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Abstract

Recent studies have shown that the Early Eocene Climatic Optimum (EECO) was pre-
ceded by a series of short-lived global warming events, known as hyperthermals. Here
we present high-resolution benthic stable carbon and oxygen isotope records from
ODP Sites 1262 and 1263 (Walvis Ridge, SE Atlantic) between ∼ 54 and ∼ 52 million5

years ago, tightly constraining the character, timing, and magnitude of six prominent
hyperthermal events. These events, that include Eocene Thermal Maximum (ETM) 2
and 3, are studied in relation to orbital forcing and long-term trends. Our findings reveal
an almost linear relationship between δ13C and δ18O for all these hyperthermals, in-
dicating that the eccentricity-paced co-variance between extreme perturbations in the10

exogenic carbon pool and deep-sea temperatures persisted during the onset of the
EECO, in accord with previous observations for the Paleocene Eocene Thermal Max-
imum (PETM) and ETM2. The covariance of δ13C and δ18O during H2 and I2, which
are the second pulses of the “paired” hyperthermal events ETM2-H2 and I1-I2, deviates
with respect to the other events. This could relate to a relatively higher contribution of15

an isotopically heavier source of carbon, such as peat or permafrost, and/or to climate
feedbacks/local changes in circulation. Finally, the δ18O records of the two sites show
a systematic offset with on average 0.2 ‰ heavier values for the shallower Site 1263,
which we link to a slightly heavier (e.g. more saline) isotope composition of the inter-
mediate water mass reaching the northeastern flank of the Walvis Ridge compared to20

that of the deeper northwestern water mass at Site 1262.

1 Introduction

The early Paleogene was characterized by a highly dynamic climatic system both on
long- (> 106 years) and short- (< 104 years) time scales. From the Late Paleocene
(∼ 58 Ma) to the Early Eocene (∼ 50 Ma), Earth’s surface experienced a long-term25

warming trend, resulting in an increase of at least 5 ◦C in deep ocean temperature
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and an extended period of extreme warmth, called the Early Eocene Climatic Optimum
(EECO, ∼ 50–52 Ma; Zachos et al., 2001, 2008; Bijl et al., 2009; Westerhold and Röhl,
2009). Superimposed on this warming trend were a series of short-lived global warming
(hyperthermal) events, driven by the release of 13C-depleted carbon into the ocean–
atmosphere carbon reservoirs (Zachos et al., 2005; Lourens et al., 2005; Nicolo et al.,5

2007; Littler et al., 2014; Kirtland Turner et al., 2014). These events are of particular
interest as they represent useful key-analogs for the current global warming, despite
differences in background climatic conditions (e.g., Zachos et al., 2008; Hönisch et al.,
2012; Zeebe and Zachos, 2013).

The Paleocene Eocene Thermal Maximum (PETM or ETM1, ∼ 56 Ma), lasting less10

than 200 kyr, was the most extreme of these episodes. During the PETM global temper-
ature raised by 5–8 ◦C, resulting from a massive carbon release as evidenced by a sig-
nificant negative carbon isotope excursion (CIE) of > 3 ‰ in the ocean/atmosphere
carbon pools, and widespread dissolution of seafloor carbonate (Kennett and Stott,
1991; Dickens et al., 1995; Thomas and Shackleton, 1996; Zachos et al., 2005, 2008;15

Sluijs et al., 2007; McInerney and Wing, 2011). A series of similar events are recorded
in carbonate records from marine and continental deposits from the early Paleogene
and expressed by negative excursions in δ13C and δ18O as well as dissolution hori-
zons (e.g., Cramer et al., 2003; Lourens et al., 2005; Agnini et al., 2009; Galeotti et al.,
2010; Stap et al., 2010; Zachos et al., 2010; Abels et al., 2012, 2015; Slotnick et al.,20

2012; Kirtland Turner et al., 2014; Littler et al., 2014). Orbitally-tuned records for this
geological interval provide evidence that the occurrence of the early Eocene hyper-
thermal events was paced by variations in the Earth’s orbit, specifically in the long and
short eccentricity cycles. (e.g., Cramer et al., 2003; Lourens et al., 2005; Littler et al.,
2014; Zachos et al., 2010; Sexton et al., 2011).25

Several different carbon sources have been proposed to explain the negative CIE,
including: (1) the release of methane by thermal dissociation of gas hydrates on the
continental slopes (Dickens et al., 1995), (2) the burning of peat and coal deposits
(Kurtz et al., 2003); and (3) the release of carbon from thawing of permafrost soils at
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high latitudes as a feedback or as a direct response to orbital forcing (DeConto et al.,
2012); while (4) a redistribution of 13C-depleted carbon within oceans has been pro-
posed as mechanism for hyperthermals in the Early to Middle Eocene interval (Sexton
et al., 2011).

