. Hickler et al. 2015), which implies that our conclusion that the climate 491 
forcing is more important than the physiological CO2 effects for distinguishing 492 
the low and high CO2 scenario for the late Miocene is robust. This is now also 493 
discussed in the revised manuscript.  494 
 495 
p. 2251, lines 10-11: Here the authors announce a table in the supplement 496 
relating fossil plant taxa and PFTs. But such a table is missing. Please add that 497 
table since a large part of the study is based on this classification. Instead there is 498 
an un-numbered table in the supplement listing the study sites.  499 
 500 
This table has been added to the supplementary material. 501 
 502 
p. 2252, line 16 and Figs. 1a an d 1b: It would be good to refer to Appendix B for 503 
references to the biome classification. Even better in my opinion would be to 504 
serve the readers by providing a table with the rules for the biome classification.  505 
 506 
Yes, we have now included such a table  507 
 508 
p. 2255, line 7: What are the “two reasons”? I cannot identify them in the 509 
following text.  510 
 511 
The two reasons are increased seasonality in Central Europe, and increased 512 
openness in the Iberian Peninsula and in modern Turkey. However, we agree 513 
that this is unclearly worded and this has been re-worded in the revised version 514 
of the manuscript. 515 
 516 
Table 1: I guess the row headers should be shifted.  517 
 518 
Thank you for pointing this out, we will ensure this is correct in the final proofs. 519 
 520 
Supplement Fig. S2: This figure should in my opinion be shifted to the main part 521 
of the study, because it shows that in certain regions (e.g. the Iberian peininsula) 522 
the proxy-data are not informative about the value of atmospheric CO2. 523 
 524 
Yes, this is a good idea and we have done so. 525 
 526 
Reviewer #2 527 
 528 
This paper presents a reconstruction of late Miocene vegetation using a dynamic 529 
vegetation model driven by the climatic outputs of climate model runs for two 530 
different partial pressures of CO2 in the atmosphere, 280 and 450 ppmv. These 531 
partial pressures reflect the range of atmospheric CO2 pressures that have been 532 
reconstructed from proxy data for the late Miocene. The authors compare the 533 
vegetation reconstructed with palaeovegetation data available for this time 534 
period. They also compare in detail their results with late Miocene vegetation 535 
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model reconstructions published in the literature. For the comparison with the 536 
data, they build an agreement index (AI) which is an interesting and relatively 537 
novel aspect of their work. Since the AI is significantly higher for the low CO2 538 
(280 ppmv) case, they conclude that climate and vegetation modeling suggest 539 
low CO2 in the late Miocene and so would favour the lower values in the range 540 
exhibited by the proxies. 541 
 542 
 543 
The paper is generally well written, scientifically sound and with some clearly 544 
novel aspects with respect to previous work on the subject. I am thus in favour of 545 
its publication in Climate of the Past. I just have a few comments or suggestions 546 
that the authors might want to address. 547 
 548 
 549 
(1) Section 3.4 : your comparison at the PFT level and associated statistics is 550 
presented as a new method for model-data comparison. However, as mentioned 551 
by the authors, François et al. (2011) have also performed a similar comparison 552 
at the PFT level, and contrary to what is said here, they also used the PFT 553 
diversity from the data (see for instance their table 7 and the comparison with 554 
model NPPs in their figure 6), although only presence-absence is used in their 555 
kappa calculation. What is the advantage of your AI index compared to the more 556 
traditional kappa method ? Kappa can also be averaged over sites or over PFTs. 557 
The statistical study on kappa presented here for AI (which is really interesting 558 
and the most novel contribution of this paper) is also possible for kappa. You just 559 
define more classes (abundance classes) that may also be involved in the kappa 560 
method, but actually have not been involved because of the large uncertainties 561 
on model PFT abundances. Models are certainly more robust in evaluating 562 
presence/absence than abundance. Morever, as mentioned in your section 3.4, it 563 
is not obvious that PFT diversity from the data can directly be compared to 564 
model abundances. Even presence/absence in the data may be uncertain due to 565 
the PFT assignment scheme in the data (see again François et al., 2011). This may 566 
also critically depend on the number of PFTs in the classification used. This 567 
might be discussed somewhat more, because the associated uncertainty might 568 
have some impacts on the conclusions reached. 569 
 570 
We thank the reviewer for his insightful and positive comments.  We apologise 571 
for mis-representing the work in François et al. (2011), we meant to state that 572 
PFT diversity was not used to provide a quantitative measure of agreement, and 573 
have amended the text accordingly.   574 
 575 
Our reasons for not using Kappa and for using abundance data beyond 576 
presence/absence are detailed in our answer to reviewer 1’s comment 1. We 577 
would also argue that the coarser taxonomic resolution of our global PFT gives 578 
sufficient robustness in terms of presence/absence and abundance to use 579 
abundance fractions.  Furthermore, we agree that whilst it could be possible to 580 
use Kappa on model abundances classes (neatly avoiding the uncertainties of 581 
biome classification whilst still utilising abundance/diversity data); such a 582 
method would still suffer from the “degree of difference problem” where a 583 
mismatch between the absent category and trace category would be treated as 584 
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severely as a mismatch between absent and dominant categories. It also offers no 585 
obvious way to remove or zero-weight the contribution from PFTs which are 586 
absent in both the data and model at a given site. We have discussed these points 587 
in the revised text.  588 
 589 
 590 
(2) Section 4.1, figure 2 : it might be interesting to add on figure 2 the AI that 591 
would be obtained with present-day (control run) model vegetation (when 592 
comparing to palaeodata). Is it significantly different from the AI for the 450 and 593 
280 ppmv late Miocene configurations ? If it is close to the 280 ppmv late 594 
Miocene case, it might mean that your model is not fine enough to discriminate 595 
between the present-day vegetation and the late Miocene one. 596 
 597 
As described in our answer to reviewer 1’s point 1, we have now provided 598 
statistics to quantify the differences in modelled vegetation between today and 599 
the Tortonian. The Kappa between the present day control run and the Tortonian 600 
280 ppm run is 0.64 and the Kappa between the present day control run and the 601 
Tortonian 450 ppm run is 0.48. Given that identical methodologies were used to 602 
derive these biomes (i.e. using the same model), we argue that we our model is 603 
indeed fine enough to discriminate. However, we don’t think that presenting the 604 
AI for the present-day vegetation is meaningful for addressing the research 605 
questions addressed here.  606 
 607 
 608 
(3) Section 4.3.1 : the characteristics of Miocene vegetation in Europe is indeed 609 
as discussed here the widespread presence of temperate deciduous trees, with 610 
some temperate evergreens in the south. Evergreens are however different from 611 
present-day Mediterranean (drought-tolerant) evergreen trees, since data show 612 
the presence (not dominance) of temperate evergreen perhumid trees. This is a 613 
very important climatic constraint from the point of view of the data, while your 614 
model does not separate between drought-tolerant and perhumid temperate 615 
evergreen trees. The impact of this simplification on the results should be 616 
discussed, or at least it should be mentioned. Also, your figure S2 indicates that 617 
the SI index strongly varies from one site to the next. This is an important result 618 
that shows that there are still some features that are not well captured by the 619 
model (or possibly it might be a problem in the interpretation of the data). It 620 
would be interesting to discuss figure S2 in the main text. 621 
 622 
It is right that both evergreen types are lumped in the applied version. However, 623 
the temperate evergreen PFT in this model version represents rather the 624 
perhumid type. The special hydraulic features of the drought-tolerant type (e.g. 625 
sclerophyllous leaves having a lower wilting point) had only been implemented 626 
in one particular model version and application including the hydraulic 627 
architecture of different PFTs, which improved the simulations for present-day 628 
Mediterranean ecosystems (Hickler et al. 2006). These developments have, to 629 
date, not been transferred to newer versions of LPJ-GUESS, partly because, back 630 
in 2006, the computational demand was still limiting, and calculating all 631 
physiological processes for each cohort would have increased the computational 632 
demand by an order of magnitude. Now, the computational demand is not so 633 
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much limiting anymore, and we envisage including tree hydraulics also in newer 634 
versions of LPJ-GUESS, but this has not been done.  We added a couple of 635 
sentences to discuss this, but we think that going more into details would be 636 
beyond the scope of this paper. 637 
 638 
Concerning the site-to-site variation of the AI in what was formerly Fig. S2 (now 639 
Fig. 5 in the revised manuscript), much of this is related to the fossil data rather 640 
than the model output as the variation often occurs within one simulated grid 641 
cell. For brevity, we choose not to discuss the details variation or possible 642 
nuances in the fossil data as this is primarily a discussion of modelling results at 643 
a global scale, and the manuscript is already rather long. However in accordance 644 
with the wishes of reviewer one, we have moved the figure to the main part of 645 
the manuscript so this variation will be more readily apparent to the reader. 646 
 647 
(4) Section 5 (Summary and conclusions): In view of the large uncertainties on 648 
climate models (including other boundary conditions than CO2), vegetation 649 
models and PFT classification, I am not sure that models can really provide a 650 
strong constraint on palaeo-CO2. It is interesting to learn that you model is more 651 
consistent with low CO2 in the late Miocene, but this is a very indirect constraint. 652 
I would suggest that you reformulate the last sentence of your conclusion to 653 
make the statement less direct (there are uncertainties and it may be model-654 
dependent, so we may need to study the same problem with other 655 
climate/vegetation models). 656 
 657 
We fully agree with the reviewer that there are still large uncertainties in climate 658 
models, the applied vegetation model and the applied analyses. We have been 659 
aware of these uncertainties, but apparently some of the formulations indicated 660 
too much certainty. Thus, we have reformulated the last sentence of the 661 
conclusions and other key sentences throughout the manuscript. We 662 
nevertheless believe that our indirect evaluation of two plausible CO2 663 
concentrations for the Tortonian and other aspects of the manuscript (e.g. state-664 
of-art climate modelling and DGVM applied to simulate Tortonian vegetation, 665 
novel approach for comparison with paleobotanical data, separating direct 666 
climatic and physiological CO2 forcing) represent an interesting contribution to 667 
the science on Tortonian climate and ecosystem dynamics.  668 
 669 
(5) Some small typos: 670 
P 2254, line 10: ‘possibly because’ P 2262, line 25: ‘Fig 1a and b’does not  671 
correspond to the present-day biome map, it should be figure S1 P 2263, line 7: 672 
‘It ´ also shows a band P 2263, line 12: ‘particularly shrubs’ 673 
 674 
Thanks for pointing these out, these have been corrected. 675 
 676 
 677 
 678 
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 781 
 AI 280 ppm AI 450 ppm Max Min 

Standard -0.67 -0.96 4.7 -11.5 

Absent-Absent = 1 (default = 0) 4.43 4.06 10.5 -11.5 

Dominant-Dominant = 1 (default =2) -0.91 -1.13 4.2 -11.5 

Both of the above 4.19 3.9 10 -11.5 

Minor disagreement = -1, disagreement = -2, 
major disagreement = -3 (default = 0,-1,-2) 

-4.9 -5.23 4.7 -21.5 

 782 
 783 
Table 1.  Overall Agreement Index (AI) scores for the 280 ppm and 450 ppm 784 
Tortonian runs, as well as the minimum and maximum values calculated with 785 
different scores assigned for levels of agreement.  786 

787 
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 788 

 789 
 790 
Figure 1.  Agreement Index (AI) values for the 280 ppm and 450 ppm runs for 791 
different fractional boundaries of the AI statuses. 792 

