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Abstract

The biotic response of calcareous nannoplankton to environmental and climatic
changes during the Eocene–Oligocene transition (∼ 34.8–32.7 Ma) was investigated at
high resolution at Ocean Drilling Program (ODP) Site 1263 (Walvis Ridge, South East
Atlantic Ocean), and compared with a lower resolution benthic foraminiferal record.5

During this time interval, the global climate which had been warm during the Eocene,
under high levels of atmospheric CO2 (pCO2), transitioned into the cooler climate of
the Oligocene, with overall lower pCO2. At Site 1263, the absolute nannofossil abun-
dance (coccoliths per gram of sediment; N g−1) and the mean coccolith size decreased
distinctly across the E–O boundary (EOB; 33.89 Ma), mainly due to a sharp decline in10

abundance of large-sized Reticulofenestra and Dictyococcites, within ∼ 53 kyr. Since
carbonate dissolution did not vary much across the EOB, the decrease in abundance
and size of nannofossils may highlight an overall decrease in their export production,
which could have led to an increased ratio of organic to inorganic carbon (calcite) burial,
as well as variations in the food availability for benthic foraminifers.15

The benthic foraminiferal assemblage data show the global decline in abundance
of rectilinear species with complex apertures in the latest Eocene (∼ 34.5 Ma), poten-
tially reflecting changes in the food source, thus phytoplankton, followed by transient
increased abundance of species indicative of seasonal delivery of food to the sea floor
(Epistominella spp.; ∼ 34.04–33.54 Ma), with a short peak in overall food delivery at the20

EOB (buliminid taxa; ∼ 33.9 Ma). After Oi-1 (starting at ∼ 33.4 Ma), a high abundance
of Nuttallides umbonifera indicates the presence of more corrosive bottom waters, pos-
sibly combined with less food arriving at the sea floor.

The most important signals in the planktonic and benthic communities, i.e. the
marked decrease of large reticulofenestrids, extinctions of planktonic foraminifer25

species and more pronounced seasonal influx of organic matter, preceded the ma-
jor expansion of the Antarctic ice sheet (Oi-1) by ∼ 440 kyr. During Oi-1, our data show
no major change in nannofossil abundance or assemblage composition occurred at
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Site 1263, although benthic foraminifera indicate more corrosive bottom waters follow-
ing this event. Marine plankton thus showed high sensitivity to fast-changing condi-
tions, possibly enhanced but pulsed nutrient supply, during the early onset of latest
Eocene-earliest Oligocene climate change, or to a threshold in these changes (e.g.
pCO2 decline, high-latitude cooling and ocean circulation).5

1 Introduction

The late Eocene-early Oligocene was marked by a large change in global climate and
oceanic environments, reflected in significant turnovers in marine and terrestrial biota.
The climate was driven from a warm “greenhouse” with high pCO2 during the middle
Eocene through a transitional period in the late Eocene to a cold “icehouse” with low10

pCO2 in the earliest Oligocene (e.g. Zachos et al., 2001; DeConto and Pollard, 2003;
Pearson et al., 2009; Pagani et al., 2011; Zhang et al., 2013). During this climate shift,
Antarctic ice sheets first reached sea level, sea level dropped, and changes occurred
in ocean chemistry and plankton communities, while the calcite compensation depth
(CCD) deepened rapidly, at least in the Pacific Ocean (e.g. Zachos et al., 2001; Coxall15

et al., 2005; Pälike at al., 2006; Coxall and Pearson, 2007). There is ongoing debate
whether the overall cooling, starting at high latitudes in the middle Eocene while the
low latitudes remained persistently warm until the end of the Eocene (Pearson et al.,
2007), was mainly caused by changes in oceanic gateways (opening of Drake Passage
and the Tasman gateway) leading to initiation of the Antarctic Circumpolar Current as20

proposed by e.g. Kennett (1977), or by declining atmospheric CO2 levels as proposed
by DeConto and Pollard (2003), Barker and Thomas (2004), Katz et al. (2008) and
Goldner et al. (2014), or by some combination of both (Sijp et al., 2014). Recently, it
has been proposed that the glaciation itself caused further oceanic circulation changes
(Goldner et al., 2014; Rugenstein et al., 2014).25

The Eocene–Oligocene boundary (EOB; ∼ 33.89 Ma, Gradstein et al., 2012) is de-
fined by the extinction of planktonic foraminifers (specifically, the genus Hantkenina),
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and falls within this climate revolution, followed after ∼ 450 kyr by a peak in δ18O, re-
ferred to as the Oi-1 event (Miller et al., 1991) which lasted for ∼ 400 kyr and reflects
intensified Antarctic glaciation (Zachos et al., 1996; Coxall et al., 2005), probably as-
sociated with cooling (e.g. Liu et al., 2009; Bohaty et al., 2012). Pearson et al. (2008),
however, recorded the extinction of Hantkeninidae, thus by definition the EOB, in the5

plateau between the two main steps in the isotope records (i.e. within Oi-1) at Tanzania
Drilling Project (TDP) Sites 11, 12 and 17. The highest occurrence of Hantkenina spp.
may be influenced by preservation, since the taxon is sensitive to dissolution.

Recently, several high-resolution, foraminifera-based geochemical studies across the
EOB, at different latitudes, have provided detailed information on the stepwise cool-10

ing (e.g. Coxall et al., 2005; Riesselman et al., 2007; Peck et al., 2010) and the dy-
namics of the oceanic carbon cycle across the EOB (e.g. Coxall and Pearson, 2007;
Coxall and Wilson, 2011). An increase in benthic foraminiferal δ13C is a major indica-
tion of changes in the carbon cycle, e.g. storage of organic matter in the lithosphere,
through an increased ratio of organic to inorganic carbon (calcite) burial due to en-15

hanced marine export production (e.g. Diester-Haass, 1995; Zachos et al., 1996; Cox-
all and Wilson, 2011). There is, however, evidence that enhanced export production
was not global (e.g. Griffith et al., 2010; Moore et al., 2014). The δ13C shift and carbon
cycle reorganization have also been related to a rapid drop in pCO2 again linked to
higher biological production and CCD deepening (Zachos and Kump, 2005).20

There is a strong link between climate change and response of the marine and land
biota during the late Eocene-early Oligocene. This was a time of substantial extinc-
tion and ecological reorganization in many biological groups: calcifying phytoplankton
(coccolithophores; e.g. Aubry, 1992; Persico and Villa, 2004; Dunkley Jones et al.,
2008; Tori, 2008; Villa et al., 2008), siliceous plankton (diatoms and radiolarians; e.g.25

Keller et al., 1986; Falkowski et al., 2004), planktonic and benthic foraminifers (e.g.
Coccioni et al., 1988; Thomas, 1990, 1992, 2007; Thomas and Gooday, 1996; Pearson
et al., 2008; Hayward et al., 2012), large foraminifers (nummulites; e.g. Adams et al.,
1986), ostracods (e.g. Benson, 1975), marine invertebrates (e.g. Dockery, 1986), and
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mammals (e.g. Meng and McKenna, 1998). Among the marine biota, the planktonic
foraminifers experienced a synchronous extinction of five species in the family Han-
tkeninidae (e.g. Coccioni et al., 1988; Coxall and Pearson, 2006). Benthic foraminiferal
assemblages recorded a gradual turnover, marked by an overall decline in diversity,
largely due to the decline in the relative abundance of cylindrical taxa with a complex5

aperture (Thomas, 2007; Hayward et al., 2012), and an increase of species which pref-
erentially use fresh phytodetritus delivered to the seafloor in strongly seasonal pulses
(e.g. Thomas, 1992; Thomas and Gooday, 1996; Pearson et al., 2008).

