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Abstract 14	  

Palaeo-records from China demonstrate that the East Asian Summer Monsoon (EASM) is 15	  

dominated by abrupt and large magnitude monsoon shifts on millennial timescales, 16	  

switching between periods of high and weak monsoon rains. It has been hypothesised that 17	  

over these timescales, the EASM exhibits two stable states with bifurcation-type tipping 18	  

points between them. Here we test this hypothesis by looking for early warning signals of 19	  

past bifurcations in speleothem δ18O records from Sanbao Cave and Hulu Cave, China, 20	  

spanning the penultimate glacial cycle. We find that although there are increases in both 21	  

autocorrelation and variance preceding some of the monsoon transitions during this period, 22	  

it is only immediately prior to the abrupt monsoon shift at the penultimate deglaciation 23	  

(Termination II) that statistically significant increases are detected. To supplement our data 24	  

analysis, we produce and analyse multiple model simulations that we derive from these 25	  



data. We find hysteresis behaviour in our model simulations with transitions directly forced 26	  

by solar insolation. However, signals of critical slowing down, which occur on the approach 27	  

to a bifurcation, are only detectable in the model simulations when the change in system 28	  

stability is sufficiently slow to be detected by the sampling resolution of the dataset. This 29	  

raises the possibility that the early warning ‘alarms’ were missed in the speleothem data 30	  

over the period 224-150 kyr and it was only at the monsoon termination that the change in 31	  

the system stability was sufficiently slow to detect early warning signals.  32	  

 33	  
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1.1 Introduction 36	  

The Asian Summer Monsoon directly influences over 60% of the world’s population (Wu et 37	  

al., 2012) and yet the drivers of past and future variability remain highly uncertain 38	  

(Levermann et al., 2009; Zickfeld et al., 2005). Evidence from radiometrically-dated East 39	  

Asian speleothem records of past monsoon behaviour (Yuan et al., 2004) suggests that on 40	  

millennial timescales, the EASM is driven by a 23 kyr precession cycle (Kutzbach, 1981; 41	  

Wang et al., 2008), but also influenced by feedbacks in sea surface temperatures and 42	  

changing boundary conditions including Northern Hemisphere ice volume (An, 2000; Sun 43	  

et al., 2015). The abrupt nature of the monsoon behaviour (interpreted as a precipitation 44	  

proxy from δ18O values from Chinese speleothem records; see Section 1.4) in comparison 45	  

to the sinusoidal insolation forcing strongly implies that this response is non-linear (Figure 46	  

1); whilst Northern Hemisphere Summer Insolation (NHSI) follows a quasi-sinusoidal 47	  

cycle, the δ18O profile in speleothems exhibits a step function, suggesting the presence of 48	  

threshold behaviour in the monsoon system (Schewe et al., 2012). Though the vulnerability 49	  

of society has clearly changed, future abrupt monsoon shifts, whether caused by orbital or 50	  



anthropogenic forcing, are likely to have major devastating societal impacts (Donges et al., 51	  

2015).  52	  

 53	  

 54	  

Figure 1: (a) Northern Hemisphere Summer Insolation (NHSI) at June 30°N (Berger & 55	  

Loutre, 1991) (grey), δ18O speleothem data from Sanbao Cave (Wang et al., 2008) (dark 56	  

blue), (b) δ18O  speleothem data from Hulu Cave (Wang et al., 2001); speleothem MSH 57	  

(red), MSP (blue) and MSX (yellow), (c) δ18O per mille benthic carbonate (Lisiecki & 58	  

Raymo, 2005) (proxy for global ice volume) (purple).  59	  

 60	  

 61	  

A minimum conceptual model of the East Asian Summer Monsoon developed by Zickfeld 62	  

et al. (2005), stripped down by Levermann et al. (2009) and updated by Schewe et al. 63	  

(2012), shows a non-linear solution structure with thresholds for switching a monsoon 64	  

system between ‘on’ or ‘off’ states that can be defined in terms of atmospheric humidity – 65	  

in particular, atmospheric specific humidity over the adjacent ocean (Schewe et al., 2012). 66	  

Critically, if specific humidity levels pass below a certain threshold, for instance, as a result 67	  

of reduced sea surface temperatures, insufficient latent heat is produced in the atmospheric 68	  

column and the monsoon fails. This moisture-advection feedback allows for the existence of 69	  

two stable states, separated by a saddle-node bifurcation (Zickfeld et al., 2005) (although 70	  

interestingly, the conceptual models of Levermann et al. (2009) and Schewe et al. (2012) 71	  

are characterised by a single bifurcation point for switching ‘off’ the monsoon and an 72	  

arbitrary threshold to switch it back ‘on’). Crucially, the presence of a critical threshold at 73	  

the transition between the strong and weak regimes of the EASM means that early warning 74	  



signals related to ‘critical slowing down’ (Dakos et al., 2008; Lenton et al., 2012) could be 75	  

detectable in suitable proxy records.  76	  

 77	  

The aim of this study was twofold: (1) to test whether shifts in the EASM during the 78	  

penultimate glacial cycle (Marine Isotope Stage 6) are consistent with bifurcational tipping 79	  

points, and (2) if so, is it possible to detect associated early warning signals. To achieve 80	  

this, we analyse two δ18O speleothem records from China, and construct a simple model 81	  

that we derive directly from this data to test whether we can detect early warning signals of 82	  

these transitions.  83	  

 84	  

1.2 Detecting early warning signals 85	  

We perform ‘tipping point analysis’ on both the δ18O speleothem records and on multiple 86	  

simulations derived from our model. This analysis aims to find early warning signs of 87	  

impending tipping points that are characterised by a bifurcation (rather than a noise-induced 88	  

tipping, induced by stochastic fluctuations with no change in forcing control, or rate-89	  

dependent tipping, where a system fails to track a continuously changing quasi-static 90	  

attractor e.g. (Ashwin et al., 2012)). These tipping points can be mathematically detected by 91	  

looking at the pattern of fluctuations in the short-term trends of a time-series before the 92	  

transition takes place. A phenomenon called ‘critical slowing down’ occurs on the approach 93	  

to a tipping point, whereby the system takes longer to recover from small perturbations 94	  

