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Abstract 14	
  

Palaeo-records from China demonstrate that the East Asian Summer Monsoon (EASM) is 15	
  

dominated by abrupt and large magnitude monsoon shifts on millennial timescales, 16	
  

switching between periods of high and weak monsoon rains. It has been hypothesised that 17	
  

over these timescales, the EASM exhibits two stable states with bifurcation-type tipping 18	
  

points between them. Here we test this hypothesis by looking for early warning signals of 19	
  

past bifurcations in speleothem δ18O records from Sanbao Cave and Hulu Cave, China, 20	
  

spanning the penultimate glacial cycle. We find that although there are increases in both 21	
  

autocorrelation and variance preceding some of the monsoon transitions during this period, 22	
  

it is only immediately prior to the abrupt monsoon shift at the penultimate deglaciation 23	
  

(Termination II) that statistically significant increases are detected. To supplement our data 24	
  

analysis, we produce and analyse multiple model simulations that we derive from these 25	
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data. We find hysteresis behaviour in our model simulations with transitions directly forced 26	
  

by solar insolation. However, signals of critical slowing down, which occur on the approach 27	
  

to a bifurcation, are only detectable in the model simulations when the change in system 28	
  

stability is sufficiently slow to be detected by the sampling resolution of the dataset. This 29	
  

raises the possibility that the early warning ‘alarms’ were missed in the speleothem data 30	
  

over the period 224-150 ka BP and it was only at the monsoon termination that the change 31	
  

in the system stability was sufficiently slow to detect early warning signals.  32	
  

 33	
  

Keywords: Speleothem, monsoon, bifurcation, early warning signals, tipping point 34	
  

 35	
  

1. Introduction 36	
  

The Asian Summer Monsoon directly influences over 60% of the world’s population (Wu et 37	
  

al., 2012) and yet the drivers of past and future variability remain highly uncertain 38	
  

(Levermann et al., 2009; Zickfeld et al., 2005). Evidence based on radiometrically-dated 39	
  

speleothem records of past monsoon behaviour from East Asia (Yuan et al., 2004) suggests 40	
  

that on millennial timescales, the EASM is driven by a 23 kyr precession cycle (Kutzbach, 41	
  

1981; Wang et al., 2008), but also influenced by feedbacks in sea surface temperatures and 42	
  

changing boundary conditions including Northern Hemisphere ice volume (An, 2000; Sun 43	
  

et al., 2015). The demise of Chinese dynasties have been linked to monsoon shifts over 44	
  

more recent millennia (Zhang et al., 2008), suggesting that any future changes, whether 45	
  

caused by solar or anthropogenic forcing, could have similarly devastating societal impacts. 46	
  

The abrupt nature of the monsoon behaviour in comparison to the sinusoidal insolation 47	
  

forcing strongly implies that this response is non-linear (Figure 1); whilst Northern 48	
  

Hemisphere Summer Insolation (NHSI) follows a quasi-sinusoidal cycle, the δ18O profile in 49	
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speleothems exhibits a step function, suggesting the presence of threshold behaviour in the 50	
  

monsoon system (Schewe et al., 2012).  51	
  

 52	
  

 53	
  

Figure 1: (a) Northern Hemisphere Summer Insolation (NHSI) at June 30°N (Berger and 54	
  

Loutre, 1991) (grey), δ18O speleothem data from Sanbao Cave (Wang et al., 2008) (dark 55	
  

blue), (b) δ18O  speleothem data from Hulu Cave (Wang et al., 2001); speleothem MSH 56	
  

(red), MSP (blue) and MSX (yellow), (c) CO2 (ppmv) from the Antarctic Vostok ice core 57	
  

(Petit et al., 1999) (black), (d) δ18O per mille benthic carbonate (Lisiecki and Raymo, 2005) 58	
  

(proxy for global ice volume) (purple).  59	
  

 60	
  

 61	
  

A minimum conceptual model of the East Asian Summer Monsoon developed by Zickfeld 62	
  

et al. (2005), stripped down by Levermann et al. (2009) and updated by Schewe et al. 63	
  