Despite the uncertainty in carbon source and triggering mechanism of the hyper-5

thermal events, a common reservoir has been theorized to explain the consistent co-
variance in benthic foraminiferal δ13C and δ18O across both the PETM and ETM2,
indicating that changes in the exogenic carbon pool were similarly related to warming
during these events (Stap et al., 2010). The aim of this paper is to test this relationship
by constraining the relative timing and magnitude of changes in deep ocean temper-10

atures and carbon isotope excursions for a series of carbon isotope excursions that
succeed ETM2, initially identified by Cramer et al. (2003) in the composite bulk car-
bonate δ13C record from several deep-sea sites (ODP Sites 690 and 1051; DSDP
Site 550 and 577). For this purpose, we generated high-resolution carbon and oxygen
stable isotope records of the benthic foraminiferal species Nuttalides truempyi of ODP15

Sites 1262 and 1263 (Walvis Ridge) encompassing the interval from the ETM2 (Stap
et al., 2010) to the ETM3 (Röhl et al., 2005), providing the first complete high-resolution
benthic stable isotope records for the Early Eocene events leading to the EECO.

2 Materials and methods

2.1 Site location and sampling20

ODP Sites 1262 and 1263 represent the deepest and shallowest end-member of a 2 km
depth transect recovered during ODP Leg 208. Site 1263 is located just below the crest
of the northeast flank of Walvis Ridge, in the southeastern Atlantic, at a water depth
of 2717 m, whereas Site 1262 was drilled near the base of the northwestern flank of
Walvis Ridge at a water depth of 4759 m (Fig. 1). The estimated paleodepth of Sites25

1262 and 1263 at ∼ 56 Ma were ∼ 3600 and 1500 m, respectively (Zachos et al., 2004).
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The material recovered at the two sites provided an expanded sequence of early Pa-
leogene sediments, yielding a complete section mainly composed of calcareous nan-
nofossil ooze, chalk and marls. The relatively shallow depth of Site 1263 promoted
uninterrupted deposition of carbonate-rich sediments, as it remained well above the
lysocline throughout the Paleogene. The composite depth scale for Site 1263 was con-5

structed using the magnetic susceptibility (MS) and sediment lightness (L*) from the
four holes (Zachos et al., 2004).

Samples were collected at the Bremen Core Repository from Holes A, B and C
for Site 1263, and Holes A and B for Site 1262, according to the shipboard meters
composite depth section (mcd) (Zachos et al., 2004). A 28 m thick interval of Site 126310

was sampled at a resolution of 5 cm from ∼ 268 to ∼ 296 mcd, and a ∼ 6 m interval
of Site 1262 was sampled at a resolution of 3 cm from ∼ 103 to ∼ 109 mcd. Prior to
the analyses, samples were freeze dried, washed and sieved to obtain fractions larger
than 38, 63 and 150 µm at University of California, Santa Cruz and Utrecht University.

2.2 Stable isotopes15

Multi-specimen samples of N. truempyi were picked from the > 150 µm fraction. Stable
isotopes analyses of Site 1263 were carried out at Utrecht University on an average of
6–8 foraminiferal calcite tests using a CARBO-KIEL automated carbonate preparation
device linked on-line to a Thermo-Finnigan MAT253 mass spectrometer. Calibrations
to the international standard (NBS-19) and to the in-house standard (Naxos marble)20

show an analytical precision of 0.03 and 0.08 ‰ for δ13C and δ18O, respectively. Picked
specimens from Site 1262 were analyzed on a KIEL IV carbonate preparation device
linked on-line to a Thermo-Finnigan MAT253 mass spectrometer, at the UCSC Stable
Isotope Laboratory, Santa Cruz. Calibration to the in-house standard Carrara marble
(CM05) and international standards (NBS-18 and NBS-19) revealed an analytical pre-25

cision of 0.05 and 0.08 ‰, for δ13C and δ18O, respectively. All values are reported in
standard delta notation relative to VPDB (Vienna Pee Dee Belemnite). Outliers were
defined by adding or subtracting an upper and lower boundary of 2σ from a 13-points
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moving average, following the method by Liebrand et al. (2011). Published benthic iso-
tope data of the same foraminiferal species for the ETM2 (or H1/Elmo event) and H2
were included in this study to obtain a longer continuous record of Site 1263 and 1262
(Stap et al., 2010) and for I1-I2 of Site 1262 (Littler et al., 2014).