793 
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 794 

 795 
 796 
 797 
Figure 2. Pearson’s product moment correlation coefficient and Spearman’s rank 798 
correlation coefficients between the paleobotanical data diversity fractions and 799 
the simulated LAI fractions for the 280 ppm and 450 ppm CO2 Tortonian 800 
scenarios. 801 

802 
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 803 

List of changes 804 

Main manuscript 805 

 In section 3.3 a paragraph has been added discussing existing evaluation 806 
of LPJ-GUESS (or LPJ-DGVM) 807 

 In section 3.3 the reasons for changes to LPJ-GUESS compared to the 808 
standard version are discussed. 809 

 In section 3.3 text has been added to point the reader to section S3 of the 810 
supplementary information for model evaluation and discussion of effect 811 
sizes. 812 

 In section 3.4 the reader is referred to section S1 of the supplementary 813 
material for discussions of Spearman’s rank and Pearson’s product 814 
moment correlation coefficients. 815 

 A new section, section 3.4.1, has been added to discuss in detail previous 816 
approaches for comparing fossil data and model output 817 

 A new section, section 3.4.2, has been formed to describe the Agreement 818 
Index method.  This is primarily formed from existing text with small 819 
addition to provide clearer explanation of the method. 820 

 A new section, section 3.4.2, has been added to discuss estimation of 821 
chance agreement found using the AI.  The section finishes with a 822 
paragraph pointing the reader to section S2 of the supplementary 823 
material for robustness checks of the AI method. 824 

 Section 3.5 now contains text discussing the aggregation of 825 
schlerophylous and perhumid temperate broad-leaved evergreen trees 826 
into one PFT. 827 

 Section 4.1 now mentions Figure 5 (which has been moved from the 828 
supplement to the main text). 829 

 Section 4.2 now discusses the p-value interpretation of the Z-scores. 830 
 Section 4.2 now includes a short discussion of the likely magnitude of CO2 831 

fertilistion effects in the vegetation model,  832 
 One paragraph has been moved from section 4.2 to 4.3 (a regional 833 

discussion of model results) as it is more appropriate in section 4.3 834 
 Section 4.3 now contains a discussion of the expanded Table 2 (regional 835 

AI scores) and the text discussed in the previous point. 836 
 Sections 4.3.1-4.3.6 have been altered to remove quantitative discussions 837 

of the AI scores where there is insufficient data to merit it. 838 
 Section 5 has been modified to emphasise model uncertainty and 839 

moderate the conclusions appropriately. 840 
 841 
 842 

Main tables 843 

 Table 2 and 3 have been combined and expanded to include AI scores 844 
from all continents.  Note also that the Central Europe region has been 845 
expanded to include more fossil sites compared to the original submission 846 

 847 



 21 

Main figures 848 

 A new figure (Figure 5) has been added to the main text (previously it was 849 
in the supplement) which displays the difference in AI scores between to 850 
280 ppm and 450 ppm simulations spatially. 851 

 852 

Appendices 853 

 Appendix B has been expanded to explain the biome classification in more 854 
detail and now includes a tables which serves as a complete reference for 855 
the classification 856 
 857 

 858 

Supplementary material 859 

 The supplementary material has been expanded significantly.  It now 860 
includes a discussion of Pearson’s product moment correlation coefficient 861 
and Spearman’s rank correlation coefficient results, extensive robustness 862 
checks of the Agreement Index (AI) method and a discussion of estimating 863 
agreement by chance, and a discussion of model uncertainty (based on 864 
the present day control vegetation and a potential natural vegetation 865 
biome map) and signal size using Cohen’s Kappa statistic. 866 

 Former Figure S2 (map showing the differences in AI scores at fossil data 867 
sites) of the original supplement have been moved to Fig. 5 of the main 868 
text. 869 

 Table S5 has been added to show the mapping from fossil taxa to Plant 870 
Functional Types. 871 
 872 
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Abstract 899 

 900 

There is increasing need to understand the pre-Quaternary warm climates, how 901 

climate-vegetation interactions functioned in the past, and how we can use this 902 

information for understanding the present. Here we report vegetation modelling 903 

results for the Late Miocene (11-7 Ma) to study the mechanisms of vegetation 904 

dynamics and the role of different forcing factors that influence the spatial patterns of 905 

vegetation coverage. One of the key uncertainties is the atmospheric concentration of 906 

CO2 during past climates. Estimates for the last 20 million years range from 280 ppm 907 

to 500 ppm. We simulated Late Miocene vegetation using two plausible CO2 908 

concentrations, 280 ppm CO2 and 450 ppm CO2, with a dynamic global vegetation 909 

model (LPJ-GUESS) driven by climate input from a coupled AOGCM (Atmosphere-910 

Ocean General Circulation Model). The simulated vegetation was compared to 911 

existing plant fossil data for the whole Northern Hemisphere.  For the comparison we 912 

developed a novel approach that uses information of the relative dominance of 913 

different Plant Functional Types (PFTs) in the palaeobotanical data to provide a 914 

quantitative estimate of the agreement between the simulated and reconstructed 915 

vegetation. Based on this quantitative assessment we find that pre-industrial CO2 916 

levels are largely consistent with the presence of seasonal temperate forests in Europe 917 

(suggested by fossil data) and open vegetation in North America (suggested by 918 

multiple lines of evidence). This suggests that during the Late Miocene the CO2 levels 919 

have been relatively low, or that other factors that are not included in the models 920 

maintained the seasonal temperate forests and open vegetation. 921 

 922 

 923 
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 924 

1. Introduction 925 

 926 

The Late Miocene (11 to 7 Ma) belongs to the late phase of the Cenozoic climate 927 

cooling, during which the seasonality of climate in Europe intensified (e.g. 928 

Mosbrugger et al., 2005) and landscapes in North America opened (Eronen et al., 929 

2012). In many regions, it was still characterised by warm and humid climatic 930 

conditions compared to today (Micheels et al., 2011, Utescher et al., 2011, Eronen et 931 

al., 2012, Fortelius et al., 2014).  The global continental configuration in the Miocene 932 

was generally comparable to the modern situation with some small differences (e.g., 933 

Herold et al., 2008, Micheels et al., 2011). Marine evidence indicates that tropical sea 934 

surface temperatures were similar or even warmer than present in the Early to Middle 935 

Miocene (e.g., Stewart et al., 2004), and terrestrial equatorial regions were as warm as 936 

today in the Late Miocene (Williams et al., 2005; Steppuhn et al., 2006). The polar 937 

and Northern regions were warmer during the whole Miocene (e.g., Wolfe, 1994a,b, 938 

Utescher et al., 2011, Popova et al., 2012). Similarly, the North Pacific in the Late 939 

Miocene was warmer than today (Lyle et al., 2008). CO2 levels during the Late 940 

Miocene can still not be reconstructed with certainty (see e.g. discussion in Beerling 941 

and Royer 2011): estimates for the atmospheric CO2 levels range from 280 ppm to as 942 

high as 500 ppm.  Recent studies suggest about 350–500 ppm for the Middle Miocene 943 

(Kürschner et al., 2008, Foster et al., 2012, Zhang et al., 2013), and around 280-350 944 

ppm for the Late Miocene (Zhang et al., 2013, their figure 5). In addition, terrestrial 945 

proxy data suggest that during the Late Miocene there was a marked increase in both 946 

temperature and precipitation seasonality (Janis et al., 2002, Mosbrugger et al., 2005, 947 

Eronen et al., 2010, 2012). Plant-based data evidence that the increase in temperature 948 
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seasonality was mainly effective in the middle to higher latitudes (Utescher et al., 949 

2011), while the evolution of precipitation seasonality was strongly region-dependant 950 

and variable throughout the late Miocene (Syabryaj et al., 2007; Utescher et al., 951 

2015). Knorr et al. (2011) modelled the impact of vegetation and tectonic conditions 952 

on the Late Miocene climate, and showed that the vegetation has a considerable effect 953 

on the climate, and that Late Miocene warmth can be modelled with relatively low 954 

CO2 concentrations at pre-industrial level (278 ppmv).  Further, LaRiviere et al. 955 

(2012) showed that the oceanic state in the Late Miocene was similar to that of Early 956 

Pliocene, with a deeper thermocline, high SSTs, and low SST gradients. They further 957 

suggested that, based on their data, during the Late Miocene and earlier times CO2 958 

and oceanic warmth were decoupled because of deeper thermoclines. The tight link 959 

between ocean temperature and CO2 formed only during the Pliocene when the 960 

thermocline shoals and surface water became more sensitive to CO2. Bolton & Stoll 961 

(2013) on the other hand suggested that, based on coccolith data analysis, the 962 

atmospheric CO2 concentration decreased during the latest Miocene (7-5 Ma). They 963 

also suggested that atmospheric CO2 content might have been higher (400-500 ppm, 964 

based on Zhang et al., 2013) during the Middle and Late Miocene, and that the 965 

substantial ocean surface cooling during the last 15 Ma may reflect the global 966 

decrease in the CO2 concentration. 967 

 968 

The Late Miocene is a sub-epoch of the Miocene, which is generally dated roughly 969 

between 11 to 5 million years. It includes the Tortonian and Messinian stages. The 970 

climate and vegetation models we use in this study use the boundary conditions 971 

specific for the Tortonian. The Tortonian comprises the time-interval between 11.6 972 

and 7.2 Ma (Gradstein et al., 2004). It corresponds roughly to European mammal 973 
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units MN9 to MN12, and Vallesian and lower Turolian mammal zones (Steininger 974 

1999). The boundary conditions used for the climate model, as well as the proxy data 975 

we use, are dated within these time slices. From here on, we just use the term 976 

Tortonian to indicate this time period, and refer to the Late Miocene when we discuss 977 

trends in more general terms. 978 

 979 

Here we run the dynamic global vegetation model  (DGVM) LPJ GUESS (Smith et 980 

al., 2001, Sitch et al., 2003, Ahlström et al., 2012) for the Tortonian with two different 981 

CO2 concentrations to investigate the vegetation dynamics during this period. We use 982 

climate data simulated for the Tortonian by Knorr et al. (2011) and Knorr and 983 

Lohmann (2014), using a fully coupled AOGCM without any flux corrections.  We 984 

concentrate on whether the DGVM can create and maintain the mid-latitude seasonal 985 

vegetation cover in a generally warmer world, as suggested by the proxy data, and on 986 

the sensitivity of the vegetation to CO2 concentration. We compare our results with 987 

existing terrestrial proxy data and previous modelling results, and discuss the 988 

implications from our results. Our hypothesis is that in order to maintain the seasonal 989 

and open vegetation of the Late Miocene, we need low atmospheric CO2 990 

concentration.  991 

 992 

2. Previous model studies 993 

 994 

Several vegetation model runs have been performed previously for the Late Miocene 995 

period. One of the first was a BIOME4 model (Kaplan, 2001) run for the Tortonian by 996 

Micheels (2003) to interpolate between the vegetation reconstructed by qualitative 997 

interpretation of proxy data from palaeobotanical literature. In this reconstruction the 998 
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tropical forests expand in the Tortonian, and their margins shift further poleward. 999 

Much of Africa was generally characterised by tropical forest vegetation. 1000 

Accordingly, the Sahara desert was smaller than today and consisted of steppe and 1001 

open grassland, rather than sand desert. Woodier Tortonian vegetation replaced the 1002 

present-day’s warm-arid desert, semi-desert and grassland regions.  1003 

 1004 

Francois et al. (2006) used the CARAIB model together with the ECHAM4/ML 1005 

AOGCM to reconstruct the distribution of vegetation and carbon stocks during the 1006 

