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Abstract 27	
  

 28	
  

There is increasing need to understand the pre-Quaternary warm climates, how 29	
  

climate-vegetation interactions functioned in the past, and how we can use this 30	
  

information for understanding the present. Here we report vegetation modelling 31	
  

results for the Late Miocene (11-7 Ma) to study the mechanisms of vegetation 32	
  

dynamics and the role of different forcing factors that influence the spatial patterns of 33	
  

vegetation coverage. One of the key uncertainties is the atmospheric concentration of 34	
  

CO2 during past climates. Estimates for the last 20 million years range from 280 ppm 35	
  

to 500 ppm. We simulated Late Miocene vegetation using two plausible CO2 36	
  

concentrations, 280 ppm CO2 and 450 ppm CO2, with a dynamic global vegetation 37	
  

model (LPJ-GUESS) driven by climate input from a coupled AOGCM (Atmosphere-38	
  

Ocean General Circulation Model). The simulated vegetation was compared to 39	
  

existing plant fossil data for the whole Northern Hemisphere.  For the comparison we 40	
  

developed a novel approach that uses information of the relative dominance of 41	
  

different Plant Functional Types (PFTs) in the palaeobotanical data to provide a 42	
  

quantitative estimate of the agreement between the simulated and reconstructed 43	
  

vegetation. Based on this quantitative assessment we find that pre-industrial CO2 44	
  

levels are largely consistent with the presence of seasonal temperate forests in Europe 45	
  

(suggested by fossil data) and open vegetation in North America (suggested by 46	
  

multiple lines of evidence). This suggests that during the Late Miocene the CO2 levels 47	
  

have been relatively low, or that other factors that are not included in the models 48	
  

maintained the seasonal temperate forests and open vegetation. 49	
  

 50	
  

 51	
  



 52	
  

1. Introduction 53	
  

 54	
  

The Late Miocene (11 to 7 Ma) belongs to the late phase of the Cenozoic climate 55	
  

cooling, during which the seasonality of climate in Europe intensified (e.g. 56	
  

Mosbrugger et al., 2005) and landscapes in North America opened (Eronen et al., 57	
  

2012). In many regions, it was still characterised by warm and humid climatic 58	
  

conditions compared to today (Micheels et al., 2011, Utescher et al., 2011, Eronen et 59	
  

al., 2012, Fortelius et al., 2014).  The global continental configuration in the Miocene 60	
  

was generally comparable to the modern situation with some small differences (e.g., 61	
  

Herold et al., 2008, Micheels et al., 2011). Marine evidence indicates that tropical sea 62	
  

surface temperatures were similar or even warmer than present in the Early to Middle 63	
  

Miocene (e.g., Stewart et al., 2004), and terrestrial equatorial regions were as warm as 64	
  

today in the Late Miocene (Williams et al., 2005; Steppuhn et al., 2006). The polar 65	
  

and Northern regions were warmer during the whole Miocene (e.g., Wolfe, 1994a,b, 66	
  

Utescher et al., 2011, Popova et al., 2012). Similarly, the North Pacific in the Late 67	
  

Miocene was warmer than today (Lyle et al., 2008). CO2 levels during the Late 68	
  

Miocene can still not be reconstructed with certainty (see e.g. discussion in Beerling 69	
  

and Royer 2011): estimates for the atmospheric CO2 levels range from 280 ppm to as 70	
  

high as 500 ppm.  Recent studies suggest about 350–500 ppm for the Middle Miocene 71	
  

(Kürschner et al., 2008, Foster et al., 2012, Zhang et al., 2013), and around 280-350 72	
  

ppm for the Late Miocene (Zhang et al., 2013, their figure 5). In addition, terrestrial 73	
  

proxy data suggest that during the Late Miocene there was a marked increase in both 74	
  

temperature and precipitation seasonality (Janis et al., 2002, Mosbrugger et al., 2005, 75	
  

Eronen et al., 2010, 2012). Plant-based data evidence that the increase in temperature 76	
  



seasonality was mainly effective in the middle to higher latitudes (Utescher et al., 77	
  

2011), while the evolution of precipitation seasonality was strongly region-dependant 78	
  

and variable throughout the late Miocene (Syabryaj et al., 2007; Utescher et al., 79	
  

2015). Knorr et al. (2011) modelled the impact of vegetation and tectonic conditions 80	
  

on the Late Miocene climate, and showed that the vegetation has a considerable effect 81	
  

on the climate, and that Late Miocene warmth can be modelled with relatively low 82	
  

CO2 concentrations at pre-industrial level (278 ppmv).  Further, LaRiviere et al. 83	
  

(2012) showed that the oceanic state in the Late Miocene was similar to that of Early 84	
  

Pliocene, with a deeper thermocline, high SSTs, and low SST gradients. They further 85	
  

suggested that, based on their data, during the Late Miocene and earlier times CO2 86	
  

and oceanic warmth were decoupled because of deeper thermoclines. The tight link 87	
  

between ocean temperature and CO2 formed only during the Pliocene when the 88	
  

thermocline shoals and surface water became more sensitive to CO2. Bolton & Stoll 89	
  

(2013) on the other hand suggested that, based on coccolith data analysis, the 90	
  

atmospheric CO2 concentration decreased during the latest Miocene (7-5 Ma). They 91	
  

also suggested that atmospheric CO2 content might have been higher (400-500 ppm, 92	
  

based on Zhang et al., 2013) during the Middle and Late Miocene, and that the 93	
  

substantial ocean surface cooling during the last 15 Ma may reflect the global 94	
  

decrease in the CO2 concentration. 95	
  

 96	
  

The Late Miocene is a sub-epoch of the Miocene, which is generally dated roughly 97	
  

between 11 to 5 million years. It includes the Tortonian and Messinian stages. The 98	
  

climate and vegetation models we use in this study use the boundary conditions 99	
  

specific for the Tortonian. The Tortonian comprises the time-interval between 11.6 100	
  

and 7.2 Ma (Gradstein et al., 2004). It corresponds roughly to European mammal 101	
  



units MN9 to MN12, and Vallesian and lower Turolian mammal zones (Steininger 102	
  

1999). The boundary conditions used for the climate model, as well as the proxy data 103	
  

we use, are dated within these time slices. From here on, we just use the term 104	
  

Tortonian to indicate this time period, and refer to the Late Miocene when we discuss 105	
  

trends in more general terms. 106	
  

 107	
  

Here we run the dynamic global vegetation model  (DGVM) LPJ GUESS (Smith et 108	
  

al., 2001, Sitch et al., 2003, Ahlström et al., 2012) for the Tortonian with two different 109	
  

CO2 concentrations to investigate the vegetation dynamics during this period. We use 110	
  

climate data simulated for the Tortonian by Knorr et al. (2011) and Knorr and 111	
  

Lohmann (2014), using a fully coupled AOGCM without any flux corrections.  We 112	
  

concentrate on whether the DGVM can create and maintain the mid-latitude seasonal 113	
  

vegetation cover in a generally warmer world, as suggested by the proxy data, and on 114	
  

the sensitivity of the vegetation to CO2 concentration. We compare our results with 115	
  

existing terrestrial proxy data and previous modelling results, and discuss the 116	
  

implications from our results. Our hypothesis is that in order to maintain the seasonal 117	
  

and open vegetation of the Late Miocene, we need low atmospheric CO2 118	
  

concentration.  119	
  

 120	
  

2. Previous model studies 121	
  

 122	
  

Several vegetation model runs have been performed previously for the Late Miocene 123	
  

period. One of the first was a BIOME4 model (Kaplan, 2001) run for the Tortonian by 124	
  

Micheels (2003) to interpolate between the vegetation reconstructed by qualitative 125	
  

interpretation of proxy data from palaeobotanical literature. In this reconstruction the 126	
  



tropical forests expand in the Tortonian, and their margins shift further poleward. 127	
  

Much of Africa was generally characterised by tropical forest vegetation. 128	
  

Accordingly, the Sahara desert was smaller than today and consisted of steppe and 129	
  

open grassland, rather than sand desert. Woodier Tortonian vegetation replaced the 130	
  

present-day’s warm-arid desert, semi-desert and grassland regions.  131	
  

 132	
  

Francois et al. (2006) used the CARAIB model together with the ECHAM4/ML 133	
  

AOGCM to reconstruct the distribution of vegetation and carbon stocks during the 134	
  

Tortonian (7-11 Ma) with different CO2 levels. The main difference to our model 135	
  

setup is that ECHAM4 was not coupled to a dynamic ocean model, but a mixed layer 136	
  

ocean model. Their Tortonian run with 280 ppm CO2 showed a general trend of 137	
  

reduction of desert areas worldwide and appearance of tropical seasonal forests in the 138	
  

warm temperate zone of the Northern Hemisphere, between 30° and 50° (figure 4 of 139	
  

Francois et al., 2006). With their 560 ppm CO2, most deserts disappeared from the 140	
  

continental surface, except for the Sahara.  The extent of tropical seasonal forests also 141	
  

appeared to be extremely sensitive to the atmospheric CO2 level. Francois et al. 142	
  

(2011) further used the CARAIB model to study the Tortonian vegetation in Europe 143	
  

in detail. On average, their standard 280 ppm run is too cool, with too few temperate 144	
  

humid evergreen trees in Southern Europe compared to their proxy data. Also other 145	
  

models (see below) have struggled to reproduce the seasonal forests in Europe that are 146	
  

known to have existed for the last 10 million years (e.g. Agusti et al., 2003, 147	
  

Mosbrugger et al., 2005). 148	
  

 149	
  

Pound et al. (2011) used BIOME4, driven by the HadAM3 atmosphere-only general 150	
  

circulation model, and palaeobotanical proxies to create an advanced global data–151	
  



model hybrid biome reconstruction for the Tortonian. In their runs boreal forests 152	
  

reach 80°N, and temperate forests were present north of 60°N. Warm–temperate 153	
  

forests cover most of Europe, North America and South-East Asia. There is temperate 154	
  

savannah in central USA. Most areas that are deserts today are covered by grasslands 155	
  

and woodlands in their run. The extent of tropical forests in South America was 156	
  

reduced. Scheiter et al. (2012) used the adaptive DGVM (aDGVM) forced with 157	
  

climate data from HadCM3L and carried out factorial vegetation model runs to 158	
  

investigate the role of fire, emergence of C4 photosynthesis, and atmospheric CO2 159	
  

levels in the vegetation dynamics of Africa. In their runs vegetation openness is 160	
  

mainly determined by fire, generally too much forest cover is simulated if fire 161	
  

disturbance is switched off. The biome pattern is relatively insensitive to changes in 162	
  

the CO2 concentration or the introduction of herbaceous vegetation with C4 163	
  

photosynthesis. 164	
  

 165	
  

3. Methods  166	
  

 167	
  

3.1 Palaeoclimate Simulations 168	
  

 169	
  

The climate simulations have been performed with an AOGCM.  The atmosphere 170	
  

model component ECHAM5 (Roeckner et al., 2003) was used at T31 resolution 171	
  

(∼3.75°) with 19 vertical levels. The ocean model MPIOM (Marsland et al., 2003) 172	
  

was run with a bipolar curvilinear GR30 resolution (∼3°x1.8°) with 40 vertical layers. 173	
  

This modelling approach has been evaluated with proxy data in investigations of the 174	
  

Tortonian (Micheels et al., 2011, Knorr et al., 2011) and the Middle Miocene climate 175	
  

transition (Knorr and Lohmann, 2014). We used the same boundary conditions as 176	
  



Micheels et al. (2011) with respect to the tectonic setting and the vegetation 177	
  

distribution. We applied minor land-sea modifications, as described in Knorr et al. 178	
  

(2011), e.g., a closed Hudson Bay (Smith et al., 1994). We used data from two model 179	
  

runs with different CO2 settings, one with a lower CO2 concentration of 278 ppm 180	
  

(after this referred to as “280 ppm run”, from Knorr et al., 2011) and one with a 181	
  

higher CO2 concentration of 450 ppm (after this referred to as “450 ppm run”, from 182	
  

Knorr and Lohmann, 2014).   183	
  

 184	
  

For further details of the AOGCM model configuration and the boundary conditions 185	
  

we refer the reader to Micheels et al. (2007, 2011), Knorr et al. (2011), and Knorr and 186	
  

Lohmann (2014). 187	
  

 188	
  

3.2 Correction of present-day biases in climate simulations  189	
  

 190	
  

To correct for biases in climate simulations, the difference between the Tortonian 191	
  

climate simulations and the pre-industrial control simulation in Knorr et al. (2011) 192	
  

(the Control) was applied to present day climate data to form the palaeoclimate. The 193	
  

Princeton Global Forcing dataset (PGF, Sheffield et al., 2006) was selected as the 194	
  

present day climate baseline. This dataset is a reanalysis product (produced by 195	
  

running an atmospheric circulation model with data assimilation using meteorological 196	
  

measurements) and has been bias-corrected using ground and satellite observations of 197	
  

meteorological variables. Thus it provides global data on a daily or sub-daily time-198	
  

step which has been dynamically interpolated from station measurements and, by 199	
  

using observed meteorological measurements, is corrected for biases originating from 200	
  

the atmospheric circulation model.  201	
  



 202	
  

The palaeoclimate anomalies were calculated using the mean values from 100 years 203	
  

of climate simulation and applied following the approach of François et al. (1998) but 204	
  

on a daily, rather than a monthly, time step. The years 1951-1980 were selected to 205	
  

represent the pre-industrial climate, as they give a reasonable compromise between 206	
  

the need for low atmospheric CO2 (to better represent pre-industrial climate) and the 207	
  

need for maximal instrumentation to measure the climate and so better constrain the 208	
  

atmospheric circulation model.  209	
  

 210	
  

3.3 Vegetation Simulations  211	
  

 212	
  

The palaeoclimate model results were used to drive the DGVM LPJ-GUESS. The soil 213	
  

texture map used in the vegetation simulations was derived by translating the soil 214	
  

texture map used by the palaeoclimate AOGCM simulations to the soil classes 215	
  

detailed in Sitch et al. (2003).  The representation of vegetation in the palaeoclimate 216	
  