The calcareous nannoplankton community underwent significant changes at the
EOB. Although the group did not suffer extinctions right at the boundary as the plank-10

tonic foraminifers, the structure of the assemblages underwent global reorganization.
Species diversity decreased through the loss of K-selective, specialist taxa and the
abundance of opportunistic species, more adapted to the new climate/environment,
increased (e.g. Persico and Villa, 2004; Dunkley Jones et al., 2008; Tori, 2008). Cal-
careous nannoplankton, overall, flourished during the warm-oligotrophic Eocene rather15

than during the cold-eutrophic early Oligocene, when the siliceous diatoms become
more abundant (e.g. Falkowski et al., 2004). Time series analysis (Hannisdal et al.,
2012) confirmed that coccolithophores were globally more common and widespread
during the Eocene, declining since the early Oligocene. On million-year time scales,
atmospheric CO2 levels influenced coccolithophore macroevolution more than related20

long-term changes in temperature, sea level, ocean circulation or global carbon cycling
(Hannisdal et al., 2012).

In addition, the late Eocene to early Oligocene decrease in the average cell size
of reticulofenestrids (presumed ancestors of modern-day alkenone producing coccol-
ithophores) corresponds to a decline in pCO2 (Henderiks and Pagani, 2008; Pagani25

et al., 2011). This macroevolutionary trend appears global and driven by the ecological
decline of large reticulofenestrid species. Henderiks and Pagani (2008) hypothesized
that large-celled coccolithophores were adapted to high pCO2 and CO2(aq) conditions
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(late Eocene), whereas small-sized species became more competitive at lower pCO2
(early Oligocene). However, this hypothesis has not yet been tested in detail.

Only few high-resolution studies have described the response of coccolithophores
to environmental change across the EOB at high- (Southern Ocean; Persico and Villa,
2004; Villa et al., 2008, 2014) and low latitudes (Tanzania; Dunkley Jones et al., 2008).5

These studies have highlighted distinct compositional shifts and changes in species
diversity at or close to the boundary. Here, we present a new high-resolution record
(< 10 000 kyr across the EOB) from Ocean Drilling Program (ODP) Site 1263, at mid-
latitudes in the southeast Atlantic Ocean.

We report on calcareous nannofossil and foraminiferal biotic events between 34.76–10

32.7 Ma, to refine the shipboard biostratigraphy published in Zachos et al. (2004) and
describe the ecological response to environmental change. The calcareous nannofossil
assemblages reveal distinct fluctuations in total abundance and species composition,
which we compare to stable isotope data (Riesselman et al., 2007; Peck et al., 2010),
and to benthic foraminiferal assemblage data from the same site. For the first time,15

estimates of the number of nannofossils per gram of dry sediment were calculated
for the Eocene–Oligocene time interval to investigate how paleo-export fluxes and food
supply to the benthic community were affected. This record is also the first to investigate
coccolith size variations (and related changes in mean cell size, cf. Henderiks and
Pagani, 2007) across the EOB in greater detail.20

2 Material and methods

2.1 ODP Site 1263

ODP Leg 208 Site 1263 (28◦31.97′ S and 2◦46.77′ E, Atlantic Ocean; Fig. 1) was drilled
at a water depth of 2717 m on the southern flank of Walvis Ridge, an aseismic ridge
west of the African coast. This site provides one of the most continuous sediment25

sequences of the early Cenozoic in the Atlantic Ocean, and was at least 1 km above
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the lysocline prior to the lowering of the CCD during the E–O transition (Zachos et al.,
2004). Foraminifer-bearing nannofossil ooze and nannofossil ooze are the dominant
lithologies in the studied interval (Zachos et al., 2004).

The Eocene–Oligocene sediments of ODP Site 1263 generally have a high carbon-
ate content (CaCO3 wt%), ranging from 88 to 96 % through 84.2–100.8 mcd (Fig. 2;5

Riesselman et al., 2007). Only a few lower values in CaCO3 (86 and 88 %) have been
recorded prior to the EOB, below the Oi-1 δ18O excursion (Fig. 2; Riesselman et al.,
2007).

A total of 190 samples was used for nannofossil analyses across the EOB in Holes
1263A and 1263B. These samples were studied in two sets, A and B. Set A includes10

114 samples from 83.19 to 101.13 m composite depth (mcd). The sampling resolu-
tion is high across the EOB (5–10 cm), and decreases above and below it: 20–90 cm
between 83.19–89.6 mcd, and 20–50 cm between 97.44–101.13 mcd. An additional
76 samples were analysed in set B (83.59–105.02 mcd, sampling resolution of 10–
50 cm). The two sample sets were independently analysed by different researchers,15

and we combine these data. For analyses on foraminiferal assemblages, 27 samples
from Hole 1263A were used, from 1263A-9H-1-32-34cm (80.89 mcd) to 1263A-11H-
CC (109.79 mcd).

2.2 Microfossil preparation and assemblage counts

2.2.1 Nannofossils20

Sample set A was prepared by weighing 5 mg of dried sediment and diluting with 50 mL
of buffered water. Then, 1.5 mL of suspension was placed on a cover slip with a high-
precision pipette, and the sample was dried on a hotplate at 60 ◦C. This technique
(modified after Koch and Young, 2007) assures an even distribution of particles, and al-
lows calculation of the absolute coccolith abundances per gram of dry sediment (Ng−1).25

Repeated sample preparation and counting revealed a coefficient of variation (CV) of
6–10 %, comparable to other techniques (e.g. Bollmann et al., 1999; Geisen et al.,
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1999). Five samples along the studied sequence were also prepared with the filtration
technique (Andruleit, 1996) and spiked with microbeads to investigate the reproducibil-
ity of absolute abundances obtained with our technique. This resulted in similar tempo-
ral trends between the techniques (mean CV= 11 %). The estimates of absolute abun-
dances (Ng−1) allow us to better identify the real fluctuations in abundance of single5

species within the sediment. In contrast, the use of the relative abundances (%) could
lead to loss of information and misinterpretation of the results through the closed-sum
problem, as each percentage value refers to how common or rare a species is rela-
tive to other species without knowing whether a species truly increased or decreased
in abundance. Sample set B was prepared with the standard smear slide technique10

(Bown and Young, 1998).
In both sets A and B, calcareous nannofossils were examined under crossed po-

larized light microscopy (LM) at 1000× magnification. Quantitative analyses were per-
formed by counting at least 300 specimens in each slide. Additional observations were
performed on the slide to detect the occurrence of rare species, especially biostrati-15

graphical markers. All specimens were identified at species or genus level, depending
on the coccolith preservation. We used Cyclicargolithus sp. to group the specimens
with dissolved central area that can be associated to the genus Cyclicargolithus but
not directly to the species Cyclicargolithus floridanus (Fig. S1 in the Supplement). Tax-
onomy of the calcareous nannofossils follows the reference contained in the web-site20

http://ina.tmsoc.org/Nannotax3 (edited by Young et al., 2014). Additional taxonomic re-
marks are given in the Supplement. For dataset A, the number of fields of view (FOV)
observed were also noted in order to calculate absolute abundances.

Both datasets were used to provide biostratigraphical information: dataset A with
a more detailed resolution across the EOB, and dataset B covering a longer interval25

below the EOB. For quantitative description of the nannofossil assemblage, relative
abundances (%) for all the identified species were calculated for both datasets A and
B.
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2.2.2 Foraminifers

The 27 samples were oven-dried at 60 ◦C, then washed over a 63 µm sieve. The com-
plete size fraction 63 µm was studied for benthic and planktonic foraminifers. Planktonic
foraminifers are abundant and benthic foraminifers common. Preservation is generally
moderate, with frosty preservation of the tests. Benthic foraminifers show partial dis-5

solution or etching, especially between 94.42 mcd and 109.79 mcd, but are generally
well preserved, i.e. sufficient for determination at species level (Fenero et al., 2010).

2.3 Biotic proxies

2.3.1 Nannofossil dissolution index and cell size estimates

Sample set A was also used to characterize nannofossil dissolution across the inves-10

tigated interval. A coccolith dissolution index was calculated using the ratio between
entire coccoliths and fragments (cf. Beaufort et al., 2007; Blaj et al., 2009; Pea, 2010).
This index is indicative of the preservation/dissolution state of the nannofossil assem-
blages: higher values correspond to better preservation. Entire coccoliths and all frag-
ments were counted until at least 300 entire coccoliths had been counted. Only pieces15

bigger than 3 µm were considered as fragments.
Mean coccolith and cell size estimates (volume-to-surface area ratio, V : SA; cf. Hen-

deriks and Pagani, 2007; Henderiks, 2008) were calculated based on the relative
abundance of placolith-bearing taxa (Coccolithus, Cyclicargolithus, Dictyococcites and
Reticulofenestra) and the different size groups within each (3–7 µm, 7–11 µm and 11–20

16 µm for Coccolithus; 3–5 µm, 5–7 µm and 7–9 µm for all the other species).