Tortonian (7-11 Ma) with different CO2 levels. The main difference to our model 1007 

setup is that ECHAM4 was not coupled to a dynamic ocean model, but a mixed layer 1008 

ocean model. Their Tortonian run with 280 ppm CO2 showed a general trend of 1009 

reduction of desert areas worldwide and appearance of tropical seasonal forests in the 1010 

warm temperate zone of the Northern Hemisphere, between 30° and 50° (figure 4 of 1011 

Francois et al., 2006). With their 560 ppm CO2, most deserts disappeared from the 1012 

continental surface, except for the Sahara.  The extent of tropical seasonal forests also 1013 

appeared to be extremely sensitive to the atmospheric CO2 level. Francois et al. 1014 

(2011) further used the CARAIB model to study the Tortonian vegetation in Europe 1015 

in detail. On average, their standard 280 ppm run is too cool, with too few temperate 1016 

humid evergreen trees in Southern Europe compared to their proxy data. Also other 1017 

models (see below) have struggled to reproduce the seasonal forests in Europe that are 1018 

known to have existed for the last 10 million years (e.g. Agusti et al., 2003, 1019 

Mosbrugger et al., 2005). 1020 

 1021 

Pound et al. (2011) used BIOME4, driven by the HadAM3 atmosphere-only general 1022 

circulation model, and palaeobotanical proxies to create an advanced global data–1023 
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model hybrid biome reconstruction for the Tortonian. In their runs boreal forests 1024 

reach 80°N, and temperate forests were present north of 60°N. Warm–temperate 1025 

forests cover most of Europe, North America and South-East Asia. There is temperate 1026 

savannah in central USA. Most areas that are deserts today are covered by grasslands 1027 

and woodlands in their run. The extent of tropical forests in South America was 1028 

reduced. Scheiter et al. (2012) used the adaptive DGVM (aDGVM) forced with 1029 

climate data from HadCM3L and carried out factorial vegetation model runs to 1030 

investigate the role of fire, emergence of C4 photosynthesis, and atmospheric CO2 1031 

levels in the vegetation dynamics of Africa. In their runs vegetation openness is 1032 

mainly determined by fire, generally too much forest cover is simulated if fire 1033 

disturbance is switched off. The biome pattern is relatively insensitive to changes in 1034 

the CO2 concentration or the introduction of herbaceous vegetation with C4 1035 

photosynthesis. 1036 

 1037 

3. Methods  1038 

 1039 

3.1 Palaeoclimate Simulations 1040 

 1041 

The climate simulations have been performed with an AOGCM.  The atmosphere 1042 

model component ECHAM5 (Roeckner et al., 2003) was used at T31 resolution 1043 

(∼3.75°) with 19 vertical levels. The ocean model MPIOM (Marsland et al., 2003) 1044 

was run with a bipolar curvilinear GR30 resolution (∼3°x1.8°) with 40 vertical layers. 1045 

This modelling approach has been evaluated with proxy data in investigations of the 1046 

Tortonian (Micheels et al., 2011, Knorr et al., 2011) and the Middle Miocene climate 1047 

transition (Knorr and Lohmann, 2014). We used the same boundary conditions as 1048 
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Micheels et al. (2011) with respect to the tectonic setting and the vegetation 1049 

distribution. We applied minor land-sea modifications, as described in Knorr et al. 1050 

(2011), e.g., a closed Hudson Bay (Smith et al., 1994). We used data from two model 1051 

runs with different CO2 settings, one with a lower CO2 concentration of 278 ppm 1052 

(after this referred to as “280 ppm run”, from Knorr et al., 2011) and one with a 1053 

higher CO2 concentration of 450 ppm (after this referred to as “450 ppm run”, from 1054 

Knorr and Lohmann, 2014).   1055 

 1056 

For further details of the AOGCM model configuration and the boundary conditions 1057 

we refer the reader to Micheels et al. (2007, 2011), Knorr et al. (2011), and Knorr and 1058 

Lohmann (2014). 1059 

 1060 

3.2 Correction of present-day biases in climate simulations  1061 

 1062 

To correct for biases in climate simulations, the difference between the Tortonian 1063 

climate simulations and the pre-industrial control simulation in Knorr et al. (2011) 1064 

(the Control) was applied to present day climate data to form the palaeoclimate. The 1065 

Princeton Global Forcing dataset (PGF, Sheffield et al., 2006) was selected as the 1066 

present day climate baseline. This dataset is a reanalysis product (produced by 1067 

running an atmospheric circulation model with data assimilation using meteorological 1068 

measurements) and has been bias-corrected using ground and satellite observations of 1069 

meteorological variables. Thus it provides global data on a daily or sub-daily time-1070 

step which has been dynamically interpolated from station measurements and, by 1071 

using observed meteorological measurements, is corrected for biases originating from 1072 

the atmospheric circulation model.  1073 



 30 

 1074 

The palaeoclimate anomalies were calculated using the mean values from 100 years 1075 

of climate simulation and applied following the approach of François et al. (1998) but 1076 

on a daily, rather than a monthly, time step. The years 1951-1980 were selected to 1077 

represent the pre-industrial climate, as they give a reasonable compromise between 1078 

the need for low atmospheric CO2 (to better represent pre-industrial climate) and the 1079 

need for maximal instrumentation to measure the climate and so better constrain the 1080 

atmospheric circulation model.  1081 

 1082 

3.3 Vegetation Simulations  1083 

 1084 

The palaeoclimate model results were used to drive the DGVM LPJ-GUESS. The soil 1085 

texture map used in the vegetation simulations was derived by translating the soil 1086 

texture map used by the palaeoclimate AOGCM simulations to the soil classes 1087 

detailed in Sitch et al. (2003).  The representation of vegetation in the palaeoclimate 1088 

AOGCM comprised statically prescribed land surface classes from Micheels (2003) 1089 

and as such cannot vary to reach equilibrium with the climate.  By using a DGVM 1090 

with offline climate data we allow the vegetation to reach equilibrium with the (now 1091 

static) climate.  This forms the first step of an asymmetric, iterative offline coupling.  1092 

Thus we consider our vegetation map to be an iteratively improved version of the 1093 

original land-cover map of Micheels (2003), improved in the sense that it has 1094 

undergone one cycle of simulated climate-land surface feedbacks, and has used a 1095 

more fully developed DGVM with more detailed process representations.  1096 

 1097 
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LPJ-GUESS (Smith et al., 2001) combines the generalized representations of the 1098 

physiological and biophysical processes embedded in the widely used global model 1099 

LPJ-DGVM (Sitch et al., 2003) with detailed representations of tree population 1100 

dynamics, resource competition and canopy structure, as generally used in forest gap 1101 

models (Bugmann 2001, Hickler et al., 2004). LPJ-GUESS (and the closely related 1102 

LPJ-DGVM model) has been benchmarked against various observations including, 1103 

for example, NPP (e.g. Zaehle et al., 2005; Hickler et al., 2006), modelled PNV 1104 

(Hickler et al. 2006; Smith et al. 2014), stand-scale and continental-scale 1105 

evapotranspiration (AET) and runoff (Gerten et al., 2004), vegetation greening trends 1106 

in high  northern latitudes (Lucht et al., 2002) and the African Sahel (Hickler et al., 1107 

2005), stand-scale leaf area index (LAI) and gross primary productivity (GPP; Arneth 1108 

et al., 2007), forest stand structure and development (Smith et al., 2001, 2014; Hickler 1109 

et al., 2004), global net ecosystem exchange (NEE) variability (Ahlström et al. 2012, 1110 

2015) and CO2 fertilisation experiments (e.g. Hickler et al. 2008; Zaehle et al. 2014; 1111 

Medlyn et al. 2015). 1112 

 1113 

Here, we build upon a recent version, including a representation of wildfires 1114 

(Thonicke et al., 2001), the hydrology scheme from Gerten et al. (2004), and updates, 1115 

in particular concerning the Plant Functional Type (PFT) parameterization described 1116 

by Ahlström et al. (2012). The bioclimatic limits from Ahlström et al. (2012) were 1117 

revisited and modified follow the original values in Sitch et al. (2003)., This was 1118 

motivated by an artefact found in the parameters of Ahlström et al. (2012) whereby in 1119 

certain areas it was too warm for temperate trees to establish, but too cold for tropical 1120 

trees.  This resulted in treeless belts in South China, Argentina and Florida (see Smith 1121 

et al. 2014, Figure 2(C) for the model version which does not include nitrogen 1122 
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limitation). The updated bioclimatic parameters corrected this, but did not result in 1123 

any other significant differences.  as described below. The new bioclimatic limit 1124 

parameterizations improve the simulated present-day vegetation compared to an 1125 

independently derived expert map. In our version, the bioclimatic limits follow the 1126 

original values in Sitch et al. (2003).  The boreal/temperate shade-intolerant 1127 

summergreen broadleaved tree (IBS) PFT in Ahlström et al. (2012) was split into 1128 

separate boreal and temperate PFTs with temperature limits on photosynthesis, as the 1129 

other boreal and temperate PFTs, respectively.  A Temperate Needle-leaved 1130 

Evergreen PFT (TeNE) was added based on a similar PFT in Sitch et al. (2003). Both 1131 

these changes we made to match the PFTs simulated with those classified from the 1132 

fossil data. The base respiration rates of boreal PFTs were increased compared to 1133 

temperate trees (as in Hickler et al., 2012), reflecting the general increase of base 1134 

respiration rates with decreasing temperature (Lavigne and Ryan 1997).   Finally, a 1135 

Temperate Needle-leaved Evergreen PFT (TeNE) was added based on a similar PFT 1136 

in Sitch et al. (2003). Note that the C3 and C4 grass PFTs include forbs, not only 1137 

grasses. In this paper we refer to these PFTs as grasses because grasses comprise most 1138 

of the biomass of these PFTs, and this term is more consistent with the terminology 1139 

used in the palaeobotanical reconstructions. A full list of PFTs and parameter values 1140 

is given in Appendix A. 1141 

 1142 

The fire model GlobFIRM (Thonicke et al., 2001) with an updated parameterisation 1143 

as described in Pachzelt et al. (2015in press), but applied globally, was used to 1144 

simulate wildfires.  Representation of fire processes is important when studying 1145 

vegetation dynamics and structure, particular when considering landscape openness.   1146 

 1147 
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We performed a biomisation on the vegetation model output (based on Hickler et al. 1148 

(2006) but with small changes, see Appendix B) to visualise the simulated Tortonian 1149 

vegetation (Figure 1a and c), and to compare the vegetation simulation using the PGF 1150 

climate forcing data of for the present day to a present-day biome map. (Figure S1). 1151 

These results are presented in section S3 of the supplementary material, where an 1152 

examination of the model setup’s ability to distinguish between present day and 1153 

Tortonian vegetation can also be found.  The pre-industrial control run (Knorr et al., 1154 

2011) reproduced the modern biomes (Figure S1a) reasonably well. 1155 

 1156 

3.43 Statistics to compare modelled and fossil vegetation  1157 

 1158 

Quantitative comparisons of fossil data and model output are challenging.  As 1159 

described below, the palaeobotanical record provides the presence of fossil taxa at a 1160 

given site and each taxon is then assigned to a PFT.  The final values for each site are 1161 

therefore the number of taxa assigned to each PFT.  This is a measure of PFT 1162 

diversity, but typically it is PFT abundances which are used to describe vegetation 1163 

and biomes on a global scale, and it is these quantities, which are provided by 1164 

vegetation models.  There are various difficulties when attempting to draw 1165 

conclusions from comparisons between diversity data from the fossil record and 1166 

modelled abundances or biomes.  Firstly, abundances and diversity are not necessarily 1167 

closely correlated; some PFTs might have few taxa but massive abundance (for 1168 

example Boreal Needle-leaved Trees).  Secondly, the fossil record has biases; some 1169 

