Millennial-scale vegetation changes in the tropical Andes using ecological grouping and ordination methods

Dunia H. Urrego (1), Henry Hooghiemstra (2), Oscar Rama-Corredor (3), Belen Martrat (3), Joan O. Grimalt (3), Lonnie Thompson (4), Mark B. Bush (5), Zaire González-Carranza (2), Jennifer Hanselman (6), Bryan Valencia (5), César Velásquez-Ruiz (7).

- (1) Geography, College of Life and Environmental Sciences, University of Exeter, United Kingdom.
- (2) Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands.
- (3) Department of Environmental Chemistry, IDAEA-CSIC, Spain.
- (4) School of Earth Sciences and Byrd Polar and Climate Research Center, The Ohio State University, USA.
- (5) Department of Biological Sciences, Florida Institute of Technology, USA.
- (6) Department of Biology, Westfield State University, USA.
- (7) Bio-Science School, Universidad Nacional de Colombia, Colombia.

Author's response

Includes:

- · Point-by-point response to the reviews,
- · List of all relevant changes made in the manuscript, and
- Marked-up manuscript version

Interactive comment on "Rapid millennial-scale vegetation changes in the tropical Andes" by D. H. Urrego et al. S. Metcalfe (Referee)

This paper by Urrego and co-authors goes back to eight published pollen records from the tropical Andes (between 6o29'N and 16o20'S) and reinterprets them using both ecological groupings (with a particular focus on AP%) and ordination scores from DCA. The DCA axis scores are also used to estimate rates of change (RoCs). Except for the case of Llano Grande in Columbia, the authors have used the published age models. The paper is set out to look at millennial scale variability, specifically Heinrich stadials and what are called Greenland interstadials (D/O interstadials). In practice, however, the paper says more about the stadials (including the YD) than the interstadials, pre- sumably because only three of the records actually extend back beyond 25 ka.

I think that this is an interesting paper, but have concerns about the emphasis in the text on moisture sources when in fact most of the responses seem to be driven by temperature.

>> We have reshaped the manuscript to emphasize the air temperature signal extracted from the records. The paper now focuses on the last 30 ka and discusses both the signature of HS and GI as far as the chronologies allow.

MAJOR COMMENTS

Environmental setting. I found this quite confusing in places in terms of a) modern climatology (linking to Fig. 1) and b) setting. a) The description of this in section 2 and Fig. 1 need to be linked together more effectively.

>> The environmental setting section now includes a part on vegetation, and we have revised it to link more effectively different aspects of climate and environmental variability. We have also modified Figure 1, including two panels to illustrate the seasonal variability of atmospheric systems.

At a basic level Fig.1 has no latitudes or longitudes marked on it. >> The Figure now includes coordinates.

It isn't clear whether the LLJ that is marked on the figure is the South American Low level jet referred to on p. 1707 (presumably it is).

>> We have replaced the term Low Level Jet with South American Low Level Jet (SALLJ) in the text.

The Choco Jet referred to on p. 1706 isn't shown on the figure at all. The ITCZ is shown in only one location, with no indication of its seasonal shift and the label for the SASM seems to be located a long way to the east.

>> We have modified the Figure and now include average monthly precipitation data for the period 1998 to 2007. The Figure also includes one panel for the boreal summer and one for the boreal winter. We think this solves potential issues with the incorrect location of SASM and ITCZ. The approximate locations of the Choco Jet, SALLJ and ENSO are depicted in the Figure.

The text on cold front outbreaks (p. 1705) is rather confusing as it refers to the impact of these fronts from both north and south, but then reports that cold fronts (from

which direction?) can make a significant contribution to summertime (SH or NH?) precipitation in western Amazonia. It would be helpful to clarify this. >> This refers to southern-hemisphere cold fronts and it is now clarified in the text, line 248.

P. 1706 line 9 – based on Fig. 1 it isn't clear how the Choco Jet affects the western flank of the Andes, this feature really needs to added to Fig. 1. It will then make sense.

>> We have added the approximate location of the Choco Jet to the Figure.

In the text on Millennial scale variability, trends and climatic mechanisms it would be good to clarify the relationship between the ITCZ and the SASM (see top of p. 1704). >> The potential link between ITCZ and SASM is mentioned lines 305 and 307.

The signature of stadials in Cariaco and the northern sites in this transect is dry. b) The text contrasts sites in the northern and central/southern Andes (p. 1706) but this categorisation isn't shown in Table 1 or Fig. 1. This could also be picked up in the first paragraph of 3 Methods. In this paragraph I would help the reader by inserting a bit more explanation in line 8 e.g. 'Lakes Chochos, Pacucha and Consuelo also lie on the eastern flank of the Andes, but further south'.

>> Table 1 now includes a categorisation of northern, central and southern Andean sites. We have also added a sentence to the first paragraph of the methods, lines 357-359: "For the purpose of this paper, sites are classified according to their latitudinal position into northern (latitude north), central (latitude < 10° S) and southern (latitude > 10° S) Andean sites (Table 1)"

What is meant by mid- to high-elevation in this context? (p. 1704 last line, 1705 top line).

>> We have clarified this aspect in line 355

Methods. I'm afraid that I am not convinced by the use of a ratio between aquatic pollen types classified as deep water taxa and shoreline/shallow water taxa, to reconstruct lake level change. The authors record that the Holocene D/SS is nearly zero for LakeTiticaca when it has been shown that there was a major drop in lake level in the early Holocene followed by recovery (e.g. Baker et al., 2001). Given their own caveats about the D/SS ratio at the top of p. 1719 and the fact that there are often more reliable lake level indicators for the sites discussed in this paper, I suggest that the authors think carefully about removing this element.

>> We have retained the D/SS ratio because we consider that it provides meaningful environmental information despite the caveats. We have added a more clear explanation for the lack of change in Lake Titicaca in lines 739-743.

Although lake level/moisture balance is referred to in Section 5.2 (Orbital scale environmental changes), it isn't referred to very much in relation to millennial scale change. If the authors do want to retain this, then they need a clearer definition of what is meant by shallow and deep (p. 1710, line 6) and make more use of other water balance indicators.

>> Unfortunately water balance indicators like diatoms are not available for all the records, as a result the aquatic vegetation is the best alternative to compare potential moisture availability changes among sites. We have added more information on the

classification of shoreline and aquatic taxa in lines 452-455.

Discussion. The anti-phasing of responses (in relation to moisture balance) to both Holocene orbital forcing and to millennial events between the northern part of tropical South America and the southern part is quite well established. The possible east – west variation suggested by Cheng et al. (2013) based on their speleothem work is a newer idea. If the authors wish to continue to make this a focus of their paper, then these complex patterns warrant more discussion and could be linked much more closely to moisture sources (see above).

>> Our north-to-south network of sites does not allow conclusions about east-west gradients of moisture/precipitation. However, we have included some inferences of north-south anti-phasing of moisture availability during the Pleistocene-Holocene transition (lines 946-951).

Conclusions. These say nothing about warm events (your Greenland Interstadials). I'm not sure there is that much to say given the records available, but they seem less consistent. See previous comments about moisture sources.

>> We have added more discussion on the Greenland interstadials, in particular GI1 (lines 993-1006). The conclusions and abstract also include information on GI1.

MINOR COMMENTS

Abstract. See comment above re moisture sources. I do not see this as the emphasis of the paper.

>> The revised manuscript now emphasizes the role of temperature rather than moisture source.

p. 1703 lines 13 and 14 add some non-ice core references>> We have added non-ice core references

p. 1707 line 7 Do you really mean eastward transport of Amazonian moisture?>> We have rephrased

p. 1708 The text on age models isn't very elegant. Can you re-phrase?>> We have rephrased

p. 1709 line 1, insert 'the' before 'original authors'; line 7, insert 'a' before 'pollen taxon' p. 1710, line 13 aimed
 >> Corrections incorporated.

p. 1713, line 2, study based on what?

>> Based on inverse modelling. This has been included in lines 550-551

p. 1714, line 3 What do you mean by high resolution in relation to the Chochos record?

>> We have rephrased

p. 1716, line 19 difference; line 20 insert 'the' before La Cocha
>> Corrections incorporated.
p. 1718, line 25 can you suggest some specific proxies? Leaf waxes? GDSTs?

>> Examples included in Line 1238

p. 1721 line 9, please check whether the YD has been mentioned previously; line 25 give the date for G1
>> Corrections incorporated. Timings of GI and HS have been added to the discussion.

p. 1722 line 17 either 'directions differ' or 'direction differs'; lines 19-21 contrast with speleothem records from the east.
 >> Rephrased

Interactive comment on Clim. Past Discuss., 11, 1701, 2015.

Interactive comment on "Rapid millennial-scale vegetation changes in the tropical Andes" by D. H. Urrego et al. Anonymous Referee #2

OVERVIEW

The present manuscript reports a reanalysis of some of the most important records for the tropical Andes, in West of South America, and focus on the vegetation changes de- tected at sub-millennial scale to study environmental variability. Given the uncertainty of the research question debated and the novel approach, the authors have nicely ex- plained the objectives of the present work and the advantages compared to previous attempts, as have discussed the potential problems of the techniques used. Regarding the objectives proposed however, the paper ends a bit shallow in its present form, lacking further discussion about the meaning of the results found, i.e., the potential drivers that have caused synchronicities/asynchronies between the records. >> Discussion.

MAJOR COMMENTS

Abstract. The inference of precipitation changes (line 7) based on aquatic and shoreline vegetation is a bit risky as shifts in these taxa provide very local scale information and may be related to different drivers including precipitation, but also temperature through an increase in evaporation. I suggest the use of different terms such as moisture availability, P/E balance or similar throughout the text.

>> This is indeed a very good point that we had tried to address in the methods and discussion of the D/SS ratio. To avoid overstating the results we have now changed "inferred precipitation changes" from aquatic taxa to "moisture availability" and "lake level changes" throughout the text.

Environmental setting.

Section 2.1 is entitled "Geography, vegetation and climate" but I haven't found any information about vegetation so far. Although the study area will imply large variation of the taxa occurrence and distribution, some basic information is required that will help the readers not familiarised with the tropics.

>> We have added a paragraph on Andean vegetation to the Environmental setting section.

Methods.

Although the use of AP% as proxy for temperature shifts has been explained, some clarification would be appreciated. This proxy is especially useful in high steep locations (mountain range) that includes a close ecotone between a forested and a nonforested plant community. This would be the case to some extent for the seven Andean records, but please clarify why using AP% in Lake Consuelo should work taken into account that puna is located almost 2000 m upwards and changes in communities promoted by temperature shifts might be unnoticed by AP%.
 >> We clarify that AP% in Lake Consuelo is less sensitive than in high-elevation lakes sitting closer to the ecotone. We have added a section on the discussion on the low sensitivity of AP% in mid-elevation sites (Lines 967 to 992).

2) Given the data showed in Table 1, there are some records without a very high resolution. This might be problematic for comparing the level of details that for instance La Cocha record is going to provide. Please provide further details in how you are avoiding these potential issues.

>> We state that our regional comparison is constrained by the differences in temporal resolution among records (Lines 391 and 397). We consider that this issue is unavoidable and therefore refrain from drawing conclusions beyond the chronological resolution of individual records. The discussion also includes caveats on this, e.g. lines 1197-1198.

Table 1. Please add the number of radiocarbon dates obtained in each record for building the age-depth model.

>> The number of radiocarbon dates have been added to Table1.

Figure 1. Please check the right location of Lake Pacucha and re-draw SASM (maybe as a shade or with bars?) to clarify the real extent of the atmospheric pattern and include the season for the ITCZ etc.. Some coordinates would be much appreciated. >> We have redrawn this figure and it now includes two panels of average precipitation during January and July depicting the position of the ITCZ and the development of SASM. The Figure includes coordinates.

Figure 2. Where are the lowland taxa? Were not important at all, including in Lake Consuelo?

>>> We chose to show the sub-Andean and puna taxa for Lake Consuelo to allow comparisons with other sites. The Puna taxa in Lake Consuelo are also more sensitive to temperature change as they relate to the position of the upper forest line. This is now clarified in section 4.7.

SPECIFIC COMMENTS

Page 1704, lines 25-26: I would rephrase this including some potential mechanisms responsible for the lack of consistent signature found to date in time and/or space (differences in analysis resolution, proxy sensitivity, climate system operating. . .). >> After the revision of the introduction this sentence is no longer in the text.

Page 1705, line 22: Please change "unmarked set by Dunia" for a proper reference. >> Removed

Page 1712, lines 7-10: Please include the reference for the elevation of subAndean forests in the interglacials (or how they obtained the information).
>> This information was obtained from the original publication of the pollen record from Lake Fuquene. We have added a citation to support the statement.

Page 1713, lines 3-4: This sentence is saying just the opposite of the previous one (page 1712, lines 26-27). Please, clarify. >> This information was indeed conflicting. The idea has been clarified.

Page 1713, line 11: There is a typo in Surucucho. >> Corrected.

Page 1714, line 3: Please define "relatively high resolution" taken into account the record data (almost 300 years of sampling resolution).

>> We have removed this idea as it was an overstatement.

Page 1718, line 20: Please see comment on Methods above. >> Clarified above.

Page 1721, line 11: Please avoid the term "precipitation changes" based on aquatic taxa, it will promote misunderstandings (despite you might be right in some cases, but this proxy cannot provide this type of evidence). >> We have replaced 'precipitation changes' with moisture availability.

Interactive comment on Clim. Past Discuss., 11, 1701, 2015.

1	Millennial-scale vegetation changes in the tropical Andes using ecological grouping	
2	and ordination methods	Dunia H. U
3		changes in
4		
5	Dunia H. Urrego (1), Henry Hooghiemstra (2), Oscar Rama-Corredor (3), Belen Martrat	
6	(3), Joan O. Grimalt (3), Lonnie Thompson (4), Mark B. Bush (5), Zaire González-	
7	Carranza (2), Jennifer Hanselman (6), Bryan Valencia (5), César Velásquez-Ruiz (7).	Dunia H. U Deleted:
8		Deretear
9	(1) Geography, College of Life and Environmental Sciences, University of Exeter, United	
10	Kingdom.	
11	(2) Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The	
12	Netherlands.	
13	(3) Department of Environmental Chemistry, IDAEA-CSIC, Spain.	
14	(4) School of Earth Sciences and Byrd Polar and Climate Research Center, The Ohio	
15	State University, USA.	
16	(5) Department of Biological Sciences, Florida Institute of Technology, USA.	
17	(6) Department of Biology, Westfield State University, USA.	
18	(7) Bio-Science School, Universidad Nacional de Colombia, Colombia.	
19		
20	•	
21	Prepared for publication in: Climate of the Past	Dunia H. U
22	Track record of manuscript: 29 April 2013 skeleton text by HH version-1; August 2013, added notes on	order: Mark
23	methods, key questions and results DHU; 17 July 2014 version-2 by DH Urrego; 22-23 July HH; 5Sep	Colinvaux, Groot Jan
24	version-4 by DHU; 9Sept HH input; 17thOct version-6 by DHU; HH input 20Oct-4Nov; version-7 by	Lourens, G
25 26	DHU 21Nov2014; IDec2014 LI, OR-C and BM input; HH input 30Nov-3Dec; version-8 by DHU 22Ler 15, HU input 26Ler 15, PM input 26Ler 15, Warrier 9, by DHU 20Ler 2015, PM facelback 20Ler	Thomas van Velásquez-
20	Submission: 31 Jan 2015 (version-10) Reviews May July 2015. HH input 5Nov2015. Revised manuscript	
28	version-11 by DHU on 2-4Dec 2015. LT input 7Dec2015. Re-submission: 8 Dec 2015 (version-12)	
29		Dunia H. U
30	Abstract	Deleted:
31	We compare eight pollen records reflecting climatic and environmental change	Dunia H. U
32	from northern and southern sites in the tropical Andes. Our analysis focuses on the last	Dunia H I
33	30,000 years, with particular emphasis on the Pleistocene to Holocene transition. We	Deleted:
34	explore ecological grouping and downcore ordination results as two approaches for	Dunia H. U
35	extracting environmental variability from pollen records. We also use the records of	Deleted:
36	aquatic and shoreline vegetation as markers for lake level fluctuations, and moisture	Deleted:

37 availability. Our analysis focuses on the signature of millennial-scale <u>climate</u> variability

Dunia H. Urrego 8/12/2015 16:26 Deleted: Rapid millennial-scale vegetation changes in the tropical Andes

Dunia H. Urrego 7/12/2015 15:30 Deleted: & Data contributors* *

Dunia H. Urrego 7/12/2015 15:30

Deleted: *Data contributors in alphabetical order: Mark B. Bush, Antoine Cleef, Paul Colinvaux, Zaire González-Carranza, Mirella Groot, Jen Hanselman, Barbara Hansen, Lucas Lourens, Gina Paduano, Bryan Valencia, Thomas van der Hammen, Bas van Geel, César Velásquez-Ruíz.