AOGCM comprised statically prescribed land surface classes from Micheels (2003) 217	
  

and as such cannot vary to reach equilibrium with the climate.  By using a DGVM 218	
  

with offline climate data we allow the vegetation to reach equilibrium with the (now 219	
  

static) climate.  This forms the first step of an asymmetric, iterative offline coupling.  220	
  

Thus we consider our vegetation map to be an iteratively improved version of the 221	
  

original land-cover map of Micheels (2003), improved in the sense that it has 222	
  

undergone one cycle of simulated climate-land surface feedbacks, and has used a 223	
  

more fully developed DGVM with more detailed process representations.  224	
  

 225	
  



LPJ-GUESS (Smith et al., 2001) combines the generalized representations of the 226	
  

physiological and biophysical processes embedded in the widely used global model 227	
  

LPJ-DGVM (Sitch et al., 2003) with detailed representations of tree population 228	
  

dynamics, resource competition and canopy structure, as generally used in forest gap 229	
  

models (Bugmann 2001, Hickler et al., 2004). LPJ-GUESS (and the closely related 230	
  

LPJ-DGVM model) has been benchmarked against various observations including, 231	
  

for example, NPP (e.g. Zaehle et al., 2005; Hickler et al., 2006), modelled PNV 232	
  

(Hickler et al. 2006; Smith et al. 2014), stand-scale and continental-scale 233	
  

evapotranspiration (AET) and runoff (Gerten et al., 2004), vegetation greening trends 234	
  

in high  northern latitudes (Lucht et al., 2002) and the African Sahel (Hickler et al., 235	
  

2005), stand-scale leaf area index (LAI) and gross primary productivity (GPP; Arneth 236	
  

et al., 2007), forest stand structure and development (Smith et al., 2001, 2014; Hickler 237	
  

et al., 2004), global net ecosystem exchange (NEE) variability (Ahlström et al. 2012, 238	
  

2015) and CO2 fertilisation experiments (e.g. Hickler et al. 2008; Zaehle et al. 2014; 239	
  

Medlyn et al. 2015). 240	
  

 241	
  

Here, we build upon a recent version, including a representation of wildfires 242	
  

(Thonicke et al., 2001), the hydrology scheme from Gerten et al. (2004), and updates, 243	
  

in particular concerning the Plant Functional Type (PFT) parameterization described 244	
  

by Ahlström et al. (2012). The bioclimatic limits from Ahlström et al. (2012) were 245	
  

revisited and modified follow the original values in Sitch et al. (2003). This was 246	
  

motivated by an artefact found in the parameters of Ahlström et al. (2012) whereby in 247	
  

certain areas it was too warm for temperate trees to establish, but too cold for tropical 248	
  

trees.  This resulted in treeless belts in South China, Argentina and Florida (see Smith 249	
  

et al. 2014, Figure 2(C) for the model version which does not include nitrogen 250	
  



limitation). The updated bioclimatic parameters corrected this, but did not result in 251	
  

any other significant differences. The boreal/temperate shade-intolerant summergreen 252	
  

broadleaved tree (IBS) PFT in Ahlström et al. (2012) was split into separate boreal 253	
  

and temperate PFTs with temperature limits on photosynthesis, as the other boreal and 254	
  

temperate PFTs, respectively. A Temperate Needle-leaved Evergreen PFT (TeNE) 255	
  

was added based on a similar PFT in Sitch et al. (2003). Both these changes we made 256	
  

to match the PFTs simulated with those classified from the fossil data. The base 257	
  

respiration rates of boreal PFTs were increased compared to temperate trees (as in 258	
  

Hickler et al., 2012), reflecting the general increase of base respiration rates with 259	
  

decreasing temperature (Lavigne and Ryan 1997). Note that the C3 and C4 grass PFTs 260	
  

include forbs, not only grasses. In this paper we refer to these PFTs as grasses because 261	
  

grasses comprise most of the biomass of these PFTs, and this term is more consistent 262	
  

with the terminology used in the palaeobotanical reconstructions. A full list of PFTs 263	
  

and parameter values is given in Appendix A. 264	
  

 265	
  

The fire model GlobFIRM (Thonicke et al., 2001) with an updated parameterisation 266	
  

as described in Pachzelt et al. (2015), but applied globally, was used to simulate 267	
  

wildfires.  Representation of fire processes is important when studying vegetation 268	
  

dynamics and structure, particular when considering landscape openness.   269	
  

 270	
  

We performed a biomisation on the vegetation model output (based on Hickler et al. 271	
  

(2006) but with small changes, see Appendix B) to visualise the simulated Tortonian 272	
  

vegetation (Figure 1a and c), and to compare the vegetation simulation using the PGF 273	
  

climate forcing data for the present day to a present-day biome map. These results are 274	
  



presented in Appendix C, where an examination of the model setup’s ability to 275	
  

distinguish between present day and Tortonian vegetation can also be found. 276	
  

3.4 Statistics to compare modelled and fossil vegetation  277	
  

 278	
  

Quantitative comparisons of fossil data and model output are challenging. As 279	
  

described below, the palaeobotanical record provides the presence of fossil taxa at a 280	
  

given site and each taxon is then assigned to a PFT.  The final values for each site are 281	
  

therefore the number of taxa assigned to each PFT.  This is a measure of PFT 282	
  

diversity, but typically it is PFT abundances which are used to describe vegetation 283	
  

and biomes on a global scale, and it is these quantities, which are provided by 284	
  

vegetation models.  There are various difficulties when attempting to draw 285	
  

conclusions from comparisons between diversity data from the fossil record and 286	
  

modelled abundances or biomes.  Firstly, abundances and diversity are not necessarily 287	
  

closely correlated; some PFTs might have few taxa but massive abundance (for 288	
  

example Boreal Needle-leaved Trees).  Secondly, the fossil record has biases; some 289	
  

PFTs fossilise at higher rates than others, and time-dependent climate fluctuations 290	
  

(Milankovic cycles and the formation and destruction of microclimates) may make 291	
  

the fossil record unrepresentative of PFT diversities over the whole time period.  A 292	
  

further problem is that it is difficult to know how PFT diversities in the fossil record 293	
  

correlate to an abundance measure that can be simulated by a vegetation model.  An 294	
  

example of a commonly used abundance measure from vegetation models is Leaf 295	
  

Area Index (LAI), that is the leaf area per unit ground area.  Standard statistical tests, 296	
  

such as Spearmans’s rank correlation and Pearson’s production moment correlation 297	
  

coefficient, between modelled PFT LAI fraction and the PFT diversities in the fossil 298	
  



record, did not yield useful results, possibly for the reasons discussed above. These 299	
  

results are shown and discussed in Appendix D.  300	
  

 301	
  

3.4.1 Discussion of previous quantitative approaches  302	
  

 303	
  

To go beyond simple visual comparisons of model and data, and for hypothesis 304	
  

testing, we require a quantitative measure of agreement between fossil data and model 305	
  

output. Different approaches have been developed to compare fossil data to model 306	
  

results with some quantitative element. The study of Pound et al. (2011) uses Cohen’s 307	
  

kappa to determine biome agreement, comparing both the 27 “native” biomes from 308	
  

BIOME4 and a 7 “megabiome” classification. This does offers a single statistic which 309	
  

could be used for hypothesis testing. However, there are inherent shortcomings when 310	
  

using kappa to compare biome classifications and with biome classifications 311	
  

themselves.  312	
  

 313	
  

The inherent disadvantage of comparing kappa scores for biomes is that kappa does 314	
  

not include any mechanism to account for “degrees of difference” which can be 315	
  

important when considering more than two categories. For example, there is a much 316	
  

smaller conceptual difference between a “tropical grassland” and a “tropical savanna” 317	
  

than there is between a “tropical grassland” and a “boreal forest”, but that difference 318	
  

is treated identically when calculating Cohen’s kappa. This can be ameliorated to 319	
  

some extent by aggregating to megabiomes as done by Pound et al. (2011), but is 320	
  

inevitably present to some extent. A weighting can also be attempted, but this 321	
  

introduces subjective decisions. 322	
  

 323	
  



The second argument against comparing potential natural vegetation (PNV) biome 324	
  

distributions using kappa is that PNV biome classifications themselves introduce 325	
  

uncertainty. Potential natural vegetation cannot be measured directly (it no longer 326	
  

exists due to human influence) and so must be reconstructed.  There is uncertainty in 327	
  

such reconstructions as evidenced by the differences between PNV biome maps: for 328	
  

example, the horn of Africa is predominantly covered by “tropical deciduous forest” 329	
  

in Haxeltine and Prentice (1996), but is dominated by “dense shrublands” in 330	
  

Ramankutty and Foley (1999). Similarly, the extent of the “tropical deciduous forest” 331	
  

biome in Southern Africa varies considerably between the two maps. Even the biomes 332	
  

categories themselves vary between the maps as different authors make different 333	
  

distinctions. Our experience is that kappa statistics applied to compare different PNV 334	
  

maps can indicate as bad agreement as the one between a model and a PNV 335	
  

reconstruction, when biomes are not aggregated to coarser classes. There are also 336	
  

subjective choices when classifying model output which introduces uncertainty. For 337	
  

example, how much tree LAI or tree cover constitutes a forest? How much for a 338	
  

savanna? The choices for these numbers are not well-motivated and can change the 339	
  

biome boundaries considerably.  Concerning the paleobotanical data, we deliberately 340	
  

did not derive biomes because classifying fossil sites into biomes introduces large 341	
  

uncertainty arising from interpreting the fossil record in terms of vegetation cover. 342	
  

 343	
  

So whilst comparisons of biomes are clearly useful visual aids and can be a useful 344	
  

cross-check, we decided to use only information on PFT fractions for our main 345	
  

analysis and therefore minimize subjective choices and classifications. 346	
  

 347	
  



The work of François et al. (2011) offers a method for determining agreement 348	
  

between paleobotanical data and simulated vegetation which percentage agreement 349	
  

per PFT based on presence/absence. These per-PFT scores could conceivably be 350	
  

combined to produce overall agreement scores, taking care that PFTs which are 351	
  

mostly absent from the fossil record do not unduly affect the final result. However, 352	
  

the scope of this study is different in nature to that of François et al. The study of 353	
  

François et al. was a regional study with a relatively high degree of taxonomic 354	
  

precision (ie. a more detailed PFT set), whereas this study is global with appropriately 355	
  

coarser taxonomic resolution (ie. a relatively simpler but global PFT set). By means 356	
  

of example, there are 8 purely temperate PFTs in the CARAIB version used in 357	
  

François et al. 2011 compared to only 2 in the default LPJ-GUESS  configuration and 358	
  

4 in the configuration used in our study. Thus by exploiting a high degree of 359	
  

taxonomic precision, presence/absence data were used effectively in the regional 360	
  

study of François et al. In the global study presented here, each PFT spans a much 361	
  

larger geographical extent and there are fewer PFTs at each site for which to make 362	
  

presence/absence comparison. Thus one would expect the effective differentiating 363	
  

power of such presence/absence to be lesser. So rather than using detailed taxonomic 364	
  

resolution and presence/absence information, we seek to exploit the 365	
  

abundance/diversity fractions which we believe has useful information.   366	
  

 367	
  

To summarise, for this study, we sought a comparison method which uses 368	
  

abundance/diversity information beyond presence/absence, avoids biomes 369	
  

classifications, avoids Cohen’s kappa for multiple categories, and provides a simple 370	
  

number to summarise overall agreement for a given model run.  371	
  

 372	
  



   373	
  

 374	
  

3.4.2 Calculation of Agreement Index 375	
  

 376	
  

As motivated above, we developed a novel comparison index which we refer to as the 377	
  

Agreement Index (AI).  This index compares the fractional diversity of each PFT at 378	
  

each fossil site (diversity of each PFT divided by the total diversity) to the LAI 379	
  

fraction of that PFT in the corresponding gridcell (LAI for the PFT divided by the 380	
  

total LAI for the gridcell). The LAI values are the growing season maximum values 381	
  

and are averaged over a 30 simulation year period.  Based on these fractions, each 382	
  

PFT is assigned one of 4 statuses in both the fossil data and the model output at each 383	
  

fossil site. These statuses are [fossil, model]:  1) Dominant – fraction in the range 384	
  

(0.50, 1.0], 2) Sub-dominant – fraction in the range (0.15, 0.50], 3) Trace – fraction in 385	
  

the range (0.05, 0.15], 4) Absent – [0, 0.05].  These are then compared between fossil 386	
  

and model for each PFT, and a contribution quantifying the degree of agreement is 387	
  

added to the AI for the gridcell as given in Table 1.  The AI is then averaged across all 388	
  

fossil sites.   389	
  

  390	
  

The logic of the AI is as follows.  If a PFT is absent in both the data and the model it 391	
  

contributes 0, since correctly not simulating a PFT is not much of a test of model skill.  392	
  

This also has the desirable effect that a PFT, which is only minimally represented in 393	
  

both the fossil record and the model output, does not strongly affect the final AI 394	
  

value.  If the PFT status matches between the model and the data, then it contributes 395	
  

+1, except for if it is the dominant PFT, in which case +2 is added.  The dominant 396	
  

PFT is weighted more heavily because it defines the biome and represents the most 397	
  



significant component of the vegetation present.  If the model and data mismatch by 398	
  

one category (e.g. the PFT is trace in the model but absent in the data, or dominant in 399	
  

the data but only sub-dominant in the model) then there is a contribution of 0. In such 400	
  

a case the model is not exactly right, but it is not too far away. Given the large 401	
  

uncertainties in inferring relative abundance from fossil diversity data, this degree of 402	
  

statistical mismatch is acceptable.  If the data and model differ by two categories (say, 403	
  

the PFT is sub-dominant in the model but absent in the data) this represents a 404	
  

mismatch and contributes -1. Finally, if model and data mismatch by three categories 405	
  