PFTs fossilise at higher rates than others, and time-dependent climate fluctuations 1170 

(Milankovic cycles and the formation and destruction of microclimates) may make 1171 

the fossil record unrepresentative of PFT diversities over the whole time period.  A 1172 
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further problem is that it is difficult to know how PFT diversities in the fossil record 1173 

correlate to an abundance measure that can be simulated by a vegetation model.  An 1174 

example of a commonly used abundance measure from vegetation models is Leaf 1175 

Area Index (LAI), that is the leaf area per unit ground area.  Standard statistical tests, 1176 

such as Spearmans’s rank correlation and Pearson’s production moment correlation 1177 

coefficient,goodness of fit between modelled PFT LAI fraction and the PFT 1178 

diversities in the fossil record, did not yield useful results (data not shown), possibly 1179 

for the reasons discussed above. These results are shown and discussed in section S1 1180 

supplementary material.  1181 

 1182 

3.4.1 Discussion of previous quantitative approaches  1183 

 1184 

To go beyond simple visual comparisons of model and data, and for hypothesis 1185 

testing, we require a quantitative measure of agreement between fossil data and model 1186 

output. Different approaches have been developed to compare fossil data to model 1187 

results with some quantitative element. The study of Pound et al. (2011) uses Cohen’s 1188 

kappa to determine biome agreement, comparing both the 27 “native” biomes from 1189 

BIOME4 and a 7 “megabiome” classification. This does offers a single statistic which 1190 

could be used for hypothesis testing. However, there are inherent shortcomings when 1191 

using kappa to compare biome classifications and with biome classifications 1192 

themselves.  1193 

 1194 

The inherent disadvantage of comparing kappa scores for biomes is that kappa does 1195 

not include any mechanism to account for “degrees of difference” which can be 1196 

important when considering more than two categories. For example, there is a much 1197 
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smaller conceptual difference between a “tropical grassland” and a “tropical savanna” 1198 

than there is between a “tropical grassland” and a “boreal forest”, but that difference 1199 

is treated identically when calculating Cohen’s kappa. This can be ameliorated to 1200 

some extent by aggregating to megabiomes as done by Pound et al. (2011), but is 1201 

inevitably present to some extent. A weighting can also be attempted, but this 1202 

introduces subjective decisions. 1203 

 1204 

The second argument against comparing potential natural vegetation (PNV) biome 1205 

distributions using kappa is that PNV biome classifications themselves introduce 1206 

uncertainty. Potential natural vegetation cannot be measured directly (it no longer 1207 

exists due to human influence) and so must be reconstructed.  There is uncertainty in 1208 

such reconstructions as evidenced by the differences between PNV biome maps: for 1209 

example, the horn of Africa is predominantly covered by “tropical deciduous forest” 1210 

in Haxeltine and Prentice (1996), but is dominated by “dense shrublands” in 1211 

Ramankutty and Foley (1999). Similarly, the extent of the “tropical deciduous forest” 1212 

biome in Southern Africa varies considerably between the two maps. Even the biomes 1213 

categories themselves vary between the maps as different authors make different 1214 

distinctions. Our experience is that kappa statistics applied to compare different PNV 1215 

maps can indicate as bad agreement as the one between a model and a PNV 1216 

reconstruction, when biomes are not aggregated to coarser classes. There are also 1217 

subjective choices when classifying model output which introduces uncertainty. For 1218 

example, how much tree LAI or tree cover constitutes a forest? How much for a 1219 

savanna? The choices for these numbers are not well-motivated and can change the 1220 

biome boundaries considerably.  Concerning the paleobotanical data, we deliberately 1221 
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did not derive biomes because classifying fossil sites into biomes introduces large 1222 

uncertainty arising from interpreting the fossil record in terms of vegetation cover. 1223 

 1224 

So whilst comparisons of biomes are clearly useful visual aids and can be a useful 1225 

cross-check, we decided to use only information on PFT fractions for our main 1226 

analysis and therefore minimize subjective choices and classifications.The approach 1227 

taken in Salzmann et al. (2008) and Pound et al. (2011) involves classifying both the 1228 

fossil data and the model output into biomes, which necessarily require subjective 1229 

choices.  1230 

 1231 

The work of François et al. (2011) offers a method for determining agreement 1232 

between paleobotanical data and simulated vegetation which percentage agreement 1233 

per PFT based on presence/absence. These per-PFT scores could conceivably be 1234 

combined to produce overall agreement scores, taking care that PFTs which are 1235 

mostly absent from the fossil record do not unduly affect the final result. However, 1236 

the scope of this study is different in nature to that of François et al. The study of 1237 

François et al. was a regional study with a relatively high degree of taxonomic 1238 

precision (ie. a more detailed PFT set), whereas this study is global with appropriately 1239 

coarser taxonomic resolution (ie. a relatively simpler but global PFT set). By means 1240 

of example, there are 8 purely temperate PFTs in the CARAIB version used in 1241 

François et al. 2011 compared to only 2 in the default LPJ-GUESS  configuration and 1242 

4 in the configuration used in our study. Thus by exploiting a high degree of 1243 

taxonomic precision, presence/absence data were used effectively in the regional 1244 

study of François et al. In the global study presented here, each PFT spans a much 1245 

larger geographical extent and there are fewer PFTs at each site for which to make 1246 
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presence/absence comparison. Thus one would expect the effective differentiating 1247 

power of such presence/absence to be lesser. So rather than using detailed taxonomic 1248 

resolution and presence/absence information, we seek to exploit the 1249 

abundance/diversity fractions which we believe has useful information.   1250 

 1251 

To summarise, for this study, we sought a comparison method which uses 1252 

abundance/diversity information beyond presence/absence, avoids biomes 1253 

classifications, avoids Cohen’s kappa for multiple categories, and provides a simple 1254 

number to summarise overall agreement for a given model run.  1255 

 1256 

 We prefer a metric that uses only the raw data without a biome classification, using 1257 

more information than provided by presence-absence data, and providing a simple 1258 

number to summarise overall agreement for a given model run.   1259 

 1260 

3.4.2 Calculation of Agreement Index 1261 

 1262 

To this end we developed an Agreement Index (AI). This index As motivated above, 1263 

we developed a novel comparison index which we refer to as the Agreement Index 1264 

(AI).  This index compares the fractional diversity of each PFT at each fossil site 1265 

(diversity of each PFT divided by the total diversity) to the LAI fraction of that PFT 1266 

in the corresponding gridcell (LAI for the PFT divided by the total LAI for the 1267 

gridcell). The LAI values are the growing season maximum values and are averaged 1268 

over a 30 simulation year period.  takes into account all the fractional representations 1269 

of different PFTs in the model (LAI) and fossil data (number of taxa) for each fossil 1270 

site. Based on these fractions, each A PFT is assigned can have one of 4 statuses in a 1271 
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gridcell in both the fossil data and the model output at each fossil site.  These statuses 1272 

are [fossil, model]:  1) Dominant – fraction in the range (0.50, 1.0], 2) Sub-dominant 1273 

– fraction in the range (0.15, 0.50], 3) Trace – fraction in the range (0.05, 0.15], 4) 1274 

Absent – [0, 0.05].  These are then compared between fossil and model for each PFT, 1275 

and a contribution quantifying the degree of agreement is added to the AI for the 1276 

gridcell as given in Table 1.  The AI is then averaged across all fossil sites.   1277 

  1278 

The logic of the AI is as follows.  If a PFT is absent in both the data and the model it 1279 

contributes 0, since correctly not simulating a PFT is not much of a test of model skill.  1280 

This also has the desirable effect that a PFT, which is only minimally represented in 1281 

both the fossil record and the model output, does not strongly affect the final AI 1282 

value.  If the PFT status matches between the model and the data, then it contributes 1283 

+1, except for if it is the dominant PFT, in which case +2 is added.  The dominant 1284 

PFT is weighted more heavily because it defines the biome and represents the most 1285 

significant component of the vegetation present.  If the model and data mismatch by 1286 

one category (e.g. the PFT is trace in the model but absent in the data, or dominant in 1287 

the data but only sub-dominant in the model) then there is a contribution of 0. In such 1288 

a case the model is not exactly right, but it is not too far away. Given the large 1289 

uncertainties in inferring relative abundance from fossil diversity data, this degree of 1290 

statistical mismatch is acceptable.  If the data and model differ by two categories (say, 1291 

the PFT is sub-dominant in the model but absent in the data) this represents a 1292 

mismatch and contributes -1. Finally, if model and data mismatch by three categories 1293 

(cases where a PFT is absent in the data but dominant in the model, or vice-versa) a 1294 

contribution of -2 is added to the AI as this indicates large data-model disagreement.  1295 

 1296 
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The range of possible values that the AI can take at a given site is determined by the 1297 

composition of fossil PFTs at the site.  Averaging across all sites used in this analysis 1298 

gives a range of (-11.4, 4.7).   However, this range is relatively meaningless as the 1299 

chances of getting perfect agreement or perfect disagreement are vanishingly small.  1300 

 1301 

3.4.3 Interpreting Agreement Index scores and quantifying agreement by chance 1302 

 1303 

The Agreement Index method calculates a single score for one model run compared to 1304 

a fossil dataset. Thus AI scores for two (or more) model runs can be compared and the 1305 

model run with the highest AI score can be said to have the highest level of agreement 1306 

with the fossil dataset. This in itself says nothing about the level absolute level of 1307 

agreement between a particular model simulation and the fossil data (only that one 1308 

agrees better compared to the other), or about how much better one model run agrees 1309 

with the data than another model run. To address these questions, one requires both an 1310 

estimate of what agreement could be expected by chance, and an estimate how much 1311 

variability there is around this value.  To quantify this, one can calculate the 1312 

Agreement Index for a large number of 'random simulations’ using a Monte Carlo 1313 

approach (the exact algorithm to produce these ‘random simulations’ is important and 1314 

discussed later). The mean value of these AI scores gives an expectation value for 1315 

agreement by chance which can be used as a reference point for considering absolute 1316 

agreement.  The standard deviation of these values gives a convenient unit to quantify 1317 

the typical spread of AI values and indicate how much better a particular model run is 1318 

compared either to chance agreement or to another model run.  Given this standard 1319 

deviation and mean value, conventional Z scores and p-values can be calculated and 1320 
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interpreted, but the interpretation must always consider the method by which 1321 

agreement by chance was quantified. 1322 

 1323 

There is no obvious and ubiquitous method to produce a ‘random simulation’ and 1324 

various possibilities could be conceived. A truly random simulation would result in 1325 

unrealistic PFTs combinations and would not be an informative baseline. We chose to 1326 

construct a ‘random simulation’ by matching a randomly selected modelled gridcell 1327 

(from either the 280 ppm simulation or the 450 ppm simulation) to each fossil data 1328 

site.  Because this approach uses model output, it samples the climate space in a fairly 1329 

even way and simultaneously ensures ecologically realistic PFT combinations.  It is 1330 

therefore a reasonably ‘strict’ method compared to a more random method.  Other 1331 

approaches for quantifying agreement by chance are tested and discussed in Section 1332 

S2 of the accompanying supplementary material.  We calculated the AI scores for 1333 

25,000 ‘random simulations’ using this method.  The mean value of these scores was 1334 

found to be -1.96 which is close to the centre point of the theoretically possible range.  1335 