2.3 Paleotemperature reconstructions5

Paleotemperatures were obtained from the δ18O values by applying the equation of
Bemis et al. (1998):

T (◦C) = 16.9−4.38
(
δ18Oc −δ18Osw

)
+0.10

(
δ18Oc −δ18Osw

)2
(1)

where the value for δ18Osw was corrected from SMOW to PDB scales by subtracting
0.27 ‰ (Hut, 1987). The N. truempyi δ18O was corrected for seawater equilibrium by10

adding 0.35 ‰ (Shackleton and Hall, 1997).

3 Age model

Given the typical low resolution age control afforded by magneto- and bio-stratigraphy,
and the availability of a robust cycle (i.e., orbital) based chronology for the Leg 208
sites (Westerhold et al., 2007), we developed an eccentricity-tuned age model for the15

studied interval using the red over green color ratio (a*) records of ODP Sites 1263
and 1262 (Fig. 2). For tuning, we applied first spectral analysis in the depth domain
using standard Blackman–Tukey and Gaussian filtering techniques as provided by the
AnalySeries program (Paillard et al., 1996). Site 1262, the deepest site at Walvis Ridge,
was chosen as the backbone for our tuning. The a* record of this site clearly revealed20

a ∼ 3 m period, interpreted as reflecting the climatic imprint of the 405 kyr eccentricity
cycle (Lourens et al., 2005). Subsequently, we filtered this component and tuned it
directly to the extracted 405 kyr eccentricity component of the La2010d orbital solution
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(Laskar et al., 2011) with maximum a* values corresponding to maximum eccentricity
values (Table 1). A similar approach was carried out for the a* record of Site 1263 to
evaluate the continuity of the successions and robustness of the filtered output (Fig. 2).
Finally, the tuned age model of Site 1262 was transferred to Site 1263 by correlating
> 50 characteristic features in the a* records of both sites as tie points (Fig. 2 and5

Table 2).
Different tuning options have been debated in the last 10 years, resulting in an age

for the PETM ranging between ∼ 55.5 and ∼ 56.3 My (Lourens et al., 2005; Wester-
hold et al., 2008; Hilgen et al., 2010; Dinarès-Turell et al., 2014). Here we report on two
tuning options (Fig. 2), assigning an age of 53.69±0.02 (option 1) or of 54.09±0.0210

(option 2) to ETM2 (Westerhold et al., 2007). According to both options, ETM2 pre-
dates the 405 kyr maximum falling at an increasing limb, in agreement with obser-
vations of Westerhold et al. (2007), but in contrast with the earlier interpretation by
Lourens et al. (2005), who aligned this event to a maximum in the 405 kyr cycle. Re-
cent literature revising the Paleocene cyclostratigraphic interpretation (Dinarès-Turell15

et al., 2014; Hilgen et al., 2015) have shown that the Paleocene holds 25 rather than
24×405 kyr eccentricity cycles. In addition, new U/Pb ages have become available
which support an age of ∼ 66.0 Ma for the K/Pg boundary (Kuiper et al., 2008; Renne
et al., 2013). These developments point to an age of ∼ 54.0 Ma for ETM2 and there-
fore we plot our results anchoring the age of ETM2 to option 2 (Fig. 3). Evolutionary20

wavelet spectra were obtained in the time domain using the wavelet script of Torrence
and Compo (http://paos.colorado.edu/research/wavelets). Prior to the analysis, carbon
and oxygen records were resampled at 2.5 kyrs, detrended and normalized.