(cases where a PFT is absent in the data but dominant in the model, or vice-versa) a 406	
  

contribution of -2 is added to the AI as this indicates large data-model disagreement.  407	
  

 408	
  

The range of possible values that the AI can take at a given site is determined by the 409	
  

composition of fossil PFTs at the site.  Averaging across all sites used in this analysis 410	
  

gives a range of (-11.4, 4.7).   However, this range is relatively meaningless as the 411	
  

chances of getting perfect agreement or perfect disagreement are vanishingly small.  412	
  

 413	
  

3.4.3 Interpreting Agreement Index scores and quantifying agreement by chance 414	
  

 415	
  

The Agreement Index method calculates a single score for one model run compared to 416	
  

a fossil dataset. Thus AI scores for two (or more) model runs can be compared and the 417	
  

model run with the highest AI score can be said to have the highest level of agreement 418	
  

with the fossil dataset. This in itself says nothing about the level absolute level of 419	
  

agreement between a particular model simulation and the fossil data (only that one 420	
  

agrees better compared to the other), or about how much better one model run agrees 421	
  

with the data than another model run. To address these questions, one requires both an 422	
  



estimate of what agreement could be expected by chance, and an estimate how much 423	
  

variability there is around this value.  To quantify this, one can calculate the 424	
  

Agreement Index for a large number of 'random simulations’ using a Monte Carlo 425	
  

approach (the exact algorithm to produce these ‘random simulations’ is important and 426	
  

discussed later). The mean value of these AI scores gives an expectation value for 427	
  

agreement by chance which can be used as a reference point for considering absolute 428	
  

agreement.  The standard deviation of these values gives a convenient unit to quantify 429	
  

the typical spread of AI values and indicate how much better a particular model run is 430	
  

compared either to chance agreement or to another model run.  Given this standard 431	
  

deviation and mean value, conventional Z scores and p-values can be calculated and 432	
  

interpreted, but the interpretation must always consider the method by which 433	
  

agreement by chance was quantified. 434	
  

 435	
  

There is no obvious and ubiquitous method to produce a ‘random simulation’ and 436	
  

various possibilities could be conceived. A truly random simulation would result in 437	
  

unrealistic PFTs combinations and would not be an informative baseline. We chose to 438	
  

construct a ‘random simulation’ by matching a randomly selected modelled gridcell 439	
  

(from either the 280 ppm simulation or the 450 ppm simulation) to each fossil data 440	
  

site.  Because this approach uses model output, it samples the climate space in a fairly 441	
  

even way and simultaneously ensures ecologically realistic PFT combinations.  It is 442	
  

therefore a reasonably ‘strict’ method compared to a more random method.  Other 443	
  

approaches for quantifying agreement by chance are tested and discussed in Appendix 444	
  

E.  We calculated the AI scores for 25,000 ‘random simulations’ using this method.  445	
  

The mean value of these scores was found to be -1.96 which is close to the centre 446	
  

point of the theoretically possible range.  The standard deviation was 0.17. 447	
  



 448	
  

 449	
  

3.4.4 Robustness of Agreement Index. 450	
  

 451	
  

The robustness of the AI was assessed with respect to the subjective choices of the 452	
  

method. Specifically, the choice of boundary values for AI statuses, score assigned for 453	
  

degree of similarity/dissimilarity and random agreement model were all varied and 454	
  

the results are reported in Appenix E. The method showed only limited sensitivity to 455	
  

these choices and no change was large enough to affect the scientific conclusions. We 456	
  

therefore suggest this approach as a robust and quantitative comparison of similar 457	
  

model setups for hypothesis testing, as well as a general measure of agreement 458	
  

between fossil data and simulation results. 459	
  

 460	
  

3.5 Palaeobotanical data  461	
  

 462	
  

The plant data we used are taken from the NECLIME data set as published in the 463	
  

PANGAEA database (doi:10.1594/PANGAEA), completed by data from the authors 464	
  

(full list of sites is provided in Table F1 in Appendix F). After removing sites with 465	
  

more than 20% aquatic taxa, representing azonal sites (not by macroclimate but by 466	
  

local topographic features determined vegetation, such as riparian vegetation, which is 467	
  

not represented by the vegetation model), the set comprised a total of 167 macro 468	
  

(fruits and seeds, leaves) and micro (pollen/spores) floras, dated to the Late Miocene 469	
  

(11 - 7 Ma). To assign PFTs to the fossil plant record, we classified the Nearest 470	
  

Living Relatives of the fossil plant taxa in terms of PFT types that are used in LPJ-471	
  

GUESS (see Table F2 in Appendix F). Depending on ecological amplitude of a 472	
  



taxonomic unit and the achievable taxonomic resolution, respectively, a single fossil 473	
  

taxon may represent various different PFTs. Therefore, a matrix containing modern 474	
  

taxa and PFT scores was first established, with PFT scores for each taxon adding up 475	
  

to 1. Diversities of PFTs were then calculated for all sites by using a matrix with taxa 476	
  

records together with a matrix containing the scores of the represented PFTs. Taxa 477	
  

diversity in the considered floras is highly variable, ranging from 7 to 129, and the 478	
  

floral data set is heterogeneous regarding its representativeness with respect to PFTs 479	
  

and the spatial scales at which palaeovegetation is mirrored (Utescher et al., 2007). 480	
  

Pollen floras usually allow characterizing regional vegetation, while leaves involve a 481	
  

local signal. Regarding the representativeness of fossil data with respect to PFTs, leaf 482	
  

floras reflect arboreal PFTs well, while remnants of herbaceous PFTs and grasses are 483	
  

rarely preserved. In pollen floras, on the other hand, the herbaceous vegetation tends 484	
  

to be over-represented while fruit and seed floras may be biased regarding the 485	
  

richness of aquatics. With all these uncertainties, we decided to use all palaeofloras 486	
  

for maximal geographic coverage, excluding aquatic ones, dated to the studied time 487	
  

slice. 488	
  

 489	
  

Various PFTs present in the fossil record, such as forbs, shrubs, lianas, tuft trees, 490	
  

aquatics, etc., are not considered in the analysis because they do not have any 491	
  

corresponding PFTs in the model, and therefore cannot be used for proxy data – 492	
  

model inter-comparisons. In Europe, for example, a shortcoming of the applied model 493	
  

version is that it does not distinguish sclerophyllous drought-adapted and 494	
  

laurophyllous perhumid evergreen temperate trees. A sclerophyllous evergreen PFT 495	
  

had been implemented in a model version including the hydraulic architecture of 496	
  

plants (Hickler et al. 2006), but the more general temperate evergreen PFT used here 497	
  



corresponds more closely with the predominantly non-sclerophyllous vegetation of 498	
  

the late Miocene (see Hickler et al. 2006 for details). Herbaceous PFTs occurring in 499	
  

the fossil record were combined with C3 grasses.  Moreover, deciduousness of sites 500	
  

may be over-estimated in the proxy data set, mainly for two reasons. Firstly, many of 501	
  

the studied floras and obtained PFT spectra have a relatively strong azonal imprint, 502	
  

because they represent riparian vegetation usually common in a subsiding 503	
  

depositional area. Riparian associations in general have a low diversity of evergreen 504	
  

woody species, compared to the zonal vegetation thriving in the same climate. This 505	
  

effect will be suppressed, but not eliminated, by the removal of sites with more than 506	
  

20% aquatic taxa, as discussed above.  Secondly, high scores for the broadleaf-507	
  

evergreen component are rarely obtained for mid-latitudinal palaeofloras, if 508	
  

taxonomic resolution is limited, because the majority of temperate genera comprise 509	
  

both deciduous and evergreen species. 510	
  

 511	
  

4. Results and Discussion 512	
  

 513	
  

4.1. General patterns 514	
  

 515	
  

The Late Miocene vegetation patterns are broadly similar to the modern day, with the 516	
  

same general pattern, but northward shifts of biomes (Figure 1a, b). The 450 ppm run 517	
  

is overall warmer and wetter, with largest differences found at the mid-latitudes, 518	
  

where tropical and subtropical components have a wider distribution (Figure 1b).  A 519	
  

poleward shift of the C3/C4 grass boundary at higher CO2 is evident from the 520	
  

dominant PFT maps (Figure 1c, d), as C4 photosynthesis is favoured at low 521	
  



atmospheric CO2 concentrations and at high temperatures (Ehleringer et al., 1997, 522	
  

Sage 2004). 523	
  

 524	
  

North America is of particular interest in this analysis due to the opening of 525	
  

landscapesthat is documented in proxy data. Although there is scarce botanical 526	
  

evidence from North America, other proxy sources, like fossil mammals (Janis et al., 527	
  

2004, Eronen et al., 2012) and phytoliths (e.g. Strömberg, 2011) point strongly to the 528	
  

opening of landscapes during the Miocene. In the 280 ppm run the vegetation of the 529	
  

Great Plains and Rocky mountain area of North America are more open than in the 530	
  

450 ppm run, and C3 grasses are the dominant PFT over a much larger area (Figure 531	
  

1a,b). Another region of interest is Europe, because of its high density of 532	
  

palaeobotanical proxy data.  Whilst both runs show Europe to be mostly forested, 533	
  

with the expected northwards shift of biome boundaries compared to the present day, 534	
  

the 280 ppm run shows more deciduous vegetation in Central Europe and more open 535	
  

vegetation in the south which agrees better with European proxy data. Figure 5 shows 536	
  

the difference in AI values at all fossil sites, and the better agreement of the 280 ppm 537	
  

run in central Europe due to a relatively larger abundance of deciduous trees is clearly 538	
  

visibly. These results are discussed further below.  539	
  

 540	
  

One feature that is very different between our model-based reconstructions, and also 541	
  

between different vegetation and climate models, is the vegetation of Greenland (e.g. 542	
  

Francois et al., 2006, Pound et al., 2011, our results). In most cases, Greenland is 543	
  

assumed to be largely covered with taiga and cold deciduous forests instead of the 544	
  

present-day’s ice cover, but there is no fossil data to confirm this.  Another large-scale 545	
  

feature of note is that the modern-day Sahara region is vegetated with dry grasslands. 546	
  



 547	
  

4.2 Comparison of 280 ppm and 450 ppm simulations 548	
  

 549	
  

Our simulation results with both CO2 concentrations correspond well with other 550	
  

vegetation modelling and reconstruction results (e.g. Francois et al., 2006, 2011, 551	
  

Pound et al., 2011) and the palaeobotanical data. Using our quantitative approach, we 552	
  

see that the 280 ppm run shows better agreement with palaeobotanical data than the 553	
  

450 ppm run. Specifically, the 450 ppm reconstruction yields an AI value of -0.97, 554	
  

whereas the 280 ppm reconstruction shows better agreement with an AI value of -555	
  

0.67. When using the method of quantifying chance agreement described in Sect. 556	
  

3.4.3, the 450 ppm reconstruction gives a Z-score of 5.8 (Figure 2). The interpretation 557	
  

of this Z-score is that there is p < 10-8 probability of randomly selecting 167 modelled 558	
  

gridcells which agree better with the fossil data better than the 450 ppm scenario. The 559	
  

280 ppm simulation yields Z-score of 7.5 (Figure 2), which is 1.7 standard deviations 560	
  

better than the 450 ppm run, and corresponds to p < 10-13 probability of getting better 561	
  

agreement by chance. 562	
  

 563	
  

In order to disentangle the indirect effect of CO2 on vegetation via climate, and the 564	
  

direct effect of CO2 on vegetation, we performed additional simulations with 450 ppm 565	
  

CO2 in the vegetation model with the 280 ppm CO2 climate model results and vice 566	
  

versa. The vegetation results with 450 ppm climate and 280 ppm vegetation have the 567	
  

worst agreement, with an AI score of -1.02.  The run with 280 ppm climate and 450 568	
  

ppm vegetation yields an AI of -0.60, which is slightly better than the full 280 ppm 569	
  

run. AI scores with the same CO2 in the climate simulation but different CO2 in the 570	
  

vegetation simulation are similar, whereas AI scores with different CO2 in the climate 571	
  



simulation but the same CO2 in the vegetation simulation are more dissimilar (Table 572	
  

2). Furthermore, the modelled response of vegetation to higher atmospheric CO2 573	
  

without nitrogen limitation most likely overestimates CO2 fertilisation (see e.g. 574	
  

Hickler et al. 2015). So the CO2 fertilisation seen in the 450 ppm simulation here can 575	
  

be considered to be at the upper bound of the likely effect of a an atmospheric CO2 576	
  

concentration of 450 ppm. These facts strongly suggest that climate CO2 is the 577	
  

dominant effect in our simulations. The overall effect of CO2 concentration in the 578	
  

Tortonian simulation is examined further using Cohen’s kappa statistic in Appendix 579	
  

C. 580	
  

 581	
  

The result that 280 ppm run agrees better with the palaeobotanical data poses a 582	
  

question: how can we have the combination of moderately low CO2, seasonal mid-583	
  

latitude conditions, a generally warmer world, and shallower latitudinal temperature 584	
  

gradient at the same time? Generally, so far the answer has been that the CO2 585	
  

concentration must have been higher in the past to create the Late Miocene warmth 586	
  

(see introduction). However, there has been increasing evidence that atmospheric CO2 587	
  

during the Late Miocene has not been much higher than during pre-industrial times 588	
  

(e.g. Pearson and Palmer, 2000, Beerling and Royer, 2011, Zhang et al., 2013). This 589	
  

remains an open question, but it is outside the scope of the present study.  590	
  

 591	
  

 592	
  

 593	
  

4.3 Regional comparison between model runs and palaeobotanical proxies 594	
  

 595	
  



Regional AI scores are presented alongside the global AI scores in Table 2 (see also 596	
  