2.3.2 Nannofossils proxies

The distribution of coccolithophores in surface water is controlled by the availability
of light, temperature, salinity and nutrient availability (e.g. Winter et al., 1994). Based
on studies of modern and past paleogeographic distributions of coccolithophores, (pa-25
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leo)environmental tolerances of various taxa may be determined (see Table 3 in Villa
et al., 2008). However, some paleoecological labels remain unresolved or contrasting in
different regions (see Table 3 in Villa et al., 2008), so our analyses aimed to circumvent
such issues by not tagging certain (groups of) species a priori, but instead investigat-
ing the behaviours within total assemblages (see Sect. 2.4) and compare these with5

independent proxies (i.e. geochemical data and benthic foraminifer assemblage).

2.3.3 Foraminifera-based stable isotope proxies for paleoproductivity
evaluation

The difference between planktonic and benthic foraminiferal carbon isotope (∆δ13Cp–b)
was proposed by Sarnthein and Winn (1990) as semi-quantitative proxy of paleopro-10

ductivity. It provides information about the surface to deep-water δ13C gradient, re-
flecting surface paleoproductivity and stratification (e.g. Zhang et al., 2007; Bordiga
et al., 2013). We calculated the ∆δ13Cp–b using the foraminifer data in Riesselman
et al. (2007) and Peck et al. (2010).

2.3.4 Benthic foraminiferal proxies15

We determined the relative abundances of benthic foraminiferal taxa, and the diversity
of the assemblages was expressed as the Fisher’s alpha index (Hayek and Buzas,
2010). We used changes in the relative abundances and diversity to infer changes in
carbonate saturation state, oxygenation and food supply (e.g. Bremer and Lohmann,
1982; Jorissen et al., 1995, 2007; Gooday, 2003; Thomas, 2007; Gooday and Jorissen,20

2012). We interpret a high relative abundance on infaunal taxa (including the triserial
buliminids) as indicative of a high, year-round food supply (Jorissen et al., 1995, 2007;
Gooday, 2003). High relative abundances of phytodetritus-using taxa indicate an overall
moderate, but highly seasonal or episodic flux of non-refractory particulate organic
matter (e.g. Gooday, 2003; Jorissen et al., 2007), and a high relative abundance of25
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Nuttallides umbonifera indicates water which are highly corrosive to CaCO3 in generally
low-food supply settings (Bremer and Lohmann, 1982; Gooday, 2003).

Comparisons between past and recent benthic assemblages as indicators for fea-
tures of deep-sea environments need careful evaluation, because Eocene deep-sea
benthic foraminiferal assemblages were structured very differently from those living5

today, and the ecology even of living species is not well known. For instance, in the
Paleogene, taxa reflecting highly seasonal or episodic deposition of organic matter
(phytodetritus) were generally absent or rare, increasing in relative abundance during
the E–O transition (e.g. Thomas and Gooday, 1996; Thomas, 2007). At Walvis Ridge,
these species did occur at lower abundances than in the interval studied here during10

the transition from early into middle Eocene (Ortiz and Thomas, 2015) and during the
middle Eocene climate maximum (Boscolo-Galazzo et al., 2015).

In contrast, cylindrically-shaped taxa with complex apertures (called “Extinction
Group”-taxa by Hayward et al., 2012) were common (e.g. Thomas, 2007). These taxa
globally declined in abundance during the increased glaciation of the earliest Oligocene15

and middle Miocene to become extinct during the middle Pleistocene (Hayward et al.,
2012). The geographic distribution of these extinct taxa resembles that of buliminids
(e.g. Hayward et al., 2012), and they were probably infaunal, as confirmed by their
δ13C values (Mancin et al., 2013). It is under debate what caused their Pleistocene
extinction and decline in abundance across the EOB (Hayward et al., 2012; Mancin20

et al., 2013). Changes in the composition of phytoplankton, their food source, have
been mentioned as a possible cause, as well as declining temperatures, increased
oxygenation or viral infections (Hayward et al., 2012; Mancin et al., 2013).

2.4 Statistical treatment of the nannoplankton data

Relative species abundances are commonly observed as lognormal distributions25

(MacArthur, 1960). To generate suitable datasets for statistical analysis, different trans-
formations yielding Gaussian distributions must be applied, such as log transformation
(e.g. Persico and Villa, 2004; Saavedra-Pellitero et al., 2010), centered log-ratio (e.g.
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Kucera and Malmgren, 1998; Buccianti and Esposito, 2004), arcsine (e.g. Auer et al.,
2014), etc.

We applied two transformations to the nannofossil species percentage abundances:
(i) log-transformation by log(x+1), which amplifies the importance of less abundant
species, and minimizes the dominance of few abundant species (Mix et al., 1999),5

and (ii) centered log-ratio (clr) transformation (Aitchison, 1986; Hammer and Harper,
2006), which opens a closed data matrix and retains the true covariance structure of
compositional data as well. The normal distribution of each species before and after
the transformations was verified using SYSTAT 13.0 software. Datasets A and B were
treated the same, but were analysed independently.10

Principal component analysis (PCA) was performed on the transformed data using
the statistics software PAST (PAleontological STatistic; Hammer et al., 2001). Species
with an abundance < 1 % in all samples were not included in the PCA. The PCA (Q-
mode) was performed to identify the major loading species and to evaluate the main
factors affecting the changes on fossil coccolithophore assemblages.15

The closed-sum problem, or constant-sum constraint, may obscure true relationships
among variables as first noted by Pearson (1896) when performing statistical data anal-
ysis of compositional data. The clr transformation retains a major problem in carrying
out the PCA on the covariance matrix, and the goal of keeping the most important data
information with only few principal components (PCs) can fail using clr transformation20

in associations containing many outliers (e.g. Maronna et al., 2006) as is often the
case in nannofossil assemblages. To minimize the presence of outliers we worked with
abundant species and groups of nannofossils, instead of with single species.

The PAST software was used to calculate the Shannon Index, H , a diversity index
taking into account the relative abundances as well as the number of taxa. High values25

indicate high diversity.
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3 Biostratigraphy

The EOB at Site 1263 was tentatively placed between 83 and 110 mcd by the Leg
208 Shipboard Scientific Party (Zachos et al., 2004). Riesselman et al. (2007) placed
Oi-1 on the basis of an increase in the benthic δ18O records from ∼ 1.5 ‰ (94.49 mcd,
uppermost Eocene) to ∼ 2.6 ‰ (93.14 mcd, lowermost Oligocene). The δ18O values5

remained high upsection, to 88.79 mcd. Steps 1 and 2 in the δ18O increase were
identified (Riesselman et al., 2007; Peck et al., 2010), although they are not clearly
defined as at Site 1218 in the Pacific Ocean (Coxall et al., 2005).

Our high-resolution sampling allowed refining the position of the EOB by locating
nannofossil and planktonic foraminifer bioevents (Fig. 2; Table 1), including some nan-10

nofossil bioevents not yet reported in Zachos et al. (2004). To avoid bias, sample sets
A and B were analysed by two different operators for the occurrence of nannofossil
marker species (Fig. 2).

The identified bioevents are delineated as Base (B, stratigraphic lowest occurrence
of a taxon), Top (T, stratigraphic highest occurrence of a taxon), and Base common15

(Bc, first continuous and relatively common occurrence of a taxon) according to Agnini
et al. (2014), and acme beginning (AB, base of the acme of a taxon) according to
Raffi et al. (2006). No correlation with magnetochrons was possible because the soft
nannofossil ooze at Site 1263 does not carry a clear signal (Zachos et al., 2004).