4 Results

Our new benthic δ13C and δ18O records show six major negative excursions between25

54 and 52 Ma (Fig. 3). They correspond to the ETM2, H2, I1, I2, J, and ETM3/X/K
events, formerly recognized in deep-sea δ13C bulk carbonate records and land-based

1801

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/11/1795/2015/cpd-11-1795-2015-print.pdf
http://www.clim-past-discuss.net/11/1795/2015/cpd-11-1795-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://paos.colorado.edu/research/wavelets


CPD
11, 1795–1820, 2015

Frequency,
magnitude and

character of
hyperthermal events

V. Lauretano et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

marine and continental sections (Cramer et al., 2003; Lourens et al., 2005; Agnini et al.,
2009; Slotnick et al., 2012; Abels et al., 2012, 2015; Kirtland Turner et al., 2014; Littler
et al., 2014).

The general long-term trend in our ∼ 2 Ma long records indicates a minor increase
between 54.2 and 53.2 Ma followed by an average decrease of ∼ 0.3 ‰ in absolute val-5

ues of both δ13C and δ18O baseline values following J (∼ 53.1 Ma), with minor cycles
evident between the six main events in both records. Following J, both records maintain
rather stable values up to ETM3 (Fig. 3). Both these changes are negligible compared
to the Paleocene–Eocene long–term warming trend and long-term negative trend in
carbon isotope values. However, the onset of more generally negative δ13C values, co-10

inciding with J, has also been observed in the deep-sea bulk carbonate record at Site
1262 (Zachos et al., 2010) and in the land-based section at Mead Stream by Slotnick
et al. (2012), who suggested that it might be used to mark the onset of the EECO.

The onset of warmer temperatures leading to the EECO is evident at ∼ 53 Ma in the
benthic δ18O records at both Sites 1262 and 1263 (Fig. 3). Baseline average δ18O15

values prior to ETM2, representing the response of the unperturbed oceanic system,
represent a mean deep-sea temperature of ∼ 12 ◦C, which post-J increases by > 0.5 ◦C.
On the short-term scale, our new data across the events following ETM2 and H2 indi-
cate a rise in temperature of ∼ 2 and ∼ 1.5 ◦C during I1 and I2, respectively. The event
labelled as J was associated with a temperature increase of > 1 ◦C superimposed on20

the further average decrease in baseline δ18O values. The ETM3 is expressed in both
the shallowest and deepest site at Walvis Ridge by similar isotopic excursions with
a CIE of ∼ 0.8 ‰ and a shift in the oxygen record of ∼ 0.5 ‰, corresponding to a warm-
ing in the deep ocean of 2–2.5 ◦C, comparable to values observed during the ETM2
(Stap et al., 2010).25

Evolutionary wavelet analyses for δ13C and δ18O records of Site 1263 show spectral
power concentrated at distinct frequencies, corresponding to the long 405 kyr and short
∼ 100 kyr eccentricity cycles (Fig. 4). The isotope records reveal coherent patterns, with
the highest spectral power concentrated during the ETM2–H2 and I1–I2. The ∼ 100 kyr

1802

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/11/1795/2015/cpd-11-1795-2015-print.pdf
http://www.clim-past-discuss.net/11/1795/2015/cpd-11-1795-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
11, 1795–1820, 2015

Frequency,
magnitude and

character of
hyperthermal events

V. Lauretano et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

signal in δ13C, which is very prominent in the first 1 Ma of the record, weakens after J.
The imprint of precession and/or obliquity forcing is very weak/absent throughout the
entire record. As a result of our tuning approach, minima in δ13C are approximately
in phase with maxima in the 405 and ∼ 100 kyr eccentricity cycles, following previous
work (e.g., Cramer et al., 2003; Lourens et al., 2005; Zachos et al., 2010; Stap et al.,5

2010).

5 Discussion

5.1 Isotope covariance

The coherent response between benthic δ13C and δ18O implies a strong relationship
between changes in the carbon cycle and climate throughout the interval, as has been10

observed in the older part of the record at Site 1262 (Stap et al., 2010; Littler et al.,
2014). The covariance and cyclicity evident in the isotopic records suggest a strong
non-linear response to orbital forcing, leading to the release of isotopically-light carbon
(e.g. methane gas and/or CO2) to the ocean–atmosphere system during eccentricity
maxima, driving subsequent carbonate dissolution and warming. It has been theorized15

that the timing and magnitude would respond to the crossing of a thermal threshold,
more frequently reached in phases of orbitally-driven temperature increase (Lunt et al.,
2011). Consequently, the carbon reservoir, regardless of its nature, would reach the
complete depletion across the EECO to then progressively fill again, leading to a spec-
ular series of global warming events of decreasing frequency and increased size along20