The standard deviation was 0.17. 1336 

 1337 

  In order to simulate the level of agreement that might be expected simply by chance, 1338 

a set of 10,000 AI values were produced by matching each fossil sites to a randomly 1339 

selected gridcell chosen from the 280 ppm and 450 ppm model runs combined.  This 1340 

gives an approximate null model with an expectation value for chance agreement and 1341 

a standard deviation to test for significance.  The expectation value was -1.96 (close to 1342 

the centre point of the theoretically possible range) with a standard deviation of 0.17.   1343 

3.4.4 Robustness of Agreement Index. 1344 

 1345 
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The robustness of the AI was assessed with respect to the subjective choices of the 1346 

method. Specifically, the choice of boundary values for AI statuses, score assigned for 1347 

degree of similarity/dissimilarity and random agreement model were all varied and 1348 

the results are reported in section S2 of the supplementary material. The method 1349 

showed only limited sensitivity to these choices and no change was large enough to 1350 

affect the scientific conclusions. We therefore suggest this approach as a robust and 1351 

quantitative comparison of similar model setups for hypothesis testing, as well as a 1352 

general measure of agreement between fossil data and simulation results. 1353 

 1354 

3.54 Palaeobotanical data  1355 

 1356 

The plant data we used are taken from the NECLIME data set as published in the 1357 

PANGAEA database (doi:10.1594/PANGAEA), completed by data from the authors 1358 

(full list of sites is provided in table S4 in the supplementary material). After 1359 

removing sites with more than 20% aquatic taxa, representing azonal sites (not by 1360 

macroclimate but by local topographic features determined vegetation, such as 1361 

riparian vegetation, which is not represented by the vegetation model), the set 1362 

comprised a total of 167 macro (fruits and seeds, leaves) and micro (pollen/spores) 1363 

floras, dated to the Late Miocene (11 - 7 Ma). To assign PFTs to the fossil plant 1364 

record, we classified the Nearest Living Relatives of the fossil plant taxa in terms of 1365 

PFT types that are used in LPJ-GUESS (see table S5 in the supplementary 1366 

materialA1). Depending on ecological amplitude of a taxonomic unit and the 1367 

achievable taxonomic resolution, respectively, a single fossil taxon may represent 1368 

various different PFTs. Therefore, a matrix containing modern taxa and PFT scores 1369 

was first established, with PFT scores for each taxon adding up to 1. Diversities of 1370 
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PFTs were then calculated for all sites by using a matrix with taxa records together 1371 

with a matrix containing the scores of the represented PFTs. Taxa diversity in the 1372 

considered floras is highly variable, ranging from 7 to 129, and the floral data set is 1373 

heterogeneous regarding its representativeness with respect to PFTs and the spatial 1374 

scales at which palaeovegetation is mirrored (Utescher et al., 2007). Pollen floras 1375 

usually allow characterizing regional vegetation, while leaves involve a local signal. 1376 

Regarding the representativeness of fossil data with respect to PFTs, leaf floras reflect 1377 

arboreal PFTs well, while remnants of herbaceous PFTs and grasses are rarely 1378 

preserved. In pollen floras, on the other hand, the herbaceous vegetation tends to be 1379 

over-represented while fruit and seed floras may be biased regarding the richness of 1380 

aquatics. With all these uncertainties, we decided to use all palaeofloras for maximal 1381 

geographic coverage, excluding aquatic ones, dated to the studied time slice. 1382 

 1383 

Various PFTs present in the fossil record, such as forbs, shrubs, lianas, tuft trees, 1384 

aquatics, etc., are not considered in the analysis because they do not have any 1385 

corresponding PFTs in the model, and therefore cannot be used for proxy data – 1386 

model inter-comparisons. In Europe, for example, a shortcoming of the applied model 1387 

version is that it does not distinguish sclerophyllous drought-adapted and 1388 

laurophyllous perhumid evergreen temperate trees. A sclerophyllous evergreen PFT 1389 

had been implemented in a model version including the hydraulic architecture of 1390 

plants (Hickler et al. 2006), but the more general temperate evergreen PFT used here 1391 

corresponds more closely with the predominantly non-sclerophyllous vegetation of 1392 

the late Miocene (see Hickler et al. 2006 for details). Herbaceous PFTs occurring in 1393 

the fossil record were combined with C3 grasses.  Moreover, deciduousness of sites 1394 

may be over-estimated in the proxy data set, mainly for two reasons. Firstly, many of 1395 
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the studied floras and obtained PFT spectra have a relatively strong azonal imprint, 1396 

because they represent riparian vegetation usually common in a subsiding 1397 

depositional area. Riparian associations in general have a low diversity of evergreen 1398 

woody species, compared to the zonal vegetation thriving in the same climate. This 1399 

effect will be suppressed, but not eliminated, by the removal of sites with more than 1400 

20% aquatic taxa, as discussed above.  Secondly, high scores for the broadleaf-1401 

evergreen component are rarely obtained for mid-latitudinal palaeofloras, if 1402 

taxonomic resolution is limited, because the majority of temperate genera comprise 1403 

both deciduous and evergreen species. 1404 

 1405 

4. Results and Discussion 1406 

 1407 

4.1. General patterns 1408 

 1409 

The Late Miocene vegetation patterns are broadly similar to the modern day, with the 1410 

same general pattern, but northward shifts of biomes (Figure 1a, b). The 450 ppm run 1411 

is overall warmer and wetter, with largest differences found at the mid-latitudes, 1412 

where tropical and subtropical components have a wider distribution (Figure 1b).  A 1413 

poleward shift of the C3/C4 grass boundary at higher CO2 is evident from the 1414 

dominant PFT maps (Figure 1c, d), as C4 photosynthesis is favoured at low 1415 

atmospheric CO2 concentrations and at high temperatures (Ehleringer et al., 1997, 1416 

Sage 2004).   1417 

 1418 

North America is of particular interest in this analysis due to the opening of 1419 

landscapesthat is documented in proxy data. Although there is scarce botanical 1420 
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evidence from North America, other proxy sources, like fossil mammals (Janis et al., 1421 

2004, Eronen et al., 2012) and phytoliths (e.g. Strömberg, 2011) point strongly to the 1422 

opening of landscapes during the Miocene. In the 280 ppm run the vegetation of the 1423 

Great Plains and Rocky mountain area of North America are more open than in the 1424 

450 ppm run, and C3 grasses are the dominant PFT over a much larger area (Figure 1425 

1a,b). Another region of interest is Europe, because of its high density of 1426 

palaeobotanical proxy data.  Whilst both runs show Europe to be mostly forested, 1427 

with the expected northwards shift of biome boundaries compared to the present day, 1428 

the 280 ppm run shows more deciduous vegetation in Central Europe and more open 1429 

vegetation in the south which agrees better with European proxy data. Figure 5 shows 1430 

the difference in AI values at all fossil sites, and the better agreement of the 280 ppm 1431 

run in central Europe due to a relatively larger abundance of deciduous trees is clearly 1432 

visibly. These results are discussed further below.  1433 

 1434 

One feature that is very different between our model-based reconstructions, and also 1435 

between different vegetation and climate models, is the vegetation of Greenland (e.g. 1436 

Francois et al., 2006, Pound et al., 2011, our results). In most cases, Greenland is 1437 

assumed to be largely covered with taiga and cold deciduous forests instead of the 1438 

present-day’s ice cover, but there is no fossil data to confirm this.  Another large-scale 1439 

feature of note is that the modern-day Sahara region is vegetated with dry grasslands.   1440 

 1441 

4.2 Comparison of 280 ppm and 450 ppm simulations 1442 

 1443 

Our simulation results with both CO2 concentrations correspond well with other 1444 

vegetation modelling and reconstruction results (e.g. Francois et al., 2006, 2011, 1445 
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Pound et al., 2011) and the palaeobotanical data. Using our quantitative approach, we 1446 

see that the 280 ppm run shows better agreement with palaeobotanical data than the 1447 

450 ppm run. Specifically, the 450 ppm reconstruction yields an AI value of -0.97, 1448 

and a Z-score of 5.8, whereas the 280 ppm reconstruction shows better agreement 1449 

with an AI value of -0.67. When using the method of quantifying chance agreement 1450 

described in Section 3.4.3, the 450 ppm reconstruction gives a Z-score of 5.8 (Figure 1451 

2). ,The interpretation of this Z-score is that there is p < 10
-8

 probability of randomly 1452 

selecting 167 modelled gridcells which agree better with the fossil data better than the 1453 

450 ppm scenario. The 280 ppm simulation yields and a Z-score of 7.5 (Figure 2))., 1454 

which is 1.7 standard deviations better than the 450 ppm run, and corresponds to p < 1455 

10
-13 

probability of getting better agreement by chance.   1456 

 1457 

In order to disentangle the indirect effect of CO2 on vegetation via climate, and the 1458 

direct effect of CO2 on vegetation, we performed additional simulations with 450 ppm 1459 

CO2 in the vegetation model with the 280 ppm CO2 climate model results and vice 1460 

versa. The vegetation results with 450 ppm climate and 280 ppm vegetation have the 1461 

worst agreement, with an AI score of -1.02.  The run with 280 ppm climate and 450 1462 

ppm vegetation yields an AI of -0.60, which is slightly better than the full 280 ppm 1463 

run. AI scores with the same CO2 in the climate simulation but different CO2 in the 1464 

vegetation simulation are similar, whereas AI scores with different CO2 in the climate 1465 

simulation but identical the same CO2 in the vegetation simulation are more dissimilar 1466 

(Table 2).  Furthermore, the modelled response of vegetation to higher atmospheric 1467 

CO2 without nitrogen limitation most likely overestimates CO2 fertilisation (see e.g. 1468 

Hickler et al. 2015). So the CO2 fertilisation seen in the 450 ppm simulation here can 1469 

be considered to be at the upper bound of the likely effect of a an atmospheric CO2 1470 
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concentration of 450 ppm. These factsis strongly suggests that climate CO2 is the 1471 

dominant effect in our simulations. The overall effect of CO2 concentration in the 1472 

Tortonian simulation is examined further using Cohen’s kappa statistic in section S3 1473 

of the supplementary material. 1474 

 1475 

We see that with 280 ppm in the climate there are more open conditions in North 1476 

America, regardless of the vegetation CO2  (Figures 1, 3 and 4).  This is strongly 1477 

supported by fossil mammal and phytolith data (see below). In Central Europe, the 1478 

tendency towards more deciduous vegetation is also driven by low CO2 in the climate, 1479 

not low CO2 in the vegetation, shown by the Central European AI values in Table 3.  1480 

In other areas the patterns are less clear. In tropical regions, the direct effect of CO2 1481 

on vegetation is stronger than the effect via climate, possiblye because in these areas 1482 

temperature and precipitation is not limiting.  In cooler areas (in particular the boreal 1483 

zone), the effect of CO2 in the climate system of increasing temperatures is stronger 1484 

than the CO2 fertilisation effect on vegetation, since these areas are temperature 1485 

limited. 1486 

 1487 

The result that 280 ppm run agrees better with the palaeobotanical data poses a 1488 

question: how can we have the combinations of moderately low CO2, seasonal mid-1489 

latitude conditions, a generally warmer world, and shallower latitudinal temperature 1490 

gradient at the same time? Generally, so far the answer has been that the CO2 1491 

concentration must have been higher in the past to create the Late Miocene warmth 1492 

(see introduction). However, there has been increasing evidence that atmospheric CO2 1493 

during the Late Miocene has not been much higher than during pre-industrial times 1494 
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(e.g. Pearson and Palmer, 2000, Beerling and Royer, 2011, Zhang et al., 2013). This 1495 

remains an open question, but it is outside the scope of the present study.  1496 