Dunia H. Urrego 2/12/2015 19:02	
Deleted: submitted (
Dunia H. Urrego 2/12/2015 19:02	
Deleted:)	
Dunia H. Urrego 2/10/2015 17:39	
Deleted: the	
Dunia H. Urrego 4/11/2015 11:35	
Deleted: 50	
Dunia H. Urrego 8/12/2015 15:24	
Deleted: ka	
Dunia H. Urrego 4/11/2015 17:25	
Deleted: precipitation change	

54	in the tropical Andes, in particular, Heinrich stadials (HS) and Greenland interstadials
55	<u>(GI)</u> .
56	The pollen records show an overall warming trend during the Pleistocene-Holocene
57	transition, but the onset of post-glacial warming differs in timing among records. We
58	identify rapid responses of the vegetation to millennial-scale climate variability in the
59	tropical Andes. The signature of HS and the Younger Dryas are generally recorded as
60	downslope UFL migrations in our transect, and are likely linked to air temperature
61	cooling. The GI1 signal is overall comparable between northern and southern records and
62	indicates upslope UFL migrations and warming in the tropical Andes. Our marker for
63	lake level changes indicated a north to south difference that could be related to moisture
64	availability. The air temperature signature recorded by the Andean vegetation was
65	consistent with millennial-scale cryosphere and sea surface temperature changes, but
66	suggests a potential difference between the magnitude of temperature change in the ocean
67	and the atmosphere.
68	
69	Keywords: arboreal pollen sum, detrended correspondence analysis, millennial-scale
70	climate variability, pollen records, tropical Andes
71	
72	1. Introduction
72 73	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in
72 73 74	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in marine and terrestrial sediment archives both in the northern and southern hemispheres
72 73 74 75	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in marine and terrestrial sediment archives both in the northern and southern hemispheres (NGRIPmembers, 2004; EPICA, 2006; Baker et al., 2001; Harrison and Sanchez Goñi,
72 73 74 75 76	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in marine and terrestrial sediment archives both in the northern and southern hemispheres (NGRIPmembers, 2004; EPICA, 2006; Baker et al., 2001; Harrison and Sanchez Goñi, 2010; Hessler et al., 2010). The clearest manifestations of millennial-scale climate events
72 73 74 75 76 77	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in marine and terrestrial sediment archives both in the northern and southern hemispheres (NGRIPmembers, 2004; EPICA, 2006; Baker et al., 2001; Harrison and Sanchez Goñi, 2010; Hessler et al., 2010). The clearest manifestations of millennial-scale climate events are observed in Greenland ice core records (Wolff et al., 2010) and North-Atlantic marine
72 73 74 75 76 77 78	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in marine and terrestrial sediment archives both in the northern and southern hemispheres (NGRIPmembers, 2004; EPICA, 2006; Baker et al., 2001; Harrison and Sanchez Goñi, 2010; Hessler et al., 2010). The clearest manifestations of millennial-scale climate events are observed in Greenland ice core records (Wolff et al., 2010) and North-Atlantic marine sequences (Sánchez Goñi and Harrison, 2010). The Greenland interstatials (GI) are
72 73 74 75 76 77 78 79	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in marine and terrestrial sediment archives both in the northern and southern hemispheres (NGRIPmembers, 2004; EPICA, 2006; Baker et al., 2001; Harrison and Sanchez Goñi, 2010; Hessler et al., 2010). The clearest manifestations of millennial-scale climate events are observed in Greenland ice core records (Wolff et al., 2010) and North-Atlantic marine sequences (Sánchez Goñi and Harrison, 2010). The Greenland interstatials (GI) are characterised by rapid warming in ice core records and can last up to 2500 years (Wolff
 72 73 74 75 76 77 78 79 80 	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in marine and terrestrial sediment archives both in the northern and southern hemispheres (NGRIPmembers, 2004; EPICA, 2006; Baker et al., 2001; Harrison and Sanchez Goñi, 2010; Hessler et al., 2010). The clearest manifestations of millennial-scale climate events are observed in Greenland ice core records (Wolff et al., 2010) and North-Atlantic marine sequences (Sánchez Goñi and Harrison, 2010). The Greenland interstadials (GI) are characterised by rapid warming in ice core records and can last up to 2500 years (Wolff et al., 2010). A second type of millennial-scale climate events are the Heinrich events
 72 73 74 75 76 77 78 79 80 81 	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in marine and terrestrial sediment archives both in the northern and southern hemispheres (NGRIPmembers, 2004; EPICA, 2006; Baker et al., 2001; Harrison and Sanchez Goñi, 2010; Hessler et al., 2010). The clearest manifestations of millennial-scale climate events are observed in Greenland ice core records (Wolff et al., 2010) and North-Atlantic marine sequences (Sánchez Goñi and Harrison, 2010). The Greenland interstadials (GI) are characterised by rapid warming in ice core records and can last up to 2500 years (Wolff et al., 2010). A second type of millennial-scale climate events are the Heinrich events (HE) (Heinrich, 1988), which are marked by an abrupt increase in the proportion of ice-
 72 73 74 75 76 77 78 79 80 81 82 	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in marine and terrestrial sediment archives both in the northern and southern hemispheres (NGRIPmembers, 2004; EPICA, 2006; Baker et al., 2001; Harrison and Sanchez Goñi, 2010; Hessler et al., 2010). The clearest manifestations of millennial-scale climate events are observed in Greenland ice core records (Wolff et al., 2010) and North-Atlantic marine sequences (Sánchez Goñi and Harrison, 2010). The Greenland interstadials (GI) are characterised by rapid warming in ice core records and can last up to 2500 years (Wolff et al., 2010). A second type of millennial-scale climate events are the Heinrich events (HE) (Heinrich, 1988), which are marked by an abrupt increase in the proportion of ice-rafted debris (IRD) from iceberg discharges in the Ruddiman Belt (Ruddiman, 2001).
72 73 74 75 76 77 78 79 80 81 81 82 83	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in marine and terrestrial sediment archives both in the northern and southern hemispheres (NGRIPmembers, 2004; EPICA, 2006; Baker et al., 2001; Harrison and Sanchez Goñi, 2010; Hessler et al., 2010). The clearest manifestations of millennial-scale climate events are observed in Greenland ice core records (Wolff et al., 2010) and North-Atlantic marine sequences (Sánchez Goñi and Harrison, 2010). The Greenland interstadials (GI) are characterised by rapid warming in ice core records and can last up to 2500 years (Wolff et al., 2010). A second type of millennial-scale climate events are the Heinrich events (HE) (Heinrich, 1988), which are marked by an abrupt increase in the proportion of ice-rafted debris (IRD) from iceberg discharges in the Ruddiman Belt (Ruddiman, 2001). These iceberg discharges deliver fresh water into the North Atlantic and disrupt the
72 73 74 75 76 77 78 79 80 81 82 83 84	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in marine and terrestrial sediment archives both in the northern and southern hemispheres (NGRIPmembers, 2004; EPICA, 2006; Baker et al., 2001; Harrison and Sanchez Goñi, 2010; Hessler et al., 2010). The clearest manifestations of millennial-scale climate events are observed in Greenland ice core records (Wolff et al., 2010) and North-Atlantic marine sequences (Sánchez Goñi and Harrison, 2010). The Greenland interstadials (GI) are characterised by rapid warming in ice core records and can last up to 2500 years (Wolff et al., 2010). A second type of millennial-scale climate events are the Heinrich events (HE) (Heinrich, 1988), which are marked by an abrupt increase in the proportion of ice-rafted debris (IRD) from iceberg discharges in the Ruddiman Belt (Ruddiman, 2001). These iceberg discharges deliver fresh water into the North Atlantic and disrupt the Atlantic Meridional Overturning Circulation (Hemming, 2004) resulting in global climate
72 73 74 75 76 77 78 79 80 81 82 83 84 85	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in marine and terrestrial sediment archives both in the northern and southern hemispheres (NGRIPmembers, 2004; EPICA, 2006; Baker et al., 2001; Harrison and Sanchez Goñi, 2010; Hessler et al., 2010). The clearest manifestations of millennial-scale climate events are observed in Greenland ice core records (Wolff et al., 2010) and North-Atlantic marine sequences (Sánchez Goñi and Harrison, 2010). The Greenland interstadials (GI) are characterised by rapid warming in ice core records and can last up to 2500 years (Wolff et al., 2010). A second type of millennial-scale climate events are the Heinrich events (HE) (Heinrich, 1988), which are marked by an abrupt increase in the proportion of ice-rafted debris (IRD) from iceberg discharges in the Ruddiman Belt (Ruddiman, 2001). These iceberg discharges deliver fresh water into the North Atlantic and disrupt the Atlantic Meridional Overturning Circulation (Hemming, 2004) resulting in global climate changes. The intervals associated with North-Atlantic iceberg discharges are termed
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in marine and terrestrial sediment archives both in the northern and southern hemispheres (NGRIPmembers, 2004; EPICA, 2006; Baker et al., 2001; Harrison and Sanchez Goñi, 2010; Hessler et al., 2010). The clearest manifestations of millennial-scale climate events are observed in Greenland ice core records (Wolff et al., 2010) and North-Atlantic marine sequences (Sánchez Goñi and Harrison, 2010). The Greenland interstadials (GI) are characterised by rapid warming in ice core records and can last up to 2500 years (Wolff et al., 2010). A second type of millennial-scale climate events are the Heinrich events (HE) (Heinrich, 1988), which are marked by an abrupt increase in the proportion of ice-rafted debris (IRD) from iceberg discharges in the Ruddiman Belt (Ruddiman, 2001). These iceberg discharges deliver fresh water into the North Atlantic and disrupt the Atlantic Meridional Overturning Circulation (Hemming, 2004) resulting in global climate changes. The intervals associated with North-Atlantic iceberg discharges are termed Heinrich Stadials (HS) (Sánchez Goñi and Harrison, 2010) and have been linked to
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in marine and terrestrial sediment archives both in the northern and southern hemispheres (NGRIPmembers, 2004; EPICA, 2006; Baker et al., 2001; Harrison and Sanchez Goñi, 2010; Hessler et al., 2010). The clearest manifestations of millennial-scale climate events are observed in Greenland ice core records (Wolff et al., 2010) and North-Atlantic marine sequences (Sánchez Goñi and Harrison, 2010). The Greenland interstadials (GI) are characterised by rapid warming in ice core records and can last up to 2500 years (Wolff et al., 2010). A second type of millennial-scale climate events are the Heinrich events (HE) (Heinrich, 1988), which are marked by an abrupt increase in the proportion of ice-rafted debris (IRD) from iceberg discharges in the Ruddiman Belt (Ruddiman, 2001). These iceberg discharges deliver fresh water into the North Atlantic and disrupt the Atlantic Meridional Overturning Circulation (Hemming, 2004) resulting in global climate changes. The intervals associated with North-Atlantic iceberg discharges are termed Heinrich Stadials (HS) (Sánchez Goñi and Harrison, 2010) and have been linked to temperature and precipitation changes in other regions of the world.
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88	1. Introduction The signature of millennial-scale climate variations is recorded in ice cores, and in marine and terrestrial sediment archives both in the northern and southern hemispheres (NGRIPmembers, 2004; EPICA, 2006; Baker et al., 2001; Harrison and Sanchez Goñi, 2010; Hessler et al., 2010). The clearest manifestations of millennial-scale climate events are observed in Greenland ice core records (Wolff et al., 2010) and North-Atlantic marine sequences (Sánchez Goñi and Harrison, 2010). The Greenland interstadials (GI) are characterised by rapid warming in ice core records and can last up to 2500 years (Wolff et al., 2010). A second type of millennial-scale climate events are the Heinrich events (HE) (Heinrich, 1988), which are marked by an abrupt increase in the proportion of icerafted debris (IRD) from iceberg discharges in the Ruddiman Belt (Ruddiman, 2001). These iceberg discharges deliver fresh water into the North Atlantic and disrupt the Atlantic Meridional Overturning Circulation (Hemming, 2004) resulting in global climate changes. The intervals associated with North-Atlantic iceberg discharges are termed Heinrich Stadials (HS) (Sánchez Goñi and Harrison, 2010) and have been linked to temperature and precipitation changes in other regions of the world.

Dunia H. Urrego 27/11/2015 17:18

Deleted: We identify rapid responses of the tropical vegetation to this climate variability, and relate differences between sites to moisture sources and site sensitivity.

Dunia H. Urrego 5/10/2015 11:25

Deleted: Although it is widely expected that climate change science can provide us with adequate projections of climate conditions at the end of the current century (IPCC, 2014) the underlying evidence from records of past climate change has only been developed during recent years. In the tropics, an increasing number of records of past environmental and climatic changes with robust age models and temporal resolution currently allow us to explore the dynamics and operating climate mechanisms in more detail than before. ...[1]

Dunia H. Urrego 3/11/2015 15:00

Deleted: brupt climate changes are characterized by a rapid onset and duration ranging between 200 and 2500 years Dunia H. Urrego 27/11/2015 16:43

Deleted: HEs

Dunia H. Urrego 3/11/2015 11:48

Deleted: forming the Heinrich layers in marine sediments from

113 Intertropical Convergence Zone (ITCZ) and variations in the strength of monsoonal 114 systems during HS. Model simulations and climate reconstructions suggest that HS result 115 in a southward shift of the thermal equator and the ITCZ (Broccoli et al., 2006) linked to 116 decreased sea surface temperature (SST) in the North Atlantic and increased SST in the 117 South Atlantic, Such an atmospheric and oceanic configuration is associated with a 118 weakened North-American Monsoon (Lachniet et al., 2013), and reduced precipitation in 119 central (Escobar et al., 2012) and northern South America (Peterson et al., 2000). The 120 precipitation signature of HS is also described as wet episodes in the Bolivian Altiplano 121 (Baker et al., 2001; Fritz et al., 2010) and as enhanced South American summer monsoon 122 (SASM) activity in southeastern Brazil (Cruz et al., 2005). In the Ecuadorian Amazon, 123 precipitation change appears to be positively correlated with some HS (Mosblech et al., 124 2012).

125 GI have also been linked to precipitation changes in the American tropics. These 126 include wet conditions during GI1 in Central America (Escobar et al., 2012) and 127 decreased run-off in the Guyana Basin (Arz et al., 1998). Some GI appear to be 128 associated with reduced lake levels in western Amazonia (Urrego et al., 2010) and 129 decreased humidity in the Bolivian Altiplano (Baker et al., 2001). Weakening of SASM 130 and reduced precipitation are also associated with the onset of some GI in speleothem 131 records from subtropical Brazil (Cruz et al., 2005). The precipitation signals of HS and 132 GI indicate that climatic conditions in the American tropics were far from stable during 133 these millennial-scale climate events.