Fig. 5 for the difference in AI scores between the 280 ppm and 450 ppm simulations 597	
  

plotted spatially). In the two regions with most fossil sites, Europe and Asia, we see 598	
  

higher AI scores for the 280 ppm run than for the 450 ppm run. In the other regions 599	
  

there are few data points and no clear difference between the CO2 scenarios. 600	
  

Examining the spatial patterns on a regional level, we see that with 280 ppm in the 601	
  

climate simulation there are more open conditions in North America, regardless of the 602	
  

CO2 concentration in the vegetation simulations (Figures 1, 3 and 4).  This is strongly 603	
  

supported by fossil mammal and phytolith data (see below). In Central Europe, the 604	
  

tendency towards more deciduous vegetation is also driven by low CO2 in the climate, 605	
  

not low CO2 in the vegetation, shown by the Central European AI values in Table 2. 606	
  

In other regions the patterns are less clear. In tropical regions, the direct effect of CO2 607	
  

on vegetation is stronger than the effect via climate, possibly because in these areas 608	
  

temperature and precipitation is not limiting.  In cooler areas (in particular the boreal 609	
  

zone), the effect of CO2 in the climate system of increasing temperatures is stronger 610	
  

than the CO2 fertilisation effect on vegetation, since these areas are temperature 611	
  

limited. 612	
  

 613	
  

4.3.1. Europe 614	
  

 615	
  

In Europe, the 280 ppm CO2 model run produces more deciduous and less evergreen 616	
  

vegetation in Central Europe and southeastern Europe. Here, the proxy data indicate a 617	
  

stronger tendency for temperate broadleaved deciduous forest (Central Europe), and 618	
  

mixed mesophytic forests (SW Europe, Paratethys realm and E Medit.) (Utescher et 619	
  

al., 2007) and increased seasonality (see also Mosbrugger et al., 2005). This is 620	
  



reflected in the higher AI scores for the 280 ppm run compared to the 450 ppm run 621	
  

(Table 2, Figure 5). Both the Iberian Peninsula and modern day Turkey are more open 622	
  

in 280 ppm run, with C3 grasses dominating, which better matches the palaeobotanical 623	
  

data. These conclusions are also supported by fossil mammal data (e.g. Fortelius et 624	
  

al., 2014). 625	
  

 626	
  

In the 280 ppm run a mix of evergreen forests, grasslands and dry savannas covers 627	
  

most of the Mediterranean and areas up to the Caucasus, with varying degrees of 628	
  

openness (Figure 1 and 3). Central and Northern Europe are covered by temperate 629	
  

seasonal forests and boreal forests (Figure 1 and 4). In the 450 ppm run, the temperate 630	
  

evergreen forests become more dominant in Southern Europe and parts of Central 631	
  

Europe compared to the 280 ppm run. The Mediterranean is still a mix of grasslands, 632	
  

savannas and forests, but with a tendency towards the woodier biome types and an 633	
  

increase in temperature evergreen trees (Fig. 1).  634	
  

When comparing to other reconstructions and palaeobotanical data it should be noted 635	
  

that, based on proxy data, the late Miocene vegetation in the lower latitudes of Europe 636	
  

has been characterized as Mixed Mesophytic Forest, an association of thermophilous 637	
  

broadleaved summergreens and conifers as canopy trees, with variably diverse 638	
  

evergreen woods in the understory (Utescher et al., 2007). This characteristic type, 639	
  

however, cannot be resolved in the biome system we presently use. 640	
  

 641	
  

Compared to our results, Pound et al. (2011) BIOME4 simulation produced tropical 642	
  

xerophytic shrublands for Western and Southern Europe. This is a drier vegetation 643	
  

type than the fossil data, and different from our model run.  For Central Europe, the 644	
  

BIOME4 simulation exhibits warm mixed forests, and this agrees well with data and 645	
  



our simulations.  The Pound et al (2011) simulations also agree in that the boreal 646	
  

forests are confined to the extreme north of Europe. 647	
  

 648	
  

The 200/280 ppm global simulations of Francois et al. (2006) produce vegetation in 649	
  

Europe which is very similar to the present day, whereas the 560 ppm run produces 650	
  

tropical seasonal forests in Europe.  The presence of tropical seasonal forests in 651	
  

Europe is not well-supported by palaeobotanical proxy data.  All of their simulations 652	
  

show a greater extent of the boreal forest than in either in Pound et al. (2011) or our 653	
  

simulations. 654	
  

 655	
  

In the higher resolution, regional study of Francois et al. (2011), most of Europe is 656	
  

dominated by cool-temperate mixed and temperate broadleaved deciduous forests, but 657	
  

there are warmer vegetation types present around the Adriatic Sea and in the north of 658	
  

Turkey. Warm-temperate mixed forests grow around the western part of the 659	
  

Paratethys, and an extension of the tropical grassland around the Mediterranean Sea 660	
  

can be observed. These latter aspects are similar to our simulations. 661	
  

 662	
  

4.3.2 North America 663	
  

 664	
  

Our 280 ppm model run exhibits vegetation that is similar to the present day in North 665	
  

America.  Compared to the 450 ppm runs, this vegetation is more open and seasonal 666	
  

in the Great Plains and Rocky Mountains.  The openness is apparent from the increase 667	
  

of C3
 grass PFT dominance, and from the reduction of tree cover and the 668	
  

corresponding savanna classification in the biome plots (Figure 1c,d; Figures 3 and 4).  669	
  

The increased seasonality is shown by the reduction in dominance of the temperate 670	
  



broadleaved evergreen PFT, and by the increase of C3 grass at the expense of trees.  671	
  

Whilst there are few fossil data points in North America, other available data from 672	
  

isotopes (Passey et al., 2002), mammalian community structure (Janis et al., 2004), 673	
  

mammal-based precipitation estimates (Eronen et al., 2012), as well as phytoliths 674	
  

(Strömberg, 2005) support the open landscapes and graze-dominated faunas during 675	
  

the Tortonian in the Great Plains, as do both midland plant localities in our record 676	
  

(sites Kilgore, Antelope; C3 PFT diversity fraction 20, 60 %). In addition, the data 677	
  

presented in Pound et al. (2011) indicate more open and seasonal vegetation in this 678	
  

region during the Tortonian.  In light of these sources of evidence, it appears that the 679	
  

280 ppm simulation reproduces the vegetation of the central North America better 680	
  

than the 450 ppm simulation.  681	
  

 682	
  

A further notable difference is that the 450 ppm simulation exhibits a strong 683	
  

northward movement of biome boundaries compared to the 280 ppm run, which are 684	
  

indicative of a considerably warmer and wetter climate (Figure 1a, b).  There is a 685	
  

northward shift of the boreal/temperate boundary in the 450 ppm run compared to the 686	
  

280 ppm run.  Temperate forests have larger extent, and treeline shifts northwards, 687	
  

almost completely replacing tundra in the higher latitudes.  In similar fashion, 688	
  

evergreen trees dominate larger areas than deciduous trees in the temperate coastal 689	
  

forests, which may also be linked to the seasonality and humidity changes mentioned 690	
  

above. 691	
  

 692	
  

In the Southwest and near the Gulf of Mexico, the results are similar in 280 ppm and 693	
  

450 ppm runs. In the Southwest and south of North America, both simulations 694	
  

produce dry and open vegetation that is similar to the present day (Figure 1a,b). The 695	
  



runs indicate xeric woodlands and shrublands, dominated by temperate evergreen 696	
  

trees. Further north, these biomes transition to temperate deciduous forests along the 697	
  

Eastern Seaboard, which is in broad agreement with the proxy-based results obtained 698	
  

from the Pacific coastal sites between 35 and 45 °N. The main difference between the 699	
  

280 ppm and 450 ppm runs is that the transitions occur further north in the 450 ppm 700	
  

simulation. 701	
  

 702	
  

Compared to Pound et al. (2011), in North America our 280 ppm run produces much 703	
  

more open vegetation in the Great Plains, whereas Pound et al. (2011) find more 704	
  

forests. In addition, Pound et al. (2011) reconstruct a large band of temperate 705	
  

grasslands that replaces northern temperate and boreal forests.  This is also seen in 706	
  

their Asian reconstruction at similar latitudes, but is not seen in any other 707	
  

reconstruction.   708	
  

 709	
  

Our model results are fairly consistent with the François et al. (2006) CARAIB model 710	
  

results (their 280 ppm standard Tortonian run). The main differences from our results 711	
  

in North America are that we produce much more open vegetation with 280 ppm CO2, 712	
  

and much of their eastern forests are tropical seasonal forests, indicating warmer 713	
  

climate. The low CO2 run of François et al. (with 200 ppm), on the other hand, 714	
  

produced temperate mixed forests in much of North America, with only western 715	
  

North America being more open.  716	
  

 717	
  

4.3.3 Asia 718	
  

 719	
  



In Asia, the expected northward biome shifts in the boreal/temperate zone is observed 720	
  

in the 450 ppm simulation relative to the 280 ppm simulation.  In a similar fashion to 721	
  

North America and Europe, the temperate-boreal boundary and treelines are at higher 722	
  

latitudes with higher CO2, resulting in a larger area of temperate deciduous forest, and 723	
  

almost no tundra or boreal deciduous forest, in the 450 ppm simulation (Figure 1a, b).  724	
  

The 280 ppm biome boundaries are approximately similar to the present day, with the 725	
  

exception that the temperate deciduous forest encroaches much further from Europe 726	
  

into Asia.   727	
  

 728	
  

Both simulations exhibit a large grass-dominated steppe in Central Asia, but the 729	
  

landscape is not as open as in the present day vegetation.  This grass steppe is larger 730	
  

in the 280 ppm run than in the 450 ppm run, and extends slightly further northwards 731	
  

in the western part (Figure 1a, b).  The small difference in aridity and openness in the 732	
  

Asian continental interior between the CO2 concentration scenarios is much less 733	
  

compared to North America. The few inland proxy points in Central Asia (sites 734	
  

Dunhuang, Kuga Xinjiang, S Junggar, Xining Minhe Basin) all have significantly 735	
  

raised proportions of C3 herb component, with no difference between the different 736	
  

CO2 simulations. The 280 ppm run shows more temperate broadleaved evergreen 737	
  

trees in southern and eastern China and the surrounding area, than in the 450ppm run.  738	
  

 739	
  

There are few differences between the 280 ppm and 450 ppm simulations in 740	
  

Southwest Asia, South Asia and Southeast Asia; both produce grasslands in the 741	
  

western areas and savanna in east. The savanna transitions to tropical forests in the 742	
  

southeast.  However, the 280 ppm run produces dryer grasslands in the west, and 743	
  

slightly fewer trees in the east.  Furthermore, the evergreen tropical forest of the 280 744	
  



ppm scenario (and in present day simulations) is replaced by tropical seasonal and 745	
  

tropical deciduous forests in the 450 ppm scenario.  This is unexpected and observed 746	
  

in the 450 ppm scenario across the humid tropics, and is discussed further below.  747	
  

There are essentially no proxy data available for comparison in these areas. It is 748	
  

known that the present day simulation underestimates tree cover in these areas, so the 749	
  

palaeo model results should be treated with caution.  750	
  

 751	
  

The Pound et al. (2011) model/proxy hybrid reconstruction shows a similar boreal 752	
  

range in Asia as the 450 ppm run presented here, but with a large band of temperate 753	
  

grasslands separating the boreal and temperate forests.  This band is not seen in our 754	
  

reconstructions, but is also simulated for North America in Pound et al. (2011).  755	
  

Elsewhere, the reconstructions are broadly similar, although the Pound et al. (2011) 756	
  

model has more tree cover over much of Central and East Asia (with savanna being 757	
  

present instead of grasslands, and more temperate forests being present on the east 758	
  

coast) and parts of southern and south-eastern Asia (with more tropical trees).  All the 759	
  

vegetation reconstructions of François et al. (2006) have a large area of boreal forest 760	
  

in the north, particularly in the northeast, and regardless of CO2 concentration.  They 761	
  

also show greater abundances of trees in the southeast and less openness in the 762	
  

continental interior compared to our runs, although this difference is less pronounced 763	
  

in their lower CO2 simulations. 764	
  

 765	
  

4.3.4. Africa 766	
  

 767	
  

Both of our Tortonian simulations show grasslands in the modern-day Sahara desert 768	
  

(Figure 1a, b). A green Sahara is consistent with generally warmer global climate (e.g. 769	
  



Micheels et al., 2011, Knorr et al., 2011) and this feature is broadly similar to the 770	
  

reconstruction of Pound et al. (2011), which shows only small areas of desert with 771	
  

large areas of tropical xerophytic shrubland.  François et al. (2006) did not reconstruct 772	
  

a green Sahara, and shows some areas that are desert at all CO2 concentrations.  The 773	
  

simulation of Scheiter et al. (2012) also showed a large Sahara desert. 774	
  

 775	
  

Starting from the equator and moving polewards, both of our simulations exhibit a 776	
  

progression from full tree cover in equatorial Africa, changing to savanna biomes, and 777	
  

finally becoming grasslands with near zero tree cover at ±15°N. This pattern is the 778	
  

same as for the present day. The 450 ppm scenario produces more trees, as would be 779	
  

expected from a more humid world with higher CO2.  The higher CO2 scenario also 780	
  

favours deciduous tropical trees over evergreens, as can be observed in the other 781	
  

humid tropical forests (Figure 1a,b).  The reconstructions of Pound et al. (2011), and 782	
  

of François et al. (2006), all show evergreen tree dominating the most equatorial 783	
  

region with a similar gradient of tree cover, but Pound et al. (2011) transitions to 784	
  

shrublands instead of grasslands.  The 280 ppm and 560 ppm CO2 scenarios of 785	
  

François et al. (2006) feature a much greater extent of tropical deciduous forest in 786	
  