The depths of all identified nannofossil and foraminifer datums, together with the20

ages assigned to the most reliable datums in Gradstein et al. (2012) are displayed in
Table 1. For bioevents which are diachronous or not reported in Gradstein et al. (2012),
the most recent literature was selected, considering the datums recorded at latitudes
as close as possible to the studied site. The succession spans from 32.7 Ma (HO of
Isthmolithus recurvus, Lyle et al., 2002) to 34.76 Ma (HO of Discoaster barbadien-25

sis, Gradstein et al., 2012). The estimated average sedimentation rate is 9.8 mmyr−1,
somewhat lower than the average value of 11.7 mmyr−1 in Zachos et al. (2004). In
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set A, where the sample distribution is more homogeneous, the sampling resolution is
∼ 10.000 years across the EOT (from 97.29 to 90.02 mcd).

3.1 Calcareous nannofossils

Using the absolute (Ng−1) and the relative (%) abundances we identified nine calcare-
ous nannofossil datums (Fig. 2; Table 1). The studied interval spans from CP15b (pars)5

Zone to CP16c (pars) Zone, according to the biozonation of Okada and Bukry (1980).
The bioevents include:

– B of Sphenolithus tribulosus, the lowermost datum identified (103.11 mcd, Ta-
ble 1). The range for this bioevent (Bown and Dunkley Jones, 2006) is from Zones
NP21 to NP23 (biozonation of Martini, 1971), corresponding to CP16-18 Zones.10

We detected this event at the top of CP15b Zone (Fig. 2), slightly below the re-
ported range (Tori, 2008). At Site 1263, this species is not abundant and its poor
preservation is commonly compromising the identification at the species level and
thus possibly, its B.

– T of Discoaster barbadiensis and Discoaster saipanensis. The rosette-shaped15

discoasterids at the bottom of the succession are usually well preserved without
overgrowth (Fig. S1 in the Supplement). The T of D. barbadiensis was not identi-
fied by the Shipboard Scientific Party (Zachos et al., 2004), and we placed it one
meter below the T of D. saipanensis (Fig. 2), identified by Zachos et al. (2004) two
meters below our datum (Table 1). These two bioevents were usually considered20

concurrent, but high-resolution studies (Berggren et al., 1995; Lyle et al., 2002;
Tori, 2008; Blaj et al., 2009) show that they are not coeval. The T of D. saipanensis
is used to approximate the EOB and to define the CP15b/CP16a boundary.

– AB of Clausicoccus obrutus (> 5.7 µm). The absolute abundance variations, to-
gether with the relative abundance, identify the AB at 96 mcd, ∼ 1 m below the25

depth reported by the Shipboard Scientific Party (94.77 mcd; Table 1) and slightly
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above the observed T of Hantkenina spp. (Fig. 2; see the foraminifers section)
– i.e. it approximates the EOB (Backman, 1987). AB of C. obrutus defines the
base of CP16b (Okada and Bukry, 1980) as suggested by Backman (1987). This
bioevent is well recognized in the Tethys Massignano GSSP and Monte Cagnero
sections (Tori, 2008; Hyland et al., 2009) and also at the high latitudes Site 10905

(Marino and Flores, 2002).

– B of Chiasmolithus altus. The rare and discontinuous presence of C. altus cre-
ates some bias in the detection of its B. Moreover, C. altus specimens are highly
affected by dissolution as their central-area is commonly completely dissolved
(Fig. S1 in the Supplement). The B of C. altus can be placed with certainty at 89.410

mcd where a specimen with whole central crossbars meeting at 90◦ was observed
(Fig. S1 in the Supplement). At Site 1263, the B of C. altus, the youngest of the
genus, falls inside the lower Oligocene (Zone CP16b; Fig. 2), as also documented
by de Kaenel and Villa (1996), Persico and Villa (2004), and Villa et al. (2008).

– B and Bc of Sphenolithus akropodus. The rare occurrence and poor preservation15

affect the recognition of this species, but B and Bc were identifiable (Fig. 2; Ta-
ble 1). The Bc is well related with the first occurrence as identified in de Kaenel
and Villa (1996), who used this bioevent to approximate the Zone NP21/22 (or
CP16b/CP16c) boundary, and the T of Coccolithus formosus.

– T of Coccolithus formosus. This bioevent was easily detectable, as C. formosus is20

abundant and well preserved. Its T defines the CP16b/CP16c boundary (Fig. 2),
close to the depth suggested on board ship (Table 1).

– T of Isthmolithus recurvus, the highest datum identified (Fig. 2). Its abundance is
low, so that its distribution becomes discontinuous towards the top of the studied
interval. The 83.19 mcd depth (Table 1), 3 m above that reported by the Ship-25

board Scientific Party (Zachos et al., 2004), is an approximation because just one
sample above the last observed specimens of I. recurvus was analysed.
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3.2 Planktonic foraminifers

At Site 1263, the primary marker species for the EOB (the genera Cribrohantkenina and
Hantkenina) are not well preserved, and occur as fragments of variable size, includ-
ing hantkeninid spines and partial specimens (several chambers). We primarily stud-
ied benthic foraminifera, so that we scanned through large samples, containing thou-5

sands of specimens of planktonic foraminifera. From 96.41 mcd up-section (the first
higher sample being at 96.27 mcd) we did not find any fragments of hantkeninid tests
and/or loose spines (Cribohantkenina and Hantkenina alabamensis), whereas these
were consistently present in samples below that level (Fig. 2). The sample at 96.41
mcd contained rare spines, but no partial specimens (Fig. 2). We thus recorded the T10

of H. alabamensis, the traditional marker for the EOB (e.g. Coccioni, 1988; Premoli-
Silva and Jenkins, 1993; Pearson et al., 2008), at 97.91 mcd, and placed the EOB
above 96.41 mcd (1263A-10H-5-32-34cm, 96.27 mcd; Table 1; Fig. 2). The benthic
foraminifera at Site 1263 show some evidence of reworking (Zachos et al., 2004), but
this was limited to a few samples, so we consider that the uppermost sample with par-15

tial tests of hantkeninids marks the uppermost Eocene. This observation differs from
that in Zachos et al. (2004), where only core catcher samples were studied and the
partial specimens in Sample 1263A-10H-CC were not observed (Table 1). Samples
from Core 1263A-11H and sample 1263A-10H-CC (99.97–109.79) contain strongly
fragmented planktonic foraminifers, with non-broken specimens dominated by heavily20

calcified Globigerinatheca spp. (Zachos et al., 2004).

4 Biotic responses

4.1 Calcareous nannofossil preservation and assemblages

At ODP Site 1263 no consistent increase in carbonate content above the EOB was
recorded (Riesselman et al., 2007), in contrast to other sites, specifically in the Pacific25
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Ocean (e.g. Salamy and Zachos, 1999; Coxall et al., 2005; Coxall and Wilson, 2011),
probably because this site was well above the lysocline since the late Eocene (Za-
chos et al., 2004). The carbonate accumulation was not strongly affected by potential
CCD deepening, because the CaCO3 (wt%) was and remained generally high (Fig. 3;
Riesselman et al., 2007). The CaCO3 (wt%) does not reflect the total coccolith abso-5

lute abundance (Fig. 3), suggesting that also other calcifying organisms (planktonic
foraminifers) contributed consistently to the calcite accumulation in the sediments.

Although the site was above the lysocline during the studied time interval, the nanno-
fossil and foraminiferal assemblages show signs of dissolution all along the sequence.
Such dissolution may occur above the lysocline (e.g. Adler et al., 2001; de Villiers,10

2005), leading to a reduction in species numbers and an increase of fragmentation
with depth in both nannoplankton (e.g. Berger, 1973; Milliman et al., 1999; Gibbs et al.,
2004) and planktonic foraminifer communities (e.g. Peterson and Prell, 1985).