134 Estimates of temperature change during HS and GI in the American tropics differ in magnitude and are hindered by the number of available records. The magnitude of 135 136 tropical Atlantic SST warming at the onset of GI1 for instance is estimated to be less than 137 1°C in the Tobago Basin (Rühlemann et al., 2003), 2°C in the Colombian basin (Schmidt 138 et al., 2004) and 3.8°C in the Guyana Basin (Rama-Corredor et al., 2015). The isotopic 139 record from the Sajama ice core also indicates a large-magnitude change during GI1 that 140 has been linked to precipitation but could also be associated with air temperature 141 warming (Thompson et al., 1998). In the Colombian Andes, the best resolution 142 vegetation-based reconstruction of air temperatures available to date suggests that the 143 magnitude of warming associated with GI1 is as large as 9°C (Groot et al., 2011), twice 144 the SST estimate. Similarly, the signature of HS in the same record suggests downslope 145 forest migrations and large-magnitude temperature depressions (Bogotá et al., 2011). A 146 regional synthesis suggests that the vegetation signature of HS and GI can be opposite 147 between the northern and southern parts of the region influenced by the ITCZ (Hessler et

Dunia H. Urrego 2/11/2015 17:21

Deleted: , shifting the thermal equator and the Intertropical Convergence Zone (ITCZ) southwards (Broccoli et al., 2006)

Dunia H. Urrego 8/12/2015 15:2: Deleted: to

Dunia H. Urrego 2/11/2015 16:49

Deleted: Downslope migration of the upper forest line (UFL) in the tropical Andes (Bogotá et al., 2011) are also linked to HS cooling.

Dunia H. Urrego 3/11/2015 15:30

Dunia H. Urrego 3/11/2015 16:28

Deleted:, while in southeast Brazil and western South America the changes associated with GI appear to be inconsistent

... [2]

al., 2010) and highlights the paucity of records. Overall, whether there is a consistent air
 and ocean temperature signature of millennial-scale climate events in the ocean and the
 American tropics remains unclear.

163 The main objective of this paper is to assess the signature of millennial-scale 164 climate variability in the tropical Andes, and to test whether it is consistent among 165 northern and southern sites. We re-analyse a suite of eight pollen records that reveal 166 vegetation changes at mid to high-elevations during last the 30,000 years BP (ka), with particular emphasis on the Pleistocene to Holocene transition. We compare all records on 167 168 a common timescale, and explore how records expressed as percentage data and as 169 downcore detrended correspondence analysis (DCA) time series can provide different information on environmental change. This study differs from previous studies that have 170 focused on vegetation changes and their palaeoecological meaning. Here, we use the 171 Andean vegetation as a marker for climatic change. We consider vegetation change as 172 one of the internal responses of the climate system and integrate our observations with 173 records that reveal the responses of the cryosphere and the ocean to millennial-scale 174 175 climate variability in the American tropics.

177 2. Environmental setting: vegetation and climate

176

178 Vegetation in the north and central Andes is dominated by lower montane forest above 179 1000 m elevation and up to c. 2300 m where there is absence of night frost. Upper 180 montane forests are found where night frost may occur and extend up to the upper forest 181 line (UFL). The UFL position, defined as the highest contour of continuous forest 182 (Bakker et al., 2008), is instrumental in temperature reconstructions as it coincides with 183 the c. 9.5°C mean annual temperature (Hooghiemstra, 1984). The UFL is found in the 184 study area between 3200 and 3500 m elevation and depends amongst other factors on regional temperature, precipitation, ground-level cloudiness (cloud forest), and soil 185 conditions. In the northern Andes of Colombia and Ecuador relatively humid Páramo 186 187 (Luteyn and Churchill, 1999) is found between the UFL and the perennial snow at c. 4800 m. Much drier Puna vegetation occurs above the UFL in Perú and Bolivia. The 188 Huancabamba Deflection (Weigend, 2002), a low elevation part of the Andes between 189 190 Ecuador and Perú, forms the transition between wet Páramo and dry Puna.

191Topography is a key environmental variable in the tropical Andes (Graham, 2009).192It determines air temperature change (Vuille and Bradley, 2000), and precipitation193variability and its spatial distribution (Garreaud et al., 2009). Air temperature decreases194with elevation, with modern empirically derived lapse rates of 5.5°C per 1000 m (Bush et195al., 2004). Air temperature in the tropical Andes can also be significantly reduced by

Dunia H. Urrego 2/12/2015 11:10 Deleted: spatially and temporally Dunia H. Urrego 3/11/2015 16:31 Deleted: these Dunia H. Urrego 3/11/2015 16:33 Deleted: tropical Andes Dunia H. Urrego 3/11/2015 16:45 Deleted: test whether the signature of Dunia H. Urrego 3/11/2015 16:46 Deleted: is Deleted: from the tropical Andes Dunia H. Urrego 4/11/2015 11:35 Deleted: 50 Dunia H. Urrego 27/11/2015 17:13 Deleted: complementary Dunia H. Urrego 2/11/2015 17:0 Deleted: As far as the chronologies allow, we explore the degree of synchronicity of environmental change between terrestrial pollen records, and marine and ice-core markers from the region. Dunia H. Urrego 3/11/2015 16:40 **Deleted:** changes in the vegetation Dunia H. Urrego 9/11/2015 Deleted: (i.e. biosphere)

... [3]

Deleted:

Dunia H. Urrego 3/11/2015 15:28

Deleted: 2.1 Geography, vegetation and climate

215 cold-air advection <u>funnelled through Andean valleys</u> from the northern (Poveda et al.,
2006) and southern (Garreaud, 2000) <u>high latitudes</u>, <u>Cold fronts also affect precipitation</u>
217 regimes due to convective cloudiness (Poveda et al., 2006; Garreaud et al., 2009), in
218 particular southern-hemisphere cold fronts have been linked to ca. 30% of summertime

219 precipitation in western Amazonia (Garreaud and Wallace, 1998),

220 With respect to precipitation distribution, spatial differences between the eastern 221 and western flanks are partly due to topography (Poveda et al., 2011). Moisture on the 222 eastern flank is primarily sourced in the tropical Atlantic and Amazonia, while SST in the 223 tropical Pacific modulates precipitation on the western flank (Vuille and Bradley, 2000). 224 On the eastern flank, the Andean mountains form a barrier to moisture and the altitudinal 225 temperature decline forces humidity to condense and form clouds (Poveda et al., 2006). 226 In areas of the eastern flank where prevailing winds and topography are not favourable, 227 cloud cover can be low and precipitation can be less than 1500 mm, forming relatively 228 dry enclaves (Killeen et al., 2007). In contrast, moisture regimes on the western flank are 229 linked to the westerly Chocó jet in the northern Andes (Poveda et al., 2006), and to 230 upwelling and El Niño Southern Oscillation (ENSO) in the central and southern Andes 231 (Vuille et al., 2000). Such a difference in moisture drivers results in a large precipitation 232 gradient from north to south, with some of the rainiest areas on earth found on the Pacific 233 coast of Colombia, and deserts found along the Peruvian coast. Rain shadow effects govern precipitation in inter-Andean valleys (Vuille et al., 2000). 234

235 Several Jarge-scale atmospheric and oceanic mechanisms modulate precipitation 236 regimes in the tropical Andes (Fig. 1). The position of the ITCZ is primarily forced by 237 trade wind convergence and Atlantic and Pacific SSTs, and is linked to continental rainfall and seasonality at sub-annual timescales (Garreaud et al., 2009; Poveda and 238 239 Mesa, 1997). At inter-annual to millennial timescales, the inter-hemispheric migration of 240 the ITCZ seems to respond to multiple factors including insolation and the position of the thermal equator (Fu et al., 2001), high-latitude temperatures and land-sea ice extent 241 242 (Chiang and Bitz, 2005) and high-latitude North Atlantic variability (Hughen et al., 243 1996). The ITCZ is in turn linked to the distribution of mesoscale convective systems in northwestern South America, contributing an average of 70% of annual precipitation in 244 245 the region (Poveda et al., 2006).

246The SASM (Fig. 1) is linked to a large area of precipitation and convection that247forms over most of Amazonia and subtropical Brazil during the austral summer248(Garreaud et al., 2009). This low pressure system delivers a large proportion of annual249rainfall between December and February (Garreaud et al., 2009), and isotopic250fingerprinting suggests that the tropical Atlantic is its main moisture source (Vuille and

Dunia H. Urrego 6/10/2015 17:34 Deleted: C Dunia H. Urrego 6/10/2015 17:47 **Deleted:** hemispheres Dunia H. Urrego 6/10/2015 17:35 Deleted: reaches the tropical Andes year round and can have a great effect on air temperatures Dunia H. Urrego 6/10/2015 17:42 Deleted: can significantly reduce air temperatures and Dunia H. Urrego 6/10/2015 17:36 Deleted: lead Dunia H. Urrego 6/10/2015 17 Deleted: to heavy Dunia H. Urrego 6/10/2015 17:36 Deleted: Dunia H. Urrego 6/10/2015 17:37 Deleted: have estimated that cold-front outbreaks are associated with ca 30% of summertime precipitation in western Amazonia Dunia H. Urreo o 6/10/2015 17 Deleted: These cold fronts travel mostly along the eastern side of the Andes and can produce freezing conditions down to 2500 m elevation in the tropical Andes (Gan and Rao, 1994). Urrego 6/10/2015 17:4 Deleted: Because of the complex topography of the Andes, the spatial distribution of precipitation differs significantly Dunia H. Urrego 6/10/2015 17 Deleted: , and between inter-Andean valleys Dunia H. Urrego 6/10/2015 17:52 Deleted: export from the Amazon basin to the Pacific coast. Dunia H. Urrego 6/11/2015 14:52 Deleted: hen Amazonian humid air encounters the eastern flank of the Andes, Dunia H. Urrego 6/10/2015 18:04 Deleted: 2.2 Operating climate mechanisms and moisture sources ... [4] Dunia H. Urrego 7/12/2015 16:2

Deleted: such as the ITCZ, SASM, and ENSO

Dunia H. Urrego 8/12/2015 15:29 Deleted: SASM

Werner, 2005). This moisture is transported across Amazonia by easterly trade winds (Vuille et al., 2000) and is Jinked to the South American low-level jet (SALLJ),(Zhou and Lau, 1998). Variations in the position of the Atlantic ITCZ are suggested to play a role in modulating the strength of the SASM on interannual to decadal timescales (Zhou and Lau, 1998). SASM strength has also been linked to the mean state of the Pacific (Vuille and Werner, 2005), and interannual and long-term ENSO variability (Zhou and Lau, 1998).

290 ENSO drives a large portion of the interannual precipitation variability in the 291 tropical Andes, despite regional differences in timing, magnitude and direction of change 292 (Poveda et al., 2011). Warm ENSO events are associated with decreased rainfall and 293 more prolonged dry seasons in the Colombian Andes (Poveda et al., 2006). Drought is also experienced in northeast Brazil during warm ENSO events, while southern Brazil 294 295 and the Ecuadorian Pacific coast experience increased rainfall (Zhou and Lau, 2001). 296 Warm ENSO events are also associated with strengthening of the SALLJ along the eastern flank of the Andes, and enhancement of the SASM (Zhou and Lau, 2001). 297

299 **3. Methods**

298

300 We use eight pollen records from the tropical Andes to reconstruct environmental change at a regional scale over the past 30 ka (Fig. 1, Table 1). This temporal focus is driven by 301 302 the time span of available records. Selected lakes form a north-to-south transect from 6°N 303 to 16°S and lie at mid- (<3000 m) and high-elevations (>3000 m) in the tropical Andes. 304 For the purpose of this paper, sites are classified according to their latitudinal position 305 into northern (latitude north), central (latitude < 10°S) and southern (latitude > 10°S) 306 Andean sites (Table 1). The sites are located in inter-Andean valleys partly lying in the rain shadow, the eastern flank of the Andes facing the Amazon lowlands, and the 307 308 Peruvian-Bolivian Altiplano (Table 1). This latitudinal transect provides a large 309 environmental gradient and includes sites with various moisture sources. In the two northernmost Colombian sites, the Atlantic ITCZ and ENSO modulate moisture 310 311 (Velásquez and Hooghiemstra, 2013; Bogotá et al., 2011). Further south, Lakes La Cocha 312 and Surucucho are located on the eastern flank of the Andes and receive most 313 precipitation from Amazonian orographic rains (Colinvaux et al., 1997; González-314 Carranza et al., 2012). Lakes Chochos, Pacucha and Consuelo lie on the eastern flank of 315 the Andes, and Lake Titicaca on the Peruvian/Bolivian Altiplano. Lake Chochos 316 precipitation is sourced from Amazonian convection and the SASM (Bush et al., 2005). 317 The SASM also is the primary moisture source for Lakes Pacucha, Consuelo and Titicaca

Dunia H. Urrego 6/11/2015 15:04 Deleted: until it encounters the Andes, causing significant orographic precipitation unia H. Urrego 6/ Deleted: . The eastward transport of Amazonian moisture is also Dunia H. Urrego 6/11/2015 15:04 Deleted: Dunia H. Urrego 6/11/2015 15:04 Deleted: whose strength increases east of the Andes and reaches a maximum in subtropical South America Dunia H. Urrego 6/11/2015 15:05 Deleted: Dunia H. Urrego 6/11/2015 15:05 Deleted: in response to SST gradients in the tropical Atlantic Dunia H. Urrego 6/11/2015 15:00

Deleted: low-level jet

Dunia H. Urrego 4/11/2015 11:35 Deleted: 50,000 years (50 Dunia H. Urrego 8/12/2015 17:27 Deleted:) Dunia H. Urrego 8/12/2015 16:03 Deleted: Fig.

Dunia H. Urrego 4/11/2015 11:03 Deleted: one site from 334 (Urrego et al., 2010; Valencia et al., 2010; Baker et al., 2001) (Table 1).

335 We selected pollen records where knowledge of regional vegetation was sufficient 336 to allow a classification of pollen taxa into ecological groups. The selected records also 337 met minimum requirements of stratigraphic consistency and chronology quality. We used 338 records in which stratigraphic consistency allowed linear interpolations between 339 radiocarbon-dated samples (Table 1). We also selected records that included in average 5 340 radiocarbon ages in 10 ka. Age models developed by the original authors were used, 341 except for Llano Grande. For this record, we took the radiocarbon dates available in the 342 original publication and generated an age model based on calibrated ages using Calib 7.1, 343 IntCal13 (Reimer et al., 2013) and using linear interpolation between dated intervals. The 344 temporal resolution of the records ranged from an average of ca. 26 years in La Cocha to 345 530 years in one of the sequences from Lake Titicaca (Table 1). Given the differences in 346 temporal resolution among records, we only discuss major trends and refrain from 347 drawing conclusions beyond the chronological constraints of each record. 348 To assess the regional signature of millennial-scale climate events, our analysis

benefits from comparisons with direct proxies of tropical Atlantic SST (7°N, Guiana
basin), and isotopic records from the Sajama ice cap (18°S). We explore the degree of
consistency between these independent markers and changes recorded by the Andean
vegetation as far as the chronological uncertainties allow.