(Kleinen et al., 2003; Held & Kleinen, 2004; Dakos et al., 2008). This longer recovery rate 95	  

causes the intrinsic rates of change in the system to decrease, which is detected as a short-96	  

term increase in the autocorrelation or ‘memory’ of the time-series (Ives, 1995), often 97	  

accompanied by an increasing trend in variance (Lenton et al., 2012). It has been 98	  

theoretically established that autocorrelation and variance should both increase together 99	  



(Ditlevsen & Johnsen, 2010; Thompson & Sieber, 2011). Importantly, it is the increasing 100	  

trend, rather than the absolute values of the autocorrelation and variance that indicate 101	  

critical slowing down. Detecting the phenomenon of critical slowing down relies on a 102	  

timescale separation, whereby the timescale forcing the system is much slower than the 103	  

timescale of the system’s internal dynamics, which is in turn much longer than the 104	  

frequency of data sampling the system (Held & Kleinen, 2004). Importantly, the monsoon 105	  

transitions span hundreds of years (corresponding to several data points), meeting the 106	  

criterion that the frequency of sampling is higher than the timescale of the transition of the 107	  

system. 108	  

 109	  

1.3 Missed alarms 110	  

Although efforts have been taken to reduce the chances of type I (incorrect rejection of a 111	  

true null hypothesis, otherwise known as a ‘false positive’) and type II (failure to reject a 112	  

false null hypothesis, or ‘false negative’) errors by correct pre-processing of data e.g. 113	  

(Lenton, 2011), totally eradicating the chances of false positive and false negative results 114	  

remains a challenge (Scheffer, 2010; Lenton et al., 2012; Dakos et al., 2014). Type II errors 115	  

or ‘missed alarms’, as discussed in Lenton (2011), may occur when internal noise levels are 116	  

such that the system is ‘tipped’ into a different state prior to reaching the bifurcation point, 117	  

precluding the detection of early warning signals. Type I errors are potentially easier to 118	  

guard against by employing strict protocols by which to reject a null hypothesis.  119	  

 120	  

1.4 Using speleothem δ18O data as a proxy of past monsoon strength 121	  

Highly-resolved (~102 years) and precisely dated speleothem records of past monsoonal 122	  

variability are well placed to test for early warning signals. The use of speleothem-based 123	  

proxies to reconstruct patterns of palaeo-monsoon changes has increased rapidly over recent 124	  



decades with the development of efficient sampling and dating techniques. However, there 125	  

is currently some debate surrounding the climatic interpretation of Chinese speleothem δ18O 126	  

records (An et al., 2015), which can be influenced by competing factors that affect isotope 127	  

fractionation. The oxygen isotopic composition of speleothem calcite is widely used to 128	  

reconstruct palaeohydrological variations due to the premise that speleothem calcite δ18O 129	  

records the stable isotopic content of precipitation, which has been shown to be inversely 130	  

correlated with precipitation amount (Dansgaard, 1964; Lee & Swann, 2010), a relationship 131	  

known as the ‘amount effect’. Although the δ18O of speleothem calcite in China has 132	  

traditionally been used as a proxy for the ‘amount effect’ (Cheng et al., 2006; Wang et al., 133	  

2008; Cheng et al., 2009; Wang et al., 2009), this has been challenged by other palaeo-134	  

wetness proxies, notably Maher (2008), who argues that speleothems may be influenced by 135	  

changes in rainfall source rather than amount. The influence of the Indian Monsoon has also 136	  

been proposed as an alternative cause for abrupt monsoon variations in China (Liu et al., 137	  

2006; Pausata et al., 2011), though this has since been disputed (Wang & Chen, 2012; Liu 138	  

et al., 2014). Importantly, however, robust replications of the same δ18O trends in 139	  

speleothem records across the wider region suggest they principally represent changes in 140	  

the delivery of precipitation δ18O associated with the EASM (Cheng et al., 2009; Cheng et 141	  

al., 2012; Li et al., 2013; Duan et al., 2014; Liu et al., 2014; Baker et al., 2015).  142	  

 143	  

Specific data requirements are necessary to search for early warning signs of tipping points 144	  

in climate systems; not only does the data have to represent a measure of climate, it also 145	  

must be of a sufficient length and resolution to enable the detection of critical slowing 146	  

down. In addition, since time series analysis methods require interpolation to equidistant 147	  

data points, a relative constant density of data points is important, so that the interpolation 148	  

does not skew the data. The speleothem δ18O records that we have selected fulfil these 149	  



criteria, as described in more detail in section 2.1. 150	  

 151	  

 152	  

2. Methods 153	  

2.1 Data selection 154	  

We used the Chinese speleothem sequences from Sanbao Cave (31°40’N, 110°26’E) (Wang 155	  

et al., 2008), and Hulu Cave (32°30’N, 119°10’E) (Wang et al., 2001) to search for early 156	  

warning signals. Sanbao Cave (speleothem SB11) and Hulu Cave (speleothem MSP) have 157	  

two of the highest resolution chronologies in the time period of interest, with a relatively 158	  

constant density of data points, providing some of the best records of Quaternary-scale 159	  

monsoonal variation. Speleothem δ18O records offer considerable advantages for 160	  

investigating past changes in the EASM: their long duration (103-104 years), high-resolution 161	  

(~100 years) and precise and absolute-dated chronologies (typically 1 kyr at 1σ), make 162	  

them ideal for time series analysis. Speleothem SB11 has one of the longest, continuous 163	  