At Site 1263 signs of dissolution were detected, in particular, on specimens of Cycli-
cargolithus (Fig. S1 in the Supplement) – one of the least resistant species (Blaj et al.,15

2009), but also on more robust species like Dictyococcites bisectus (Fig. S1 in the
Supplement). The absence of specimens < 3 µm is indicative of dissolution, but does
not prevent the identification of the main features in the assemblage. The coccolith
dissolution index does not show large changes at the EOB, but during and after the
Oi-1 nannofossil dissolution slightly intensified (Fig. 3). The correlation between the20

dissolution index and total coccolith abundance is positive and stronger in the upper
interval of the studied sequence, but not significant across the EOB. In fact, from 90.5
mcd upward the correlation value, r , is 0.59 (p value = 0.002), instead for the entire
interval r = 0.32 (p value = 0). This confirms that the total coccolith abundance and
the nannofossil assemblage features are preserved in the fossil record, at least across25

the EOB, although nannofossil dissolution may be intense. From 90.5 mcd up-section,
dissolution more strongly affected the assemblages.
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The total absolute coccolith abundance records a marked decrease across the EOB:
within 60 cm (from 96.39 to 95.79 mcd) the abundance rapidly drops by 45 %, mainly
driven by the loss of large-sized species, in particular of D. bisectus (Fig. 3).

Nannofossil diversity, based on the H index, does not record significant variations at
the EOB. A more distinct step-wise decrease is recorded at 90 mcd (grey bar in Fig. 3),5

which could be explained by the increased dissolution in this interval, and by a com-
munity structure with fewer dominant species. Actually, in this interval Cyclicargolithus
became more dominant in the assemblage, while large Reticulofenestra decreased
in abundance significantly (Fig. 3). The calcareous nannofossil assemblage variations
recorded in sample sets A and B are comparable despite the different sampling reso-10

lution (Figs. S2 and S3 in the Supplement).
The absolute abundances of all the large-sized species decreased markedly across

the EOB (Fig. 3), including the species D. bisectus, Dictyococcites stavensis, Retic-
ulofenestra umbilicus, Reticulofenestra samodurovii, Reticulofenestra hillae, Retic-
ulofenestra sp.1 (see taxonomical remarks in the Supplement), and Reticulofenestra15

daviesii. Among these, D. bisectus and D. stavensis constitute a significant part (up to
28 %) of the assemblage.

The small-medium Cyclicargolithus sp. and C. floridanus are the most abundant
species (up to 50 %), and the 5–7 µm size group is dominant. This group increases
slightly from the bottom upwards, but at the EOB only a slight decrease in absolute20

abundance is recorded. Also, C. pelagicus is one of the most important components of
the nannofossil assemblage, at a maximum abundance of 27 % (Fig. 3). This species
increases its absolute abundance between 96.79–92.6 mcd, i.e. across and above the
EOB, and then it decreases from 88 mcd upwards. Sphenolithus spp. also does not
show marked variation at the EOB, even if this group is not very abundant. This lack25

of any species that increase in abundance above the EOB at Site 1263 suggests that
the loss in large reticulofenestrids was not compensated for by other taxa, leading to
a sustained decrease in total coccolith abundance (and export production) since the
EOB.
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Another component of the assemblage, Lanternithus minutus, is generally not abun-
dant, but peaks between 89.6 and 87.12 mcd. Zygrablithus bijugatus and Discoaster
spp. both decreased in abundance before the EOB and, thereafter, never reached
abundances as high as in the late Eocene.

4.1.1 Principal component analysis5

The PCAs performed on datasets A and B give fairly comparable results, either us-
ing the log- or clr-transformation. For dataset A, the Pearson correlation value (r) be-
tween the components from the two transformations is 0.90 (p value = 0), confirming
that the primary signals in the assemblage are revealed by the multivariate statisti-
cal analysis, as long as the normal distribution of the species is maintained. We also10

compared the PCA results with or without the presence of the marker species, because
stratigraphically-controlled species are not distributed along the entire succession, thus
affect PCA outcomes (e.g. Persico and Villa, 2004; Maiorano et al., 2013). Nonetheless,
the results obtained with and without the marker species still provide similar trends be-
cause in the studied interval the marker species are not very abundant (Fig. 4; Table S115

in the Supplement).
In the following discussion, we will focus on the PCA results and the loading species

using the log-transformation for datasets A and B (Fig. 4; Tables S1 and S2 in the
Supplement). The only two significant principal components explain 50 % of the total
variance in dataset A, and respectively account for 36 and 14 %. For dataset B the two20

components explain 35 % (26 and 11 % respectively).
Principal component 1 (PC1) of dataset A shows positive values below 96 mcd.

A pronounced decrease occurs at the EOB, and from 96 mcd upwards the PC1 main-
tains mainly negative values (Fig. 4a). PC1 is negatively loaded by C. obrutus, C. flori-
danus small and medium size, and positively by D. stavensis, D. bisectus, R. daviesii,25

and R. umbilicus (Fig. 4a; Table S1 in the Supplement). The loadings of the other
species are too low to be significant. The PC1 of dataset B does not record the same
marked drop at the boundary, but rather a gradual decrease all along the sequence
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(Fig. 4a). Although the main loading species are the same for both datasets (i.e. C.
obrutus, Cyclicargolithus vs. D. bisectus and R. umbilicus) some differences can be
identified (Table S2 in the Supplement). In particular, the influence of Cyclicargolithus
size groups on PC1 cannot be detected in dataset B because the size subdivision was
not included in the count. As the distribution of large vs. small-medium sized species5

on the PCA seems to be important for both datasets and Cyclicargolithus is one of the
most abundant species, it is possible that the lack of a detailed size grouping within
this genus in dataset B could lead to the difference in the PC1 curves at the EOB. The
higher abundances of Discoaster and R. umbilicus from the bottom up to 102 mcd in
dataset B could also explain some differences in the loading species between the two10

datasets (Tables S1 and S2, and Fig. S3 in the Supplement).
Principal component 2 (PC2) of dataset A also records an abrupt variation across the

EOB: the negative values at the bottom of the succession turn toward positive values
above the boundary and remain positive up to 89.95 mcd. From 89 mcd upwards,
PC2 displays mainly negative values again, except for a peak between 85.68–86.4215

mcd (Fig. 4b). The most meaningful species loading on PC2 is L. minutus (negative
loading). The PC2 is also loaded negatively by D. stavensis and C. floridanus (5–7 µm),
and positively by C. pelagicus (3–7 µm and 7–11 µm), I. recurvus and Sphenolithus
spp. (Fig. 4b; Table S1 in the Supplement). The PC2 for dataset B shows a similar
trend as dataset A from 98 mcd upward (Fig. 4b), but it distinctly differs in the lower20

part of the succession. Again, the PC2 is resolved by the same main loading species L.
minutus vs. C. pelagicus (but note that the relative direction (positive or negative) of the
loadings is swapped between dataset A and B; Tables S1 and S2 in the Supplement). In
particular, L. minutus has very strong loadings in both datasets. In dataset B L. minutus
has its maximum abundance in the upper Eocene interval that was not sampled in25

dataset A (Fig. S3 in the Supplement), likely driving the differences between the two
PC2 curves below the EOB (Fig. 4b). The distribution of L. minutus becomes more
comparable between the datasets above 100 mcd, reaching a peak between 89.6 and
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87.12 mcd although not as high as during the upper Eocene (Figs. S2 and S3 in the
Supplement).

In the following discussion, we used the PCA results for dataset A (without the mark-
ers) only, because of its more even sample distribution and direct comparison to the
other available nannofossil proxies, i.e. dissolution index, coccolith size distribution and5

absolute abundance.

4.2 Mean coccolithophore cell size variations

The PC1 curve is mirrored (r = 0.81; p value = 0) by mean cell size estimates (V : SA
ratio) of all placolith-bearing coccolithophores within the assemblages (Fig. 5). Fluctua-
tions in mean size are mainly driven by the relative abundance of the different placolith-10

bearing taxa and their respective size groups, rather than intra-specific size variations.
The mean V : SA ratios were higher (large cells were more abundant) during the late
Eocene, and decreased by 8 % across the EOB, within 60 cm above (from 96.39 to
95.79 mcd), or ∼ 53 kyr.

Our coccolith dissolution index confirms that preferential dissolution of small species15

did not bias the V : SA results, as intervals of increased dissolution did not generally
correspond to large V : SA (r = −0.12). The only exception is the top, 90–90.3 mcd,
interval where a high dissolution peak corresponds to an increase in mean size.