the post-EECO cooling phase and an interval free of hyperthermals during the peak of
the EECO (Kirtland Turner et al., 2014). However, δ13C data from a composite stable
isotope record have disproved this hypothesis showing that episodes of carbon release
continued throughout the EECO and the onset of the cooling trend. This evidence
suggests that mechanisms similar to those invoked for the Oligocene and Miocene25

were controlling the Eocene climate (Kirtland Turner et al., 2014). Our benthic isotope
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records support this hypothesis and allow for a direct test of the temperature related
signal carried by the benthic foraminiferal δ18O for the hyperthermals leading to the
EECO. The six events recognised in the benthic record of Site 1263 vary in terms
of both the magnitude of the CIEs and the inferred temperature changes. The most
intense perturbations are associated with the ETM2, I1 and ETM3, whereas H2 and5

I2, which lag the larger events by one 100 kyr eccentricity period, are less prominent
(Fig. 3). One important question is whether all these events of varying magnitude share
the same underlying mechanism, in terms of the source of light carbon to the ocean
atmosphere system and climatic response. Following Stap et al. (2010), we have as-
sessed this by comparing the slopes of the regression line between the carbon and10

oxygen isotopes of the individual events (Fig. 5). These cross-plots clearly show that
all events exhibit significant and coherent linear relationships between both sites with
slopes ranging between 0.5 and 0.7 (Fig. 5), suggesting a constant ratio of temperature
response to input of carbon release.

The slopes of the regression lines for H2 and I2 appear slightly steeper than those15

of ETM2, I1, J and ETM3 (Fig. 5). To statistically test this (dis)similarity, we applied
a student t test to pairs of slopes, comparing all the events against each other using
both a pooled and an unpooled error variance. The results show that the null hypothesis
(the slopes being similar, α = 0.05) is satisfied in the case of ETM2, I1, J and ETM3.
The tests on the steeper slopes of H2 and I2 generally display values of p ≤ 0.05 when20

tested against the other events, but values of p ≥ 0.05 when tested against each other.
This implies that the H2 and I2 show to be statically similar to each other but to slightly
differ from the remaining events. Even though this statistical approach might be subject
to limitations derived from the range of data points chosen for each event, it clearly
shows that the slopes for H2 and I2 deviate from the average values given by the25

other events. Moreover, the statistical deviation of the slopes of H2 and I2 is clearer
when comparing them with the average slope for all events of the two sites, since
they fall outside the (99.99 %) confidence limits (Fig. 6). The average slope between
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δ13C and δ18O of 0.6 for both sites is also in accord with previous observations for the
onset/recovery of PETM, ETM2 and H2 by Stap et al. (2010).

The “paired” hyperthermal events, ETM2–H2 and I1–I2 thus reveal slightly different
δ13C vs. δ18O relationships between their first (ETM2 and I1) and secondary (H2 and
I2) pulses. Assuming that these signals are globally representative, this could imply that5

the second of the two pulses had a relatively larger contribution of an isotopic heavier
carbon source than the first pulse. Such a mechanism could hint to a methane-related
dominant carbon source (e.g. methane hydrates) during the initial phase of the paired
hyperthermal events, whereas other relatively heavier carbon isotope sources (e.g.
wetlands, peat) might have become progressively more important during the succes-10

sive phase. This mechanism could be linked to the depletion and subsequent recharge
time of the inferred methane clathrate reservoir between both events. If this is true,
however, we might expect that the amount of carbonate dissolution associated with
the shoaling of the calcite compensation depth (CCD) and lysocline during these two
pulses were more or less similar. Evidently, the a* values, representative of redness15

and hence carbonate dissolution, were significantly lower during the second pulses
than during their preceding counterparts (Fig. 2). This suggests that local circulation
changes or partial dissolution may have slightly altered the anomalies in δ18O and
δ13C during H2 and I2. Assuming climate sensitivity to be constant, global tempera-
tures would respond non-linearly to increasing pCO2. However, our results show that20

the temperature response to episodes of carbon release appears to be linear during
this time interval. This may also suggest that climate feedbacks or an incomplete recov-
ery of the buffering capacity of the ocean system after the first perturbation could have
played a significant role in amplifying the temperature response observed in our data.
However, the scaling of CIE magnitudes between deep-sea and continental records25

for these events indicates an approximately scaled relationship, strengthening the hy-
pothesis of a similar isotopic composition of the carbon source for the early Eocene
hyperthermal events (Abels et al., 2015).
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In this respect it is worth noting that these latter two events also behave differently
from the “larger” events in terms of biotic disruption (Gibbs et al., 2012). While for
PETM, ETM2 and I1, data indicate a scaled biotic response to carbon injections, in the
cases of H2 and I2 the system apparently failed to cross the environmental “threshold”
necessary to generate a detectable marine biotic disruption (D’haenens et al., 2012;5

Gibbs et al., 2012).