δ18O records in China, and is the only series spanning an entire glacial cycle without using a 164	  

spliced record (Wang et al. 2008). Speleothem MSP has a comparable resolution and 165	  

density to SB11, though is significantly shorter. Crucially, the cave systems lie within two 166	  

regionally distinct areas (Figure 2), indicating that parallel changes in δ18O cannot be 167	  

explained by local effects.  168	  

 169	  

 170	  

Figure 2 Map showing the location of Sanbao and Hulu caves. 171	  

 172	  

 173	  

2.2 Searching for bimodality 174	  



A visual inspection of a histogram of the speleothem δ18O data was initially undertaken to 175	  

determine whether the data are likely to be bimodal. We then applied a Dip-test of 176	  

unimodality (Hartigan & Hartigan, 1985) to test whether our data is bimodal. To investigate 177	  

further the dynamical origin of the modality of our data we applied non-stationary potential 178	  

analysis (Kwasniok, 2013; Kwasniok, 2015). A non-stationary potential model (discussed 179	  

in more detail in section 2.4) was fitted, modulated by the solar forcing (NHSI June 180	  

30°N), covering the possibility of directly forced transitions as well as noise-induced 181	  

transitions with or without stochastic resonance.  182	  

 183	  

 184	  

2.3 Tipping point analysis 185	  

A search for early warning signals of a bifurcation at each monsoon transition was carried 186	  

out between 224-128 kyr of the Sanbao Cave and Hulu Cave speleothem records. Stable 187	  

periods of the Sanbao Cave δ18O record (e.g. excluding the abrupt transitions) were initially 188	  

identified visually and confirmed by subsequent analysis using a climate regime shift 189	  

detection method described by Rodionov (2004). Data pre-processing involved removal of 190	  

long term trends using a Gaussian kernel smoothing filter and interpolation to ensure that 191	  

the data is equidistant (a necessary assumption for time-series analysis), before the trends in 192	  

autocorrelation and variance (using the R functions acf() and var() respectively) are 193	  

measured over a sliding window of half the data length (Lenton et al., 2012). The density of 194	  

data points over time do not change significantly in either record and thus the observed 195	  

trends in autocorrelation are not an artefact of the data interpolation. The smoothing 196	  

bandwidth was chosen such that long-term trends were removed without overfitting the 197	  

data. A sensitivity analysis was undertaken by varying the size of the smoothing bandwidth 198	  

and sliding window to ensure the results were robust over a range of parameter choices. The 199	  



nonparametric Kendall’s tau rank correlation coefficient was applied (Kendall, 1948; Dakos 200	  

et al., 2008) to test for statistical dependence for a sequence of measurements against time, 201	  

varying between +1 and -1, describing the sign and strength of any trends in autocorrelation 202	  

and variance.  203	  

 204	  

2.3.1 Assessing significance 205	  

The results were tested against surrogate time series to ascertain the significance level of the 206	  

results found, based on the null hypothesis that the data are generated by a stationary 207	  

Gaussian linear stochastic process. This method for assessing significance of the results is 208	  

based on Dakos et al. (2012a). The surrogate time series were generated by randomising the 209	  

original data over 1000 permutations, which is sufficient to adequately estimate the 210	  

probability distribution of the null model, and destroys the memory while retaining the 211	  

amplitude distribution of the original time series. The autocorrelation and variance for the 212	  

original and each of the surrogate time series was computed, and the statistical significance 213	  

obtained for the original data by comparing against the frequency distribution of the trend 214	  

statistic (Kendall tau values of autocorrelation and variance) from the surrogate data. 215	  

Importantly, the Kendall tau values are calculated relatively, thus when the autocorrelation 216	  

is destroyed by randomisation, the null model distribution does not change. Higher Kendall 217	  

tau values indicate a stronger increasing trend. The 90th and 95th percentiles provided the 218	  

90% and 95% rejection thresholds (or p-values of 0.1 and 0.05) respectively. According to 219	  

the fluctuation-dissipation theorem (Ditlevsen & Johnsen, 2010), both autocorrelation and 220	  

variance should increase together on the approach to a bifurcation. Previous tipping point 221	  

literature has often used a visual increasing trend of autocorrelation and variance as 222	  

indicators of critical slowing down. Although using surrogate data allows a quantitative 223	  

assessment of the significance of the results, there is no consensus on what significance 224	  



level is necessary to the declare the presence of precursors of critical slowing down. To 225	  

guard against type I errors, we determine for this study that ‘statistically significant’ early 226	  

warning indicators occur with increases in both autocorrelation and variance with p-values 227	  

< 0.1. We have chosen this benchmark in line with previous studies using a similar null 228	  

model that have described results with p<0.1 as ‘robust’ (Dakos et al., 2008; Boulton & 229	  

Lenton, 2015). 230	  

 231	  

2.4 Non-stationary potential analysis 232	  

To supplement the analysis of the speleothem records and help interpret the results, a simple 233	  

stochastic model derived directly from the Sanabo cave δ18O data was constructed. Non-234	  

stationary potential analysis (Kwasniok, 2013; Kwasniok, 2015) is a method for deriving 235	  

from time series data a simple dynamical model which is modulated by external factors, 236	  

here solar insolation. The technique allows extraction of basic dynamical mechanisms and 237	  

to distinguish between competing dynamical explanations.  238	  

 239	  

The dynamics of the monsoon system are conceptually described as motion in a time- 240	  

dependent one-dimensional potential landscape; the influence of unresolved spatial and 241	  

temporal scales is accounted for by stochastic noise. The governing equation is a one-242	  

dimensional non-stationary effective Langevin equation:  243	  

 244	  

𝜂 is a white Gaussian noise process with zero mean and unit variance, and 𝜎 is the 245	  

amplitude of the stochastic forcing. The potential landscape is time-dependent, modulated 246	  

by the solar insolation: 247	  

 248	  
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dependent one-dimensional potential landscape; the influence of unresolved spatial and tem-

poral scales is accounted for by stochastic noise. The governing equation is a one-dimensional
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ẋ = �V