(2012), shows a non-linear solution structure with thresholds for switching a monsoon 64	
  

system between ‘on’ or ‘off’ states that can be defined in terms of atmospheric humidity – 65	
  

in particular, atmospheric specific humidity over the adjacent ocean (Schewe et al., 2012). 66	
  

Critically, if specific humidity levels pass below a certain threshold, for instance, as a result 67	
  

of reduced sea surface temperatures, insufficient latent heat is produced in the atmospheric 68	
  

column and the monsoon fails. This moisture-advection feedback allows for the existence of 69	
  

two stable states, separated by a saddle-node bifurcation (Zickfeld et al., 2005) (although 70	
  

interestingly, the conceptual models of Levermann et al. (2009) and Schewe et al. (2012) 71	
  

are characterised by a single bifurcation point for switching ‘off’ the monsoon and an 72	
  

arbitrary threshold to switch it back ‘on’). Crucially, the presence of a critical threshold at 73	
  

the transition between the strong and weak regimes of the EASM means that early warning 74	
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signals related to ‘critical slowing down’ (Dakos et al., 2008; Lenton et al., 2012) could be 75	
  

detectable in suitable proxy records.  76	
  

 77	
  

The aim of this study was twofold: (1) to test whether shifts in the EASM during the 78	
  

penultimate glacial cycle (Marine Isotope Stage 6) are consistent with bifurcational tipping 79	
  

points, and (2) if so, is it possible to detect associated early warning signals. To achieve 80	
  

this, we analyse two δ18O speleothem records from China, and construct a simple model 81	
  

that we derive directly from this data to test whether we can detect early warning signals of 82	
  

these transitions.  83	
  

 84	
  

Detecting early warning signals 85	
  

We perform ‘tipping point analysis’ on both the δ18O speleothem records and on multiple 86	
  

simulations derived from our model. This analysis aims to find early warning signs of 87	
  

impending tipping points that are characterised by a bifurcation (rather than a noise-induced 88	
  

or rate-induced tipping e.g. Ashwin et al. (2012)). These tipping points can be 89	
  

mathematically detected by looking at the pattern of fluctuations in the short-term trends of 90	
  

a time-series before the transition takes place. A phenomenon called ‘critical slowing down’ 91	
  

occurs on the approach to a tipping point, whereby the system takes longer to recover from 92	
  

small perturbations (Dakos et al., 2008; Held and Kleinen, 2004; Kleinen et al., 2003). This 93	
  

longer recovery rate causes the intrinsic rates of change in the system to decrease, which is 94	
  

detected as a short-term increase in the autocorrelation or ‘memory’ of the time-series (Ives, 95	
  

1995), often accompanied by an increasing trend in variance (Lenton et al., 2012). While it 96	
  

has been theoretically established that autocorrelation and variance should both increase 97	
  

together (Ditlevsen and Johnsen, 2010; Thompson and Sieber, 2011), there are some factors 98	
  

which can negate this, discussed in detail in Dakos et al. (2012b, 2014). Importantly, it is 99	
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the increasing trend, rather than the absolute values of the autocorrelation and variance that 100	
  

indicate critical slowing down. Detecting the phenomenon of critical slowing down relies 101	
  

on a timescale separation, whereby the timescale forcing the system is much slower than the 102	
  

timescale of the system’s internal dynamics, which is in turn much longer than the 103	
  

frequency of data sampling the system (Held and Kleinen, 2004).  104	
  

 105	
  

Missed alarms 106	
  

Although efforts have been taken to reduce the chances of type I and type II errors by 107	
  

correct pre-processing of data e.g. (Lenton, 2011), totally eradicating the chances of false 108	
  

positive and false negative results remains a challenge (Dakos et al., 2014; Lenton et al., 109	
  