5.2 Site 1263 vs. Site 1262

Comparison between the benthic δ13C and δ18O records of Sites 1263 and 1262 re-
veals an almost identical pattern, although δ18O values of Site 1263 are consistently
∼ 0.2 ‰ heavier than those of Site 1262 (Fig. 3). A similar (reversed) pattern has been10

previously observed by Stap et al. (2009) in the case of ETM2, where it was attributed
to differential dissolution from the shallowest to the deepest site. Conversely, selec-
tive dissolution seems unlikely to justify the persistent offset in δ18O values observed
throughout the new post-ETM2 record presented herein. This offset cannot be ex-
plained by a temperature-dependence, since Site 1262 is bathed by a deeper, and15

hence colder, water mass than the shallower Site 1263. Therefore, we link this offset
to a difference in the average isotopic composition of the water masses at those sites.
Accordingly, this suggests the intermediate water mass reaching Site 1263 was more
18O-enriched than the deeper waters at Site 1262, and more saline.

6 Conclusions20

The new high-resolution benthic stable isotope records from ODP Sites 1262 and
1263 provide a detailed framework to explore the nature of Early Eocene hyperther-
mal events. Our results in the interval from ETM2 to ETM3 confirm the link between
large-scale carbon emissions and climate response to orbital forcing, in particular to
short- and long- eccentricity cycles. The transition towards the Early Eocene Climatic25
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Optimum is marked by a general decrease of both benthic carbon and oxygen isotopic
values of ∼ 0.3 ‰ at Site 1263, indicative of both long-term warming and progressive
release of organic carbon into the ocean–atmosphere system. Consistent covariance
between benthic carbon and oxygen isotopes during each of the studied events sug-
gests a constant temperature response to changes in the exogenic carbon pool. How-5

ever, the second of the hyperthermal events occurring in “pairs” during times of 405 kyr
eccentricity maxima (H2 and I2) point to a slightly different behaviour. Whether this im-
plies a larger role for a carbon reservoir characterized by a heavier isotopic signature
remains debatable and, hence, allows for further considerations about other opera-
tional processes like local circulation changes, partial dissolution, or different climate10

feedbacks.
Finally, an offset in oxygen isotopic values between Site 1263 and 1262, with the lat-

ter consistently heavier than the former, suggests that more saline intermediate waters
reached the shallowest site of the Walvis Ridge transect, providing new information
about the water column structure of the ancient South Atlantic Ocean.15
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Table 1. Age-depth tie points based on the tuning of the filtered 3 m-period extracted from Site
1262 color reflectance record and the long eccentricity cycle extracted from the Laskar solution
La2010d (Laskar et al., 2011).

Site 1262 Long eccentricity cycle (kyrs) Long eccentricity cycle (kyrs)
3 m period filter Laskar 2010d Laskar 2010d

(Option 1) (Option 2)

102.750
104.231
105.711
107.167
108.648
110.129
111.635
113.193
114.750
116.359
117.865

51 800
52 003
52 206
52 410
52 614
52 816
53 017
53 216
53 415
53 615
53 815

52 206
52 410
52 614
52 816
53 017
53 216
53 415
53 615
53 815
54 016
54 218
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Table 2. Color reflectance tie points from ODP Site 1263 and Site 1262 and interpolated ages
obtained from the astronomically tuned age model.