4.3 Benthic foraminifer assemblage

The low resolution data on benthic foraminifera show that the diversity of the assem-20

blages (see Fisher’s alpha index curve; Fig. 6) started to decline in the late Eocene
(∼ 34.5 Ma; 102.79 mcd), reached its lowest values just below the EOB, then slowly
recovered, but never to its Eocene values (Fenero et al., 2010). The decline in diversity
was due in part to a decline in relative abundance of rectilinear species with complex
apertures (“extinction group” species). Such a decline is observed globally at the end25

of the Eocene (Thomas, 2007; Hayward et al., 2012). The declining diversity was also
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due to a transient increase in abundance of species indicative of seasonal delivery
of food to the sea floor (phytodetritus species, mainly Epistominella spp.; ∼ 34.04–
33.51 Ma; 97.91–91.91 mcd), with a short peak in overall, year-round food delivery at
the E/O boundary (buliminid taxa; ∼ 33.9 Ma; 96.41–96.27 mcd). After Oi-1 (starting at
∼ 33.4 Ma; 90.41 mcd), the abundance of N. umbonifera increased. Due to evidence5

for dissolution, benthic foraminiferal accumulation rates can not be used to estimate
food supply quantitatively and reliably.

5 Discussion

5.1 Nannoplankton abundance and cell size decrease at the EOB

The distinct variation in nannoplankton abundance and average coccolith size across10

the EOB at Site 1263 cannot be explained by dissolution or a change in species diver-
sity, but is mainly linked changes in community structure (Fig. 3). The drop in total nan-
nofossil abundance (Fig. 3) and mean cell size (Fig. 5) is mainly driven by the decrease
in abundance of large Reticulofenestra and Dictyococcites across the EOB. The mean
V : SA estimates for all ancient alkenone producers combined (i.e. Cyclicargolithus,15

Reticulofenestra and Dictyococcites; Plancq et al., 2012) tightly overlap (Fig. 5) with
biometric data of the same group in the Equatorial Atlantic (Ceara Rise, ODP Sites
925 and 929; Pagani et al., 2011), while the mean size estimates for combined Retic-
ulofenestra and Dictyococcites coincide with mean values measured at ODP Site 1090
in the Subantarctic Atlantic, where Cyclicargolithus spp. were not present and assem-20

blages are likely severely affected by dissolution (Pea, 2010; Pagani et al., 2011).
The assemblage records illustrate the mid-latitude location of Site 1263, hosting both

“subantarctic” and “equatorial” taxa. A striking correspondence with the mean V : SA of
ancient alkenone producers at Site 1263 and Sites 929 and 925 (Fig. 5) would suggest
more affinity with tropical assemblages than with high-latitude ones, south of the Sub-25

tropical Convergence (STF). The abundance patterns of the larger reticulofenestrids,
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however, are strikingly similar to those at Southern Ocean sites (Persico and Villa,
2004; Villa et al., 2008). The mid-latitudinal Site 1263 thus probably records paleo-
biogeographic patterns in the nannofossil assemblage intermediate between those in
equatorial-tropical and subantarctic regions.

The coccolith size-shift and the decreased abundance of large reticulofenestrids5

across the EOB may be related to different bio-limiting factors. Under growth-limiting
environmental conditions, phytoplankton (coccolithophores) with small cell volume-to-
surface area ratios may outcompete larger cells due to lower resource requirements
(lower C, P and N cell quota) and generally higher growth rates (e.g. Daniels et al.,
2014). A change in overall nutrient regime, such as in coastal upwelling vs. oligotrophic,10

stratified gyre systems, may also cause a shift in opportunistic vs. specialist taxa (e.g.
Falkowski et al., 2004; Dunkley Jones et al., 2008; Henderiks et al., 2012). The 16–
37 % absolute abundance declines of the reticulofenestrid species D. bisectus, R. um-
bilicus, R. hillae and R. daviesii (Fig. 3), are strong indications that these large-celled
coccolithophores were at a competitive disadvantage already during or shortly after the15

EOB. Earlier biometric studies of reticulofenestrid coccoliths point to a similar scenario
(Fig. 5), postulating that the macroevolutionary size decrease reflects the long-term
decline in pCO2 (Henderiks and Pagani, 2008; Pagani et al., 2011). High CO2 avail-
ability during the late Eocene could have supported high diffusive CO2-uptake rates
and photosynthesis even in the largest cells, assuming that ancient coccolithophores20

had no or inefficient CO2-concentrating mechanism, similar to modern species today
(Rost et al., 2003), and due to the fact that Rubisco’s specificity for CO2 increases at
higher CO2 levels (Giordano et al., 2005).

Available paleo-pCO2 proxy reconstructions from Equatorial regions (Pearson et al.,
2009; Pagani et al., 2011; Zhang et al., 2013) indicate a transient decrease in pCO225

across the studied interval rather than a distinct drop in pCO2 at the EOB, which would
be suggested by our high-resolution assemblage (PC1) and mean V : SA time series
(Fig. 5). Nevertheless, the paleo-pCO2 proxy data are at much lower resolution, based
on a range of geochemical proxies and assumptions (Pearson et al., 2009; Pagani
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et al., 2011; Zhang et al., 2013), and may therefore not record the drop in pCO2 as
accurately as our comparative analysis would require. The range of estimated pCO2
values is fairly wide: mean values are 940 ppmv below the EOB (SD range 740–
1260 ppmv) and 780 ppmv above the boundary (s.d. range 530–1230 ppmv) (Fig. 5).

Possibly, during the EOB a threshold level in pCO2 was reached, below which large5

reticulofenestrids became limited in their diffusive CO2-uptake, or other, fast-changing
(a)biotic environmental factors limited the ecological success of the same group. Be-
tween biotic and abiotic factors, the latter (i.e. nutrient supply, temperature, salinity, etc.)
are deemed to be dominant (Benton, 2009), and may have led to a more successful
adaptation of the smaller taxa at the expenses of the large ones (see discussion below,10

Sect. 5.2).
This would not exclude a transient, long-term pCO2 forcing on coccolithophore evo-

lution (Hannisdal et al., 2012). Interestingly, the decline of large R. umbilicus occurred
earlier at Site 1263 (across the EOB ∼ 33.89 Ma) than at higher latitudes in the South-
ern Ocean (just above the EOB: ∼ 33.3 Ma, Persico and Villa, 2004; ∼ 33.5 Ma, Villa15

et al., 2008). A similar pattern is documented in the timing of its subsequent extinction,
occurring earlier at low- and mid-latitudes (32.02 Ma; Gradstein et al., 2012) and later
in high latitudes (31.35 Ma; Gradstein et al., 2012). Henderiks and Pagani (2008) sug-
gested that the generally higher content of CO2 in polar waters may have sustained R.
umbilicus populations after it had long disappeared from the tropics.20

5.2 Paleoproductivity at Site 1263: nannoplankton and benthic foraminifer
signals

At Site 1263, no other phytoplankton than calcareous nannoplankton was detected,
and diatoms were also absent in coeval sediments at near-by Deep Sea Drilling Pro-
gram (DSDP) Walvis Ridge Sites 525-529 (Moore et al., 1984). Therefore, our infer-25

ences of paleo-primary productivity and export production are based on the nanno-
plankton and benthic foraminifer assemblages.
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PC2 of the calcareous nannoplankton analysis could be correlated with paleopro-
ductivity and total water column stratification. The strongest negative loading on PC2
is the holococcolith L. minutus (Fig. 4b; Table S1 in the Supplement). In modern phyto-
plankton, the holococcolith-bearing life stages proliferate under oligotrophic conditions
(e.g. Winter et al., 1994). Moreover, holococcoliths such as L. minutus and Z. bijugatus5

are quite robust (Dunkley Jones et al., 2008), so that dissolution is unlikely to affect
their distribution which may be mainly linked to low nutrient availability.

The positive loadings on PC2 are the species C. pelagicus, I. recurvus and Spheno-
lithus spp. A high abundance of C. pelagicus has often been considered as indicative
for warm-to-temperate temperatures (e.g. Wei and Wise, 1990; Persico and Villa, 2004;10

Villa et al., 2008). In the modern oceans, C. pelagicus seems to be restricted to cool-
water, high-nutrient conditions (e.g. Cachao and Moita, 2000; Boeckel et al., 2006), but
during the Paleogene it was cosmopolitan (Haq and Lohmann, 1976).