353

354 | Protocol to extract environmental information from pollen records

355 Raw pollen counts were obtained from the original authors or from the Latin American 356 pollen database (http://www.ncdc.noaa.gov/paleo/lapd.html). We calculated a pollen sum 357 that included only terrestrial taxa, and re-calculated pollen percentages of individual taxa based on that sum. The ecological grouping of terrestrial taxa was based on the ecological 358 359 information published by the original authors. For sites where this information was 360 unavailable, we followed the author's interpretations of the pollen record, ecological knowledge of the regional vegetation, and information from modern pollen calibrations 361 362 (Reese and Liu, 2005; Urrego et al., 2011; Weng et al., 2004). We considered that 363 ecological envelopes of Andean taxa at genus level may be wide, as more than one 364 species may be reflected in one pollen taxon. We also took into account that the 365 ecological affinity of a pollen taxon in a relatively dry inter-Andean valley may differ from that of the same taxon in a humid cloud forest. Our interpretations of fossil pollen 366 367 spectra into past climate change included region-specific conditions. For example, 368 presence of pollen of Cactaceae and Dodonaea reflected local rain shadow effects, rather

Dunia H. Urrego 6/11/2015 15:38 Deleted: i Dunia H. Urrego 4/11/2015 11:04 Deleted: 1 Dunia H. Urrego 4/11/2015 11:04 Deleted: y Dunia H. Urrego 4/11/2015 11:04 Deleted: meaningful Dunia H. Urrego 8/12/2015 11:45 Deleted: quality of Dunia H. Urrego 8/12/2015 11:47 Deleted: the chronology was sufficiently robust to Dunia H. Urrego 8/12/2015 11:48 Deleted: and where sample intervals were relatively short

Deleted: The age models developed by

original authors were considered robust enough for our search of operating mechanisms.

Dunia H. Urrego 4/12/2015 16:05 Deleted: 3.1

Dunia H. Urrego 8/12/2015 15:29 Deleted: P

Dunia H. Urrego 4/11/2015 11:08 Deleted: E Dunia H. Urrego 4/11/2015 11:08 Deleted: Additionally,

than regional dry climates. Rare pollen taxa with unknown ecological affinity wereexcluded from this classification.

387 Ecological groups include Puna (or Páramo), subpuna (or subpáramo), Andean 388 (upper montane) forest, sub-Andean (lower montane) forest, and taxa from tropical 389 lowland vegetation. The Puna (relatively dry) and Páramo (relatively wet) groups include 390 taxa from cold vegetation above the UFL (Bakker et al., 2008; Groot et al., 2011). These 391 groups also include transitional taxa between the UFL and Puna or Páramo. The Andean 392 and sub-Andean groups reflect high-elevation and mid-elevation forests found today 393 between ca. 1200 and 3200-3500 m elevation. Finally, tropical lowland taxa reflected 394 warm and moist forests below ca. 1200 m elevation.

395 The arboreal pollen percentage (AP%) groups the regional vegetation for each site. 396 Interpretation of AP% is dependent on the altitudinal location of a given site relative to the modern UFL (Hooghiemstra and van der Hammen, 2004). For instance, in Lake 397 Fúquene at 2540 m, AP% includes Andean and sub-Andean taxa. In Llano Grande at 398 3650 m, AP% only includes cold Andean taxa as pollen grains from sub-Andean forests 399 hardly reach this high-elevation site. AP% is most sensitive when sites are located 400 401 between the highest interglacial and the lowest glacial UFL positions. We therefore 402 anticipate a lower sensitivity of the records from Lake Consuelo (1360 m) and Lake 403 Titicaca (3800 m) as a consequence of site location. Using the ecotone of the upper/lower 404 montane forest transition is not feasible yet as this ecotone is palynologically 405 insufficiently constrained (Hooghiemstra et al., 2012). Changes in AP% relate to 406 altitudinal migrations of montane vegetation and the relative position of the UFL, an 407 ecological boundary relatively well established in climatological terms (Körner, 2007; 408 Hooghiemstra, 2012).

409 The terrestrial pollen sum excludes taxa of the aquatic and shoreline vegetation, 410 such as Cyperaceae, Isöetes, Myriophyllum and other taxa described by original authors 411 as aquatic and wet shoreline elements. We have followed the shoreline vegetation 412 zonation detailed by González-Carranza et al. (2012), when information on aquatic 413 vegetation was unavailable. We establish an "aquatic pollen sum" that includes taxa grouped into shoreline, shallow- and deep-water taxa, reflecting a gradient of water 414 415 depth. The shoreline group includes taxa found in the wet and seasonally flooded shores 416 (i.e. *Plantago*, *Rumex* and *Typha*), shallow water taxa are found growing up to 1 m water 417 depth (i.e. Hydrocotyle and Ranunculus), and deep water taxa include Isöetes ferns and 418 other aquatic plants found up to 6 m water depth (González-Carranza et al., 2012). We 419 calculate a ratio (D/SS) between taxa characteristic of deep water over taxa growing in 420 shallow water and wet shores, and use it as an indicator of lake level changes and

Deleted: p Dunia H. Urre ao 2/10/2015 18:19 Deleted: p Dunia H. Urrego 8/12/2015 15:59 Deleted: p Dunia H. Urrego 2/10/2015 18:19 Deleted: páramo Dunia H. Urrego 8/12/2015 15:58 Deleted: p Dunia H. Urrego 2/10/2015 18:19 Deleted: páramo Dunia H. Urrego 2/10/2015 18:16 Deleted: subAndean Dunia H. Urrego 2/10/2015 18:16 Deleted: subAndean Dunia H. Urrego 2/10/2015 18:16 Deleted: subAndean Dunia H. Urrego 6/11/2015 15:50 Deleted: es

Dunia H. Urrego 17/11/2015 17:05 Deleted: are indicative of

Dunia H. Urrego 9/11/2015 11:56 Deleted: (Hooghiemstra et al., 2012)

 Dunia H. Urrego 8/12/2015 11:24

 Deleted: Thus,

 Dunia H. Urrego 8/12/2015 11:24

 Deleted: w

 Dunia H. Urrego 8/12/2015 15:30

 Deleted: ,

 Dunia H. Urrego 8/12/2015 15:30

 Deleted: (D/SS)

437 moisture availability. D/SS is based on the sum of aquatic taxa and is independent of
 438 AP%.

439 Two DCA analyses (McCune and Grace, 2002) were performed on untransformed 440 terrestrial pollen percentages for each site. The first DCA was run on the entire pollen 441 percentage matrices, A second DCA was run on reduced pollen percentage matrices after 442 applying a filter that aimed to eliminate noise caused by rare pollen taxa (Birks and Birks, 443 1980). This filter retained taxa with at least 1% abundance and that were found in at least 444 5 samples per record. Taxa that met only the latter requirement, but had abundances 445 below 1% were retained as such taxa likely reflected low pollen producers. Iterations 446 were run until a stable solution was reached for all ordinations. To make DCA scores 447 comparable between records, axis scores were standardized by calculating z-scores based 448 on the mean and standard deviation for each record. Rates of ecological changes (RoC), 449 were calculated as the dissimilarity distance between two consecutive pollen time slices 450 divided by the time interval in between (Urrego et al., 2009). Euclidean, Sorensen and 451 Bray Curtis dissimilarity distances (McCune and Grace, 2002) were calculated based on 452 raw pollen percentages. The DCA axis scores for the first four axes were also used to 453 calculate RoC using a Euclidean distance. RoC calculated using raw percentages were 454 compared with RoC based on DCA axis scores to evaluate the influence of DCA variance 455 reduction.

456

457 4. Results and interpretation

458 The proportions of sub-Andean (lower montane) and Andean (upper montane) forest taxa 459 vs. vegetation located above the UFL (Puna and Páramo) show temporal variations that 460 appear synchronous between some sites (Fig. 2). The comparison of AP% vs. DCA1 z-461 scores demonstrates similar trends in three of the eight pollen records analysed (Fig. 3). 462 In the remaining five records, AP% and DCA z-scores trends differ in at least part of the 463 record, despite a few similarities. The record of D/SS potentially reflects lake level 464 changes and moisture availability that appear to be registered at most studied sites (Fig. 465 4). In the following section we describe results from our re-analysis of each of eight selected pollen records. 466

467

468 4.1 Llano Grande (Velásquez and Hooghiemstra, 2013)

469 The Llano Grande site is located near the current position of the UFL at 3650 m

- 470 elevation. Changes in AP% at this elevation are expected to be sensitive to changes in the
- 471 | composition of the Andean forests found downslope today. DCA1 z-scores (reversed)
- 472 and AP% are remarkably similar (Fig. 3) suggesting that temperature, the driver of

Dunia H. Urrego 9/11/2015 12:02 **Deleted:**, excluding aquatic and shoreline taxa

Dunia H. Urrego 8/12/2015 15:31 Deleted: s

1	Dunia H. Urrego 8/12/2015 12:05
	Deleted: p
Υ	Dunia H. Urrego 2/10/2015 18:19
	Deleted: páramo
Υ	Dunia H. Urrego 8/12/2015 16:03
$\left(\right)$	Deleted: Fig.
Y	Dunia H. Urrego 8/12/2015 16:04
	Deleted: Fig.
۲	Dunia H. Urrego 8/12/2015 16:04
	Deleted: Fig.
Λ	Dunia H. Urrego 2/10/2015 18:22
	Deleted: is
Λ	Dunia H. Urrego 9/11/2015 12:43
	Deleted: The abundance of Andean taxa increases abruptly ca. 10.5 ka (Fig.2). Five oscillations of AP% are observed during the Holocene.
1	Dunia H. Urrego 8/12/2015 16:04
	Deleted: Fig.

487	changes in AP%, is also the strongest driver of DCA1. The abundance of Andean taxa		
488	(AP%) shows a clear trough between ca. 12.5 and 10.5 ka (Fig. 2 and 3). Several AP%		
489	oscillations are observed during the Holocene. D/SS shows a peak after the onset of the		
490	pollen record at ca. 14.5 ka, and three increases of lesser magnitude during the Holocene		
491	(Fig. 4). The onset of the record and the largest D/SS peak are probably linked to the	\supset	Dunia H. Urrego 9/11/2015 12:41
492	formation of the lake, D/SS increases occur between ca. 6 and 5 ka, and between ca. 4.5		Deleted: twohree increases of lesse [5]
493	and 2.5 ka.		
494			
495	4.2 Lake Fúquene (van der Hammen and Hooghiemstra, 2003)		
496	<u>The Fúquene2</u> record comes from an intra-Andean valley at 2540 m elevation, a position		
497	centrally located in the current altitudinal range of Andean forests, The location of Lake		Dunia H. Urrego 2/10/2015 18:22
498	Fúquene makes this record highly sensitive to temperature-driven <u>migrations</u> of montane		
499	taxa. During glacial times this area was covered by cold <u>Páramo</u> vegetation, and during		
500	interglacials <u>sub-Andean</u> forest taxa reached up to ca. 2300 m_(Groot et al., 2011). The	//	
501	short distance between <u>sub-Andean</u> forest and the lake explains pollen from <u>sub-Andean</u>	/	
502	taxa also being represented in AP%.		
503	Páramo taxa show high percentages between ca. 30 and 17.5 ka, but also vary at		
504	several intervals (Fig. 2). Andean and sub-Andean taxa (AP%) show an overall increase	\square	Dunia H. Urrego 9/11/2015 12:16
505	starting around 15.6 ka, with a trough between ca. 13 and 11 ka, and showing a few	/	
506	fluctuations during the Holocene. DCA1 follows remarkably well the variability of $\mathrm{AP}\%$		
507	(Fig3), indicating that this ordination axis is probably driven by temperature-driven UFL		
508	migrations. Pleistocene downslope migrations of the UFL can be inferred from AP%		
509	decreases around 26, 18 and 13 ka (Fig. 3). AP% increases and upslope UFL migrations	//	
510	are observed at ca. 23.3 and 15 ka. D/SS also shows variations that suggest increases in		
511	lake levels after at ca. 22, 12, 8 and 3 ka (Fig. 4).		
512			
513	4.3 Lake La Cocha (González-Carranza et al., 2012)		
514	Lake La Cocha sits in a valley at 2780 m elevation on the eastern flank of the Andes.		
515	Amazonian moisture causes abundant orographic rains at this site. Centrally located in	A	Dunia H. Urrego 2/10/2015 18:23
516	the current altitudinal range of the Andean forest (2300 to 3650 m elevation), the $\mathrm{AP\%}$		
517	record also includes taxa from the <u>sub-Andean</u> forest. During the deglaciation, the UFL		
518	was below the elevation of the valley and $\underline{P\acute{aramo}}$ vegetation surrounded the lake. AP%		
519	reflects temperature changes in this record, although inverse hydrological modelling		
520	suggests that Holocene vegetation changes at this site are driven both by increased		
521	temperature and moisture (Van Boxel et al., 2014).		
522	Andean and <u>sub-Andean</u> taxa (AP%) in this record increase consistently while		Deleted: subAndean

569	<u>Páramo</u> taxa decrease at the Pleistocene-Holocene transition (Fig. 2). Short but <u>clear</u>		
570	increases of AP% are detected around 11.5, 9.5, 8 ka, The trend of DCA1 z-scores	\geq	Dunia H. Urrego 2/10/2015 18:20
571	closely follows AP% (Fig3). AP% variability increases during the Holocene and		Dereten, paramoaramo taxa deereas [9]
572	displays a shift around 6 ka. Two increases in D/SS suggest lake level increases between		
573	ca. 11 and 6 ka, and between ca. 4.5 and 2.5 ka (Fig. 4).	/	
574	I		
575	4.4 Lake <u>Surucucho</u> (Colinvaux et al., 1997)		
576	Lake <u>Surucucho</u> is located at 3180 m elevation. <u>Sub-Andean</u> forests reach up to 2800 m		Dunia H. Urrego 4/11/2015 16:34
577	in this part of the Andes, while the subpáramo is found at 3500 m elevation. The Andean		Dunia H. Urrego 2/10/2015 18:23
578	forest thus covers a vertical range of approximately 700 m. AP% values include Andean		Deleted: This 1ake Surucucho is lo [10]
579	taxa at this site and reflect UFL shifts,		
580	Puna and subpuna taxa dominate the pollen record during the late Pleistocene (Fig.		
581	2). Andean forest taxa increase gradually from ca. 13 ka and remain relatively abundant		
582	during the Holocene, despite the persistent abundance of Puna and subpuna taxa. DCA1		
583	z-scores and AP% follow a similar trend indicating that temperature is their common	\geq	Dunia H. Urrego 8/12/2015 15:59
584	driver (Fig. 3). AP% decreases before 18 ka and increases again around 14.5 ka. At ca.		
585	11.3 ka there is a two-fold increase in AP% and a shift in DCA1 z-scores. D/SS is		
586	relatively high during the late Pleistocene with a peak at ca. 17 ka. D/SS decrease after	/	
587	ca. 10 ka and are low throughout the Holocene (Fig. 4).	/	
588			
589	4.5 Lake Chochos (Bush et al., 2005)		
590	Lake Chochos is located at 3285 m elevation and sits on the eastern flank of the Andes.		
591	The record is centrally located in the altitudinal range of UFL glacial-interglacial		
592	migrations. AP% includes Andean taxa and is expected to reflect temperature-driven		
593	UFL shifts <u>at this site</u> .		
594	Percentages of Andean forest taxa (AP%) are high at the end of the Pleistocene and		
595	gradually decrease between ca. <u>17</u> and <u>12</u> ka (Fig. 2). Andean taxa show some		Dunia H. Urrego 4/11/2015 16:35 Deleted: relatively high resolution of this
596	fluctuations during this interval, while Puna and subpuna taxa increase, Between ca. 12		pollen record reveals clear variations in the proportion of, ndean forest taxa (AP $^{\circ}$ [12]
597	and 9.5 ka, Andean taxa dominate the record again and Puna and subpuna taxa show		
598	relatively low proportions. Andean taxa decrease again between ca. 4.5 ka and 2.5 ka	///	
599	(Fig2). AP% and DCA1 z-scores show different trends, suggesting that different drivers		
600	affect these records (Fig3). D/SS are high between ca. 14 and 6 ka, with the highest		
601	peak centred at ca. 8.2 ka (Fig. 4).		
602			
603	4.6 Lake Pacucha (Valencia et al., 2010)		

Lake Pacucha is located at 3095 m elevation in the Peruvian Andes. The vegetation

around the lake is strongly influenced by small-scale topography with mesic forests on
the windward slopes and xeric forests in the rain shadow areas. The natural UFL lies
between 3300-3600 m, where vegetation changes into shrublands of 100 to 200 m
vertical extension. Upslope, this shrubby vegetation transitions into herbaceous <u>Puna up</u>
to 4300-4500 m. As the site is located ca. 300 m below the UFL, AP% changes are
expected to <u>be very sensitive to temperature-driven altitudinal shifts of the UFL. AP% at</u>
<u>Lake Pacucha includes Andean taxa.</u>

666 Puna and subpuna taxa dominate until ca. 15.6 ka. Andean forest taxa then show a 667 three-fold increase and exceed Puna and subpuna taxa proportions by at least 10% (Fig. 668 2). Puna and subpuna taxa increase again at ca. 13, while the percentages of Andean 669 forest taxa decrease approximately two-fold. Andean forest taxa percentages recover after 670 ca. 11.8 ka. During the Holocene, both Andean forest and Puna taxa vary and appear to 671 follow the same trend. AP% varies independently from DCA1 z-scores, indicating little 672 correlation between the two markers (Fig. 3). D/SS is high and shows several fluctuations 673 until ca. 11.9 ka, with minima around 18 and 15 ka.