0
(x; t) + �⌘ (1)

⌘ is a white Gaussian noise process with zero mean and unit variance, and � is the amplitude

of the stochastic forcing. The potential landscape is time-dependent, modulated by the solar

insolation:

V (x; t) = U(x) + �I(t)x (2)

The time-independent part of the potential is modelled by a fourth-order polynomial, allow-

ing for possible bistability (Kwasniok and Lohmann, 2009):
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is only in the linear term, that is, the time-independent potential system is subject to the
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Two states are stable in turn, one at a time. (ii) Alternatively, two stable states could be
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The time-independent part of the potential is modelled by a fourth-order polynomial, 249	  

allowing for possible bi-stability (Kwasniok & Lohmann, 2009): 250	  

 251	  

I(t) is the insolation forcing and γ is a coupling parameter. The modulation of the potential 252	  

is only in the linear term, that is, the time-independent potential system is subject to the 253	  

scaled insolation forcing γI(t). The model variable x is identified with the speleothem 254	  

record. The insolation is represented as a superposition of three main frequencies as  255	  

 256	  

with time t measured in kyr. The expansion coefficients αi and βi are determined by least- 257	  

squares regression on the insolation time series over the time interval of the speleothem 258	  

record. The periods Ti are found by a search over a grid with mesh size 0.5kyr. They are, in 259	  

order of decreasing contribution αi
2 + βi

2, T1 = 23kyr, T2 = 19.5kyr and T3 = 42kyr. This 260	  

yields an excellent approximation of the insolation time series over the time interval under 261	  

consideration here.  262	  

 263	  

The potential model covers and allows to us distinguish between two possible scenarios: (i) 264	  

In the bifurcation scenario, the monsoon transitions are directly forced by the insolation, 265	  

where two states are stable in turn, one at a time. This corresponds to a fairly large value of 266	  

γ. (ii) Alternatively, two stable states could be available at all times with noise-induced 267	  

switching between them. This is realised with γ = 0, giving a stationary potential. The 268	  

height of the potential barrier separating the two states could be modulated by the 269	  

insolation, possibly giving rise to a stochastic resonance which would explain the high 270	  

degree of coherence between the solar forcing and the monsoon transitions. The latter 271	  

variant would correspond to a small but non-zero value of γ. 272	  
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The technique allows extraction of basic dynamical mechanisms and to distinguish between

competing dynamical explanations.

The dynamics of the monsoon system are conceptually described as motion in a time-

dependent one-dimensional potential landscape; the influence of unresolved spatial and tem-

poral scales is accounted for by stochastic noise. The governing equation is a one-dimensional

non-stationary e↵ective Langevin equation:

ẋ = �V

0
(x; t) + �⌘ (1)

⌘ is a white Gaussian noise process with zero mean and unit variance, and � is the amplitude

of the stochastic forcing. The potential landscape is time-dependent, modulated by the solar

insolation:

V (x; t) = U(x) + �I(t)x (2)

The time-independent part of the potential is modelled by a fourth-order polynomial, allow-

ing for possible bistability (Kwasniok and Lohmann, 2009):

U(x) =

4X

i=1

aix
i

(3)

I(t) is the insolation forcing and � is a coupling parameter. The modulation of the potential

is only in the linear term, that is, the time-independent potential system is subject to the

scaled insolation forcing �I(t). The model variable x is identified with the speleothem record.

The insolation is represented as a superposition of three main frequencies as

I(t) = ↵0 +

3X

i=1

[↵i cos(2⇡t/Ti) + �i sin(2⇡t/Ti)] (4)

with time t measured in ky. The expansion coe�cients ↵i and �i are determined by least-

squares regression on the insolation time series over the time interval of the speleothem

record. The periods Ti are found by a search over a grid with mesh size 0.5ky. They are,

in order of decreasing contribution ↵

2
i + �

2
i , T1 = 23ky, T2 = 19.5ky and T3 = 42ky. This

yields an excellent approximation of the insolation time series over the time interval under

consideration here.

The potential model incorporates and allows to distinguish between two possible scenarios:

(i) In the bifurcation scenario, the monsoon transitions are directly forced by the insolation.

Two states are stable in turn, one at a time. (ii) Alternatively, two stable states could be

available at all times with noise-induced switching between them. The height of the potential

barrier separating the two states would be modulated by the insolation, possibly giving rise

to a stochastic resonance which would explain the high degree of coherence between the solar

forcing and the monsoon transitions.
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The shape of the potential, as well as the noise level, are estimated directly from the 274	  

speleothem data according to the maximum likelihood principle. We take a two-step 275	  

approach, combining non-stationary probability density modelling (Kwasniok, 2013) and 276	  

dynamical modeling (Kwasniok, 2015). The shape of the potential is estimated from the 277	  

probability density of the data. The quasi-stationary probability density of the potential 278	  

model is  279	  

 280	  

with a time-dependent normalisation constant Z(t). The coefficients ai and the coupling  281	  

constant γ are estimated by maximising the likelihood function  282	  

 283	  

as described in Kwasniok (2013). The size of the data set is N=1288. This leaves the noise 284	  

level undetermined as a scaling of the potential with a constant c and a simultaneous scaling 285	  

of the noise variance with c keeps the quasi-stationary probability density unchanged. We 286	  

set  σ = 1 for the (preliminary) estimation of ai and γ. The noise level is now determined 287	  

from the dynamical likelihood function based on the time evolution of the system 288	  

(Kwasniok, 2015). The Langevin equation is discretised according to the Euler-Maruyama 289	  

scheme:  290	  

 291	  

The sampling interval of the data is 𝛿𝑡! = 𝑡!!! − 𝑡!. The log-likelihood function of the 292	  

data is  293	  
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2
] (5)

with a time-dependent normalisation constant Z(t). The coe�cients ai and the coupling

constant � are estimated by maximising the likelihood function

L(x1, . . . , xN) =

NY
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p(xn; tn) (6)

as described in Kwasniok (2013). The size of the data set is N . This leaves the noise level

undetermined as a scaling of the potential with a constant c and a simultaneous scaling of

the noise variance with c keeps the quasi-stationary probability density unchanged. We set