We compared PC2 with the proxy for paleoproductivity ∆δ13CP–B (Fig. 6), with lower
values corresponding to lower productivity or higher stratification. The ∆δ13CP–B data15

are not available for the interval below 96 mcd (upper Eocene), but lower paleopro-
ductivity in general corresponds to negative loadings on PC2, and vice versa. The
correlation coefficient between the two curves is 0.33 (p value = 0.05), i.e. a significant
but not a very strong correlation, possibly due to the lower number of stable isotope
data points. We infer that PC2 probably reflects lower productivity during the latest20

Eocene, and both PC2 and ∆δ13CP–B curves show a higher productivity signal at the
onset of Oi-1 (Fig. 6). In particular, PC2 records a longer interval of higher productivity
above the EOB, and an initial decrease before the highest peak in δ18O (at ∼ 93 mcd;
∼ 33.6 Ma), as recorded also by ∆δ13CP–B. Paleoproductivity subsequently remained
lower from the end of Oi-1 upward. The PC2 and ∆δ13CP–B curves differ from 90.5 mcd25

upward, possibly related to increased nannofossil dissolution. The increase of disso-
lution is confirmed by the increased abundance of the benthic foraminifer species N.
umbonifera (Fig. 6), indicative of more corrosive bottom waters or possibly a lower food
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supply. This is thus in agreement with the intensified dissolution interval recorded by
the coccolith dissolution index (compare Figs. 3 and 6).

The benthic foraminifer assemblage confirms the interpretation of the PC2, adding
information on the nature of the nutrient supply (Fig. 6). The increase across the EOB
of the phytodetritus species indicates an increase in seasonal delivery of food to the5

seafloor, correlated to the interval with positive scores in PC2 (Fig. 6), though inter-
rupted by a short interval of increased productivity across the EOB (as showed by the
peak in the buliminid species curve at 96.27 mcd; Fig. 6). After the Oi-1, the high abun-
dance of N. umbonifera and the decrease of phytodetritus and buliminid species are
indicative of more corrosive bottom waters, possibly combined with less food arriving10

at the sea floor and/or a less pronounced seasonality (Fig. 6).
The variations in nutrient supply, as reflected in both nannofossil and benthic

foraminifer assemblages, could possibly have driven the mean coccolith size decrease
across the EOB. In fact, the transient higher availability of nutrients at the onset of
Oi-1, may have made it possibly for small opportunistic species above the EOB to out-15

compete large specialist species. The decrease of mean cell size (less biomass per
individual) and, also, of total nannofossil abundance could have led to less available
organic matter and, thus, less food for the benthic foraminifers, and smaller nanno-
plankton could have caused a decrease in delivery of organic matter to the seafloor
(and/or higher remineralization).20

Possibly, major instability of the water column during the onset of Oi-1 favoured sea-
sonal or episodic upwelling, thus primary productivity in this area, but an increase
in productivity at the Oi-1 onset is not reflected in the absolute coccolith abundance
(Fig. 3). After the major peak in δ18O (Oi-1) a more stable system, related also to the
onset of North Atlantic Deep Water (NADW) production in the early Oligocene (Via and25

Thomas, 2006), may have allowed the proliferation of more oligotrophic taxa, including
holococcoliths, and the establishment of more oligotrophic environmental conditions
(Fig. 6).
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Previous studies have documented an increase in primary productivity during the
late Eocene-early Oligocene, in particular in the Southern Ocean (e.g. Salamy and
Zachos, 1999; Persico and Villa, 2004; Schumacher and Lazarus, 2004; Anderson
and Delaney, 2005). At tropical latitudes, both transient increases (equatorial Atlantic;
Diester-Haass and Zachos, 2003) and decreases (e.g. Griffith et al., 2010; Moore et al.,5

2014) in paleoproductivity have been recorded during the early Oligocene, with a sharp
drop in the export productivity in the early Oligocene at ∼ 33.7 Ma (Moore et al., 2014),
similar to what we observed in the southeastern Atlantic. Schumacher and Lazarus
(2004) did not record a significant shift of paleoproductivity at the EOB in equatorial
oceans, but noted a decrease in the early Oligocene (after 31 Ma). An increase in10

seasonality at the EOB, similar to the one we recorded at mid-latitudinal Site 1263,
was documented at Site 689 in Southern Ocean (Schumacher and Lazarus, 2004),
and seasonality increased just before Oi-1 in the northern high latitudes as well (Eldrett
et al., 2009).

5.3 Timing and possible causes of the biotic response at the EOB15

Marine faunal and floral species extinctions and community changes were coeval with
the climatic deterioration during the late Eocene-early Oligocene (e.g. Adams et al.,
1986; Coccioni, 1988; Berggren and Pearson, 2005; Dunkley Jones et al., 2008; Pear-
son et al., 2008; Tori, 2008; Villa et al., 2008, 2014). At ODP Site 1263, we also see
close correspondence between marked changes in the nannoplankton assemblages20

(i.e. nannofossil abundance and coccolith size decrease) and the extinction of the han-
tkeninid planktic foraminifers. Both events occurred at the EOB, pre-dating the onset of
Oi-1, i.e. the first major ice sheet expansion on Antarctica. Extinction events are usu-
ally rapid (10–100 kyr; Gibbs et al., 2005; Raffi et al., 2006). The nannoplankton did not
suffer significant extinctions at the same boundary, but the change in the community25

was relatively fast, taking place within ∼ 53 kyr.
The timing of the main shifts in the planktonic community was relatively early during

the transient climate change across the EOB, and pre-dated significant cooling and
1642
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increase in Antarctic ice sheet volume by about 440 kyrs (i.e. Oi-1). Therefore, fossil
planktonic assemblages are fundamentally important and accurate tools to investigate
early impacts or crossing of threshold levels during climate change on biotic systems.

Benthic foraminiferal changes at Site 1263 likewise started before the EOB (Thomas,
1990, 2007), and the faunal turnover persisted into the early Oligocene. The benthic5

faunas in general show a decline in rectilinear species, possibly linked to the decline
in nannoplankton species which may have been used by the rectilinear benthics (as
e.g. hypothesized by Hayward et al., 2012; Mancin et al., 2013). The increase in
phytodetritus-using species was possibly linked to more episodic upwelling and thus
productivity, and potentially blooming of more opportunistic nannoplankton species.10

Unfortunately, the lower resolution of the benthic foraminifer data compared to the nan-
nofossil data does not allow to unravel the exact timing of the benthic fauna response
across the EOB.

At Site 1263 and in Southern Ocean records (Persico and Villa, 2004; Villa et al.,
2008) the large reticulofenestrids declined in abundance rapidly at the EOB. Persico15

and Villa (2004) and Villa et al. (2008, 2014) inferred a strong influence of SST cooling
on coccolithophores, and the drop in SST across the EOB at high-latitudes is also con-
firmed by a decrease of 5 ◦C in UK

′

37-based SST (Liu et al., 2009). In contrast, at Site
1263 planktonic foraminifer Mg/Ca data record no significant change in SST at that
time (Peck et al., 2010; Fig. 5), as at ODP Sites 925 and 929 (tropical western Atlantic)20

where UK
′

37-based SSTs also show no relevant cooling (Liu et al., 2009; Fig. 5). Fairly
stable SSTs were also documented in the tropics using Mg/Ca-based SST reconstruc-
tions (Lear et al., 2008). The temperatures at mid-latitudinal Site 1263 thus may have
been stable, like those in the tropics, rather than cooling, as inferred for high latitudes
in the Southern Ocean (e.g. Persico and Villa, 2004; Villa et al., 2008, 2014; Liu et al.,25

2009).
If this is true, SST may not have been the main environmental factor affecting the

nannoplankton assemblages at Site 1263 across the EOB. Andruleit et al. (2003) doc-
umented that for modern coccolithophores in tropical–subtropical regions temperature
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changes may be of less importance, but the lower temperature at high latitudes can
approach the vital limits for coccolithophores (Baumann et al., 1997), and become im-
portant as a bio-limiting factor.