674

675 **4.7 Lake Consuelo** (Urrego et al., 2010)

676 Lake Consuelo is located at 1360 m on the eastern flank of the Andes. Amazonian 677 moisture causes significant orographic rains at this site, covering the lake in semi-678 permanent ground-level clouds. Located in the lower part of the current altitudinal range 679 of sub-Andean forest, the AP% record is mainly composed of sub-Andean taxa. Lowland taxa were grouped for Lake Consuelo, but showed less variation than sub-Andean taxa. 680 The vertical distance from Lake Consuelo to the UFL is large, and even during glacial 681 times the lake remained surrounded by cool Andean forests. Changes in AP% are 682 683 expected to reflect temperature-driven shifts of sub-Andean forests. Sub-Andean forest taxa dominate the record and reach up to 80% (Fig. 2). Despite 684 685 its mid-elevation location, the record shows over 30% of the subpuna vegetation during the Pleistocene. The trends of DCA1 z-scores and AP% are similar, but the signals seem 686

687 688 689

690 **4.8 Lake Titicaca** (Paduano et al., 2003; Hanselman et al., 2011)

and show a series of peaks centred around ca. 8 ka (Fig. 4),

691 | Lake Titicaca is located at 3810 m elevation; the highest site in our transect study. Today

more consistent during the Holocene (Fig._3). D/SS are low between ca. 30 and 10 ka,

- 692 the lake is surrounded by <u>Puna</u> vegetation, and Andean forests occur below 3200 m.
- 693 Glaciers must have reached the lake basin during glacial times and vegetation comparable
- 694 | to the modern Puna brava (4500-5300 m) probably surrounded the lake. AP% includes

Dunia H. Urrego 8/12/2015 15:59 Deleted: p Deleted: monitor mostly Dunia H. Urrego 8/ Deleted: puna Dunia H. Urrego 11/11/2015 14:15 Deleted: between Dunia H. Urrego 11/11/2015 14:15 Deleted: and 11.8 ka Dunia H. Urrego 11/11/2015 14:17 Deleted: increase again Dunia H. Urrego 8/12/2015 16:01 Deleted: D Dunia H. Urrego 11/11/2015 14:21 Deleted: erratically Dunia H. Urrego 11/11/2015 14:24 Deleted: while it is near zero during the Holocene (Fig.4). D/SS fluctuations include Dunia H. Urrego 11/11/2015 14:2 Deleted: maxima around 19.3 and 16 ka, and Dunia H. Urrego 11/11/2015 14:25 Deleted: .8, Dunia H. Urrego 11/11/2015 14:26 Deleted: 17.5 Dunia H. Urrego 2/10/2015 18:17 Deleted: subAndean Dunia H. Urrego 4/11/2015 16:16 Deleted: warm subAndean Dunia H. Urrego 11/11/2015 14:30 **Deleted:** Subpuna percentages peak around 39.7, 32.5, 27.2, 26, 24.2, 17 and 15.1 ka. Holocene subpuna percentages peak around 8.8, 7.3, 4.9 and 2 ka. Dunia H. Urrego 11/11/2015 14: **Deleted:** is high from the onset of the record and until ca. 35.5 ka, with at least six maxima Dunia H. Urrego 11/11/2015 14:33 **Deleted:** Other peaks in D/SS are present around 10 ka and become small after ca. 5 ka. Dunia H. Urrego 2/10/ Deleted: This lake Dunia H. Urrego 8/12/2015 16:00 Deleted: puna Deleted: p Dunia H. Urrego 11/11/2015

12

Deleted: Changes in

Andean taxa and is expected to reflect altitudinal shifts of the UFL. However, the significant distance between the UFL and the lake (between ca. 600 and 1500 m)
potentially cause two sources of bias in the AP% values: (1) registered changes in AP%
may not be sensitive to minor changes in UFL position and (2) AP% increases may lead
the real migration of the UFL due to upslope aeolian pollen transport (Jansen et al., 2013).

728 Two pollen records are available from Lake Titicaca, and in both Puna taxa 729 dominate the pollen spectra (Fig. 2). Andean forest taxa account for less than 10% of the 730 pollen sum, and reflect the downslope location of the UFL. Puna taxa fluctuate during the 731 Pleistocene, and decrease between ca. 17.8 and 13.8 ka. DCA1 z-scores and AP% 732 fluctuate differently during the Pleistocene, but are consistent during the Holocene (Fig. 733 3). The core from the centre of the lake did not record aquatic vegetation. D/SS could be 734 calculated for the record collected closer to the shore, but given the lake's size and depth, 735 the abundance of shoreline and shallow aquatics is very low. D/SS is mostly driven by 736 deep-water indicators and is therefore not comparable with the other records (Fig. 4),

738 **5. Discussion**

737

739 5.1 Extracting climatic information from pollen records,

740 Our comparison of AP% and DCA1 z-scores to extract climate change information 741 from pollen records allows us to highlight differences between the two approaches. On 742 the one hand, ordination analyses like DCA attempt to find the clearest relationships 743 within the pollen dataset, both between pollen taxa and between time slices. The 744 strongest source of variability in one dataset may be precipitation while it may be 745 temperature in another. As a result, ordination scores are not always comparable between 746 sites even after standardization. Relationships between pollen taxa may be due to 747 ecological affinities, and in this sense, this step of the ordination analysis is somewhat 748 equivalent to the taxa grouping done for AP%. However, ordination analyses do not 749 involve a priori information (i.e. ecological knowledge) and are only driven by the main 750 sources of variability within the pollen dataset. This is why ordination analyses have been 751 argued to have an advantage over AP% because each pollen taxon is free to be correlated 752 with any other taxon (Urrego et al., 2005; Colinvaux et al., 1996; Bush et al., 2004). A 753 taxon that today would be grouped as Andean is free to have more affinity with lowland 754 taxa in the past. It is difficult to allow for this flexibility with AP%, which uses modern 755 ecology to group fossil taxa. On the other hand, ordination analyses produce results that 756 require ecological knowledge for interpretation. The ordination results consist of axis 757 scores for pollen taxa and for time slices that are non-dimensional, lack direction, and can

Dunia H. Urrego 8/12/2015 16:01 Deleted: puna

Dunia H. Urrego 11/11/2015 14:38
Deleted: Andean taxa show maxima around 29.5, 24.5, 21, and 17 ka.
Dunia H. Urrego 11/11/2015 14:38
Deleted: sharply
Dunia H. Urrego 11/11/2015 14:42
Deleted: , therefore
Dunia H. Urrego 11/11/2015 14:40
Deleted: only
Dunia H. Urrego 4/11/2015 17:32
Deleted: other
Dunia H. Urrego 11/11/2015 14:42
Deleted: shows large values between the onset of the record and ca. 17 ka (Fig.4). Holocene D/SS is nearly zero
Dunia H. Urrego 17/11/2015 16:07
Deleted: nvironmental and
Dunia H. Urrego 17/11/2015 16:07
Deleted: interpretation:
Dunia H. Urrego 4/11/2015 11:27
Deleted: percentage data vs. ordination scores

Dunia H. Urrego 17/11/2015 16:11 Deleted: Simultaneously, the ordination searches for relationships between time slices.

Dunia H. Urrego 17/11/2015 16:21 Deleted: when using

Dunia H. Urrego 26/11/2015 15:26 Deleted: and

be rotated as desired (Hill and Gauch, 1980). <u>Additionally, information extracted from</u>
the ordination axes <u>can only</u> be used in relative terms. As a result, *a posteriori* ecological
knowledge of the taxa with the highest loadings is necessary to interpret the main sources
of variability within the pollen dataset. Ordination-based interpretation of pollen records
may be more appropriate for non-analogue species re-assortments, but still requires
knowledge on modern species affinities to extract <u>climate or environmental_change</u>
information from ordination results.

783 Using a priori ecological knowledge to calculate AP% has been criticized due to 784 potential subjectivity involved in the classification of pollen taxa (Colinvaux et al., 1997). 785 This potential subjectivity relates to the fact that boundaries between vegetation 786 formations are rarely clear-cut, therefore ecological grouping of transitional or wide-787 raging taxa is left to the palynologist's discretion. AP% has also been criticised because 788 of the underlying assumption that species respond to change as an assemblage rather than individualistically (Urrego et al., 2010). The record from Lake La Cocha reveals 789 790 individualistic changes in pollen abundance (González-Carranza et al., 2012), but also 791 clear variations in AP% that may respond to shifting Andean and sub-Andean 792 associations. The record of Lake La Cocha is therefore a good example of how ecological 793 grouping associated with AP% allows for individualist migrations within groups.

794 The main advantage AP% has over ordination scores is that AP% gives a direction 795 to the observed change from the start. AP% can be translated into temperature-driven 796 UFL migrations (Hooghiemstra et al., 2012) and is comparable between sites. AP% is 797 also particularly sensitive in high to mid-elevation sites. For instance in Fúquene and 798 Pacucha, AP% is relatively high during the Holocene compared to the Pleistocene (Fig. 799 3) indicating the signal of post-glacial warming. The sensitivity of AP% can be low 800 however where forest composition remains within one ecological group. In Lake 801 Consuelo AP% remains high from glacial to interglacial periods, indicating that the area 802 had a relatively stable forest cover, Site-to-site comparisons of ordination scores are not 803 possible because DCA results are driven by the main source of variability within each 804 site. On the other hand, AP% changes are comparable between sites regardless of 805 differences in site sensitivity.

We also calculated RoC and D/SS ratios to explore their sensitivity to
environmental change. RoC values appear to be sensitive to changes in sedimentation
rate, while showing little difference when calculated based on DCA results vs. raw pollen
percentages. As an example of this sensitivity we show RoC calculated for the La Cocha
record (Fig. S1). We refrain from using RoC in this paper as age uncertainties may be
inflated when pollen records of varying quality are compared. One way to circumvent

Dunia H. Urrego 17/11/2015 16:48 Deleted: can

Dunia H. Urrego 17/11/2015 16:49 Deleted: ecological

Dunia H. Urrego 17/11/2015 16:52 Deleted: derives from

Dunia H. Urrego 18/11/2015 19:14

Deleted: Grouping pollen taxa into regional vegetation also requires detailed knowledge of the current vegetation, and this is not always available at the necessary detail. Modern pollen calibrations are useful to understand how vegetation cover translates into the pollen rain, and finally how these translate into the fossil pollen record. Unfortunately, such calibrations remain scarce in the tropical Andes and Amazonia.

Dunia H. Urrego 18/11/2015 18:17

Deleted: while individual taxa are indeed changing in abundance (Urrego et al., 2010) Dunia H. Urrego 18/11/2015 19:09

844 RoC dependency on age and sedimentation uncertainties is to preserve the ecological
845 dissimilarity distances calculated between pollen assemblages as a measure of pollen taxa
846 turnover (for an example see Urrego et al. (2013)).

847 Another climate change indicator calculated here from pollen records is the D/SS 848 ratio. Assuming that the lakes have minimal losses by underground leaks or outflow, 849 D/SS values potentially indicate lake level changes due to fluctuations in precipitation 850 and evaporation, Increases in D/SS are associated with high abundance of deep-aquatic 851 taxa and likely indicate high lake-level stands. Low D/SS indicates abundant aquatic 852 vegetation from shallow waters and reduced water bodies. A potential bias for D/SS is 853 that some taxa included in the 'aquatic pollen sum' have different growth forms. For 854 instance, Isöetes is an aquatic fern growing up to 6-m water depth in lakes and is 855 indicative of relatively deep water conditions. However, in fluvial and fluvio-lacustrine 856 environments Isöetes species may also occur on sand banks (Torres et al., 2005). The 857 ratio is based on relative abundances and is calculated in the same way for all sites. 858 Therefore, calculating D/SS makes differences in pollen/spore production a systematic 859 bias, and allows comparisons among sites and samples within one record. Additionally, 860 the sensitivity of D/SS may depend on water depth. In Lake Titicaca for instance where 861 water depth is more than 200 m, the D/SS ratio is uninformative because no aquatic taxa 862 were recorded.

864 5.2 <u>Temperature and moisture availability during the Pleistocene to Holocene</u> 865 <u>transition in the tropical Andes</u>

863

The eight pollen records from the tropical Andes consistently record Pleistocene 866 altitudinal migrations of Andean and sub-Andean forests linked to glacial_cooling. 867 868 Páramo and subpáramo, or Puna and subpuna vegetation characterize the Pleistocene, 869 while the Holocene is characterised by <u>sub-Andean</u> and Andean forest (Fig. 2). Such 870 forest migrations and inferred temperature change are consistent with other pollen 871 records from the region (e.g. Hansen et al. (2003); Urrego et al. (2010)) and tropical air 872 temperatures changes derived from Andean ice-core isotopic signals (Thompson, 2005), 873 dating of Andean moraines (Smith et al., 2008; van der Hammen et al., 1980/1981), high-874 elevation Andean lake $\delta^{18}O$ records (Baker et al., 2001; Seltzer et al., 2000), and $\delta^{18}O$ 875 from Andean speleothems (Cheng et al., 2013). SST reconstructions from the western 876 tropical Atlantic similarly document large fluctuations between the Late Pleistocene and 877 Holocene (Rühlemann et al., 1999), but their magnitude is believed to be less than air-878 temperature changes recorded by the vegetation and other terrestrial markers.

879 The pollen records show an overall warming trend during the Pleistocene-Holocene

Dunia H. Urrego 18/11/2015 19:19 Deleted: Changing Dunia H. Urrego 18/1 Deleted: , assuming that the lakes have minimal losses by underground leaks or outflow Dunia H. Urrego 4/12/2015 13:21 Deleted: increases Dunia H. Urrego 4/12/2015 13:21 Deleted: in Dunia H. Urrego 4/11/2015 17:35 Deleted: Similarly, 1 Dunia H. Urrego 8/12/2015 15:38 Deleted: ca Dunia H. Urrego 8/12/2015 15:38 Deleted: -Dunia H. Urrego 4/12/2015 13:22 Deleted: meaningful Dunia H. Urrego 27/11/2015 17:16 **Deleted:** Orbital-scale environmental changes Deleted: subAndean Dunia H. Urrego 8/12/2015 16:01 Deleted: puna Dunia H. Urrego 2/10/2015 18:17 Deleted: subAndean Deleted: Fig. Dunia H. Urrego 27/11/2015 17:16 Deleted: orbital-scale Dunia H. Urrego 26/11/2015 16:20 Deleted: have been documented in Dunia H. Urrego 26/11/2015 16:20 Deleted: . Records of Dunia H. Urrego 26 Deleted: between the late Pleistocene and the Holocene also exist from other markers. including Dunia H. Urrego 8/12/2015 12:49

Deleted: Differences between SST and terrestrial records of temperature change are probably associated with the oceans' thermal inertia.