2012; Scheffer, 2010). Type II errors or ‘missed alarms’, as discussed in Lenton (2011), 110	
  

may occur when internal noise levels are such that the system is ‘tipped’ into a different 111	
  

state prior to reaching the bifurcation point, precluding the detection of early warning 112	
  

signals. Type I errors are potentially easier to guard against by employing strict protocols by 113	
  

which to reject a null hypothesis.  114	
  

 115	
  

Using speleothem δ18O data as a proxy of past monsoon strength 116	
  

Highly-resolved (~102 years) and precisely dated speleothem records of past monsoonal 117	
  

variability are well placed to test for early warning signals. The use of speleothem-based 118	
  

proxies to reconstruct patterns of palaeo-monsoon changes has increased rapidly over recent 119	
  

decades with the development of efficient sampling and dating techniques. However, there 120	
  

is currently some debate surrounding the climatic interpretation of Chinese speleothem δ18O 121	
  

records (An et al., 2015), which can be influenced by competing factors that affect isotope 122	
  

fractionation. The oxygen isotopic composition of speleothem calcite is widely used to 123	
  

reconstruct palaeohydrological variations due to the premise that speleothem calcite δ18O 124	
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records the stable isotopic content of precipitation, which has been shown to be inversely 125	
  

correlated with precipitation amount (Lee and Swann, 2010; Dansgaard, 1964), a 126	
  

relationship known as the ‘amount effect’. Although the δ18O of speleothem calcite in China 127	
  

has traditionally been used as a proxy for the ‘amount effect’ (Cheng et al., 2006, 2009; 128	
  

Wang, 2009; Wang et al., 2008), this has been challenged by other palaeo-wetness proxies, 129	
  

notably Maher (2008), who argues that speleothems may be influenced by changes in 130	
  

rainfall source rather than amount. The influence of the Indian Monsoon has also been 131	
  

proposed as an alternative cause for abrupt monsoon variations in China (Liu et al., 2006; 132	
  

Pausata et al., 2011), though this has since been disputed (Liu et al., 2014; Wang and Chen, 133	
  

2012). Importantly, however, robust replications of the same δ18O trends in speleothem 134	
  

records across the wider region suggest they principally represent changes in the delivery of 135	
  

precipitation δ18O associated with the EASM (Baker et al., 2015; Cheng et al., 2009, 2012; 136	
  

Duan et al., 2014; Li et al., 2013; Liu et al., 2014).  137	
  

 138	
  

Specific data requirements are necessary to search for early warning signs of tipping points 139	
  

in climate systems; not only does the data have to represent a measure of climate, it also 140	
  

must be of a sufficient length and resolution to enable the detection of critical slowing 141	
  

down. In addition, since time series analysis methods require interpolation to equidistant 142	
  

data points, a relative constant density of data points is important, so that the interpolation 143	
  

does not skew the data. The speleothem δ18O records that we have selected fulfil these 144	
  

criteria, as described in more detail in section 2.1. 145	
  

 146	
  

 147	
  

2. Methods 148	
  

2.1 Data selection 149	
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We used the Chinese speleothem sequences from Sanbao Cave (31°40’N, 110°26’E) (Wang 150	
  

et al., 2008), and Hulu Cave (32°30’N, 119°10’E) (Wang et al., 2001) to search for early 151	
  

warning signals. Sanbao Cave (speleothem SB11) and Hulu Cave (speleothem MSP) have 152	
  

two of the highest resolution chronologies in the time period of interest, with a relatively 153	
  

constant density of data points, providing some of the best records of Quaternary-scale 154	
  

monsoonal variation. Speleothem δ18O offer considerable advantages for investigating past 155	
  

changes in the EASM: their long duration (103-104 years), high-resolution (~100 years) and 156	
  

precise and absolute-dated chronologies (typically 1 kyr at 1σ), make them ideal for time 157	
  

series analysis. Speleothem SB11 has one of the longest, continuous δ18O records in China, 158	
  

and is the only series spanning an entire glacial cycle without using a spliced record (Wang 159	
  

et al. 2008). Speleothem MSP has a comparable resolution and density to SB11, though is 160	
  

significantly shorter. Crucially, the cave systems lie within two regionally distinct areas 161	
  

(Figure 2), indicating that parallel changes in δ18O cannot be explained by local effects.  162	
  