 1497 

 1498 

 1499 

4.3 Regional comparison between model runs and palaeobotanical proxies 1500 

 1501 

Regional AI scores are presented alongside the global AI scores in Table 2 (see also 1502 

Fig. 5 for the difference in AI scores between the 280 ppm and 450 ppm simulations 1503 

plotted spatially). In the two regions with most fossil sites, Europe and Asia, we see 1504 

higher AI scores for the 280 ppm run than for the 450 ppm run. In the other regions 1505 

there are few data points and no clear difference between the CO2 scenarios. 1506 

Examining the spatial patterns on a regional level, Wwe see that with 280 ppm in the 1507 

climate simulation there are more open conditions in North America, regardless of the 1508 

vegetation CO2 concentration in the vegetation simulations (Figures 1, 3 and 4).  This 1509 

is strongly supported by fossil mammal and phytolith data (see below). In Central 1510 

Europe, the tendency towards more deciduous vegetation is also driven by low CO2 in 1511 

the climate, not low CO2 in the vegetation, shown by the Central European AI values 1512 

in Table 23.  In other regionsareas the patterns are less clear. In tropical regions, the 1513 

direct effect of CO2 on vegetation is stronger than the effect via climate, possibly 1514 

because in these areas temperature and precipitation is not limiting.  In cooler areas 1515 

(in particular the boreal zone), the effect of CO2 in the climate system of increasing 1516 

temperatures is stronger than the CO2 fertilisation effect on vegetation, since these 1517 

areas are temperature limited. 1518 

 1519 
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4.3.1. Europe 1520 

 1521 

In Europe, the overall agreement between the palaeobotanical data and vegetation 1522 

simulated with the 280 ppm scenario is better than with the 450 ppm scenario (Figure 1523 

5S2).  There appear to be two reasons for this, both related to increased seasonality 1524 

and openness.  Firstly,the  280 ppm CO2 model run produces more deciduous and less 1525 

evergreen vegetation in Central Europe and southeastern Europe. Here, the proxy data 1526 

indicate a stronger tendency for temperate broadleaved deciduous forest (Central 1527 

Europe), and mixed mesophytic forests (SW Europe, Paratethys realm and E Medit.) 1528 

(Utescher et al., 2007) and increased seasonality (see also Mosbrugger et al., 2005). 1529 

This is reflected in the higher AI scores for the 280 ppm run compared to the 450 ppm 1530 

run (Table 32, Figure 5S2).  Secondly, in the 280 ppm run, Bboth the Iberian 1531 

Peninsula and modern day Turkey are more open in 280 ppm run, with C3 grasses 1532 

dominating, which better matches the palaeobotanical data. Among the Iberian sites 1533 

studied, ca. 50 % can be interpreted to represent a more open vegetation type, for the 1534 

eastern Paratethys and E Mediterranean, more than 2/3 of the palaeofloras have PFT 1535 

spectra indicative for more open conditions,  These conclusions are also supported by 1536 

fossil mammal data (e.g. Fortelius et al., 2014). 1537 

 1538 

On a more detailed level, theIn the 280 ppm run depicts a mix of forests in Europe, 1539 

with temperate deciduous forest in Central Europe and temperate evergreen forests in 1540 

South-western Europe (Figure 1). Aa mix of evergreen forests,  grasslands and dry 1541 

savannas covers most of the Mediterranean and areas up to the Caucasus, with 1542 

varying degrees of openness (Figure 1 and 3). Central and Northern Europe are 1543 

covered by temperate seasonal forests and boreal forests (Figure 1 and 4). In the 450 1544 
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ppm run, the temperate evergreen forests become more dominant in Southern Europe 1545 

and parts of Central Europe compared to the 280 ppm run. The Mediterranean is still a 1546 

mix of grasslands, savannas and forests, but with a tendency towards the woodier 1547 

biome types and an increase in temperature evergreen trees (Fig.ure 1).  1548 

When comparing to other reconstructions and palaeobotanical data it should be noted 1549 

that, based on proxy data, the late Miocene vegetation in the lower latitudes of Europe 1550 

has been characterized as Mixed Mesophytic Forest, an association of thermophilous 1551 

broadleaved summergreens and conifers as canopy trees, with variably diverse 1552 

evergreen woods in the understory (Utescher et al., 2007). This characteristic type, 1553 

however, cannot be resolved in the biome system we presently use. 1554 

 1555 

Compared to our results,The Pound et al. (2011) BIOME4 simulation produceds 1556 

tropical xerophytic shrublands for Western and Southern Europe. This is a drier 1557 

vegetation type than the fossil data, and different from our model run.  For Central 1558 

Europe, the BIOME4 simulation exhibits warm mixed forests, and this agrees well 1559 

with data and our simulations.  The Pound et al (2011) simulations also agree in that 1560 

the boreal forests are confined to the extreme north of Europe. 1561 

 1562 

The 200/280 ppm global simulations of Francois et al. (2006) produce vegetation in 1563 

Europe which is very similar to the present day, whereas the 560 ppm run produces 1564 

tropical seasonal forests in Europe.  The presence of tropical seasonal forests in 1565 

Europe is not well-supported by palaeobotanical proxy data.  All of their simulations 1566 

show a greater extent of the boreal forest than in either in Pound et al. (2011) or our 1567 

simulations. 1568 

 1569 
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In the higher resolution, regional study of Francois et al. (2011), most of Europe is 1570 

dominated by cool-temperate mixed and temperate broadleaved deciduous forests, but 1571 

there are is presence of warmer vegetation types present around the Adriatic Sea and 1572 

in the north of Turkey. Warm-temperate mixed forests grow around the western part 1573 

of the Paratethys, and an extension of the tropical grassland around the Mediterranean 1574 

Sea can be observed. These latter aspects are similar to our simulations. 1575 

 1576 

4.3.2 North America 1577 

 1578 

Our 280 ppm model run exhibits vegetation that is similar to the present day in North 1579 

America.  Compared to the 450 ppm runs, this vegetation is more open and seasonal 1580 

in the Great Plains and Rocky Mountains.  The openness is apparent from the increase 1581 

of C3
 
grass PFT dominance, and from the reduction of tree cover and the 1582 

corresponding savanna classification in the biome plots (Figure 1c,d; Figures 3 and 4).  1583 

The increased seasonality is shown by the reduction in dominance of the temperate 1584 

broadleaved evergreen PFT, and by the increase of C3 grass at the expense of trees.  1585 

Whilst there are few fossil data points in North America, other available data from 1586 

isotopes (Passey et al., 2002), mammalian community structure (Janis et al., 2004), 1587 

mammal-based precipitation estimates (Eronen et al., 2012), as well as phytoliths 1588 

(Strömberg, 2005) support the open landscapes and graze-dominated faunas during 1589 

the Tortonian in the Great Plains, as do both midland plant localities in our record 1590 

(sites Kilgore, Antelope; C3 PFT diversity fraction 20, 60 %). In addition, the data 1591 

presented in Pound et al. (2011) indicate more open and seasonal vegetation in this 1592 

region during the Tortonian.  In light of these sources of evidence, it appears that the 1593 

280 ppm simulation reproduces the vegetation of the central North America 1594 
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considerably better than the 450 ppm simulation. The importance of low CO2 for 1595 

maintaining open landscapes has also been suggested by other modelling studies. 1596 

Harrison and Prentice (2003), for example, found that the BIOME4 vegetation models 1597 

consistently overestimated glacial tree cover, if physiological effects of low 1598 

atmospheric CO2 were not accounted for. Experimental elevation of CO2 above 1599 

ambient levels has been shown to promote shrub encroachment into steppes (Morgan 1600 

et al., 2007). 1601 

 1602 

A further notable difference is that the 450 ppm simulation exhibits a strong 1603 

northward movement of biome boundaries compared to the 280 ppm run, which are 1604 

indicative of a considerably warmer and wetter climate (Figure 1a, b).  There is a 1605 

northward shift of the boreal/temperate boundary in the 450 ppm run compared to the 1606 

280 ppm run.  Temperate forests have larger extent, and treeline shifts northwards, 1607 

almost completely replacing tundra in the higher latitudes.  In similar fashion, 1608 

evergreen trees dominate larger areas than deciduous trees in the temperate coastal 1609 

forests, which may also be linked to the seasonality and humidity changes mentioned 1610 

above. 1611 

 1612 

In the Southwest and near the Gulf of Mexico, the results are similar in 280 ppm and 1613 

450 ppm runs. In the Southwest and south of North America, both simulations 1614 

produce dry and open vegetation that is similar to the present day (Figure 1a,b). The 1615 

runs indicate xeric woodlands and shrublands, dominated by temperate evergreen 1616 

trees. Further north, these biomes transition to temperate deciduous forests along the 1617 

Eastern Seaboard, which is in broad agreement with the proxy-based results obtained 1618 

from the Pacific coastal sites between 35 and 45 °N. The main difference between the 1619 
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280 ppm and 450 ppm runs is that the transitions occur further north in the 450 ppm 1620 

simulation. 1621 

 1622 

Compared to Pound et al. (2011), in North America our 280 ppm run produces much 1623 

more open vegetation in the Great Plains, whereas Pound et al. (2011) find more 1624 

forests. In addition, Pound et al. (2011) reconstruct a large band of temperate 1625 

grasslands that replaces northern temperate and boreal forests.  This is also seen in 1626 

their Asian reconstruction at similar latitudes, but is not seen in any other 1627 

reconstruction.   1628 

 1629 

Our model results are fairly consistent with the François et al. (2006) CARAIB model 1630 

results (their 280 ppm standard Tortonian run). The main differences from our results 1631 

in North America are that we produce much more open vegetation with 280 ppm CO2, 1632 

and much of their eastern forests are tropical seasonal forests, indicating warmer 1633 

climate. The low CO2 run of François et al. (with 200 ppm), on the other hand, 1634 

produced temperate mixed forests in much of North America, with only western 1635 

North America being more open.  1636 

 1637 

4.3.3 Asia 1638 

 1639 

In Asia, the expected northward biome shifts in the boreal/temperate zone is observed 1640 

in the 450 ppm simulation relative to the 280 ppm simulation.  In a similar fashion to 1641 

North America and Europe, the temperate-boreal boundary and treelines are at higher 1642 

latitudes with higher CO2, resulting in a larger area of temperate deciduous forest, and 1643 

almost no tundra or boreal deciduous forest, in the 450 ppm simulation (Figure 1a, b).  1644 
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The 280 ppm biome boundaries are approximately similar to the present day, with the 1645 

exception that the temperate deciduous forest encroaches much further from Europe 1646 

into Asia.  The only three proxy data points in boreal Asia (Kamchatka, sites Bayokov 1647 

H1172, Nekkeiveem H3658, Yanran H3690; mixed broadleaved deciduous-conifer 1648 

forest and mixed shrubland; cf. Popova et al., 2013) indicate that the 280 ppm run fits 1649 

slightly better (Figure 5S2). 1650 

 1651 

Both simulations exhibit a large grass-dominated steppe in Central Asia, but the 1652 

landscape is not as open as in the present day vegetation.  This grass steppe is larger 1653 

in the 280 ppm run than in the 450 ppm run, and extends slightly further northwards 1654 

in the western part (Figure 1a, b).  The small difference in aridity and openness in the 1655 

Asian continental interior between the CO2 concentration scenarios is much less 1656 

compared to North America. The few inland proxy points in Central Asia (sites 1657 