906 transition, but the onset of post-glacial warming differs in timing among records. Taking 907 the Fúquene record as an example for the northern Andean sites, the first post-glacial 908 warming occurred around 15.6 ka (Fig. 2), but is interrupted by a cooling period between 909 ca. 13 and 11 ka. In Lake Surucucho, the record of Andean forest taxa suggests a steady 910 increase in air temperatures starting around 13 ka. On the other hand, the record of Lake 911 Pacucha in the southern Andes shows a clear trend towards warming starting around 15.6 912 ka, with a relatively short-lived cooling between ca. 13 and 11.5 ka, followed by another 913 warming. These differences in the onset of post-glacial warming in the Andes are 914 consistent with reconstructions of snowline depressions starting ca. 21 ka in the Peruvian 915 Andes (Smith et al., 2005), the onset of SST warming in the tropical Atlantic ca. 17 ka 916 (Rühlemann et al., 1999), and shifts in stable oxygen isotopes from the Sajama ice cap at 917 ca. 15.5 ka (Thompson et al., 1998). 918 Changes in D/SS in the selected sites suggest that Pleistocene moisture availability 919 differed from that of the Holocene. D/SS in Northern Andean sites (i.e., Llano Grande, 920 Fúquene, and La Cocha) may indicate increasing lake levels during the Pleistocene-921 Holocene transition (Fig. 4). Another increase in lake levels is recorded at Fúquene and 922 La Cocha around 8 ka, but not in Llano Grande. Central and Southern sites (i.e. 923 Surucucho, Pacucha, Titicaca and the onset of the pollen record in Lake Chochos) 924 indicate large water bodies and probably high moisture availability through the 925 Pleistocene-Holocene transition and up to 8 ka. D/SS in Lake Consuelo follows a 926 different trend to that observed in other central and southern Andean sites during the late

927 Pleistocene. These differences may be due to the buffering effect of semi-permanent 928 ground-level cloud cover during the last glacial (Urrego et al., 2010). D/SS in lakes 929 Consuelo and Chochos suggest high lake-level stands between ca. 10 and 6 ka_and, 930 peaking around 8 ka (Fig. 4), analogous to D/SS increases observed in Northern Andean 931 sites. Moisture in Northern Andean sites is mostly linked to the ITCZ, while southern 932 sites are mostly influenced by precipitation from the SASM (Table 1). Overall, these data 933 suggest a north-south difference in lake levels and moisture availability during the 934 Pleistocene-Holocene transition that may be related to glacial-interglacial atmospheric 935 reorganisations of the ITCZ (Haug et al., 2001) and the SASM (Cruz et al., 2006).

936

937 **5.3 <u>The signature of millennial</u>-scale <u>climate</u> changes in the tropical Andes**

- 938 The signature of millennial-scale <u>climate</u> variability is <u>suggested</u> in <u>most pollen</u> records
- 939 used for our analysis (Fig. 3), AP% decreases in Fúquene, Surucucho and Pacucha
- 940 approximately coincide with the timing of HS1 (18-15.6 ka, Sánchez Goñi and Harrison
- 941 (2010). In Lake Titicaca AP% increases during HS1, but the direction of this change is

Dunia H. Urrego 4/12/2015 13:26 **Deleted:** have been documented from

Dunia H. Urrego 8/12/2015 15:39 Deleted: around

Dunia H. Urrego 26/11/2015 16:23
Deleted: a
Dunia H. Urrego 26/11/2015 16:23
Deleted: humidity
Dunia H. Urrego 26/11/2015 16:24
Deleted: ent
Dunia H. Urrego 27/11/2015 17:26
Deleted: mid-Holocene ca. 5-2 ka
Dunia H. Urrego 8/12/2015 16:03
Deleted: Fig.
Dunia H. Urrego 4/12/2015 13:27
Deleted: precipitation
Dunia H. Urrego 8/12/2015 15:41
Deleted: ,
Dunia H. Urrego 2/12/2015 09:56
Deleted: Millennial
Dunia H. Urrego 2/12/2015 09:56
Deleted: vegetation
Dunia H. Urrego 26/11/2015 16:24
Deleted: environmental
Dunia H. Urrego 1/12/2015 11:36
Deleted: revealed
Dunia H. Urrego 1/12/2015 11:36
Deleted: virtually all
Dunia H. Urrego 26/11/2015 17:36
Deleted: , although the timing can differ along the studied transect
Dunia H. Urrego 1/12/2015 11:36
Deleted: Most records show
Dunia H. Urrego 1/12/2015 11:05
Deleted: in

960 comparable with the change in other records because of the altitudinal location of the site, 961 i.e. above treeline. HS2 (26.5-24.3 ka, Sánchez Goñi and Harrison, 2010) is also 962 insinuated in the low-resolution record from Fúquene by a slight decrease in AP%. In 963 Llano Grande, two AP% decreases observed during the Pleistocene-Holocene transition 964 are roughly consistent with the timing of the Younger Dryas (YD, 12.9-11.6 ka, 965 (Rasmussen et al., 2006; Mangerud et al., 1974). Decreases in AP% during the YD are 966 also apparent in Fúquene, Surucucho, Chochos, and Pacucha. The AP% fluctuations 967 observed during North-Atlantic millennial-scale cooling events are best explained by 968 downslope migrations of Andean vegetation and the UFL linked to air temperature 969 cooling in the tropical Andes.

970 The AP% records from Lake La Cocha and Consuelo appear to be less sensitive to 971 air temperature cooling at millennial timescales. In Consuelo in particular the signature of 972 post-glacial warming is marked in the DCA1 z-scores but not in AP% (Fig. 3). DCA1 z-973 cores in Consuelo only show a few millennial-scale variations that seem unrelated to 974 North-Atlantic cooling events. AP% in Consuelo remains largely unchanged and 975 indicates continuous Andean and sub-Andean forest cover at this site throughout the 976 record (Urrego et al., 2010). The low sensitivity of AP% in Consuelo may also be related 977 to the distance between the site and the UFL as well as the buffering effect of ground-978 level cloud cover. In La Cocha, UFL sits closer to the site but millennial-scale and 979 centennial-scale climate variability seem to be superimposed in the record (González-980 Carranza et al., 2012). La Cocha is also a site constantly influenced by ground-level 981 cloud, which may buffer the effect of air temperature cooling on the vegetation.

982 The signature of GI warming events is best shown for GI1, while the signals of 983 GI2, GI3 and GI4 are hardly recorded (Fig. 3). GI1 (14.6-12.7 ka, Wolff et al., 2010) is 984 suggested by AP% increases in Llano Grande, Fúquene, Surucucho, Chochos and 985 Pacucha. These AP% increases seem more conspicuous and of longer duration in 986 Fúquene and Pacucha. Shifts in DCA1 z-scores are also apparent around the onset of GI1 987 in Chochos and Consuelo. In the record from Lake Titicaca, the signal of GI1 is either 988 weak or not captured due to the elevation of the site. The onset of the records from Llano 989 Grande and La Cocha probably indicates the formation of these two lakes during GI1 and 990 may be due to increased regional moisture and/or glacial retreats. Differences between 991 the signal of GI1 and other warming events may be related to the duration of this 992 warming event in Greenland compared with other GI. Lasting 1900 years (Wolff et al., 993 2010), GI1 is more likely to be captured in records with the resolution available for this 994 regional comparison (Table 1). Overall, GI1 potentially coincides with upslope UFL 995 migration and regional warming in the tropical Andes, as well as the formation of some

Dunia H. Urrego 1/12/2015 11:45

Deleted: during HS, indicating downslope migrations of the UFL and cooling (Fig.3). In Lake Titicaca AP% decreases during HS, but the direction of this change also indicates UFL downslope migrations and cooling, as the lake is located above the UFL. DCA z-scores also record shifts around the timing of HSs, although these are not as conspicuous as AP% changes. Lakes Fúquene and Pacucha show a decrease in AP% during YD. The signature of this event in other sites is either opposite (e.g. Llano Grande, Chochos) or not recorded (e.g ... [15] Consuelo). Dunia H. Urrego 1/12/2015 14:2 Deleted: changes in Dunia H. Urrego 1/12/2015 14:23 Deleted: Dunia H. Urrego 1/12/2015 14:36 Deleted: axis and D/SS Deleted: in the studied transect. T Urrego 1/12/2015 14:3 Deleted: appears to be followed by a sharp AP% increase Dunia H. Urrego 1/12/2015 15:03 Deleted: , while in Fúquene and Pacucha the

AP% increase pre-dates GI1 (Fig.5). The AP% changes linked to other GI are less clear. A sharp shift in DCA1 scores in Consuelo around 38.2 ka roughly coincides with GI8. D/SS peaks and potential high level stands observed between 41 and 35 ka in Consuelo could also be linked to initial GI warming (Urrego et al., 2005). In Pacucha high D/SS values coincide with the timing of GI1 and GI2, but their magnitude is less prominent than other potential lake level increases.

Dunia H. Urrego 1/12/2015 15:04 Deleted: and

Dunia H. Urrego 1/12/2015 14:45 Deleted: increased

1030	Andean lakes,	
1031	One important question is whether the signature of millennial-scale climate	Dunia
1032	variability is consistent in the northern and southern tropical Andes. The signature of HS	Delet
1033	and YD are generally recorded as downslope UFL migrations in our transect, and are	
1034	likely linked to air temperature cooling. Based on the longer records, we also observe a	
1035	temporal consistency between the signals of different HS. HS1 and HS2 are both linked	
1036	to AP% decreases and cooling in Fúquene, although the magnitude of change differs. The	
1037	GI1 signal is overall comparable between northern and southern records and indicates	
1038	upslope UFL migrations in the tropical Andes. These trends are spatially consistent	
1039	between northern and southern sites, and imply a common forcing. Air temperature	
1040	cooling during HS and YD could potentially be linked to cold front advection from the	
1041	Northern hemisphere reaching as far as 13°S (Pacucha) or 16°S if we take the record from	
1042	Titicaca into account. Cold advection both from the northern and southern hemisphere	
1043	are common in the tropical Andes and can produce freezing conditions down to 2500 m	
1044	elevation (Gan and Rao, 1994). The air temperature cooling recorded by the Andean	
1045	vegetation during YD and HS1 could be explained by increased intensity or frequency of	
1046	northern hemisphere cold advection. On the other hand, upslope UFL migrations and air	
1047	temperature warming during GI1 could be related to reduced intensity or frequency of	
1048	northern hemisphere cold advection,	Dunia Delet
1049	To address the consistency of air temperature change recorded by the Andean	Dunia
1050	vegetation with changes recorded by the ocean and the cryosphere, we compare the	Delet
1051	pollen records from Fúquene and Pacucha with SST reconstructions from the Guyana	of the l
1052	Basin and the isotopic record from the Sajama ice cap (Fig. 5). Fúquene and Pacucha are	
1053	used for this comparison as a northern and a southern Andean site, respectively. We also	
1054	plot the NGRIP and EPICA isotope records in an attempt to assess the relative	
1055	importance of northern-hemisphere versus southern-hemisphere forcing. Air temperature	
1056	fluctuations recorded by the Andean vegetation both in the northern and southern Andes	Dunia Delet
1057	are consistent with changes in tropical Atlantic SST (Rama-Corredor et al., 2015) and the	compar
1058	isotopic record from the Sajama ice cap (Thompson et al., 1998), especially, during HS1,	speleot
1059	<u>GI1</u> and YD (Fig. 5), When compared with the long-term variability within each record,	isotopi Sajama
1060	the amplitude of change recorded by the Andean vegetation during GI1 and YD seems	Dunia
1061	comparable to that of the Sajama ice core record. The vegetation records and the isotopic	Delet
1062	signal of the Sajama ice core are comparable despite differences in moisture sources,	Dunia
1063	reiterating that together these changes are best explained by fluctuations in air	Dunia
1064	the second	Delet
	temperature. The SST record from the tropical Atlantic suggests reduced amplitude of	downsl

Dunia H. Urrego 1/12/2015 14:45 **Deleted:** levels in the studied sites

unia H. Urrego 1/12/2015 15:16

Deleted: These changes Dunia H. Urrego 2/12/2015 11:30 Deleted: SST warming observed in the tropical Atlantic (Fig.5) and increased influence of the ITCZ and SASM

ounia H. Urrego 9/11/2015 10:25

Deleted: Our analysis benefits from comparisons with direct proxies of tropical Atlantic SST (7°N, Guiana basin), Amazonian speleothems (5°S, Cueva del Diamante) and isotopic records from Andean ice caps (18°S; Sajama) (Fig.5). The

Dunia H. Urrego 2/12/2015 10:44

Deleted: core records

Dunia H. Urrego 2/12/2015 10:37 Deleted: evidence temperature decreases

Dunia H. Urrego 2/12/2015 10:20

Deleted: that are consistent with UFL downslope migrations and cooling recorded in Fúquene (northern tropical Andes) and Pacucha (southern tropical Andes).

ice core record. This comparison suggests a potential difference between the magnitude
of temperature change in the ocean and the atmosphere that could relate to the thermal
inertia of the ocean. Additionally, the climatic trends observed in the Andean records are
comparable to the Greenland ice core record (NGRIPmembers, 2004), and show fewer
similarities with Antarctica (EPICA, 2006). The observed similarities point to northernhemisphere climate variability forcing UFL migrations and air temperature cooling in the
northern and southern tropical Andes,

1090 Millennial-scale vegetation changes in the tropical Andes show great variability, 1091 and appear to be asynchronous to those of tropical Atlantic SST and the isotopic signal of 1092 Andean ice core records (Fig. 5). Vascular plant biomarkers preserved in the Cariaco 1093 Basin have suggested that tropical vegetation lagged climate change by several decades 1094 (Hughen et al., 2004). A similar time lag between the response of vegetation and marine markers in northeastern South America is estimated to be 1000 to 2000 years during HS 1095 1096 (Jennerjahn et al., 2004). Our explorations with regard to the asynchronicity of these 1097 signals remain within the constraints of available dating and sampling resolution. 1098 However, our results suggest that vegetation responses to millennial-scale climate 1099 variability are overall very rapid,

1101 6. Conclusions

1100

Records of past vegetation change in the tropical Andes showed that altitudinal 1102 1103 migrations of the Andean vegetation are best explained by millennial-scale cooling and 1104 warming of air temperatures linked to northern-hemisphere forcing. Taking into account 1105 differences in the sensitivity of individual sites, the signature of HS is overall consistent among northern and southern Andean records and indicates downslope shifts of the UFL 1106 1107 and cooling. The air temperature cooling needed to produce such migrations could 1108 potentially have resulted from increased intensity and duration of cold advection from the 1109 northern hemisphere. GI1 potentially coincides with upslope UFL migration and regional 1110 warming in the tropical Andes, as well as the formation of some Andean lakes. The air 1111 temperature change recorded by the Andean vegetation was consistent with millennial-1112 scale cryosphere and ocean temperature changes, but suggests a potential difference 1113 between the magnitude of temperature change in the ocean and the atmosphere. Our 1114 analysis also suggests a north-south difference in the moisture availability during the 1115 Pleistocene-Holocene transition that can potentially be related to reorganisations of the 1116 ITCZ and SASM.

1117We showed that AP% and DCA scores, two approaches to extract environmental1118variability from pollen records, are complementary rather than divergent. Transforming

Dunia H. Urrego 2/12/2015 10:46

Deleted: The pollen records from Chochos (central tropical Andes) and Consuelo (southern tropical Andes) display rapid millennial-scale forest migrations but their direction differ from Fúquene and Pacucha. Chochos and Consuelo are constantly immersed in ground-level clouds, which could have buffered the effect of temperature variations at these sites. Atmospheric records from western Amazonian speleothems indicate precipitation decreases during HS and YD that have been linked to southward migrations of the ITCZ (Cheng et al., 2013). These regional moisture changes could also account for signature differences between sites. A mechanism for the air temperature cooling registered in the Andean ice core record and as downslope migrations of the UFL in Fúquene and Pacucha could be the result of increased intensity and duration of polar cold advection during North-Atlantic cold stadials

Dunia H. Urrego 8/12/2015 16:03 Deleted: Fig.