� = 1 for the (preliminary) estimation of ai and �. The noise level is now determined from

the dynamical likelihood function based on the time evolution of the system (Kwasniok,

2015). The Langevin equation is discretised according to the Euler-Maruyama scheme:

xn+1 = xn � �tnV
0
(xn; tn) +

q
�tn�⌘n (7)

The sampling interval of the data is �tn = tn+1 � tn. The log-likelihood function of the data

is

l(x1, . . . , xN |x0) = �N

2

log 2⇡�N log ��
N�1X

n=0

1

2

log �tn +
1

2

[xn+1 � xn + �tnV
0
(xn; tn)]

2

�tn�
2

(8)

The scaling constant c is searched on a grid with mesh size 0.01 and the log-likelihood

maximised, giving the final estimates of all parameters. Both estimation procedures are

applied directly to the unevenly sampled data without any prior interpolation. We remark

that the more natural and simpler approach of estimating all parameters simultaneously from

the dynamical likelihood (Kwasniok, 2015) here yields a negative leading-order coe�cient a4

and thus the model cannot be integrated over a longer time period without the trajectory

escaping to infinity. This possibly points at limitations in the degree of validity of the one-

dimensional potential model. Palaeoclimatic records reflect a multitude of complex processes

and any model as simple as eq.(1) cannot be expected to be more than a crude skeleton

model. The described estimation method guarantees a positive leading-order coe�cient a4

and therefore a globally stable model.
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The scaling constant c is searched on a grid with mesh size 0.01 and the log-likelihood 295	  

maximised, giving the final estimates of all parameters. Both estimation procedures are 296	  

applied directly to the unevenly sampled data without any prior interpolation. We remark 297	  

that the more natural and simpler approach of estimating all parameters simultaneously 298	  

from the dynamical likelihood (Kwasniok, 2015) here yields a negative leading-order 299	  

coefficient 𝑎! and thus the model cannot be integrated over a longer time period without the 300	  

trajectory escaping to infinity. This possibly points at limitations in the degree of validity of 301	  

the one-dimensional potential model. Palaeoclimatic records reflect a multitude of complex 302	  

processes and any model as simple as equation (1) cannot be expected to be more than a 303	  

skeleton model used to pinpoint and contrast basic dynamical mechanisms. The described 304	  

estimation method guarantees a positive leading-order coefficient 𝑎! and therefore a 305	  

globally stable model.  306	  

 307	  

It has been suggested that the EASM system responds specifically to 21st July insolation at 308	  

65°N with a “near-zero phase lag” (Ruddiman, 2006). However, given that EASM 309	  

development is affected by both remote and local insolation forcing (Liu et al., 2006), we 310	  

use an insolation latitude local to the Sanbao Cave record, consistent with earlier studies 311	  

from this and other speleothem sequences (Wang et al., 2001). Since the monthly maximum 312	  

insolation shifts in time with respect to the precession parameter, the 30°N June insolation 313	  

was used, though we acknowledge that the insolation changes of 65°N 21 July as used by 314	  

Wang et al. (2008) are similar with regard to the timing of maxima and minima. Crucially, 315	  

immediately prior to Termination II, the Chinese speleothem data (including Sanbao Cave) 316	  

record a ‘Weak Monsoon Interval’ between 135.5 and 129 kyr (Cheng et al., 2009), 317	  

suggesting a lag of approximately 6.5 kyrs following Northern Hemisphere summer 318	  

insolation (Figure 1).  319	  



 320	  

Having derived a model from the data, 100 realisations were analysed to test whether early 321	  

warning signals could be detected in the model output, using the methods set out in section 322	  

2.3. We initially chose the sampling resolution of the model outputs to be comparable to the 323	  

speleothem data (102 years). Subsequently, the model was manipulated by changing both 324	  

the noise level and the sampling resolution in order to explore the effect of these on the 325	  

early warning signals in a hypothetical scenario. To enable a straightforward comparison of 326	  

the rate of forcing and the sampling resolution we linearized the solar insolation using the 327	  

minimum and maximum values of the solar insolation over the time span of the model (224-328	  

128 kyr). This approach was preferred rather than using a sinusoidal forcing since early 329	  

warning signals are known to work most effectively when there is a constant increase in the 330	  

forcing. To detrend the time series data, we ran the model without any external noise 331	  

forcing to obtain the equilibrium solution to the system, which we then subtracted from the 332	  

time series, which did include noise. In addition, we manipulated the noise level of the 333	  

model by altering the amplitude of the stochastic forcing (σ in Equation 1). The time step in 334	  

the series was reduced so that 6000 time points were available prior to the bifurcation and to 335	  

ensure no data from beyond the tipping point was included in the analysis. Sampling the 336	  

same time series at different resolutions allowed us to explore the effect of this on the early 337	  

warning signals. When comparing early warning signals for differing sample steps and 338	  

noise levels, the same iteration of the model was used to enable a direct comparison.  339	  

 340	  

3. Results 341	  

3.1 Bimodality and non-stationary potential modelling 342	  

A histogram of δ18O values suggests there are two modes in the EASM between 224-128 343	  

kyr, as displayed by the double peak structure in Figure 3a, supporting a number of studies 344	  



that observe bimodality in tropical monsoon systems (Zickfeld et al., 2005; Schewe et al., 345	  