Samples Site Site Samples Site Site Interpolated Age Interpolated Age
1263 1263 1262 1262 (Ma) (Ma)
Depth Depth Depth Depth Option 1 Option 2
(mbsf) (mcd) (mbsf) (mcd)

1263A-26H-4, 147.5
1263A-26H-5, 50
1263A-26H-5, 90
1263A-26H-5, 115
1263A-26H-6, 147.5
1263A-26H-7, 30
1263B-22H-5, 100
1263B-22H-5, 125
1263B-22H-6, 142.5
1263B-22H-7, 45
1263A-27H-1, 65
1263A-27H-2, 7.5
1263A-27H-2, 17.5
1263A-27H-2, 25
1263A-27H-2, 125
1263A-27H-2, 145
1263A-27H-3, 40
1263A-27H-3, 67.5
1263A-27H-3, 100
1263A-27H-3, 135
1263A-27H-4, 77.5
1263A-27H-4, 100
1263A-27H-4, 137.5
1263A-27H-5, 70
1263C-9H-4, 105
1263C-9H-5, 15
1263C-9H-5, 100
1263C-9H-6, 2.5
1263C-9H-6, 15
1263C-9H-6, 32.5
1263C-9H-6, 82.5
1263A-28H-1, 40
1263A-28H-1, 95
1263A-28H-1, 115
1263A-28H-2, 40
1263A-28H-2, 70
1263A-28H-2, 107.5
1263A-28H-3, 5
1263A-28H-3, 27.5
1263A-28H-3, 32.5
1263A-28H-3, 65
1263A-28H-3, 70
1263B-24H-2, 147.5
1263B-24H-3, 67.5
1263B-24H-4, 135
1263B-24H-5, 47.5
1263B-24H-6, 20
1263C-10H-5, 65
1263C-10H-5, 82.5
1263C-10H-5, 110
1263C-10H-7, 1
1263C-10H-7, 5
1263C-10H-7, 10

228.575
229.1
229.5
229.75
231.575
231.9
230.9
231.15
232.825
233.35
232.75
233.675
233.775
233.85
234.85
235.05
235.5
235.775
236.1
236.45
237.375
237.6
237.975
238.8
240.45
241.05
241.9
242.425
242.55
242.725
243.225
242
242.55
242.75
243.5
243.8
244.175
244.65
244.875
244.925
245.25
245.3
245.875
246.575
248.75
249.375
250.6
251.05
251.225
251.5
252.91
252.95
253

265.425
265.95
266.35
266.6
268.425
268.75
269.23
269.48
271.155
271.68
272.78
273.705
273.805
273.88
274.88
275.08
275.53
275.805
276.13
276.48
277.405
277.63
278.005
278.83
280.24
280.84
281.69
282.215
282.34
282.515
283.015
284.52
285.07
285.27
286.02
286.32
286.695
287.17
287.395
287.445
287.77
287.82
288.165
288.865
291.04
291.665
292.89
292.93
293.105
293.38
294.79
294.83
294.88

1262B-11H-4, 137.5
1262B-11H-5, 42.5
1262B-11H-5, 102.5
1262B-11H-5, 137.5
1262B-11H-6, 45
1262A-10H-2, 120
1262A-10H-2, 145
1262A-10H-3, 20
1262A-10H-3, 60
1262A-10H-3, 87.5
1262A-10H-4, 2.5
1262A-10H-4, 27.5
1262A-10H-4, 37.5
1262A-10H-4, 45
1262A-10H-4, 77.5
1262B-12H-1, 70
1262B-12H-1, 85
1262B-12H-1, 100
1262B-12H-1, 110
1262B-12H-1, 120
1262B-12H-2, 5
1262B-12H-2, 22.5
1262B-12H-2, 60
1262B-12H-2, 110
1262B-12H-2, 135
1262B-12H-3, 12.5
1262B-12H-3, 40
1262B-12H-3, 57.5
1262B-12H-3, 65
1262B-12H-3, 85
1262B-12H-4, 10
1262B-12H-4, 65
1262B-12H-4, 122.5
1262A-11H-1, 137.5
1262A-11H-2, 2.5
1262A-11H-2, 12.5
1262A-11H-2, 50
1262A-11H-2, 67.5
1262A-11H-2, 80
1262A-11H-2, 85
1262A-11H-2, 97.5
1262A-11H-2, 105
1262A-11H-2, 132.5
1262A-11H-2, 147.5
1262A-11H-3, 95
1262A-11H-3, 145
1262A-11H-4, 52.5
1262A-11H-4, 57.5
1262A-11H-4, 72.5
1262A-11H-4, 87.5
1262A-11H-4, 135
1262A-11H-5, 5
1262A-11H-5, 10