Dunhuang, Kuga Xinjiang, S Junggar, Xining Minhe Basin) all have significantly 1658 

raised proportions of C3 herb component, and indicate reasonable agreement, with no 1659 

difference between the different CO2 simulations, though a considerable broadleaved 1660 

arboreal diversity in the proxy data points to more forested conditions when compared 1661 

to the model. The coastal points at similar latitude on the East China Sea show better 1662 

agreement with the 280 ppm run (Figure 1a,b).  The 280 ppm run shows more 1663 

temperate broadleaved evergreen trees in southern and eastern China and the 1664 

surrounding area, than in the 450ppm run.   1665 

Consequently, better agreement index scores are present in the 280 ppm run.  1666 

 1667 

There are few differences between the 280 ppm and 450 ppm simulations in 1668 

Southwest Asia, South Asia and Southeast Asia; both produce grasslands in the 1669 
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western areas and savanna in east. The savanna transitions to tropical forests in the 1670 

southeast.  However, the 280 ppm run produces dryer grasslands in the west, and 1671 

slightly fewer trees in the east.  Furthermore, the evergreen tropical forest of the 280 1672 

ppm scenario (and in present day simulations) is replaced by tropical seasonal and 1673 

tropical deciduous forests in the 450 ppm scenario.  This is unexpected and observed 1674 

in the 450 ppm scenario across the humid tropics, and is discussed further below.  1675 

There are essentially no proxy data available for comparison in these areas. It is 1676 

known that the present day simulation underestimates tree cover in these areas, so the 1677 

palaeo model results should be treated with caution.  1678 

 1679 

The Pound et al. (2011) model/proxy hybrid reconstruction shows a similar boreal 1680 

range in Asia as the 450 ppm run presented here, but with a large band of temperate 1681 

grasslands separating the boreal and temperate forests.  This band is not seen in our 1682 

reconstructions, but is also simulated for North America in Pound et al. (2011).  1683 

Elsewhere, the reconstructions are broadly similar, although the Pound et al. (2011) 1684 

model has more tree cover over much of Central and East Asia (with savanna being 1685 

present instead of grasslands, and more temperate forests being present on the east 1686 

coast) and parts of southern and south-eastern Asia (with more tropical trees).  All the 1687 

vegetation reconstructions of François et al. (2006) have a large area of boreal forest 1688 

in the north, particularly in the northeast, and regardless of CO2 concentration.  They 1689 

also show greater abundances of trees in the southeast and less openness in the 1690 

continental interior compared to our runs, although this difference is less pronounced 1691 

in their lower CO2 simulations. 1692 

 1693 

4.3.4. Africa 1694 
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 1695 

Both of our Tortonian simulations show grasslands in the modern-day Sahara desert 1696 

(Figure 1a, b).   A green Sahara is consistent with generally warmer global climate 1697 

(e.g. Micheels et al., 2011, Knorr et al., 2011) and this feature is broadly similar to the 1698 

reconstruction of Pound et al. (2011), which shows only small areas of desert with 1699 

large areas of tropical xerophytic shrubland.  François et al. (2006) did not reconstruct 1700 

a green Sahara, and shows some areas that are desert at all CO2 concentrations.  The 1701 

simulation of Scheiter et al. (2012) also showed a large Sahara desert. 1702 

 1703 

Starting from the equator and moving polewards, both of our simulations exhibit a 1704 

progression from full tree cover in equatorial Africa, changing to savanna biomes, and 1705 

finally becoming grasslands with near zero tree cover at ±15°N. This pattern is the 1706 

same as for the present day. The 450 ppm scenario produces more trees, as would be 1707 

expected from a more humid world with higher CO2.  The higher CO2 scenario also 1708 

favours deciduous tropical trees over evergreens, as can be observed in the other 1709 

humid tropical forests (Figure 1a,b).  The reconstructions of Pound et al. (2011), and 1710 

of François et al. (2006), all show evergreen tree dominating the most equatorial 1711 

region with a similar gradient of tree cover, but Pound et al. (2011) transitions to 1712 

shrublands instead of grasslands.  The 280 ppm and 560 ppm CO2 scenarios of 1713 

François et al. (2006) feature a much greater extent of tropical deciduous forest in 1714 

Southern Africa. 1715 

 1716 

At the southern and northern extremes of Africa, limited amounts of woody 1717 

vegetation appear in both our simulations.  In the 450 ppm scenario this vegetation 1718 



 56 

contains some tropical trees, whereas in the 280 ppm scenario this vegetation is purely 1719 

temperate.  1720 

 1721 

The Scheiter et al. (2012) simulation with C4 grasses and fire with 280 ppm (Figure 1i 1722 

in Scheiter et al. 2012) is extremely close to our simulation result with 280 ppm for 1723 

Africa, but without a green Sahara.  In their runs, there is no perfect agreement 1724 

between proxy data and any one specific simulation scenario. The best agreement is 1725 

achieved in simulations with fire at 280 ppm CO2. Their model run with 400 ppm CO2 1726 

and fire changes the pattern slightly, with more woodland in the tropics, and less 1727 

tropical evergreen forests. This is similar to our 450 ppm CO2 run where our tropical 1728 

evergreen forest cover decreases. Unlike the Scheiter et al. (2012) 400 ppm run, in our 1729 

high CO2 run the change is from evergreen forest to raingreen forest. In our 1730 

simulations the forest fraction in the tropics is larger with higher atmospheric CO2 1731 

concentration. This begets more investigation into the tropical vegetation dynamics 1732 

during the Miocene. The presently available palaeobotanical data is not sufficient for 1733 

deriving the general broad-scale pattern of raingreen versus evergreen forest.  1734 

 1735 

4.3.5 South America 1736 

 1737 

In South America our Tortonian results show relatively little change compared to the 1738 

present-day simulation, with the noticeable exception that the savanna biome of 1739 

modern day Cerrado is much larger in both the high and low CO2 Tortonian runs 1740 

(Figure 1a, b). The southern tip of South America is evidently warmer and more 1741 

humid in the Tortonian runs, as is apparent from the reconstruction of woody 1742 

temperate biomes that are dominated by broadleaved evergreen trees, as opposed to 1743 



 57 

the more open and cooler biomes in the present day simulation. The 280 ppm scenario 1744 

shows a lower fraction of trees that the 450 ppm simulation., and this more open and 1745 

xeric vegetation agrees slightly better with the two palaeobotanical data points in 1746 

Patagonia.  The tendency for raingreen tropical trees to replace evergreens at higher 1747 

CO2 concentrations (as in Africa and Southeast Asia) is also observed. 1748 

 1749 

The Pound et al. (2011) results are similar to the Tortonian runs presented here, and 1750 

the reconstructions have in common a larger savanna area, and a warmer, more 1751 

forested southern tip of South America compared to the present day simulations 1752 

(Figure 1a, b, Figure S1). The François et al. (2006) 280 ppm model predicts much 1753 

more closed environments for the whole continent, with tropical forest extending also 1754 

to the south where our model produces moist savannas, and the eastern part being 1755 

dominated by tropical seasonal forests. They produce a similar output for the 560 ppm 1756 

run, and even their 200 ppm run has much more forests than either of our model runs. 1757 

 1758 

4.3.6. Australia 1759 

 1760 

In both of our Tortonian model runs, much of Australia is covered by tall grasslands 1761 

(Figure 1a, b).  The south is slightly more arid, with some dry grassland in the 450 1762 

ppm scenario, and a greater extent of dry grasslands and some xeric shrublands/steppe 1763 

in the 280 ppm scenario.  Along the northeast coast tropical trees are present, resulting 1764 

in savanna biomes (Figure 1a,b).  It should be noted that the present day simulation 1765 

does not reproduce the large extent of xeric shrublands/steppe in the present day 1766 

biome map (Figure 1a, bS4a1).  This may be due to the lack of any shrub PFTs in the 1767 

parameterisation of LPJ-GUESS.  In contrast, the reconstruction of Pound et al. 1768 
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(2011) with BIOME4 (which explicitly includes shrubland biomes) does include a 1769 

large area of tropical xerophytic shrubland in their Tortonian simulation, and some in 1770 

the present day simulation.  Their Tortonian simulation also produces a band of 1771 

savanna along the north east coast, and elements of temperate forest to the south.  1772 

These forests are not as widespread as in the proxy data, resulting in large corrections 1773 

in this area. This is mirrored in our results, as the 450 ppm run, with its larger quantity 1774 

of temperate trees, agrees slightly better with the limited proxy data available in the 1775 

South (Figure 1a, b).    1776 

 1777 

The François et al. (2006) 280 ppm model produces grasslands over much of 1778 

Australia with higher CO2, and semi-desert and desert with lower CO2.   It also shows 1779 

a band of tropical seasonal forest vegetation along the northeastern coast which 1780 

extends considerably further inland at higher CO2 concentrations. On a general level, 1781 

all the models produce arid biomes over much of Australia, but their exact 1782 

distributions differ substantially.  This may be due to the different representation of 1783 

xeric vegetation, particularly shrubs,  and due to differences in the classification of 1784 

biomes, particularly shrublands.  1785 

 1786 

5. Summary and Conclusions 1787 

 1788 

Here, we simulated Tortonian vegetation under two plausible atmospheric CO2 1789 

concentrations, using a dynamic global vegetation model forced by AOGCM-based 1790 

palaeoclimate simulations.  We applied a novel approach for comparing modelled 1791 

vegetation with palaeobotanical data. This approach allowed us to quantitatively test 1792 

which CO2 scenario agreed better with the proxy data.   1793 
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 1794 

Our results show that the agreement between modelled vegetation and palaeobotanical 1795 

data is consistently (i.e. overall and in each world region) higher for the 280 ppm 1796 

model run compared to the 450 ppm run. In other words, the CO2 level needs to be 1797 

moderately low in order to maintain the seasonal and open landscapes that are the 1798 

hallmarks of Late Miocene environments.  This strongly suggests that atmospheric 1799 

CO2 levels were relatively low during the Late Miocene. 1800 

 1801 

 1802 

The results are most striking for Central Europe and for Central and West America. 1803 

The 280 ppm run produces deciduous forests in Central Europe and open landscapes 1804 

in Southern Europe, in agreement with the palaeobotanical evidence, whereas the 450 1805 

ppm run produces more evergreen forests. Similar differences in openness in Central 1806 

and Western North America occur in the simulations. Due to the scarcity of 1807 

palaeobotanical data in most of North America, higher AI values cannot be observed 1808 

for the 280 ppm run. However, the open landscapes observed in the 280 ppm run are 1809 

supported by multiple lines of evidence, including fossil mammal data, isotopes, and 1810 

phytoliths. Results from factorial runs, assuming different CO2 concentrations in the 1811 

climate and the vegetation model, suggest that climatic effect of CO2 are most 1812 

important.  Physiological CO2 effects also play a secondary role, in particular in 1813 

Central and Western North America.  In the continental interior of East Asia there is a 1814 

small difference in aridity and openness between the two CO2 concentration 1815 

scenarios. The few proxy data available inland and in coastal areas along the East 1816 

China Sea also show better agreement with the 280 ppm run. There are still 1817 

uncertainties in the models, and these results should be tested with different models, 1818 
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too. Next phase of studies should test our results also using marine data and marine 1819 

ecosystem models to compare between terrestrial and marine realms. 1820 

 1821 

Our results strongly suggest that atmospheric CO2 levels were relatively low during 1822 

the Late Miocene, and that We conclude that the Late Miocene fossil vegetation data 1823 

can be used in conjunction with vegetation/climate modeling can be used to constrain 1824 