2012). We also apply a Dip-test of unimodality (Hartigan & Hartigan, 1985) and find that 346	  

our null hypothesis of unimodality is rejected (D=0.018, p=0.0063) and thus our data is at 347	  

least bimodal. To investigate further the dynamical origin of this bimodality we 348	  

applied non-stationary potential analysis (Kwasniok, 2013; Kwasniok, 2015). This showed 349	  

a bi-stable structure to the EASM with hysteresis (Figure 3b, c), suggesting that abrupt 350	  

monsoon transitions may involve underlying bifurcations. The monsoon transitions appear 351	  

to be predominantly directly forced by the insolation. There is a phase in the middle of the 352	  

transition cycle between the extrema of the insolation where two stable states are available 353	  

at the same time but this phase is too short for noise-induced switches to play a significant 354	  

role. 355	  

 356	  

We are able to clearly refute from the speleothem data the scenario of noise-induced 357	  

switching between two simultaneously available states in favour of the bifurcation scenario. 358	  

When fitting a model without solar insolation forcing (that is, γ = 0) we obtain a stationary 359	  

potential with two deep wells and noise-driven switching between them. However, the pdf-360	  

based log-likelihood of equation (6) is l = -2149.1 versus l = -1943.2 for the model with 361	  

insolation forcing and the dynamical log-likelihood of equation (8) is l = -353.6 versus l = -362	  

346.6. This provides very strong evidence for the bifurcation scenario; based on both 363	  

likelihood functions, both the Akaike and the Bayesian information criterion clearly prefer 364	  

the model with solar insolation forcing. The value of γ is fairly large and the stationary part 365	  

of the potential is not strongly bistable, as evidence by the shape of the potential given in 366	  

Figure 3, ruling out the stochastic resonance scenario. The uncertainty in all parameters, 367	  

including the noise level, is very small, making our model estimation robust. We tried more 368	  

complicated models where also the higher-order terms in the potential are modulated by the 369	  



insolation rather than just the linear term or where the solar insolation enters nonlinearly 370	  

into the model; the gain in likelihood is found to be rather minor compared to the gain 371	  

achieved when adding the modulation in the linear term of the potential.  372	  

 373	  

 374	  

Figure 3 (a) Histogram showing the probability density of the speleothem data aggregated 375	  

over 224-128 kyr, (b) Bifurcation diagram obtained from potential model analysis, showing 376	  

bi-stability and hysteresis. Solid black lines indicate stable states, dotted line unstable states, 377	  

and dashed vertical lines the jumps between the two stable branches. Coloured vertical lines 378	  

correspond to the insolation values for which the potential curve is shown in panel c; (c) 379	  

Shows how the shape of the potential well changes over one transition cycle (198-175 kyr) 380	  

(green long dash = 535 W/m2, purple short dash = 531 W/m2, blue solid = 490 W/m2, red 381	  

dotted = 449 W/m2) (for more details see Figure 10). 382	  

 383	  

 384	  

3.2 Tipping point analysis 385	  

We applied tipping point analysis on the Sanbao Cave δ18O record on each section of data 386	  

prior to a monsoon transition. Although autocorrelation and variance do increase prior to 387	  

some of the abrupt monsoon transitions (Figure 4), these increases are not consistent 388	  

through the entire record. Surrogate datasets used to test for significance of our results 389	  

showed that p-values associated with these increases are only <0.1 for both autocorrelation 390	  

and variance (Figure 5) in one instance. Although a visual increasing trend has been used in 391	  

previous literature as an indicator of critical slowing down, we choose more selective 392	  

criteria to guard against the possibility of false positives.  393	  

 394	  



 395	  

Figure 4 a) δ18O speleothem data from Sanbao Cave (SB11) (blue line) and NHSI at July 396	  

65°N (grey line). Grey hatched areas show the sections of data selected for tipping point 397	  

analysis. b) Autocorrelation and variance for each period prior to a transition.  398	  

 399	  

 400	  

Figure 5 Histogram showing frequency distribution of Kendall tau values from 1000 401	  

realisations of a surrogate time series model (described in Section 2.3.1), for Sanbao Cave 402	  

(a, b) and Hulu Cave (c, d) δ18O data. The grey dashed lines indicate the 90% (p<0.1) and 403	  

95% (p<0.05) significance level. Each coloured line denotes the Kendall tau values for 404	  

autocorrelation and variance, for each section of speleothem data analysed (red = 131-156 405	  

kyr; yellow =166-177 kyr; purple = 180-189 kyr; green = 191-198 kyr; orange = 200-208 406	  

kyr; blue = 214-225 kyr). 407	  

 408	  

 409	  

The only section of data prior to a monsoon transition that sees p-values of <0.1 for the 410	  

increases in both autocorrelation and variance is for the data spanning the period 150 to 129 411	  

kyr in the Sanbao Cave record, before Monsoon Termination II (Figure 6). We find that the 412	  

Kendall tau value for autocorrelation has a significance level of p < 0.05 and for variance a 413	  

significance level of p < 0.1 (Figure 5a and 5b). These proportional positive trends in both 414	  

autocorrelation and variance are consistent with critical slowing down on the approach to a 415	  

bifurcation (Ditlevsen & Johnsen, 2010).  416	  

 417	  

 418	  

Figure 6 Tipping Point analysis on data from Sanbao Cave (Speleothem SB11) (31°40’N, 419	  



110°26’E). (a) Data was smoothed over an appropriate bandwidth (purple line) to produce 420	  

data residuals (b), and analysed over a sliding window (of size between the two grey 421	  

vertical lines). The grey vertical line at 131 ka BP indicates the tipping point, and the point 422	  

up to which the data is analysed. (d) AR(1) values and associated Kendall tau value, and (e) 423	  

displays the variance and associated Kendall tau value. 424	  

 425	  

To test whether the signal is present in other EASM records, we undertook the same 426	  

analysis on a second speleothem sequence of comparable age (Figure 7). We find that 427	  

speleothem MSP from Hulu Cave (32°30’N, 119°10’E) (Wang et al., 2001) displays a 428	  

comparable increase in autocorrelation and variance to speleothem SB11 from Sanbao 429	  