Dunia H. Urrego 2/12/2015 16:57

Deleted: , and that differences in signature may result from differences in moisture sources, marker sensitivity and location (e.g. vegetation vs. stable isotopes, continental vs. marine)

Dunia H. Urrego 4/12/2015 16:47

Deleted: Transforming raw pollen counts into percentages of ecologically meaningful groups (e.g. AP%) or into ordination values result in records that are seldom driven by similar factors. Our analysis showed that these approaches are complementary rather than contradictory. Both approaches rely on ecological knowledge, *a priori* or *a posteriori*, respectively. AP% and DCA axis scores remain vegetation markers and are not independent records of environmental change. Such records are still needed for most of the studied sequences.

Dunia H. Urrego 4/12/2015 16:41

Deleted: rapid

Dunia H. Urrego 4/12/2015 16:42

Deleted: may be

Dunia H. Urrego 4/12/2015 16:42

Deleted: millennial-scale climate variability Dunia H. Urrego 7/12/2015 19:03

Deleted: The SST, reflectance and ice core records evidence temperature decreases during HS and YD, which are consistent with UFL downslope migrations and cooling recorded in the tropical Andes.

Dunia H. Urrego 4/12/2015 16:45

Deleted: signature of millennial-scale events Dunia H. Urrego 4/12/2015 16:46

Deleted: differences in moisture sources

1170	raw pollen counts into percentages of ecologically meaningful groups (e.g. AP%) or into
1171	ordination values results in records that are seldom driven by similar factors. The two
1172	approaches rely on a reasonable understanding of ecological affinities and knowledge of
1173	the regional vegetation. This information is used a priori for AP% and a posteriori for
1174	ordination scores. AP% and DCA axis scores remain as vegetation markers and are not
1175	independent records of environmental change. Such records are still needed for most of
1176	the studied sequences. Along with the development of pollen records, independent
1177	markers of temperature or precipitation (i.e. biochemical or isotopic markers) are needed
1178	in the American tropics (Urrego et al., 2014), and future work should preferably generate
1179	combinations of proxies to disentangle differences between the magnitude of atmospheric
1180	and oceanic change. Integrated multi-tracer approaches will help minimize chronological
1181	uncertainty and may shed light on the underlying forcing of these rapid shifts in the
1182	climate system.
1183	

1184 **7. Acknowledgements**

1185 This paper is a result of the project 'Latin American Abrupt Climate Changes and
1186 Environmental Responses' (LaACER) funded by PAGES and INQUA, B.M. thanks
1187 CSIC-Ramón and Cajal post-doctoral program RYC-2013-14073. We would also like to
1188 the data contributors for sharing their raw pollen data.
1189
1190 The plot data of this manuscript can be found in:

1191 1192 Dunia H. Urrego 17/11/2015 13:50 Deleted: results from Dunia H. Urrego 17/11/2015 13:51 Deleted: which held workshops in Bogotá (Colombia) in November 2012, and in Natal (Brazil) in August 2013. We Dunia H. Urrego 17/11/2015 13:51 Deleted: thank Dunia H. Urrego 17/11/2015 13:51 Deleted: for funding support Dunia H. Urrego 17/11/2015 13:52

Deleted: also

Central Andes and major atmospheric patterns and oceanic systems controlling environmental conditions in the region. ITCZ: Intertropical convergence zone, SASM: South American summer monsoon, ENSO: El Niño southern oscillation, LLJ: Low Level Jet. Red stars show the locations of sites mentioned in the text and described in Table 1.

1222 1223

1230

Figure 2. Summary pollen diagrams of selected pollen records from the tropical Andes (Fig. 1, Table 1) plotted on against time in thousands of years (ka). Pollen taxa are grouped into Andean and sub-Andean taxa (green) and Páramo, Puna or subpuna taxa (blue). Taxa groupings follow original papers when available. For sites published without ecological groups, taxa have been grouped for the first time. Two pollen records are available from Lake Titicaca, and here they are differentiated with a dotted pattern for the Hanselman et al. (2011) record, and solid pattern for the Paduano et al. (2003) record.

Dunia H. Urrego 2/10/2015

Dunia H. Urrego 2/12/2015

ao 8/12/2015 15:55

Deleted: subAndean

Deleted: Puna or Dunia H. Urre

Deleted: o

2	2
	2

0

16

8 0

Deleted:

23

بليليا بليلي 0.8 0.4 0

Consuelo

Titicaca

0

Holocene

5

YD/

Formatted: Font: (Default) Times-Roman

1264

1265

1258

Figure 4. Temporal changes in the ratio of aquatic taxa characteristic of deep water to taxa from shallow water and wet shores (D/SS) for selected sites in the tropical Andes (Fig 1, Table 1). Heinrich stadials (HS) are drawn for reference as defined by Sánchez-Goñi & Harrison (2010). The Younger Dryas (YD) follows the timing of Greenland stadial 1 (Rasmussen et al. 2006) and the chronozone defined by Mangerud et al. (1974). The timing of Greenland interstadials (GI) is based on Wolff et al. (2010).

Dunia H. Urrego 2/12/2015 19:00

Deleted: Red dotted lines and numbers indicate the onset of Dunia H. Urrego 2/12/2015 19:00 Deleted: in Greenland ice cores Dunia H. Urrego 2/12/2015 19:00 Deleted: (

			Dunia H. Urrego 8/12/2015 11:49	Deleted: 20	Dunia H. Urrego 4/11/2015 16:57	Deleted: Bogotá et al. (2012)											Dunia H. Urrego 6/11/2015 15:44	Deleted: 710	Dunia H. Urrego 6/11/2015 15:44	Deleted: 1040
	<u>Latitudinal</u> position			լօւքրեւո	N			<u>ls:</u>	<u>11</u> 14	<u>50</u>			изәц	<u>jno</u>	PS					
	Source	Velásquez et	van der	Hammen & Hooghiemstra	González-	Carranza et al.	(2012) Colinyany at	al (1997)	Duck at al	(2005) (2005)	Valencia et al.	(2010)	Urrego et al. (2010)	Paduano et al.	(2003),	Hanselman et	al. (2011)			
	Mean temporal resolution ± SD**	99±35.6		433±167		26.7±16.6		318±175		270±210	198+57	1/0-1/1	365 ± 303		$113\pm100,$	530±720				
	Number of ¹⁴ C dates	<u>و</u>		<u>10</u>		<u>18</u>		<u>6</u>		<u>6</u>	18	01	26		<u>17</u>	18				
	Time span (ka)	14		36		14		21.9		17.5	0 74 Q	C-1-7	43.5		19.7,	350				
	Main moisture source	Atlantic ITCZ ENSO	Atlantic	ITCZ, ENSO	Amazonian	convection	A mazonian	convection	Amazonian	convection, SASM	SASM, LLJ		SASM, LLJ	SASM				deviation.		
	Andean position	Inter- Andean	Inter-	Andean	Eastern	flank	Eactam	flank	Eastern	flank	Eastern	flank	Eastern flank	Altiplano): standard		
h to South.	Elevation (m asl) <u>*</u>	3650	2540		2780		3180	0010	3285		3050		1360	3810				level; **SI		
order from Nor	Coordinates	N 06°29′ W/ 76°6′	N 05°27'	W 73°46'	N 01°06'	.60°77 W	S 030517	W 79°08'	S 07°38'S	W 77°28°	S 13°36'	W 73°19'	S 13°57' W 68°59'	S 16°20'	W 65°59'			tres above sea		
a latitudinal	Site	Llano Grande	Fúquene2	4	La Cocha		Summers	OILUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	Chochos		Pacucha		Consuelo	Titicaca				* m asl: me		

Table 1. Site description and details on temporal resolution and time span for eight selected pollen records in the tropical Andes. Sites are listed in

1 8. References

- 2 Arz, H. W., Pätzold, J., and Wefer, G.: Correlated millennial-scale changes in surface 3 hydrography andd terrigenous sediment yield inferred from the last-glacial marine
- 4 deposits off Northeastern Brazil, Quaternary Research, 50, 157-166, 1998.
- 5 Baker, P. A., Rigsby, C. A., Seltzer, G. O., Fritz, S. C., Lowenstein, T. K., Bacher, N. P., and Veliz, C.: Tropical climate changes at millennial and orbital timescales on the 6 7 Bolivian Altiplano., Nature, 409, 698-701, 2001.
- 8 Bakker, J., Moscol, M., and Hooghiemstra, H.: Holocene environmental change at the 9 upper forest line in northern Ecuador, The Holocene, 18, 877-893, 2008.
- 10 Birks, H. J. B., and Birks, H. H.: Quaternary Palaeoecology, University Park Press, Baltimore, 1980. 11

12 Bogotá, R. G., Groot, M. H. M., Hooghiemstra, H., Lourens, L. J., Linden, M. V. d.,

and Berrio, J. C.: Rapid climate change from north Andean Lake Fuquene pollen 13 14

records driven by obliquity: implications for a basin-wide biostratigraphic zonation for the last 284 ka, Quaternary Science Reviews, 30, 3321-3337, 15

10.1016/j.quascirev.2011.08.003, 2011. 16

- 17 Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to Northern Hemisphere cooling, Geophysical Research Letters, 33, L01702, doi: 18 19 10.1029/2005GL024546, 2006.
- 20 Bush, M. B., Silman, M. R., and Urrego, D. H.: 48,000 years of climate and forest 21 change in a biodiversity hot spot, Science, 303, 827-829, 2004.
- 22 23 Bush, M. B., Hansen, B. C. S., Rodbell, D. T., Seltzer, G. O., Young, K. R., León, B.,
- Abbott, M. B., Silman, M. R., and Gosling, W. D.: A 17 000-year history of Andean 24 climate and vegetation change from Laguna de Chochos, Peru, Journal of Quaternary
- 25 Science, 20, 703-714, 2005.

Cheng, H., Sinha, A., Cruz, F. W., Wang, X., Edwards, R. L., d'Horta, F. M., Ribas, 26 27 C. C., Vuille, M., Stott, L. D., and Auler, A. S.: Climate change patterns in Amazonia 28 and biodiversity, Nature communications, 4, 1-6, DOI: 10.1038/ncomms2415, 2013.

29 Chiang, J. C., and Bitz, C. M .: Influence of high latitude ice cover on the marine 30 Intertropical Convergence Zone, Climate Dynamics, 25, 477-496, 2005.

Colinvaux, P. A., De Oliveira, P. E., Moreno, J. E., Miller, M. C., and Bush, M. B.: A 31 32 long pollen record from lowland Amazonia: Forest and cooling in glacial times., 33 Science, 274, 85-88, 1996.

- 34 Colinvaux, P. A., Bush, M. B., Steinitz-Kannan, M., and Miller, M. C.: Glacial and 35 postglacial pollen records from the Ecuadorian Andes and Amazon, Quaternary 36 Research, 48, 69-78, 1997.
- Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., Cardoso, A. O., Ferrari, J. A., Silva Dias, P. L., and Viana Jr., O.: Insolation-driven changes in 37 38
 - 27

- 39 atmospheric circulation over the past 116,000 years in subtropical Brazil, Nature, 434, 40 63-66, 2005.
- Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., and Ferrari, J. A.: A 41
- 42 stalagmite record of changes in atmospheric circulation and soild processes in the 43 Brazilian subtropics during the Late Pleistocene, Quaternary Science Reviews, 25,
- 44 2749-2761, 2006.
- 45 EPICA: One-to-one coupling of glacial climate variability in Greenland and Antarctica, Nature, 444, 195-198, doi: 10.1038/nature05301, 2006. 46
- 47 Escobar, J., Hodell, D. A., Brenner, M., Curtis, J. H., Gilli, A., Mueller, A. D., Anselmetti, F. S., Ariztegui, D., Grzesik, D. A., and Pérez, L.: A~ 43-ka record of 48 49 paleoenvironmental change in the Central American lowlands inferred from stable 50 isotopes of lacustrine ostracods, Quaternary Science Reviews, 37, 92-104, 2012.
- 51 Fritz, S. C., Baker, P. A., Ekdahl, E., Seltzer, G. O., and Stevens, L. R.: Millennialscale climate variability during the Last Glacial period in the tropical Andes, 52 53 Quaternary Science Reviews, 29, 1017-1024, 2010.
- Fu, R., Dickinson, R. E., Chen, M., and Wang, H.: How do tropical sea surface temperatures influence the seasonal distribution of precipitation in the equatorial 54 55 56 Amazon?, Journal of Climate, 14, 4003-4026, 2001.
- Gan, M. A., and Rao, V. B .: The influence of the Andes Cordillera on transient 57 58 disturbances, Monthly Weather Review, 122, 1141-1157, 1994.
- Garreaud, R., and Wallace, J. M .: Summertime incursions of midlatitude air into 59 60 subtropical and tropical South America, Monthly Weather Review, 126, 2713-2733, 1998. 61
- 62 Garreaud, R. D.: Cold air incursions over subtropical South America: Mean structure 63 and dynamics, Monthly Weather Review, 128, 2544-2559, 2000.
- 64 Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J.: Present-day South American climate, Palaeogeography, Palaeoclimatology, Palaeoecology, 281, 180-195, doi:10.1016/j.palaeo.2007.10.032, 2009. 65 66
- González-Carranza, Z., Hooghiemstra, H., and Vélez, M. I.: Major altitudinal shifts in 67
- 68 Andean vegetation on the Amazonian flank show temporary loss of biota in the 69 Holocene, The Holocene, 22, 1227-1241, 10.1177/0959683612451183, 2012.
- 70 Graham, A.: The Andes: a geological overview from a biological perspective, Ann. 71 Missouri. Bot. Gard., 96, 371-385, 2009.
- 72 Groot, M., Bogotá, R., Lourens, L., Hooghiemstra, H., Vriend, M., Berrio, J., Tuenter,
- 73 E., Van der Plicht, J., Van Geel, B., and Ziegler, M.: Ultra-high resolution pollen
- record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles, Climate of the Past, 7, 299-316, doi:10.5194/cp-7-299-2011, 74 75
- 76 2011.

- 77 Hanselman, J. A., Bush, M. B., Gosling, W. D., Collins, A., Knox, C., Baker, P. A.,
- and Fritz, S. C.: A 370,000-year record of vegetation and fire history around Lake
- 79 Titicaca (Bolivia/Peru), Palaeogeography, Palaeoclimatology, Palaeoecology, 305,
- 80 201-214, doi: 10.1016/j.palaeo.2011.03.002, 2011.

Hansen, B. C. S., Rodbell, D. T., Seltzer, G. O., León, B., Young, K. R., and Abbott,
M.: Late-glacial and Holocene vegetational history from two sites in the western
Cordillera of southwestern Ecuador, Palaeogeography, Palaeoclimatology,
Palaeoecology, 194, 79-108, 2003.

- Harrison, S. P., and Sanchez Goñi, M. F.: Global patterns of vegetation response to
 millennial-scale variability and rapid climate change during the last glacial period,
 Quaternary Science Reviews, 29, 2957-2980, 10.1016/j.quascirev.2010.07.016, 2010.
- Haug, G. H., Hughen, K. A., Sigman, D., Peterson, L. C., and Röhl, U.: Southward
 Migration of the intertropical convergence zone through the Holocene, Science, 293,
 1304-1308, 2001.

Heinrich, H.: Origin and consequences of cyclic ice rafting in the Northeast Atlantic
Ocean during the past 130,000 years, Quaternary Research, 29, 142-152, http://dx.doi.org/10.1016/0033-5894(88)90057-9, 1988.