Southern Africa. 787	
  

 788	
  

At the southern and northern extremes of Africa, limited amounts of woody 789	
  

vegetation appear in both our simulations.  In the 450 ppm scenario this vegetation 790	
  

contains some tropical trees, whereas in the 280 ppm scenario this vegetation is purely 791	
  

temperate.  792	
  

 793	
  



The Scheiter et al. (2012) simulation with C4 grasses and fire with 280 ppm (Figure 1i 794	
  

in Scheiter et al. 2012) is extremely close to our simulation result with 280 ppm for 795	
  

Africa, but without a green Sahara.  In their runs, there is no perfect agreement 796	
  

between proxy data and any one specific simulation scenario. The best agreement is 797	
  

achieved in simulations with fire at 280 ppm CO2. Their model run with 400 ppm CO2 798	
  

and fire changes the pattern slightly, with more woodland in the tropics, and less 799	
  

tropical evergreen forests. This is similar to our 450 ppm CO2 run where our tropical 800	
  

evergreen forest cover decreases. Unlike the Scheiter et al. (2012) 400 ppm run, in our 801	
  

high CO2 run the change is from evergreen forest to raingreen forest. In our 802	
  

simulations the forest fraction in the tropics is larger with higher atmospheric CO2 803	
  

concentration. This begets more investigation into the tropical vegetation dynamics 804	
  

during the Miocene. The presently available palaeobotanical data is not sufficient for 805	
  

deriving the general broad-scale pattern of raingreen versus evergreen forest.  806	
  

 807	
  

4.3.5 South America 808	
  

 809	
  

In South America our Tortonian results show relatively little change compared to the 810	
  

present-day simulation, with the noticeable exception that the savanna biome of 811	
  

modern day Cerrado is much larger in both the high and low CO2 Tortonian runs 812	
  

(Figure 1a, b). The southern tip of South America is evidently warmer and more 813	
  

humid in the Tortonian runs, as is apparent from the reconstruction of woody 814	
  

temperate biomes that are dominated by broadleaved evergreen trees, as opposed to 815	
  

the more open and cooler biomes in the present day simulation. The 280 ppm scenario 816	
  

shows a lower fraction of trees that the 450 ppm simulation..  The tendency for 817	
  



raingreen tropical trees to replace evergreens at higher CO2 concentrations (as in 818	
  

Africa and Southeast Asia) is also observed. 819	
  

 820	
  

The Pound et al. (2011) results are similar to the Tortonian runs presented here, and 821	
  

the reconstructions have in common a larger savanna area, and a warmer, more 822	
  

forested southern tip of South America compared to the present day simulations 823	
  

(Figure 1a, b, Figure S1). The François et al. (2006) 280 ppm model predicts much 824	
  

more closed environments for the whole continent, with tropical forest extending also 825	
  

to the south where our model produces moist savannas, and the eastern part being 826	
  

dominated by tropical seasonal forests. They produce a similar output for the 560 ppm 827	
  

run, and even their 200 ppm run has much more forests than either of our model runs. 828	
  

 829	
  

4.3.6. Australia 830	
  

 831	
  

In both of our Tortonian model runs, much of Australia is covered by tall grasslands 832	
  

(Figure 1a, b).  The south is slightly more arid, with some dry grassland in the 450 833	
  

ppm scenario, and a greater extent of dry grasslands and some xeric shrublands/steppe 834	
  

in the 280 ppm scenario.  Along the northeast coast tropical trees are present, resulting 835	
  

in savanna biomes (Figure 1a,b).  It should be noted that the present day simulation 836	
  

does not reproduce the large extent of xeric shrublands/steppe in the present day 837	
  

biome map (Figure S4a).  This may be due to the lack of any shrub PFTs in the 838	
  

parameterisation of LPJ-GUESS.  In contrast, the reconstruction of Pound et al. 839	
  

(2011) with BIOME4 (which explicitly includes shrubland biomes) does include a 840	
  

large area of tropical xerophytic shrubland in their Tortonian simulation, and some in 841	
  

the present day simulation.  Their Tortonian simulation also produces a band of 842	
  



savanna along the north east coast, and elements of temperate forest to the south.  843	
  

These forests are not as widespread as in the proxy data, resulting in large corrections 844	
  

in this area. This is mirrored in our results, as the 450 ppm run, with its larger quantity 845	
  

of temperate trees, agrees with the limited proxy data available in the South (Figure 846	
  

1a, b).    847	
  

 848	
  

The François et al. (2006) 280 ppm model produces grasslands over much of 849	
  

Australia with higher CO2, and semi-desert and desert with lower CO2.   It also shows 850	
  

a band of tropical seasonal forest vegetation along the northeastern coast which 851	
  

extends considerably further inland at higher CO2 concentrations. On a general level, 852	
  

all the models produce arid biomes over much of Australia, but their exact 853	
  

distributions differ substantially.  This may be due to the different representation of 854	
  

xeric vegetation, particularly shrubs, and due to differences in the classification of 855	
  

biomes, particularly shrublands.  856	
  

 857	
  

5. Summary and Conclusions 858	
  

 859	
  

Here, we simulated Tortonian vegetation under two plausible atmospheric CO2 860	
  

concentrations, using a dynamic global vegetation model forced by AOGCM-based 861	
  

palaeoclimate simulations.  We applied a novel approach for comparing modelled 862	
  

vegetation with palaeobotanical data. This approach allowed us to quantitatively test 863	
  

which CO2 scenario agreed better with the proxy data.   864	
  

 865	
  

Our results show that the agreement between modelled vegetation and palaeobotanical 866	
  

data is consistently (i.e. overall and in each world region) higher for the 280 ppm 867	
  



model run compared to the 450 ppm run. In other words, the CO2 level needs to be 868	
  

moderately low in order to maintain the seasonal and open landscapes that are the 869	
  

hallmarks of Late Miocene environments.  870	
  

 871	
  

The results are most striking for Central Europe and for Central and West America. 872	
  

The 280 ppm run produces deciduous forests in Central Europe and open landscapes 873	
  

in Southern Europe, in agreement with the palaeobotanical evidence, whereas the 450 874	
  

ppm run produces more evergreen forests. Similar differences in openness in Central 875	
  

and Western North America occur in the simulations. Due to the scarcity of 876	
  

palaeobotanical data in most of North America, higher AI values cannot be observed 877	
  

for the 280 ppm run. However, the open landscapes observed in the 280 ppm run are 878	
  

supported by multiple lines of evidence, including fossil mammal data, isotopes, and 879	
  

phytoliths. Results from factorial runs, assuming different CO2 concentrations in the 880	
  

climate and the vegetation model, suggest that climatic effect of CO2 are most 881	
  

important.  Physiological CO2 effects also play a secondary role, in particular in 882	
  

Central and Western North America.  There are still uncertainties in the models, and 883	
  

these results should be tested with different models. Next phase of studies should test 884	
  

our results also using marine data and marine ecosystem models to compare between 885	
  

terrestrial and marine realms. 886	
  

 887	
  

Our results suggest that atmospheric CO2 levels were relatively low during the Late 888	
  

Miocene, and that the Late Miocene fossil vegetation data can be used in conjunction 889	
  

with vegetation/climate modeling to constrain CO2 concentrations in the atmosphere.  890	
  

 891	
  



Appendices  892	
  

 893	
  

Appendix A: Plant Functional Types (PFTs) 894	
  

 895	
  

The PFTs used here follow from Ahlström et al. (2012) with some modifications as 896	
  

noted in the main text.  In particular, the parameters for shade-tolerance classes, leaf 897	
  

forms, and growth types are unchanged from Ahlström et al. (2012, their Table S2).  898	
  

Table A1 gives a complete list of the PFTs and their parameters, as used in this study. 899	
  

 900	
  

Appendix B: Biome classification 901	
  

The biome classification used here is shown in Table B1. It is almost identical to that 902	
  

of Smith et al. (2014) but slightly modified because the shade intolerant broad-leaved 903	
  

summergreen (IBS) PFT in Smith et al. (2014) has been split into a temperate shade 904	
  

intolerant broad-leaved summergreen (TeIBS) PFT and a boreal shade intolerant 905	
  

broad-leaved summergreen (BIBS) PFT for this study.  In this classification BIBS is 906	
  

treated as IBS for classifying boreal forests, and TeIBS is added to TeBS when 907	
  

classifying temperature forests. Furthermore, to classify alpine tundra as well as arctic 908	
  

tundra, tundra is mapped if GDD5  < 400 °C·days (GDD5 = annual accumulated 909	
  

degree-day sum of days above 5°C). 910	
  

 911	
  

Appendix C Model benchmarking and effect size 912	
  

 913	
  

Figure C1(a) compares the biome distributions from the present day PGF(Princeton 914	
  

Group Forcing, Sheffield et al., 2006) control run and potential natural vegetation 915	
  

biomes from Hickler et al (2006, modified from Haxeltine and Prentice, 1996), using 916	
  



the biomes classification described in Appendix B. Figure C1(b) shows the dominant 917	
  

PFT. The simulation captures the broad patterns of present day vegetation. The reader 918	
  

is referred to Smith et al. (2014, their Figure 2(C)) for a more detailed qualitative 919	
  

comparison of the biomes deriving from LPJ-GUESS without the modifications 920	
  

employed for this study. 921	
  

 922	
  

As noted in the main text, there is uncertainty in potential natural vegetation as 923	
  

different reconstructed biome maps can differ considerably (compare, for example, 924	
  

Haxeltine and Prentice (1996), Ramankutty and Foley (1999), Freidl et al. (2010), 925	
  

Olson et al. (2001)).There are also uncertainties when assigning biomes from model 926	
  

output due to the necessary use of arbitrary thresholds to define cut-offs between 927	
  

biomes. To mitigate these uncertainties and allow a meaningful quantitative 928	
  

comparison (Cohen’s Kappa statistic), we follow the approach of Harrison and 929	
  

Prentice (2003) and Pound et al. (2011) and aggregate biomes to eight megabiomes. 930	
  

The biome aggregation is described in Table C1 and follows the scheme Harrison and 931	
  

Prentice (2003) with minor alterations. The megabiomes resulting from the 932	
  

aggregation are shown in Fig. C1(c). Calculating Cohen’s Kappa between the data 933	
  

and model gives a value of 0.62, classified as “good” agreement by Monserud and 934	
  



Leemans (1992)). We interpret this as sufficiently good agreement and therefore 935	
  

sufficient model skill for the purposes of this study. 936	
  

 937	
  

To examine the model setup’s overall sensitivity to CO2 concentration and its ability 938	
  

to differentiate between present day and Tortonian climate, we calculated Cohen’s 939	
  

Kappa between the simulated megabiome distributions. These comparisons only 940	
  

involve modelled biomes, and these modelled biomes are produced using identical 941	
  

classification schemes, so the concern raised above (and in Sect. 3.4.1 of the main 942	
  

text) about the uncertainty in biome classifications does not apply here. The issue of 943	
  

“degrees of difference” is still relevant, but is ameliorated to some extent by the use of 944	
  

the coarser megabiome scheme. The Kappa between the 280 ppm CO2 and 450 ppm 945	
  

CO2 reconstructions is 0.70. Given that the model setup is identical except for the CO2 946	
  

concentration and that all other factors are equal, we believe that this indicates a 947	
  

sufficiently large sensitivity to atmospheric CO2 concentrations for the purpose of this 948	
  

study. The Kappa between the Tortonian 280 ppm biomes and the PGF control run 949	
  

biomes is 0.64, and comparison of the Tortonian 450ppm biomes and the PGF control 950	
  

run biomes gives a Kappa of 0.48. Considering again that these maps are produced 951	
  

with identical methodologies, these Kappa scores indicate that the method can well-952	
  

distinguish between Tortonian vegetation and present day vegetation. 953	
  

 954	
  

 955	
  

Appendix D Pearson’s product moment correlation coefficients and Spearman’s rank 956	
  

correlation coefficients 957	
  

 958	
  



Both Pearson’s product moment correlation coefficients and Spearman’s rank 959	
  

correlation coefficients were calculated for the 280 ppm and 450 ppm scenarios per 960	
  

PFT and for the entire dataset. These are presented here in Fig. D1. As mentioned in 961	
  

the main text, these do not prove to be particularly illuminating. The per-PFT 962	
  

coefficients do not show a consistent trend favouring a particular CO2 scenario. 963	
  

Furthermore, the Spearman’s rank for the full dataset is virtually identical for both 964	
  

CO2 scenarios, but the Pearson’s coefficient indicates better correlation for the 280 965	
  

ppm CO2 scenario than for 450 ppm CO2 (0.53 vs. 0.42). This could be interpreted as 966	
  

weak evidence that the 280 ppm CO2 scenario agrees better with the paleobotanical 967	
  

data, but is far from conclusive.   968	
  

 969	
  

Appendix E Agreement Index robustness checks 970	
  

The robustness of the AI with respect to the various subjective choices was tested as 971	
  

described below.   972	
  

 973	
  

E.1 Choice of fractional ranges to define AI statuses 974	
  

 975	
  

A factorial study was carried out with the following values for the fraction ranges. 976	
  

 977	
  

    Min for trace:                    0.025, 0.05, 0.075 (original was 0.05) 978	
  

    Min for sub-dominant:      0.075, 0.15, 0.3 (original was 0.15) 979	
  

    Min for dominant:             0.5, 0.75 (original was 0.5) 980	
  

 981	
  

The results are shown for the 450 ppm run versus the 280 ppm in Fig. E1. The default 982	
  

boundaries are marked with a red star. Overall, it is clear that the 280 ppm gives better 983	
  



agreement than the 450 ppm in almost all cases. The exception (large black square) 984	
  

has a huge sub-dominant range from 0.075 to 0.75 which will include many PFTs, 985	
  

and therefore this combination of ranges has very little differentiating power. 986	
  