Cave, though these do display slightly lower p-values (Figure 5c and 5d).  430	  

 431	  

 432	  

Figure 7 Tipping Point analysis on data from Hulu Cave (Speleothem MSP) (32°30' N, 433	  

119°10' E) (a) Data was smoothed over an appropriate bandwidth (purple line) to produce 434	  

data residuals (b), and analysed over a sliding window (of size between the two grey 435	  

vertical lines). The grey vertical line at 131 ka BP indicates the tipping point, and the point 436	  

up to which the data is analysed. (d) Autocorrelation values and associated Kendall tau 437	  

value, and (e) the variance and associated Kendall tau value. 438	  

 439	  

 440	  

Furthermore, a sensitivity analysis was performed (results shown for data preceding the 441	  

monsoon termination in both speleothem SB11 and MSP, Figure 8) to ensure that the 442	  

results are robust over a range of parameters by running repeats of the analysis with a range 443	  

of smoothing bandwidths used to detrend the original data (5-15% of the time series length) 444	  



and sliding window sizes in which indicators are estimated (25-75% of the time series 445	  

length). The colour contours show how the Kendall tau values change when using different 446	  

parameter choices; for the autocorrelation at Sanbao Cave the Kendall tau values are over 447	  

0.8 for the vast majority of smoothing bandwidth and sliding window sizes (Figure 8a), 448	  

indicating a robust analysis.  449	  

 450	  

 451	  

Figure 8 Contour plots showing a range of window and bandwidth sizes for the analysis; 452	  

(a) Sanbao SB11 autocorrelation, (b) Sanbao SB11 variance, (c) Hulu MSP autocorrelation, 453	  

(d) Hulu MSP variance. Black stars indicate the parameters used for the analysis in Figures 454	  

6 and 7.  455	  

 456	  

 457	  

3.3 Potential model simulations 458	  

To help interpret these results we applied our potential model. In the model we find 459	  

transitions occur under direct solar insolation forcing when reaching the end of the stable 460	  

branches, explaining the high degree of synchronicity between the transitions and solar 461	  

forcing. The initial 100 realisations produced from our potential model appear broadly to 462	  

follow the path of June insolation at 30°N with a small phase lag (Figure 9). The model 463	  

simulations also follow the speleothem palaeodata for all but the monsoon transition at 129 464	  

ka BP near Termination II, where the model simulations show no extended lag with respect 465	  

to the insolation. Again it has to be kept in mind that the potential model as a skeleton 466	  

model can only be expected to qualitatively reproduce the main features of the data. 467	  

Actually observing the speleothem record as a realisation of the model will always be 468	  

highly unlikely with any model as simple as the present one. 469	  



 470	  

 471	  

Figure 9 Probability range of 100 model simulations, with the June 30°N NHSI (in red), 472	  

and the palaeodata from SB11 (in green). 473	  

 474	  

 475	  

No consistent early warning signals were found in the initial 100 model simulations during 476	  

the period 224-128 kyr. In order to detect critical slowing down on the approach to a 477	  

bifurcation, the data must capture the gradual flattening of the potential well. We suggest 478	  

that early warning signals were not detected due to a relatively fast rate of forcing compared 479	  

to the sampling of the system; this comparatively poor sampling prevents the gradual 480	  

flattening of the potential well from being recorded in the data; a feature common to many 481	  

palaeoclimate datasets. Figure 10 illustrates the different flattening of the potential well 482	  

over a transition cycle during the glacial period and over the transition cycle at the 483	  

termination. There is more visible flattening in the potential at the termination, as seen in 484	  

panel (c), which is thought to be due to the reduced amplitude of the solar forcing at the 485	  

termination. The distinction between these two transitions cycles helps to explain why early 486	  

warning signals in the form of increasing autocorrelation and variance are found 487	  

immediately preceding the termination, but not for the other monsoon transitions. 488	  

 489	  

 490	  

Figure 10 Potential analysis from the Sanabo δ18O data showing the changing shape of the 491	  

potential well over (b) a transition cycle during the glacial period (198-175 kyr); and (c) the 492	  

transition cycle at the termination (150-128.5 kyr). Dotted lines show stages of the 493	  

transition over high, medium, and low insolation values, as depicted in panel (a).  494	  



 495	  

 496	  

To test the effect on the early warning signals of the sampling resolution of the model, we 497	  

compared a range of different sampling time steps in the model (see section 2.4) measuring 498	  

the Kendall tau values of autocorrelation and variance over each realisation of the model 499	  

(one realisation displayed in Figure 11), which demonstrates the effects of increasing the 500	  

sampling time step in the model. We found that whereas an increasing sampling time step 501	  

produces a steady decrease in the Kendall tau values for autocorrelation (Figure 11b), 502	  

Kendall tau values remain fairly constant for variance (Figure 11c), suggesting that the 503	  

latter is not affected by time step changes. This supports the contention by Dakos et al. 504	  

(2012b) that ‘high resolution sampling has no effect on the estimate of variance’. In 505	  

addition, we manipulated the noise level and found that decreasing the noise level by a 506	  

factor of 2 was necessary to identify consistent early warning signals. This is illustrated in 507	  

Figure 11a, where the grey line represents the noise level as determined by the model, 508	  

which does not follow a step transition, and cannot be adequately detrended by the equation 509	  

derived from the model. However, once the noise level is sufficiently reduced, early 510	  

warning signals (displayed here as high Kendall tau values for autocorrelation and variance) 511	  

can be detected.  512	  

 513	  

 514	  

Figure 11 a) Example of single realisation of the approach to a bifurcation from our 515	  

potential model, which has been generated using 4 different noise levels (original noise = 516	  

grey, 0.5 noise = black, 0.2 noise = blue, 0.1 noise = green). Tipping point analysis was 517	  

applied on each realisation, where the red line depicts the detrending line and the grey 518	  

dashed vertical line is the cut-off point where data is analysed up to;  distribution of Kendall 519	  



tau values for (a) autocorrelation and (b) variance over increasing sample step and differing 520	  

noise levels. 521	  

 522	  

 523	  

4. Discussion 524	  

It is important to note here that although the detection of early warning signals in time 525	  

series data has been widely used for the detection of bifurcations in a range of systems 526	  