Changes in the phytoplankton community could be related to a global influence of
declining pCO2. Unfortunately the estimates available from alkenone- and boron iso-5

topes lack the resolution to unravel the variation at the EOB (Fig. 5), but leave open the
possibility that falling pCO2 below a certain threshold-level could have played a role
in driving the reorganization in the nannoplankton community. Alternatively, our com-
bined biotic and geochemical proxy data (i.e. nannofossil and benthic foraminifer as-
semblages, and ∆δ13CP–B) suggest an increase in nutrient and food supply just after10

the EOB (Fig. 6), which would have favored opportunistic taxa over low-nutrient se-
lected, specialist species. We conclude that the large reticulofenestrids were clearly
at an ecological disadvantage, either due to changes in nutrient supply and/or pCO2,
whereas Cyclicargolithus and Coccolithus remained unaffected, or slightly increased
in absolute abundance. Most large reticulofenestrids (except R. hillae and Reticulofen-15

estra sp.1) never recovered to pre-EOB abundances, despite a return to more strati-
fied conditions after the Oi-1 event. Increased dissolution after the Oi-1 event unlikely
explains the loss of large, heavily calcified taxa, but may also have led to enhanced
remineralization of organic matter and less food supply to the benthic communities.

A regional increase in nutrients after the EOB was also postulated to have occurred20

at low latitudes, based on a decrease in nannofossil species diversity at Tanzanian sites
(Dunkley Jones et al., 2008). At Site 1263, no marked change in diversity was recorded
at the EOB (Fig. 3). The diversity and species richness of fossil assemblages, however,
are strongly affected by dissolution, or by reworking and taxonomic errors (Lazarus,
2011; Lloyd et al., 2012). The Tanzanian sites indeed reveal remarkable and pristine25

marine microfossil preservation (Dunkley-Jones et al., 2008; Pearson et al., 2008),
rarely matched by other Eocene–Oligocene deep-sea records.

There appears to be a latitudinal gradient in the timing of nannofossil abundance
decreases. The abundance decreases were first detected in the Southern Ocean (late
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Eocene; Persico and Villa, 2004), then at mid-latitude (at the EOB; this study), and
finally at the equator (after the Oi-1; Dunkley Jones et al., 2008). So that may sug-
gest a direct temperature effect on nannoplankton abundance since the cooling started
and was most pronounced at high latitudes, or indirect high-latitude cooling impacts
on global nutrient regimes and ocean circulation. Since regional dissolution bias may5

also affect the comparison of absolute coccolith abundance, additional studies on well-
preserved material will be necessary to confirm the timing and character of the re-
sponse at different latitudes and in different ocean basins. Nevertheless, a meridional
gradient in biotic response is expected, given the different environmental sensitivities
and biogeographic ranges of different phytoplankton species (e.g. Wei and Wise, 1990;10

Monechi et al., 2000; Persico and Villa, 2004; Villa et al., 2008), and the diachroneity
of the onset of cooling (Pearson et al., 2008).

6 Conclusions

High-resolution analyses of the calcareous nannofossil and foraminifer assemblages
refine the biostratigraphy at ODP Site 1263 (Walvis Ridge), and demonstrate distinct15

assemblage and abundance changes in marine biota at the Eocene–Oligocene bound-
ary. The biotic response of calcareous nannoplankton was very rapid (∼ 53 kyr), similar
to the hantkenid extinction event, and pre-dated the Oi-1 event by 440 kyr.

The ecological success of the small-sized coccolithophore species vs. the drastic
decrease of large ones, and the overall decrease of nannoplankton productivity across20

the EOB may have affected the benthic foraminiferal community (e.g. decrease in rec-
tilinear species due to changes in nannoplankton floras), with increased seasonality
driving the transient increased abundance of phytodetritus-using species. After Oi-1,
both nannoplankton and benthic records are affected by intensified dissolution and
corrosivity of bottom waters.25

We conclude that the planktonic community reacted to some fast-changing environ-
mental conditions, possibly seasonally increased nutrient supply to the photic zone,
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global cooling or lowered CO2-availability, or the crossing of a threshold-level along
the longer-term (transient) climate and environmental changes suggested by available
proxy data, such as the pCO2 decline during the late Eocene-early Oligocene.

The Supplement related to this article is available online at
doi:10.5194/cpd-11-1615-2015-supplement.5
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Table 1. Calcareous nannofossil and planktonic foraminifer bioevents as identified in this study
(at meter composite depth, mcd), and the mcd reported by the Shipboard Scientific Party (Za-
chos et al., 2004). For each bioevent, the ages available in the most recent literature are given,
as well as the location of the reference sites. N.A.: not available datum; ∗: ages not included in
the sedimentation rate estimate.

This study Shipboard Ages
Scientific Party

(Zachos et al., 2004)

Datum Interval Depth Average Age Site/Area References
(hole-core- (mcd) Depth (Ma)
section, cm) (mcd)

T Isthmolithus recurvus B-3H-5, 115–116 83.19 86 32.7 Leg 199 Lyle et al. (2002)
T Coccolithus formosus A-9H-4, 9–10 85.16 86 32.92 Site 1218 Gradstein et al. (2012)
Bc Sphenolithus akropodus A-9H-4, 100–102 86.34 N.A.
B Chiasmolithus altus B-4H-2, 131–132 89.4 N.A. 33.31∗ Site 1218 Pälike et al. (2006)
B Sphenolithus akropodus B-4H-3, 50–52 90.09 N.A.
AB Clausicoccus obrutus A-10H-4, 141–142 96 94.77 33.85∗ Massignan Brown et al. (2009)

GSSP
T Hantkenina spp. A-10H-5, 32–34 96.27 104.5 33.89 Mediterranean Gradstein et al. (2012)
T Discoaster saipanensis B-5H-3, 50–52 102.27 104.1 34.44 Site 1218 Gradstein et al. (2012)
T Discoaster barbadiensis B-5H-4, 0–2 103.27 N.A. 34.76 Site 1218 Gradstein et al. (2012)
B Sphenolithus tribulosus B-5H-4, 50–52 103.77 N.A.
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Figure 1. Paleogeographic reconstruction at 33 Ma (modified from Ocean Drilling Stratigraphic
Network, Plate Tectonic Reconstruction Service, www.odsn.de/odsn/services/paleomap/
paleomap.html) showing location of ODP Site 1263 (black dot) on Walvis Ridge. The positions
of the other sites (white squares) used for comparison and cited in the text are also given.
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Figure 2. Eocene–Oligocene stratigraphy of Site 1263. Plotted against depth (mcd) are: benthic
foraminifer stable isotope data (Riesselman et al., 2007), nannofossil marker species absolute
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Figure 3. Calcareous nannofossil abundance and distribution at Site 1263. CaCO3 (wt%; Ries-
selman et al., 2007), coccolith dissolution index (%), H index, and the total absolute coccolith
abundance (Ng−1) and the mean SD percentage on 5 samples are plotted against depth. The
absolute (Ng−1, black solid line) and relative (%, grey dotted line) abundances of the main
species which constitute the assemblage are displayed. For Cyclicargolithus sp. and C. pelag-
icus also the absolute abundances of the size groups are shown. The grey bar close to the
dissolution index identifies an interval of major dissolution.
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Figure 5. Coccolith total abundance (Ng−1), PC1 and cell-size trends during the Eocene–
Oligocene at Site 1263. The average cell V : SA (µm) of all placolith-bearing species (green
area), Reticulofenestra–Dictyococcites–Cyclicargolithus (red solid line) and Reticulofenestra–
Dictyococcites (green dotted line) are reported. The average cell V : SA of ODP 925 (black
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511-277 (white squares) and ODP 1090 (black squares) from the southern ocean (Pagani et al.,
2011), and pCO2 (ppm) alkenone-based from ODP 925 (black circles; Zhang et al., 2013), ODP
929 (white circles; Pagani et al., 2011), and pCO2 boron isotope-based from TDP12/17 (grey
triangles; Pearson et al., 2009) are also shown. For comparison with sea surface temperature
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37
at low latitude in the Atlantic Ocean (Liu et al., 2009) are also displayed.
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