 987	
  

The boundaries control the absolute value of the AI much more than they control the 988	
  

difference between the 280/450 ppm runs, which suggests that the scientific result are 989	
  

robust against changes in the boundaries. It is possible to choose different boundaries 990	
  

to get either better differentiating power or higher values (in terms of absolute 991	
  

numbers) or even both, but this study was performed as an a posteriori check of 992	
  

robustness, not to tune the method, so the initial choices were maintained.  993	
  

  994	
  

 995	
  

 996	
  

E.2 Choice of numbers for the quantification of the different types of agreement 997	
  

 998	
  

Table E1 shows the AI scores and ranges when different numbers are used to quantify 999	
  

agreement/disagreement between statuses. In all cases the score is higher for the 280 1000	
  

ppm run than for the 450 ppm run. 1001	
  

 1002	
  

E.3 Estimation of random agreement 1003	
  

 1004	
  

As discussed in Sect. 3.4.3 of the main text, there is no obvious method for simulating 1005	
  

‘random agreement’ to estimate agreement by chance. Simply assigning each PFT a 1006	
  

random fraction (or AI status) will result in unrealistic PFT combinations and 1007	
  

unrealistic proportions of absent vs. present PFTs which has a strong effect on AI 1008	
  



scores (since by construction of the method, absent PFT do not contribute to the AI 1009	
  

score, they only reduce it when they are incorrectly simulated). The structure of the 1010	
  

fossil data could be used to varying degrees when generating data to simulate random 1011	
  

chance, but following this structure too closely could lead to artificially high levels of 1012	
  

agreement chance as the supposedly random data are restricted to be very similar to 1013	
  

the fossil data. 1014	
  

 1015	
  

Here we define, test, and discuss models to estimate chance agreement and define 1016	
  

four classes of model. 1017	
  

 1018	
  

A. Models which use only the bare minimum of information from the fossil 1019	
  

dataset. Specifically, the number of PFTs and the number of sites are important for 1020	
  

assessing variability and so must be included. Apart from that, no further information 1021	
  

from the fossil data is used. As such, these models rely mostly on the inherent 1022	
  

properties of the AI method but are naive to most of the details of the data – let us call 1023	
  

them ‘naive methods’. In such methods both fossil data and model data are randomly 1024	
  

generated. 1025	
  

B. Models which also use the structure of the fossil data, for example the 1026	
  

distribution or mean number of non-absent PFTs per site or the distribution of PFT 1027	
  

fractions, but not the fossil data themselves. From such structural information, both 1028	
  

random fossil and model datasets are generated to mimic the structure of the fossil 1029	
  

data. Let us call these “data-structured methods”. 1030	
  

C. Models which use the fossil data directly and compare it to randomly 1031	
  

generated model data. The randomly generated model data may or may not be 1032	
  

informed by the fossil data (as in data structured methods). Let us call the methods 1033	
  



“data-centered methods”. 1034	
  

 1035	
  

D. Models which compare fossil data to randomly sampled model data output. 1036	
  

These methods have the advantage that randomly sampled model data is guaranteed to 1037	
  

be ecologically sensible (insofar as the vegetation model is sensible).  Let us call these 1038	
  

“model-sampled methods”. 1039	
  

 1040	
  

Examining the fossil data shows that the mean number of non-absent PFTs per fossil 1041	
  

site is 4.2 (4 used when an integer number is required when constructing the models 1042	
  

below), with the distribution shown in Fig. E2(a). This simple distribution is 1043	
  

simulated exactly when building the chance agreement models B2, B4, C2 and C4, as 1044	
  

described below. The distribution of PFT fractions across all sites and PFTs is shown 1045	
  

in Fig. E2(b).  This can be well approximated by simulating each PFT 1046	
  

abundance/diversity as the exponential of a random number drawn from a Gaussian 1047	
  

distribution with mean = 1.0 and standard deviation = 1.75, and then calculating PFT 1048	
  

fractions by dividing by the total abundance/diversity at the site (exactly as one would 1049	
  

do to calculate PFT fractions from abundance/diversity data). This formulation was 1050	
  

found by trial-and-error, but as can be seen in Fig. E2(b), it matches the fossil data 1051	
  

extremely well. In particular the first bin (which marks the 0.05 cut-off below which a 1052	
  

PFT is considered absent) is extremely well simulated.  1053	
  

  1054	
  

We present the mean and standard deviation for a range of chance agreement methods 1055	
  

(each category is represented) and compare the resulting Z-scores and p-values for the 1056	
  

280 ppm and 450 ppm simulations in Table E2. Each method has been employed with 1057	
  

5000 iterations (each iteration sums AI scores across all sites in the fossil dataset) and 1058	
  



the resulting distributions of AI scores are all consistent with a Gaussian distribution 1059	
  

by visual inspection, and by inspection of a quantile-quantile (QQ) plot (data not 1060	
  

shown), as would be expected by the Central Limit Theorem. The models are: 1061	
  

A. Naive models 1062	
  

Model A1: Both model and data are generated such that each PFT is assigned a 1063	
  

fraction with equal probability.  The fractions are then normalised to sum to unity. 1064	
  

Model A2: Both model and data are generated such that each PFT is assigned an AI 1065	
  

status with equal likelihood, with the addition restriction that only one dominant PFT 1066	
  

can be assigned per site. 1067	
  

B. Data-structured models 1068	
  

Model B1: Both model and data are generated such that 4 PFTs are assigned a non-1069	
  

absent AI status with equal likelihood (the rest are assigned absent), with the addition 1070	
  

restriction that only one dominant PFT can be assigned per site. 1071	
  

Model B2: Both model and data are generated such that a random number of PFTs are 1072	
  

assigned a non-absent AI status with equal likelihood (the rest are assigned absent), 1073	
  

with the random number chosen from a distribution which matches the fossil data, and 1074	
  

the additional restriction that only one dominant PFT can be assigned per site. 1075	
  

Model B3: Both model and data are generated such that 4 PFTs are assigned a non-1076	
  

zero fraction with equal probability. The fractions are then normalised to sum to 1077	
  

unity. 1078	
  

Model B4: Both model and data are generated such that a random number of PFTs is 1079	
  

assigned a non-zero fraction with equal probability, with the random number chosen 1080	
  

from a distribution which matches the fossil data. The fractions are then normalised to 1081	
  

sum to unity. 1082	
  



Model B5: Both model and data are generated such that the PFT fractions have the 1083	
  

same distribution as the fossil data (as described above). 1084	
  

C. Data-centered models 1085	
  

Models C1-C5 are the same as models B1-B5 except that the fossil data are not 1086	
  

simulated, instead the actual fossil data are used. In other words, models B1-B5 are 1087	
  

data-structured models, and models C1-C5 are the data-centered analogs. 1088	
  

Models C6 and C7 are the same as models A1 and A2, except that the fossil data is 1089	
  

not simulated; instead, the actual fossil data is used. In other words, models C6-C7 are 1090	
  

the data-centered analogs of naive models A1 and A2. 1091	
  

D. Model-sampled models 1092	
  

 1093	
  

Model D1: The real fossil data are used and each fossil site is matched to a randomly 1094	
  

determined grid cell from either the 280 ppm or 450 ppm simulations. This is the 1095	
  

model presented in the main text. 1096	
  

Model D2: The real fossil data are used and each fossil site is matched to a randomly 1097	
  

determined grid cell from either the 280 ppm or 450 ppm simulations, with the 1098	
  

additional restriction that the modelled grid cell must be in a latitude band of +/- 10 1099	
  

degrees around the fossil site (corresponding to approximately 3 grid boxes on either 1100	
  

side), or in the mirror image latitude band in the other hemisphere. 1101	
  

 1102	
  

Examining the Table E2, we see that the naive models (A1 and A2) produce a 1103	
  

relatively high estimation of agreement by chance. In fact, quantifying agreement by 1104	
  

chance using model A1 gives such a high level of agreement that negative Z-scores 1105	
  

for the 280 ppm and 450 ppm runs are produced. However, this level of agreement is 1106	
  

unrealistic. This is because these models make no assumptions about the structure of 1107	
  



the fossil data, so must necessarily assume a rather homogeneous structure, with 1108	
  

fractions (in model A1) and status (in model A2) having equal likelihood (except for 1109	
  

the dominant status in A2, which can be restricted to one per site). This homogeneous 1110	
  

data structure produces relatively high degree of agreement by chance. If one (non-1111	
  

absent) category is produced very often for PFTs in both the simulated model data and 1112	
  

the simulated fossil data, there will be a high chance of a match, and therefore a high 1113	
  

AI score. This is particularly pronounced in the model A1, which produces many 1114	
  

more non-absent PFTs in the randomly generated data than are seen in the data. In 1115	
  

particular, high numbers of trace statuses are produced because in model A1 each 1116	
  

fraction has an expectation value of 1/N, where N is the total of PFTs compared, in 1117	
  

this case 10. This gives an expectation value of 0.1, which is right in the middle of the 1118	
  

fractional range for trace status. Comparing the fractions of each status produced: 1119	
  

model A1 produces the following percentages of classifications: 24/55/21/0% 1120	
  

(absent/trace/subdominant/dominant), whereas the fossil record shows 58/21/16/5%. 1121	
  

These highly disparate percentages show that this method of generating data produces 1122	
  

datasets which are very different from the fossil data used, so it is not a meaningful 1123	
  

estimate of agreement by chance in the context of this analysis. This conclusion is 1124	
  

further reinforced by the results of model C7, which is the equivalent data-centered 1125	
  

model to the naive model. This model, which compares data generated by model A1 1126	
  

with real fossil data, shows much lower agreement than model A1, indicating that the 1127	
  

method of simulating data does not match well the real fossil data. 1128	
  

 1129	
  

Model A2 shows a much lower level of agreement by chance than model A1. This is 1130	
  

because absent, trace and subdominant statuses are produced with equal probability, 1131	
  

so, unlike model A1, the trace classification is not overwhelming. Without the 1132	
  



tendency for one status to be produced in such large quantities, the simulated data are 1133	
  

less homogeneous and therefore estimate less agreement by chance. This gives a more 1134	
  

reasonable estimate of agreement by chance. With this model, the p-values for getting 1135	
  

better agreement from randomly generated data are estimated to be p < 0.05 for the 1136	
  

450 ppm scenario, and p < 10-4 for the 280 ppm scenario. It should be noted that this 1137	
  

model still does not produce data with a similar structure to the fossil data 1138	
  

(30/30/30/9% absent/trace/subdominant/dominant compared 58/21/16/5%, note in 1139	
  

particular the under representation of absence), so it is not a particularly good 1140	
  

estimation of agreement by chance. 1141	
  

 1142	
  

The data-structured and data-centered models all produce much less agreement by 1143	
  

chance than the naive models. This is reasonable as these models use the structure of 1144	
  

the fossil dataset to produce random data which are structured more like the fossil 1145	
  

data, and this structure (as it is less homogeneous) decreases the agreement by chance. 1146	
  

The Z-scores were very much higher, all greater than 10, corresponding to p-values 1147	
  

which are so small that no meaningful comparison is possible. All that can be said is 1148	
  

that the probability of getting better agreement by chance according to one of these 1149	
  

chance agreement models is vanishingly small. Models C5 and B5 (which use 1150	
  

simulated PFT fraction very similar to the actual fossil data and so mimic the real data 1151	
  

most closely) give very similar results to model D1 (presented in the main text) 1152	
  

 1153	
  

The final category, model-sampled models, estimates higher agreement by chance 1154	
  

than the data-centered or data-structured models. They also have the desirable feature 1155	
  

that only ecologically realistic PFT (according to the vegetation model) are produced. 1156	
  

The more restrictive model of the two chance agreement models (model D2, which 1157	
  



requires the random modelled to be within 10 degrees latitude of the matching fossil 1158	
  

site), gives Z-scores above 4.5 for the 280 ppm scenario and above 2.5 for the 450 1159	
  

ppm scenario. This gives a p-value for getting better agreement from randomly 1160	
  

generated data to be p < 10-2 for the 450 ppm scenario and p < 10-5 for the 280 ppm 1161	
  

scenario. The ‘looser’ model (model D1, presented in the main text) gives much 1162	
  

higher Z-scores and extremely small p-values for both CO2 scenarios. 1163	
  

To summarise, a selection of chance agreement models have been examined. All 1164	
  

models which produce data with structure with some reasonable correspondence to 1165	
  

the actually fossil data indicate that both the Tortonian vegetation simulations 1166	
  

presented here agree better with the fossil data than simulated chance agreement by a 1167	
  

considerable margin. Furthermore, the standard deviations of all models range 1168	
  

between 0.08 and 0.33.  Based on these values, the Z-score of the 280 ppm scenario 1169	
  

shows better agreement than the 450 ppm simulation, by between 0.88 and 3.4 units 1170	
  

of standard deviation. In 11 out of 16 models examined here, the difference was 1171	
  

greater than 1.5 units of standard deviation. We believe this (and the other robustness 1172	
  

check detailed above) demonstrates the robustness of the AI method and supports the 1173	
  

scientific conclusions in the main text. 1174	
  

 1175	
  

Appendix F: Details of paleobotanical data sites and classification 1176	
  

Table F1 lists the fossil sites used in this analysis, and Table F2 shows the 1177	
  

classification from species or genera to the PFTs used in LPJ-GUESS. 1178	
  

 1179	
  

 1180	
  

 1181	
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CO2,clim = 280 ppm  CO2,clim = 450 ppm  
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fossil sites Region 