CO2 concentrations in the atmosphere.. Further studies shall test this idea using 1825 

marine data in connection with marine ecosystem models. 1826 
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Tables 2143 

 2144 

Table 1 2145 

 2146 

Table 1:  Contributions to the Agreement Index for each combination of data and 2147 

model statuses. 2148 

 2149 

Table 2 2150 

 2151 

 

CO2,clim = 280 ppm  CO2,clim = 450 ppm  

Number of 

fossil sites Region 

CO2,veg = 

280 ppm  

CO2,veg = 

450 ppm  

CO2,veg = 

280 ppm  

CO2,veg = 

450 ppm  

Global -0.67 -0.6 -1.02 -0.96 -0.96 

Europe 0.01 0.04 -0.22 -0.23 103 

(Central Europe) (0.2) (0.19) (-0.01) (-0.04)  (57) 

Asia -0.46 -0.44 -0.58 -0.54 37 

North America -0.1 -0.07 -0.05 -0.07 19 

Central and South 

America -0.04 -0.07 -0.04 -0.05 3 

Africa -0.05 -0.02 -0.07 -0.05 3 

Australia -0.03 -0.04 -0.04 -0.02 2 

 2152 

 2153 

Table 2: Global and regional Agreement Index values from all permutations of 280 2154 

ppm and 450 ppm CO2 concentrations in the climate model (CO2,clim) and vegetation 2155 

model (CO2,veg) models. Central Europe is shown separately and is defined to lie in 2156 

the longitude range [0°, 25°] and latitude range [45°, 55°]. 2157 

 MODEL 

 

 

 

DATA 

 Absent Trace Sub-dominant Dominant 

Absent 0 0 -1 -2 

Trace 0 1 0 -1 

Sub-dominant -1 0 1 0 

Dominant -2 -1 0 2 
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 2158 

Table 3 2159 

 Vegetation CO2 

280 ppm  450 ppm 

Climate CO2 

280 ppm 0.17 0.19 

450 ppm 0.01 -0.03 

 2160 

Table 3: Central European Agreement Index values from all permutations of 280 ppm 2161 

and 450 ppm CO2 concentrations in the climate and vegetation models.  For these 2162 

purposes, Central Europe is defined to lie in the longitude range [0, 25] and latitude 2163 

range [45, 50]. 2164 

2165 
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Figure captions 2166 

 2167 

Figure 1. Modelled Late Miocene (Tortonian, 7-11 Ma) vegetation, using the 2168 

ECHAM5-MPIOM AOGCM to drive LPJ-GUESS. A) The biome distribution with 2169 

280 ppm CO2 concentration, with the Agreement Index (AI) match overlain for 2170 

palaeobotanical data. B) The biome distribution with 450 ppm CO2 concentration, 2171 

with the AI match overlain for palaeobotanical data. C) The dominant PFTs, with 2172 

palaeobotanical data classified with same PFT scheme as the model overlain, with 2173 

280 ppm CO2 concentration. D) The dominant PFTs, with palaeobotanical data 2174 

classified with same PFT scheme as the model overlain, with 450 ppm CO2 2175 

concentration. 2176 

 2177 

Figure 2. Agreement Index with the null model distribution and the AI values shown 2178 

for model runs with different CO2 concentration.  2179 

 2180 

Figure 3. Modelled grass fraction of  Leaf Area Index (LAI) for present-day 2181 

simulation, Tortonian 280 ppm CO2, and Tortonian 450 ppm CO2 concentrations, 2182 

respectively. Shown also is the grass fraction of LAI for a mixed CO2 forcing in 2183 

climate and vegetation model. 2184 

 2185 

Figure 4. Modelled tree fraction of Leaf Area Index (LAI) for present-day simulation, 2186 

Tortonian 280 ppm CO2, and Tortonian 450 ppm CO2 concentrations, respectively. 2187 

Shown also is the tree fraction of LAI for a mixed CO2 forcing in climate and 2188 

vegetation model. 2189 

 2190 
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Figure 5. Agreement Index difference between the 280 ppm and 450 ppm runs. 2191 

 2192 
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Figures 2193 

Figure 1 2194 
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Figure 2 2197 

 2198 

 2199 

 2200 
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Figure 3 2201 

 2202 



 74 

Figure 4 2203 

 2204 

 2205 
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Figure 5 2206 

 2207 

 2208 
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Appendices  2209 

 2210 

Appendix A: Plant Functional Types (PFTs) 2211 

 2212 

The used PFTs used here follow from Ahlström et al. (2012) with some modifications 2213 

as noted in the main text.  In particular, the parameters for shade-tolerance classes, 2214 

leaf forms, and growth types are unchanged from Ahlström et al. (2012, Table S2).  2215 

Table A1 gives a complete list of the PFTs and their parameters, as used in this study. 2216 

 2217 

Appendix B: Biome classification. 2218 

 2219 

The biome classification used here is shown in Table B1. is based on the classification 2220 

used in Hickler et al. (2006) but includes the modifications used inIt is almost 2221 

identical to that of Smith et al. (2014) but.  It is further  slightly modified because the 2222 

shade intolerant broad-leaved summergreen (IBS) PFT in Smith et al. (2014) has been 2223 

split into a temperate shade intolerant broad-leaved summergreen (TeIBS) PFT and a 2224 

boreal shade intolerant broad-leaved summergreen (BIBS) PFT for this study.  In this 2225 

classification BIBS is treated as IBS for classifying boreal forests, and TeIBS is added 2226 

to TeBS when classifying temperature forests. Furthermore, to classify alpine tundra 2227 

as well as arctic tundra, tundra is mapped if GDD5  < 400 °C∙days (GDD5 = annual 2228 

accumulated degree-day sum of days above 5°C) 2229 

 2230 
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Appendix Tables 2231 

 Table A1 PFT Specific Parameters 2232 

PFT Phenology 

Shade 

tolerance 

class Leaf Type 

Growth 

Form 

Tc, min 

(°C) 

Tc, max 

(°C) 

GDD5 

(°C day) rfire 

aleaf 

(year) 

Aind 

(year) 

Tr-

leaf(year
-1

) 

Br (gC 

gN
-1 

day
-1

) 

Topt 

(°C) 

BNE evergreen tolerant needle-leaved tree -32.5 -2 600 0.3 3 500 0.33 2 10-25 

BINE evergreen intolerant needle-leaved tree -32.5 -2 600 0.3 3 500 0.33 2 10-25 

BNS deciduous intolerant needle-leaved tree - -2 350 0.3 0.5 300 1 2 10-25 

BIBS deciduous intolerant broad-leaved tree - -2 350 0.1 0.5 200 1 2 10-25 

TeBS deciduous tolerant broad-leaved tree -17 15.5 1200 0.1 0.5 400 1 1 15-25 

TeIBS deciduous intolerant broad-leaved tree -17 15.5 1200 0.1 0.5 200 1 1 15-25 

TeBE evergreen tolerant broad-leaved tree 3 18.8 1200 0.3 3 300 0.33 1 15-25 

TeNE evergreen intolerant needle-leaved tree -2 22 900 0.3 3 300 0.33 1 15-25 

TrBE evergreen tolerant broad-leaved tree 15.5 - - 0.1 2 500 0.5 0.15 25-30 

TrIBE evergreen intolerant broad-leaved tree 15.5 - - 0.1 2 200 0.5 0.15 25-30 

TrBR deciduous intolerant broad-leaved tree 15.5 - - 0.3 0.5 400 0.5 0.15 25-30 

C3G - - - grass - - - 0.5 0.5 - 1 1 10-30 

C4G - - - grass 15.5 - - 0.5 0.5 - 1 0.15 20-40 
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Table A1. PFT characteristics and parameter values used in this study. Tc,min  = Minimum coldest-month temperature for survival and 2233 

establishment; Tc,max = maximum coldest-month temperature for establishment; GDD5 = Minimum accumulated degree-day sum of days above 2234 

5°C for establishment; rfire = Fraction of individuals surviving fire; aleaf = leaf longevity; aind = individual maximum, non-stressed longevity; 2235 

Trleaf = Leaf turnover rate; Br = Base respiration rate at 10°C; Topt= Optimal temperature range for photosynthesis. Full PFT names: BNE = 2236 

boreal needle-leaved evergreen tree; BINE = boreal shade intolerant needle-leaved evergreen tree; BNS = boreal needle-leaved summergreen 2237 

tree; BIBS = boreal shade intolerant broad-leaved summergreen tree; TeBS = temperate broad-leaved summergreen tree; TeIBS = temperate 2238 

shade intolerant broad-leaved summergreen tree; TeBE = temperate broad-leaved evergreen tree; TeNE = temperate needle-leaved evergreen 2239 

tree; TrBE = tropical broad-leaved evergreen tree; TrIBE = tropical shade intolerant broad-leaved evergreen tree; TrBR = tropical broad-leaved 2240 

raingreen tree; C3G = C3 grass; C4G = C4 grass. 2241 

 2242 
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Table B1 Biome classification scheme for model output 2243 

 2244 
1 
Growing season maximum leaf area index;

2 
Highest LAI; PFTs are listed in Table A1,

3 
TrBE + 2245 

TrIBE,
4
 BNE + BINE,

5
 TeBS + TeIBS,

6
 Mapped if LAITrBE  > 0.5 ∙ LAItrees;

 7
 Mapped if LAITrBR  > 0.5 ∙ 2246 

LAItrees; 
8
 Mapped if LAItropical trees > 0.5 ∙ LAItrees and TrBE or TrBR has highest LAI among trees;

9 2247 
Mapped if LAIboreal trees  > 0.5 ∙ LAItrees; 

10
 Mapped if LAITeBS or LAITeBE > 0.5 ∙ LAItrees; 

11
 Mapped if 0.2 2248 

∙LAItrees < LAIboreal trees  < 0.8 ∙LAItrees
 
and 0.2 ∙LAItrees < LAItemperate trees  < 0.8 ∙LAItrees ;

 12
 Mapped at 2249 

latitude > 54° or GDD5 (see Table A1 for definition) < 400°C∙days; 
12

 Classification must be done in 2250 
the same order as table.  2251 
 2252 
Table B1 Classification scheme for deriving vegetation biomes from PFT abundances 2253 
(leaf area index, LAI), following Smith et al. 2014. 2254 

Biome
13 

Tree LAI
1
 Grass LAI

1
 Total LAI

1
 Domiant Tree PFT

2 

Tropical rainforest
6 

> 2.5   TrBE
3 

Tropical deciduous 

forest
7 

> 2.5   TrBR 

Tropical seasonal forest
8 

   TrBE
3 
or TrBR 

Boreal evergreen 

forest/woodland
9 

> 0.5   BNE
4
 or BIBS 

Boreal deciduous 

forest/woodland
9 

> 0.5   BNS 

Temperate broadleaved 

evergreen forest
10 

> 2.5   TeBE 

Temperate deciduous 

forest
10 

> 2.5   TeBS
5 

Temperate/boreal
11

 

mixed forest > 2.5    

Temperate mixed forest     

Xeric Woodlands/ 

Shrublands 0.5-2.5  < 20% of total   

Moist Savnna 0.5-2.5  > 2.5  

Dry Savanna 0.5-2.5  ≤ 2.5  

Arctic/alpine tundra
12 

< 0.5  > 0.2  

Tall grassland  > 2.0   

Arid shrubland/ steppe 

(1) > 0.2 < 1.0   

Dry grassland  > 0.2   

Arid shrubland/ steppe 

(2)   > 0.2  

Desert   ≤ 0.2  