- Hemming, S. R.: Heinrich events: Massive late Pleistocene detritus layers of the
 North Atlantic and their global climate imprint, Reviews of Geophysics, 42, RG1005,
 DOI: 10.1029/2003RG000128, 2004.
- Hessler, I., Dupont, L., Bonnefille, R., Behling, H., González, C., Helmens, K. F.,
 Hooghiemstra, H., Lebamba, J., Ledru, M.-P., LÈzine, A.-M., Maley, J., Marret, F.,
 and Vincens, A.: Millennial-scale changes in vegetation records from tropical Africa
 and South America during the last glacial, Quaternary Science Reviews, 29, 2882-
- 101 2899, doi: 10.1016/j.quascirev.2009.11.029, 2010.
- Hill, M. O., and Gauch, H. G.: Detrended Correspondence Analysis: an improved ordination technique, Vegetatio, 42, 47-58, 1980.
- Hooghiemstra, H.: Vegetational and climatic history of the high plain of Bogota,
 Colombia: A continuous record of the last 3.5 million Years, Gantner Verlag, Vaduz,
 368 pp., 1984.
- Hooghiemstra, H., and van der Hammen, T.: Quaternary ice-age in the Colombian
 Andes: developing an understanding of our legacy, Philosophical Transactions of the
 Royal Society of London 359, 173-181, 2004.
- Hooghiemstra, H., Berrio, J. C., Groot, M. H., Bogotá-A, R. G., Olivera, M. M., and
 González-Carranza, Z.: The dynamic history of the upper forest line ecotone in the
 northern Andes, in: Ecotones Between Forest and Grassland, Springer, New York,
- 112 northern Andes, in: Ecotones Between Forest aHeidelberg, Dordrecht, London, 229-246, 2012.
- 114 Hooghiemstra, H., Berrio, J.C., Groot, M.H.M., Bogotá-A, R.G., Moscol-Olivera, M.,
- 115 González-Carranza, Z.: The dynamic history of the upper forest line ecotone in the
- 116 northern Andes, in: Ecotones between forest and grassland, edited by: Randall, R. W.,
 - 29

- Springer Science+Business Media, New York, Heidelberg, Dordrecht, London, 229-246, 2012.
- Hughen, K. A., Overpeck, J. T., Peterson, L. C., and Trumbore, S.: Rapid climate
 changes in the tropical Atlantic region during the last deglaciation, Nature, 380, 51-
- 121 54, 1996.
- Hughen, K. A., Eglinton, T. I., Xu, L., and Makou, M.: Abrupt Tropical Vegetation
 Response to Rapid Climate Changes, Science, 304, 1955-1959, 2004.
- 124 IPCC: Fifth Assessment Report of the Intergovernmental Panel on Climate Change,125 Intergovernmental Panel on Climate Change, NJ, USA, 2014.
- Jansen, B., de Boer, E. J., Cleef, A. M., Hooghiemstra, H., Moscol-Olivera, M.,
 Tonneijck, F. H., and Verstraten, J. M.: Reconstruction of late Holocene forest
 dynamics in northern Ecuador from biomarkers and pollen in soil cores,
 Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 607-619, 2013.
- 130 Jennerjahn, T. C., Ittekkot, V., Arz, H. W., Behling, H., Pätzold, J., and Wefer, G.:
- Asynchronous Terrestrial and Marine Signals of Climate Change During Heinrich
 Events, Science, 306, 2236-2239, 10.1126/science.1102490, 2004.
- Killeen, T. J., Douglas, M., Consiglio, T., Jørgensen, P. M., and Mejia, J.: Dry spots
 and wet spots in the Andean hotspot, Journal of Biogeography, 34, 1357-1373, 2007.
- 135 Körner, C.: The use of 'altitude' in ecological research, Trends in Ecology and 136 Evolution, 22, 569-574, DOI: 10.1016/j.tree.2007.09.006, 2007.
- 137 Lachniet, M. S., Asmerom, Y., Bernal, J. P., Polyak, V. J., and Vazquez-Selem, L.:
- Orbital pacing and ocean circulation-induced collapses of the Mesoamerican monsoon
 over the past 22,000 y, Proceedings of the National Academy of Sciences, 110, 9255 9260, 2013.
- Luteyn, J. L., and Churchill, S. P.: Páramos: a checklist of plant diversity,
 geographical distribution, and botanical literature, New York Botanical Garden Press
 New York, 1999.
- Mangerud, J. A. N., Andersen, S. T., Berglund, B. E., and Donner, J. J.: Quaternary
 stratigraphy of Norden, a proposal for terminology and classification, Boreas, 3, 109126, 10.1111/j.1502-3885.1974.tb00669.x, 1974.
- Marchant, R., Behling, H., Berrio, J. C., Cleef, A., Duivenvoorden, J., Hooghiemstra,
 H., Kuhry, P., Melief, B., Geel, B. V., and Hammen, T. V. d.: Mid-to Late-Holocene
 pollen-based biome reconstructions for Colombia, Quaternary Science Reviews, 20,
 1289-1308, 2001.
- McCune, B., and Grace, J. B.: Analysis of ecological communities, MjM Software
 Design, Gleneden Beach, Oregon, 300 pp., 2002.
- 153 Mosblech, N. A. S., Bush, M. B., Gosling, W. D., Hodell, D., Thomas, L., van 154 Calsteren, P., Correa-Metrio, A., Valencia, B. G., Curtis, J., and van Woesik, R.:
 - 30

- 155 North Atlantic forcing of Amazonian precipitation during the last ice age, Nature 156 Geoscience, 5, 817-820, 2012.
- NGRIPmembers: High-resolution record of Northern Hemisphere climate extending 157 158 into the last interglacial period, Nature, 431, 147-151, 2004.
- Paduano, G. M., Bush, M. B., Baker, P. A., Fritz, S. C., and Seltzer, G. O.: A vegetation and fire history of Lake Titicaca since the Last Glacial Maximum, 159 160 161 Palaeogeography, Palaeoclimatology, Palaeoecology, 194, 259-279, 2003.
- Peterson, L. C., Haug, G. H., Hughen, K. A., and Röhl, U.: Rapid changes in the 162 163 Hydrologic cycle of the Tropical Atlantic during the Last Glacial, Science, 290, 1947-164 1951, 2000.
- 165 Placzek, C. J., Quade, J., and Patchett, P. J.: A 130 ka reconstruction of rainfall on the 166 Bolivian Altiplano, Earth and Planetary Science Letters, 363, 97-108, 167 http://dx.doi.org/10.1016/j.epsl.2012.12.017, 2013.
- 168 Poveda, G., and Mesa, O. J.: Feedbacks between hydrological processes in tropical 169 South America and large-scale ocean-atmospheric phenomena, Journal of Climate, 170 10, 2690-2702, 1997.
- 171 Poveda, G., Waylen, P. R., and Pulwarty, R. S.: Annual and inter-annual variability of 172 the present climate in northern South America and southern Mesoamerica, 173 Palaeogeography, Palaeoclimatology, Palaeoecology, 234, 3-27, 2006.
- 174 Poveda, G., Álvarez, D. M., and Rueda, Ó. A .: Hydro-climatic variability over the 175 Andes of Colombia associated with ENSO: a review of climatic processes and their 176 impact on one of the Earth's most important biodiversity hotspots, Climate Dynamics,
- 36, 2233-2249, DOI: 10.1007/s00382-010-0931-y, 2011. 177
- Rama-Corredor, O., Martrat, B., Grimalt, J., Lopez-Otalvaro, G. E., Flores, J. A., and 178 179 Sierro, F. J.: Parallelisms between sea surface temperature changes in the Western 180 Tropical Atlantic (Guiana basin) and high latitude climate signals over the last 181 140,000 years, Climate of the Past, 11, 1297-1311, doi:10.5194/cp-11-1297-2015, 182 2015.
- 183 Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B. 184 M., Clausen, H. B., Siggaard-Andersen, M. L., Johnsen, S. J., Larsen, L. B., Dahl-185 Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core chronology for the last glacial termination, Journal of Geophysical Research: Atmospheres, 111, D06102, 186 187 10.1029/2005JD006079, 2006. 188
- 189 Reese, C. A., and Liu, K.: A modern pollen rain study from the central Andes region of South America, Journal of Biogeography, 32, 709-718, 2005. 190
- 191 Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C.,
- 192 Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T.
- 193 P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G.,
- Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and 194
- 195
 - 31

- Plicht, J. v. d.: IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000years cal BP, Radiocarbon, 55, 1869-1887, 2013.
- 198 Ruddiman, W. F.: Earth's Climate: past and future, Macmillan, 2001.
- Rühlemann, C., Mulitza, S., Müller, P. J., Wefer, G., and Zahn, R.: Warming of the
 tropical Atlantic Ocean and slowdown of thermohaline circulation during the last
 deglaciation, Nature, 402, 511-514, 1999.
- Rühlemann, C., Mulitza, S., Lohmann, G., Paul, A., Matthias, P., and Wefer, G.:
 Abrupt Warming of the Intermediate-Depth Atlantic Ocean in Response to
 Thermohaline Circulation Slowdown During the last deglaciation, PAGES news, 11,
 17-19, 2003.
- Sánchez Goñi, M. F., and Harrison, S. P.: Millennial-scale climate variability and
 vegetation changes during the Last Glacial: Concepts and terminology, Quaternary
 Science Reviews, 29, 2823-2827, 2010.
- Schmidt, M. W., Spero, H. J., and Lea, D. W.: Links between salinity variation in the
 Caribbean and North Atlantic thermohaline circulation, Nature, 428, 160-163, 2004.
- Seltzer, G., Rodbell, D., and Burns, S.: Isotopic evidence for late Quaternary climatic
 change in tropical South America, Geology, 28, 35-38, 2000.
- Smith, J. A., Seltzer, G. O., Farber, D. L., Rodbell, D. T., and Finkel, R. C.: Early
 Local Last Glacial Maximum in the Tropical Andes, Science, 308, 678-681, 2005.
- Smith, J. A., Mark, B. G., and Rodbell, D. T.: The timing and magnitude of moutain
 glaciation in the tropical Andes, Journal of Quaternary Science, 23, 609-634,
 10.1002/jqs.1224, 2008.
- 218 Thompson, L. G., Davis, M. E., Mosley-Thompson, E., Sowers, T. A., Henderson, K.
- A., Zagorodnov, V. S., Lin, P.-N., Mikhalenko, V. N., Campen, R. K., Bolzan, J. F.,
 Cole-Dai, J., and Francou, B.: A 25,000-year tropical climate history from Bolivian ice cores., Science, 282, 1858-1864, 1998.
- Thompson, L. G.: Tropical ice core records: evidence for asynchronous glaciations on
 Milankovitch timescales, Journal of Quaternary Science, 20, 723-733, 2005.
- Torres, V., Vandenberghe, J., and Hooghiemstra, H.: An environmental
 reconstruction of the sediment infill of the Bogotá basin (Colombia) during the last 3
 million years from abiotic and biotic proxies, Palaeogeography, Palaeoclimatology,
 Palaeoecology, 226, 127-148, 2005.
- Urrego, D. H., Silman, M. R., and Bush, M. B.: The Last Glacial Maximum: stability
 and change in a western Amazonian cloud forest, Journal of Quaternary Science, 20,
 693-701, 2005.
- Urrego, D. H., Bush, M. B., Silman, M. R., Correa-Metrio, A., Ledru, M.-P., Mayle,
 F. E., Paduano, G., and Valencia, B. G.: Millennial-scale Ecological Changes in
- Tropical South America since the Last Glacial Maximum, in: Past climate variability
 - 32

- from the Last Glacial Maximum to the Holocene in South America and surrounding regions, edited by: Vimeux, F., Sylvestre, F., and Khodri, M., Developments in
- 236 Paleoenvironmental Research Series (DPER), Springer, Paris, 283-300, 2009.
- Urrego, D. H., Bush, M. B., and Silman, M. R.: A long history of cloud and forest
 migration from Lake Consuelo, Peru, Quaternary Research, 73, 364-373,
 10.1016/j.yqres.2009.10.005, 2010.
- Urrego, D. H., Silman, M. R., Correa-Metrio, A., and Bush, M. B.: Pollen-vegetation
 relationships along steep climatic gradients in western Amazonia, Journal of
 Vegetation Science, 22, 795-806, 10.1111/j.1654-1103.2011.01289.x, 2011.
- Urrego, D. H., Bush, M. B., Silman, M. R., Niccum, B. A., De La Rosa, P.,
 McMichael, C., Hagen, S., and Palace, M.: Holocene fires, forest stability and human
 occupation in southwestern Amazonia, Journal of Biogeography, 40, 521-533,
 10.1111/jbi.12016, 2013.
- Urrego, D. H., Bernal, J. P., Chiessi, C. M., Cruz, F. W., Sanchez Goñi, M. F., Power,
 M., Hooghiemstra, H., and participants, L.: Millennial-scale climate variability in the
 American tropics and subtropics, PAGES Mag, 22, 94-95, 2014.
- Valencia, B. G., Urrego, D. H., Silman, M. R., and Bush, M. B.: From ice age to modern: a record of landscape change in an Andean cloud forest, Journal of Biogeography, 37, 1637-1647, 10.1111/j.1365-2699.2010.02318.x, 2010.
- Van Boxel, J., González-Carranza, Z., Hooghiemstra, H., Bierkens, M., and Vélez,
 M.: Reconstructing past precipitation from lake levels and inverse modelling for
 Andean Lake La Cocha, Journal of Paleolimnology, 51, 63-77, 2014.
- 235 Andean Lake La Coena, Journal of Falcommology, 51, 05-77, 2014
- van der Hammen, T., Barelds, J., De Jong, H., and De Veer, A. A.: Glacial sequence
 and environmental history in the Sierra Nevada del Cocuy (Colombia),
 Palaeogeography, Palaeoclimatology, Palaeoecology, 32, 247-340, 1980/1981.
- van der Hammen, T., and Hooghiemstra, H.: Interglacial-glacial Fuquene-3 pollen
 record from Colombia: an Eemian to Holocene climate record, Global and Planetary
 Change, 36, 181-199, 2003.
- Velásquez, C. A., and Hooghiemstra, H.: Pollen-based 17-kyr forest dynamics and
 climate change from the Western Cordillera of Colombia; no-analogue associations
 and temporarily lost biomes, Review of Palaeobotany and Palynology, 194, 38-49,
 10.1016/j.revpalbo.2013.03.001, 2013.
- Vuille, M., and Bradley, R. S.: Mean annual temperature trends and their vertical structure in the tropical Andes, Geophysical Research Letters, 27, 3885-3888, 2000.
- Vuille, M., Bradley, R. S., and Keimig, F.: Interannual climate variability in the
 Central Andes and its relation to tropical Pacific and Atlantic forcing., Journal of
 Geophysical Research, 105, 12447-12460, 2000.
 - 33

- Vuille, M., and Werner, M.: Stable isotopes in precipitation recording South
 American summer monsoon and ENSO variability: observations and model results,
 Climate Dynamics, 25, 401-413, 2005.
- Weigend, M.: Observations on the biogeography of the Amotape-Huancabamba Zone
 in northern Peru, The Botanical Review, 68, 38-54, 10.1663/00068101(2002)068[0038:OOTBOT]2.0.CO;2, 2002.
- Weng, C., Bush, M. B., and Silman, M. R.: An analysis of modern pollen rain on an
 elevational gradient in southern Peru., Journal of Tropical Ecology, 20, 113-124,
 2004.
- Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O., and Svensson, A.:
 Millennial-scale variability during the last glacial: The ice core record, Quaternary
 Science Reviews, 29, 2828-2838, 10.1016/j.quascirev.2009.10.013, 2010.
- Zhou, J., and Lau, K. M.: Does a monsoon climate exist over South America?, Journal
 of Climate, 11, 1020-1040, 1998.
- Zhou, J., and Lau, K. M.: Principal modes of interannual and decadal variability of
 summer rainfall over South America, International Journal of Climatology, 21, 1623 1644, 2001.
- 288