CO2,veg = 
280 ppm  

CO2,veg = 
450 ppm  

CO2,veg = 
280 ppm  

CO2,veg = 
450 ppm  

Global -0.67 -0.6 -1.02 -0.96 -0.96 

Europe 0.01 0.04 -0.22 -0.23 103 
(Central Europe) (0.2) (0.19) (-0.01) (-0.04)  (57) 
Asia -0.46 -0.44 -0.58 -0.54 37 
North America -0.1 -0.07 -0.05 -0.07 19 
Central and South 
America -0.04 -0.07 -0.04 -0.05 3 
Africa -0.05 -0.02 -0.07 -0.05 3 
Australia -0.03 -0.04 -0.04 -0.02 2 
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Table 2: Global and regional Agreement Index values from all permutations of 280 1516	
  

ppm and 450 ppm CO2 concentrations in the climate model (CO2,clim) and vegetation 1517	
  

model (CO2,veg). Central Europe is shown separately and is defined to lie in the 1518	
  

longitude range [0°, 25°] and latitude range [45°, 55°]. 1519	
  

 1520	
  

 MODEL 

 
 
 

DATA 

 Absent Trace Sub-dominant Dominant 

Absent 0 0 -1 -2 

Trace 0 1 0 -1 

Sub-dominant -1 0 1 0 

Dominant -2 -1 0 2 
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 1521	
  

 Table A1  1522	
  

PFT Phenology 

Shade 
tolerance 

class Leaf Type 
Growth 
Form 

Tc, min 
(°C) 

Tc, max 
(°C) 

GDD5 
(°C day) rfire 

aleaf 
(year) 

Aind 
(year) 

Tr-
leaf(year

-1) 

Br (gC 
gN-1 day-1) 

Topt 
(°C) 

BNE evergreen tolerant needle-leaved tree -32.5 -2 600 0.3 3 500 0.33 2 10-25 

BINE evergreen intolerant needle-leaved tree -32.5 -2 600 0.3 3 500 0.33 2 10-25 

BNS deciduous intolerant needle-leaved tree - -2 350 0.3 0.5 300 1 2 10-25 

BIBS deciduous intolerant broad-leaved tree - -2 350 0.1 0.5 200 1 2 10-25 

TeBS deciduous tolerant broad-leaved tree -17 15.5 1200 0.1 0.5 400 1 1 15-25 

TeIBS deciduous intolerant broad-leaved tree -17 15.5 1200 0.1 0.5 200 1 1 15-25 

TeBE evergreen tolerant broad-leaved tree 3 18.8 1200 0.3 3 300 0.33 1 15-25 

TeNE evergreen intolerant needle-leaved tree -2 22 900 0.3 3 300 0.33 1 15-25 

TrBE evergreen tolerant broad-leaved tree 15.5 - - 0.1 2 500 0.5 0.15 25-30 

TrIBE evergreen intolerant broad-leaved tree 15.5 - - 0.1 2 200 0.5 0.15 25-30 

TrBR deciduous intolerant broad-leaved tree 15.5 - - 0.3 0.5 400 0.5 0.15 25-30 

C3G - - - grass - - - 0.5 0.5 - 1 1 10-30 

C4G - - - grass 15.5 - - 0.5 0.5 - 1 0.15 20-40 
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Table A1. PFT characteristics and parameter values used in this study. Tc,min  = Minimum coldest-month temperature for survival and 1523	
  

establishment; Tc,max = maximum coldest-month temperature for establishment; GDD5 = Minimum accumulated degree-day sum of days above 1524	
  

5°C for establishment; rfire = Fraction of individuals surviving fire; aleaf = leaf longevity; aind = individual maximum, non-stressed longevity; Trleaf 1525	
  

= Leaf turnover rate; Br = Base respiration rate at 10°C; Topt= Optimal temperature range for photosynthesis. Full PFT names: BNE = boreal 1526	
  

needle-leaved evergreen tree; BINE = boreal shade intolerant needle-leaved evergreen tree; BNS = boreal needle-leaved summergreen tree; BIBS 1527	
  

= boreal shade intolerant broad-leaved summergreen tree; TeBS = temperate broad-leaved summergreen tree; TeIBS = temperate shade 1528	
  

intolerant broad-leaved summergreen tree; TeBE = temperate broad-leaved evergreen tree; TeNE = temperate needle-leaved evergreen tree; 1529	
  

TrBE = tropical broad-leaved evergreen tree; TrIBE = tropical shade intolerant broad-leaved evergreen tree; TrBR = tropical broad-leaved 1530	
  

raingreen tree; C3G = C3 grass; C4G = C4 grass. 1531	
  

 1532	
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Table B1 1533	
  
 1534	
  

1 Growing season maximum leaf area index;2 Highest LAI; PFTs are listed in Table A1,3 TrBE + 1535	
  
TrIBE,4 BNE + BINE,5 TeBS + TeIBS,6 Mapped if LAITrBE  > 0.5 · LAItrees; 7 Mapped if LAITrBR  > 0.5 · 1536	
  
LAItrees; 

8 Mapped if LAItropical trees > 0.5 · LAItrees and TrBE or TrBR has highest LAI among trees;9 1537	
  
Mapped if LAIboreal trees  > 0.5 · LAItrees; 10 Mapped if LAITeBS or LAITeBE > 0.5 · LAItrees; 11 Mapped if 0.2 1538	
  
·LAItrees < LAIboreal trees  < 0.8 ·LAItrees

 and 0.2 ·LAItrees < LAItemperate trees  < 0.8 ·LAItrees ; 12 Mapped at 1539	
  
latitude > 54° or GDD5 (see Table A1 for definition) < 400°C·days; 12 Classification must be done in 1540	
  
the same order as table.  1541	
  
 1542	
  
Table B1 Classification scheme for deriving vegetation biomes from PFT abundances 1543	
  
(leaf area index, LAI), following Smith et al. 2014. 1544	
  

1545	
  

Biome13 Tree LAI1 Grass LAI1 Total LAI1 Domiant Tree PFT2 

Tropical rainforest6 > 2.5   TrBE3 

Tropical deciduous 
forest7 > 2.5   TrBR 

Tropical seasonal forest8    TrBE3 or TrBR 

Boreal evergreen 
forest/woodland9 > 0.5   BNE4 or BIBS 

Boreal deciduous 
forest/woodland9 > 0.5   BNS 

Temperate broadleaved 
evergreen forest10 > 2.5   TeBE 

Temperate deciduous 
forest10 > 2.5   TeBS5 

Temperate/boreal11 
mixed forest > 2.5    

Temperate mixed forest     

Xeric Woodlands/ 
Shrublands 0.5-2.5  < 20% of total   

Moist Savnna 0.5-2.5  > 2.5  

Dry Savanna 0.5-2.5  ≤ 2.5  

Arctic/alpine tundra12 < 0.5  > 0.2  

Tall grassland  > 2.0   

Arid shrubland/ steppe 
(1) > 0.2 < 1.0   

Dry grassland  > 0.2   

Arid shrubland/ steppe 
(2)   > 0.2  

Desert   ≤ 0.2  
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Table C1 1546	
  
 1547	
  
Megabiome Smith et al. (2014) biome (see Appendix B) 
Tropical forest Tropical seasonal forest 

Tropical evergreen forest 
Temperate evergreen forest1 Temperate evergreen forest 
Temperate deciduous forest2 Temperate conifer forest 

Temperate mixed forest 
Temperate/boreal mixed forest 
Temperate mixed forest 

Boreal forest Boreal deciduous forest/woodland 
Boreal evergreen forest/woodland 

Savanna and dry woodlands Xeric woodlands/shrub 
Moist savanna  
Tropical deciduous forest3 

Grasslands and dry shrublands Tall grassland 
Short grassland 
Dry savanna4 
Arid shrublands/steppe 

Tundra5 Tundra 
Desert Desert 
 1548	
  
1 Denoted “warm temperate forest” in Harrison and Prentice (2003) 1549	
  
2 Denoted “temperate forest” in Harrison and Prentice (2003) 1550	
  
3 Tropical deciduous forest corresponds more closely to savanna types in Olson et al. (2001) and Friedl 1551	
  
et al. (2010). 1552	
  
4 Dry savanna corresponds more closely to shrubland and grasslands types in Olson et al. (2001) and 1553	
  
Friedl et al. (2010). 1554	
  
5 Only one tundra classification is distinguished here. 1555	
  
 1556	
  
 1557	
  
Table C1 Biome aggregation scheme following Harrison and Prentice (2003). 1558	
  
 1559	
  
 1560	
  
 1561	
  
 1562	
  
 1563	
  

1564	
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Table E1 1565	
  
 1566	
  
 AI 280 

ppm 
AI 450 ppm Max Min 

Standard -0.67 -0.96 4.7 -11.5 
Absent-Absent = 1 (default = 0) 4.43 4.06 10.5 -11.5 
Dominant-Dominant = 1 (default =2) -0.91 -1.13 4.2 -11.5 
Both of the above 4.19 3.9 10 -11.5 
Minor disagreement = -1, disagreement = -2, 
major disagreement = -3 (default = 0,-1,-2) 

-4.9 -5.23 4.7 -21.5 

 1567	
  

Table E1.  Overall Agreement Index (AI) scores for the 280 ppm and 450 ppm 1568	
  

Tortonian runs, as well as the minimum and maximum values calculated with 1569	
  

different scores assigned for levels of agreement.  1570	
  

 1571	
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Table E2 1572	
  

 1573	
  
Model Mean S.D. 280 ppm Z 

score 
450 ppm Z 
score 

Z score 
difference 
(280 ppm - 
450 ppm) 

280 ppm 
p-value 

450 ppm 
p-value 

A1 2.48 0.17 -18.33 -20.02 1.69 1.00 1.00 
A2 -3.43 0.17 15.97 14.29 1.68 0.0 0.0 
B2 -3.35 0.17 15.51 13.83 1.68 0.0 0.0 
B3 -6.24 0.32 17.30 16.40 0.90 0.0 0.0 
B4 -6.26 0.33 16.92 16.04 0.88 0.0 0.0 
B5 -2.23 0.15 10.10 8.22 1.88 0.0 0.0 
C1 -2.97 0.15 15.29 13.36 1.92 0.0 0.0 
C2 -2.94 0.15 15.16 13.23 1.93 0.0 0.0 
C3 -5.72 0.29 17.51 16.51 1.01 0.0 0.0 
C4 -5.70 0.29 17.35 16.35 1.00 0.0 0.0 
C5 -2.31 0.14 11.64 9.59 2.06 0.0 0.0 
C6 -4.74 0.11 36.03 33.46 2.57 0.0 0.00 
C7 -1.94 0.09 14.78 11.40 3.38 0.0 0.0 
D1 -1.96 0.17 7.51 5.83 1.69 2.86x10-14 2.82x10-09 
D2 -1.35 0.15 4.66 2.69 1.98 1.54x10-06 3.58x10-03 

 1574	
  
Table E2 Mean value and standard deviation of chance agreement estimated from a 1575	
  

selection of models, with 5000 full comparisons of data and model at all 167 fossil 1576	
  

sites used in the analysis. Also shown are the Z-scores for the 280 ppm and 450 ppm 1577	
  

vegetation reconstructions and the difference between them, and the p-values 1578	
  

calculated from these Z-scores. A value of 0.0 in the p-value column implies p < 10-15 1579	
  

or smaller. 1580	
  

1581	
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Table F1 1582	
  
 1583	
  
    

North America 
Longitude Latitude Region Locality Code 

-151.5 59.6 North America Lower Homerian AK 
-151.5 59.6 North America Middle Homerian AK 
-151.5 59.6 North America Upper Homerian AK 
-151.4 60.2 North America Lower Clamgulchian AK 
-151.3 61.12 Cook Inlet Region, Alaska, USA Chuitna River 

-122.22 45.19 Northern America Faraday 
-121.27 37.93 North America Neroly CA 
-121.06 41.37 California, USA Upper Cedarville Pit 
-120.75 39.28 California, USA Remington Hill 
-120.38 38.03 California, USA Table Mountain 
-119.55 39.38 Nevada, USA Chalk Hills 

-117.5 44.95 Oregon, USA Unity Or 
-117.16 43.53 Eastern Oregon, USA Succor Creek 
-100.96 42.88 North America Kilgore 
-100.96 42.88 North America Kilgore (pollen) 

-98 42.75 Antelope County, Nebraska, USA Antelope Ne 
-96.11 19.12 Mexico Paraje Solo Fm 
-82.52 38.92 USA Gray Sinkhole 
-77.18 39.13 North America Bryn Mawr 

-77 38 South Maryland, USA Brandywine Mar 
  

South America 
Longitude Latitude Region Locality Code 

-65.05 -42.94 Argentina Puerto Madryn Fm 
-64.74 -38.92 Argentina Barranca Final Fm 

  
Western Eurasia 

Longitude Latitude Region Locality Code 
-17.939 65.187 Iceland Fnjoskadalur Fm 

-8.9 39.2 Portugal Povoa 3 
-8.87 39.06 Portugal Azambuja 

-5.8 41.6 Duero, Spain Abezames 
-4.589 36.491 Spain Andalucia G1  

-4.5 42 Duero, Spain Torrem2 
-4.2 41.4 Duero, Spain Penafiel 

-4.14 34.39 Marocco Taza Guercif 
-3.7 41.6 Duero, Spain Burgos 

-3.58 42.32 Spain Castrillo del Val 
-2.02 38.544 Spain Rambla del Mojon 30 35 

-2 53.25 Derbyshire, England Derbyshire 
-0.6 44.8 Landas, Spain Arjuzanx 

-0.57 44.87 France Pont de Gail 
0.3 41.9 Pirineo, Spain Seo De Urgell 

1.15 40.84 Tarragona, Spain Tarragona E2 1 
4.81 45.24 France Andance 
5.35 45.95 France Amberieu S3 
5.35 46.1 France Soblay 
6.47 50.92 Lower Rhine Basin, Germany H7FB(F) 