(Dakos et al., 2008), there are instances when critical slowing down cannot be 527	  

detected/recorded prior to a bifurcation. First is the assumption that the abrupt monsoon 528	  

shifts are characterised by a bifurcation, rather than noise-induced tipping or stochastic 529	  

resonance. The bifurcation hypothesis is supported by previous studies (Zickfeld et al., 530	  

2005; Levermann et al., 2009; Schewe et al., 2012) as well as our potential model, which 531	  

selects a bifurcation as the most likely scenario (whilst considering noise-induced tipping 532	  

and stochastic resonance). In a noise-induced tipping or stochastic resonance scenario, no 533	  

early warning signals would be expected since there would be no gradual change in the 534	  

stability of the system (Lenton, 2011). Even within the bifurcation scenario, it is possible 535	  

that early warning signals may not be detected due to external dynamics of the system, such 536	  

as a high level of stochastic noise, or when there is an insufficient sampling resolution. The 537	  

results illustrated in Figure 11 confirm that early warning signals may not be detected for 538	  

bifurcations if the rate of forcing is too fast compared to the sampling rate, such that the 539	  

flattening of the potential is poorly recorded in time series; Figure 11c clearly illustrates the 540	  

detrimental effect of a lower resolution on Kendall tau values, particularly for 541	  

autocorrelation. ‘Missed alarms’ may therefore be common in palaeodata where there is an 542	  

insufficient sampling resolution to detect the flattening of the potential; a high sampling 543	  

resolution is thus recommended to help avoid this issue. There is more flattening visible in 544	  



the potential for the monsoon transition at 129 ka BP (Termination II), which is due to the 545	  

reduced amplitude of the orbital forcing at the termination, but it is unclear whether this is 546	  

sufficient to explain the early warning signal detected in the palaeodata. We suggest that 547	  

additional forcing mechanisms may be driving the termination e.g. (Caley et al., 2011) 548	  

which cannot be captured by the potential model (as evidenced by the trajectory of the data 549	  

falling outside the probability range of the potential model (Figure 9)).  550	  

 551	  

One possible reason for the detection of a critical slowing down immediately prior to the 552	  

termination (129 ka BP) is a change in the background state of the climate system. 553	  

Termination II is preceded by a Weak Monsoon Interval (WMI) in the EASM at 135.5-129 554	  

kyr (Cheng et al., 2009), characterised by the presence of a longer lag between the change 555	  

in insolation and the monsoon transition. The WMI is thought to be linked to migrations in 556	  

the Inter-tropical Convergence Zone (ITCZ) (Yancheva et al., 2007). Changes in the 557	  

latitudinal temperature gradient (Rind, 1998) or planetary wave patterns (Wunsch, 2006) 558	  

driven by continental ice volume (Cheng et al., 2009) and/or sea ice extent (Broccoli et al., 559	  

2006) have been suggested to play a role in causing this shift in the ITCZ. For instance, the 560	  

cold anomaly associated with Heinrich event 11 (at 135 ka BP) has been invoked as a 561	  

possible cause of the WMI, cooling the North Atlantic and shifting the Polar Front and 562	  

Siberian High southwards, forcing an equatorward migration of westerly airflow across 563	  

Asia (Broecker et al., 1985; Cheng et al., 2009; Cai et al., 2015). Such a scenario would 564	  

have maintained a low thermal gradient between the land and sea, causing the Weak 565	  

Monsoon Interval and potentially suppressing a simple insolation response. The implication 566	  

is that during the earlier monsoon transitions in Stage 6, continental ice volume and/or sea-567	  

ice extent was less extensive than during the WMI, allowing the solar insolation response to 568	  

dominate.  569	  



 570	  

 571	  

5. Conclusions 572	  

We analysed two speleothem δ18O records from China over the penultimate glacial cycle as 573	  

proxies for the past strength of the EASM to test whether we could detect early warning 574	  

signals of the transitions between the strong and weak regimes. After determining that the 575	  

data was bimodal, we derived a non-stationary potential model directly from this data 576	  

featuring a fold bifurcation structure. We found evidence of critical slowing down before 577	  

the abrupt monsoon shift at Termination II (129 ka BP) in the speleothem δ18O data. 578	  

However, we do not find consistent early warning signals of a bifurcation for the abrupt 579	  

monsoon shifts in the period between 224-150 kyr, which we term ‘missed alarms’. 580	  

Exploration of sampling resolution from our model suggests that the absence of robust 581	  

critical slowing down signals in the palaeodata is due to a combination of rapid forcing and 582	  

the insufficient sampling resolution, preventing the detection of the steady flattening of the 583	  

potential that occurs before a bifurcation. We also find that there is a noise threshold at 584	  

which early warning signals can no longer be detected. We suggest that the early warning 585	  

signal detected at Termination II in the palaeodata is likely due to the longer lag during the 586	  

Weak Monsoon Interval, linked to cooling in the North Atlantic. This allows a steadier 587	  

flattening of the potential associated with the stability of the EASM and thus enables the 588	  

detection of critical slowing down. Our results have important implications for identifying 589	  

early warning signals in other natural archives, including the importance of sampling 590	  

resolution and the background state of the climate system (full glacial versus termination). 591	  

In addition, it is advantageous to use archives which record multiple transitions, rather than 592	  

a single shift, such as the speleothem records reported here; the detection of an early 593	  

warning signal during one transition compared to previous events in the same record 594	  



provides an insight into changing/additional forcing mechanisms.  595	  

 596	  
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