92.275
92.825
93.425
93.775
94.35
88.2
88.45
88.7
89.1
89.375
90.025
90.275
90.375
90.45
90.775
96.6
96.75
96.9
97
97.1
97.45
97.625
98
98.5
98.75
99.025
99.3
99.475
99.55
99.75
100.5
101.05
101.625
96.375
96.525
96.625
97
97.175
97.3
97.35
97.475
97.55
97.825
97.975
98.95
99.45
100.025
100.075
100.225
100.375
100.85
101.05
101.1

101.855
102.405
103.005
103.355
103.93
104.31
104.56
104.81
105.21
105.485
106.135
106.385
106.485
106.56
106.885
107.24
107.39
107.54
107.64
107.74
108.09
108.265
108.64
109.14
109.39
109.665
109.94
110.115
110.19
110.39
111.14
111.69
112.265
112.425
112.575
112.675
113.05
113.225
113.35
113.4
113.525
113.6
113.875
114.025
115
115.5
116.075
116.125
116.275
116.425
116.9
117.1
117.15

51.610
51.727
51.835
51.883
51.962
52.014
52.048
52.082
52.137
52.175
52.265
52.300
52.314
52.325
52.370
52.420
52.441
52.461
52.475
52.489
52.537
52.561
52.613
52.681
52.715
52.753
52.790
52.814
52.824
52.851
52.951
53.024
53.097
53.118
53.137
53.150
53.198
53.220
53.236
53.243
53.258
53.268
53.303
53.322
53.446
53.508
53.580
53.586
53.605
53.624
53.687
53.713
53.720

52.014
52.132
52.241
52.289
52.369
52.421
52.455
52.490
52.545
52.583
52.673
52.707
52.721
52.732
52.777
52.826
52.846
52.867
52.880
52.894
52.941
52.965
53.016
53.083
53.117
53.154
53.191
53.214
53.224
53.251
53.350
53.422
53.496
53.516
53.536
53.549
53.597
53.619
53.635
53.642
53.658
53.667
53.703
53.722
53.846
53.909
53.981
53.987
54.006
54.025
54.089
54.089
54.122
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60˚ 60˚

Walvis Ridge

Figure 1. Paleogeographic reconstruction for the early Eocene (∼ 55 Ma) showing the posi-
tion of Walvis Ridge Sites at (map generated at http://www.odsn.de/odsn/services/paleomap/
paleomap.html, modified).
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Figure 2. The floating orbitally-tuned age model was constructed based on the red over green
color ratio (a*) records of ODP Sites 1263 and 1262. The extracted ∼ 3 m period from Site 1262
was used to tune the record to the extracted 405 kyr eccentricity component of the La2010d
orbital solution (Laskar et al., 2011), with maximum a* values corresponding to maximum ec-
centricity values. Interpolated ages were transferred then to Site 1263 by using age-depth tie
points (black dots). Uncertainties in dating proxies prevent an absolute age for this time interval,
anchored to the lack of an absolute age for the PETM. Therefore, different tuning options are
available within an 800 kyr window (Westerhold et al., 2008). Two possible options are shown.
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Figure 3. Benthic N. truempyi δ13C and δ18O records from Site 1263 and Site 1262, plotted
vs. Age (Ma), (option 2- Westerhold et al., 2008). Highlighted intervals represent the position of
the early Eocene hyperthermal events.
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Figure 4. Evolutionary wavelet analyses for δ13C and δ18O were performed using a Morlet
mother wavelet of an order of 6. The shaded area represents the 95 % significance level. Spec-
tral power above the confidence level is concentrated at distinct frequencies, corresponding
to the long 405 kyr and short eccentricity 100 kyr cycles. Highlighted intervals represent the
position of the early Eocene hyperthermal events.
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Figure 5. Relationship between the oxygen and carbon isotope values of N. truempyi during
ETM2, H2, I1, I2, J and ETM3/X in Site 1263 and Site 1262. Data for ETM2 and H2 from Stap
et al. (2010) and for I1, I2 and J at Site 1262 from Littler et al. (2014). Note that, because of
intense dissolution at Site 1263, ETM2 data were chosen from Site 1265. For all the events,
throughout the entire event (onset + recovery phases), changes in the exogenic carbon pool
are linearly related to warming. Linear regression equations refer to Site 1263 (top) and Site
1262 (bottom), respectively.
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Figure 6. Slope of each event plotted together with the average slope (from all the events). The
red dashed line indicates the 99 % confidence interval.
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