6.509 50.9 Lower Rhine Basin, Germany H7F(B) 
6.509 50.9 Lower Rhine Basin, Germany H7F(F) 
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6.509 50.9 Lower Rhine Basin, Germany H7FT(F) 
6.691 50.954 Lower Rhine Basin, Germany FO7(F) 
6.691 50.954 Lower Rhine Basin, Germany FO7O(B) 
6.691 50.954 Lower Rhine Basin, Germany FO7U(P) 

6.71 50.91 Germany FI7O(B) 
7 47 Switzerland Nebelberg 

8.05 44.75 Piemonte, Italy Guarene(F) 
8.57 50.35 Mainz Basin, Germany Dorheim (F) 

8.9 44.8 Piemonte, Italy Scrivia (F) 
9.04 55.29 Denmark Gram clay pit (J11) 

10.05 50.45 Rhön Mountains, Germany Wüstensachsen (F) 
10.2 47.75 Southern Germany Geissertobel(B) 

10.43 43.48 Toscana, Italy Gabbro(F) 
12.4 48.3 Southern Germany Aubenham (B) 

12.75 48.45 Southern Germany Lerch(B) 
13.32 48.04 Austria Schneegattern (B) 
13.36 48.16 Austria Grossenreith(B) 
13.42 48.15 Austria Lohnsburg(B) 
13.55 48.1 Austria  Ampfelwang (F) 
15.16 51.67 Southwest Poland Godznica(F) 
15.75 47.02 Steiermark, Kirchberg an der Raab, 

Austria Wörth (B) 
15.83 47.92 Burgenland, Austria Neusiedl(B) 
15.88 48.53 Vienna Basin, Austria Ebersbrunn (B) 

16 46.91 Austria Mataschen rev Hably 
16.08 46.93 Steiermark, Neuhaus/Klausenbach, 

Austria Neuhaus(B) 

16.08 46.93 Steiermark, Neuhaus/Klausenbach, 
Austria Neuhaus rev Hably 

16.27 48.17 Vienna Basin, Austria Laaerberg(B) 
16.33 48.17 Vienna Basin, Austria Vösendorf(B) 
16.36 47.15 Hungary Sé (B) 

16.364 48.023 Austria Hennersdorf 
16.58 48.03 Austria Goetzendorf 
16.88 48.75 Czech Republic Postorna 
16.88 48.75 Czech Republic Postorna Moravska Nova Ves 
17.05 48.7 Slovakia Moravian Basin F(B) 
17.05 48.7 Slovakia Moravska N V(B) 
17.17 48.97 Slovakia Mistrin (B) 

17.295 46.691 Hungary Balatonszentgyorgi  
17.635 47.684 Hungary Gyor Sashegy 

19.45 45.1 Serbia Sremska 
19.75 47.75 Hungary Rozsaszentmarton (B) 
19.75 47.75 Hungary Rozsaszentmarton (rev. Hably) 
19.84 45.23 Serbia Sremska Kamenica 

19.917 42.883 Montenegro Popovici 
20.032 47.776 Hungary Visonta(B) 
20.032 47.776 Hungary Visonta rev Hably 

20.4 47.97 Hungary Felsötarkany 
20.4 47.97 Hungary Felsotarkany rev Hably 

20.45 44.31 Serbia Dubona I (B) 
20.45 44.31 Serbia Dubona II (B) 
20.63 48.38 Hungary Rudabanya (B) 
20.75 44.52 Serbia Durinci (B) 
21.69 43.61 Serbia Crveni Breg Grocka 
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21.71 40.68 Italy Vegora 
22.4 44.5 Serbia Osojna 

22.57 48.23 Carpathian area, Ukraine  Velikaya Began Pontian 
22.58 46.97 Romania Delureni (B) 
22.67 48.23 Carpathian area, Ukraine Velikaya Began N856well 

22.8 46.4 Nagyfeketepatak, Bihor county, 
Romania Valea Neagra(B) 

22.983 43.7 Bulgaria Drenovets Maeotian 
23.25 47.5 Romania Oas Basin 

23.5 47.75 Romania Chiuzbaia (rev. Hably) 
24.02 45.18 Romania Tanasesti Ramesti 
24.32 44.57 Romania Ramesti 

24.6 44.9 Romania Porceni 
25.8 53.7 Belarus Grodno Complex 

26.44 46.58 Romania Comanesti 
26.86 47.17 Romania Pau Iasi 

28.2 37.9 Western Anatolia, Turkey Nazilli Haskoy Upper Coal 
28.925 37.92 Turkey, Western Anatolia Saraykoy 

30.52 46.75 Ukraine Emetovka Early Maeotian 1 
30.52 46.75 Ukraine Emetovka Early Maeotian 2 
31.91 48.86 Ukraine, western part, multiple sites Western Ukraina (lower 

Maeotian) 
33.53 46.37 Ukraine Plane, Ukraine Chaplinka 
35.93 39.17 Turkey Sivas Karaozu 

37 38 Central Anatolia, Turkey Sivas Gemerek 
37 40 Central Anatolia, Turkey Duzyayla 

37.018 39.754 Central Anatolia, Turkey Sivas Vasiltepe 
37.1 12.583 Ethiopia Chilga 

37.383 39.834 Central Anatolia, Turkey Sivas Hafik 
38 45 Western Georgia Cocchati Complex 

38.28 48.86 Ukraine, eastern part, multiple sites Eastern Ukraina (lower 
Maeotian) 

44.09 40.11 Armavir region, Armenia Hoktemberya 
44.53 40.24 Armenia Hrazdan/2 

  
Eastern Eurasia 

Longitude Latitude Region Locality Code 
82.81 27.8 Nepal Surai Khola 11-8 Ma 
82.81 27.8 Nepal Surai Khola 6-5 Ma 
82.81 27.8 Nepal Surai Khola 8-6 Ma 
82.97 41.683 North Western China Kuqa Xinjiang 

85.3 28.75 China Danzengzhukang Fm 
85.3 28.75 China Lower Woma Fm 
88.5 44.5 North Western China Southern Junggar Xinjiang 

88.96 25.5 Bangladesh Dupi Tila 
89 29.43 China Wulong 
89 29.65 Tibet Nanmulin Wulong Fm 
90 26.8 Eastern Himalaya, Bhutan Bhutan M, Siwalik 
90 32.3 China Lunpola Basin 
90 32.3 Tibet Lunpola Basin Dinquing 2 

94.6 27.3 India Assam Miocene 
94.683 40.167 Northwestern China Dunhuang 

95.6 27.2 India Deomali 
97.7 27.6 India Arunachal Pradesh 

98 29 Tibet Markam Lavula 1 
98 29 Tibet Markam Lavula a pollen 
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98.49 25.02 China Tengchong 
99.92 26.55 China Jianchuan 

100.017 23.9 China Lincang 
101.22 25.1 Southern China Luehe Chuxiong 

102 36.25 North Western China Xining Minhe Basin 
102.267 15.016 Thailand Khorat 
103.198 23.812 Yunnan, China Xiaolongtan (Pre) 

108.3 20.3 North continental shelf of South China 
Sea Beibuwan 3 

109.56 19.5 Coastal site South China Sea Fushan depression Fushan 3 
110 21.45 Coastal site South China Sea Leizhou Peninsula Leizhou 3 
119 36 Northern China Bozhong Basin  
119 39 Northern China Bohai Gulf Basin  

130.5 46.17 North Eastern China Huanan Heilongjiang 
136.75 -29.75 Australia Stuart Creek 

139.8 -30.7 Australia Woltana1 Well 93,5 
160 68 Siberia Bayokov H1172  
161 68 Siberia, Russia Yanran H3690 
165 69 Siberia, Russia Nekkeiveem H3658 l mio 

  
Africa 

Longitude Latitude Region Locality Code 
35.8 0.6 Kenya Tugen 

 1584	
  
Table F1 All palaeobotanical sites used in the study  1585	
  
 1586	
  

1587	
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Table F2 1588	
  
	
  1589	
  

 PFTs  Main genera and species belonging to the PFTs	
  
1 Tropical BL evergreen tree (TrBE) Abarema, Ehretia, Homalanthus, Litsea, Mastixia, 

Monotes, Moraceae, Ormosia, Phoebe, Polyspora, 
Sterculia, Tectocarya 	
  

2 Tropical BL raingreen tree (TrBR) Acacia, Albizia, Cassia, Dalbergia, Dendropanax, 
Gleditsia 	
  

3 Temperate NL evergreen tree (TeNE) Abies spp., Cathaya, Cedrus, Cephalotaxus, 
Keteleeria, Pinus spp., Podocarpus, Pseudotsuga, 
Sequoia, Taxus, Thuja, Tsuga	
  

4 Temperate BL evergreen tree (TeBE)1 Alangium, Arbutus, Castanopsis, Distylium, 
Engelhardia spp., Lauraceae spp. (e.g., Neolitsea, 
Lindera, Persea), Magnolia spp., Olea, Ocotea, 
Pistacia, Phillyrea, Quercus myrsinaefolia, 
Quercus Sect. Cyclobalanopsis, Quercus 
engelmannii, Quercus dumosa, Quercus ilex, 
Quercus troyana,	
  Reevesia, Symplocos spp., 
Trigonobalanus	
  

5 Temperate BL summergreen tree (TeBS) Acer, Aesculus, Carpinus, Castanea, Fagus, 
Fraxinus,  Juglans, Liquidambar, Ostrya, Populus, 
Quercus spp. (e.g., robur, pubescens), Tilia 
cordata, Ulmus	
  

6 Boreal NL evergreen tree (BNE) Cupressaceae spp., Juniperus, Juniperus 
communis, Abies spp., Picea abies, Pinus spp., 
Pinus sylvestris	
  

7 Boreal NL summergreen tree (BNS Larix spp.	
  
8 Boreal BL summergreen tree (BIBS) Alnus, Alnus glutinosa, Corylus avellana, Populus 

spp., Tilia spp., Betula spp., Salix spp.	
  
9 C3 grass (C3G) all C3 herbaceous plants	
  

10 C4 grass (C4G) all C4 herbaceous plants	
  
11 aquatics e.g., Alisma, Brasenia, Caldesia, Ceratophyllum, 

Isoetes, Najas, Nymphaeaceae, Potamogeton, 
Selaginella, Sparganium, Stratiotes, Trapa, Typha	
  

12 shrubs e.g., Ampelopsis, Asimina, Berchemis, Ceanothus, 
Corylus Crataegus, Decodon, Eurya, Hamamelis, 
Ilex aquifolium,  Leucothoe, Mahonia, Myrica, 
Ptelea, Rubus, Staphylea, Styrax, Vaccinium, 
Viburnum	
  

	
  1590	
  
1 This PFT includes both schlerophylous and perhumid temperate broadleaved evergreen trees 1591	
  
 1592	
  
Table F2 Model PFTs and corresponding main genera and species represented in the 1593	
  
late Miocene fossil record. Shrubs and aquatics were not simulated in the vegetation 1594	
  
model. 1595	
  

1596	
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Figure captions 1597	
  
 1598	
  

Figure 1. Modelled Late Miocene (Tortonian, 7-11 Ma) vegetation, using the 1599	
  

ECHAM5-MPIOM AOGCM to drive LPJ-GUESS. A) The biome distribution with 1600	
  

280 ppm CO2 concentration, with the Agreement Index (AI) match overlain for 1601	
  

palaeobotanical data. B) The biome distribution with 450 ppm CO2 concentration, 1602	
  

with the AI match overlain for palaeobotanical data. C) The dominant PFTs, with 1603	
  

palaeobotanical data classified with same PFT scheme as the model overlain, with 1604	
  

280 ppm CO2 concentration. D) The dominant PFTs, with palaeobotanical data 1605	
  

classified with same PFT scheme as the model overlain, with 450 ppm CO2 1606	
  

concentration. 1607	
  

 1608	
  

Figure 2. Agreement Index with the null model distribution and the AI values shown 1609	
  

for model runs with different CO2 concentration.  1610	
  

 1611	
  

Figure 3. Modelled grass fraction of  Leaf Area Index (LAI) for present-day 1612	
  

simulation, Tortonian 280 ppm CO2, and Tortonian 450 ppm CO2 concentrations, 1613	
  

respectively. Shown also is the grass fraction of LAI for a mixed CO2 forcing in 1614	
  

climate and vegetation model. 1615	
  

 1616	
  

Figure 4. Modelled tree fraction of Leaf Area Index (LAI) for present-day simulation, 1617	
  

Tortonian 280 ppm CO2, and Tortonian 450 ppm CO2 concentrations, respectively. 1618	
  

Shown also is the tree fraction of LAI for a mixed CO2 forcing in climate and 1619	
  

vegetation model. 1620	
  

 1621	
  

Figure 5. Agreement Index difference between the 280 ppm and 450 ppm runs. 1622	
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 1623	
  

Figure C1 a) Biomes (see Appendix B for classification) for the present day control 1624	
  

run compared to potential natural vegetation from Hickler et al. (2006), b) dominant 1625	
  

PFT in the present day control run, and c) biomes in a) aggregated to megabiomes 1626	
  

(see Table C1). 1627	
  

 1628	
  

Figure D1. Pearson’s product moment correlation coefficient and Spearman’s rank 1629	
  

correlation coefficients between the paleobotanical data diversity fractions and the 1630	
  

simulated LAI fractions for the 280 ppm and 450 ppm CO2 Tortonian scenarios, for 1631	
  

each PFT and for all PFTs combined. 1632	
  

 1633	
  

Figure E1.  Agreement Index (AI) values for the 280 ppm and 450 ppm runs for 1634	
  

different fractional boundaries of the AI statuses. 1635	
  

 1636	
  

Figure E2 a) Histogram of the number of non-absent PFTs (fossil diversity fraction> 1637	
  

0.05) at fossil sites, and b) Histogram of the PFT diversity fractions per PFT per site 1638	
  

across all sites, the blue line is from the actual fossil data, the red line is simulated for 1639	
  

use in the models to estimate chance agreement, as discussed in the text.1640	
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