 163	
  

 164	
  

Figure 2 Map showing the location of Sanbao and Hulu caves. 165	
  

 166	
  

 167	
  

2.2 Searching for bimodality 168	
  

A visual inspection of a histogram of the speleothem δ18O data was initially undertaken to 169	
  

determine whether the data are likely to be bimodal. We then applied a Dip-test of 170	
  

unimodality (Hartigan and Hartigan, 1985) to test whether our data is bimodal. To 171	
  

investigate further the dynamical origin of the modality of our data we applied non-172	
  

stationary potential analysis (Kwasniok, 2013). A non-stationary potential model (discussed 173	
  

in more detail in section 2.4) was fitted, modulated by the solar forcing (NHSI June 174	
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30°N), covering the possibility of directly forced transitions as well as noise-induced 175	
  

transitions with or without stochastic resonance.  176	
  

 177	
  

 178	
  

2.3 Tipping point analysis 179	
  

A search for early warning signals of a bifurcation at each monsoon transition was carried 180	
  

out between 224-128 ka BP of the Sanbao Cave and Hulu Cave speleothem records. Stable 181	
  

periods of the Sanbao Cave δ18O record (e.g. excluding the abrupt transitions) were initially 182	
  

identified visually and confirmed by subsequent analysis using a climate regime shift 183	
  

detection method described by Rodionov (2004). Data pre-processing involved removal of 184	
  

long term trends using a Gaussian kernel smoothing filter and interpolation to ensure that 185	
  

the data is equidistant (a necessary assumption for time-series analysis), before the trends in 186	
  

autocorrelation and variance (using the R functions acf() and var() respectively) are 187	
  

measured over a sliding window of half the data length (Lenton et al., 2012). The density of 188	
  

data points over time do not change significantly over either record and thus the observed 189	
  

trends in autocorrelation are not an artefact of the data interpolation. The smoothing 190	
  

bandwidth was chosen such that long-term trends were removed, without overfitting the 191	
  

data. A sensitivity analysis was undertaken by varying the size of the smoothing bandwidth 192	
  

and sliding window to ensure the results were robust over a range of parameter choices. The 193	
  

nonparametric Kendall’s tau rank correlation coefficient was applied (Dakos et al., 2008; 194	
  

Kendall, 1948) to test for statistical dependence for a sequence of measurements against 195	
  

time, varying between +1 and -1, describing the sign and strength of any trends in 196	
  

autocorrelation and variance.  197	
  

 198	
  

2.3.1 Assessing significance 199	
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The results were tested against surrogate time series to ascertain the significance level of the 200	
  

results found, based on the null hypothesis that the data are generated by a stationary 201	
  

Gaussian linear stochastic process. This method for assessing significance of the results is 202	
  

based on Dakos et al. (2012a). The surrogate time series were generated by randomising the 203	
  

original data over 1000 permutations, which is sufficient to adequately estimate the 204	
  

probability distribution of the null model, and destroys the memory while retaining the 205	
  

amplitude distribution of the original time series. The autocorrelation and variance for the 206	
  

original and each of the surrogate time series was computed, and the statistical significance 207	
  

obtained for the original data by comparing against the frequency distribution of the trend 208	
  

statistic (Kendall tau values of autocorrelation and variance) from the surrogate data. The 209	
  

90th and 95th percentiles provided the 90% and 95% rejection thresholds (or p-values of 0.1 210	
  

and 0.05) respectively. According to the fluctuation-dissipation theorem (Ditlevsen and 211	
  

Johnsen, 2010), both autocorrelation and variance should increase together on the approach 212	
  

to a bifurcation. Previous tipping point literature has often used a visual increasing trend of 213	
  

autocorrelation and variance as indicators of critical slowing down. Although using 214	
  

surrogate data allows a quantitative assessment of the significance of the results, there is no 215	
  

consensus on what significance level is necessary to the declare the presence of precursors 216	
  

of critical slowing down. To guard against type I errors, we determine for this study that 217	
  

‘statistically significant’ early warning indicators occur with increases in both 218	
  

autocorrelation and variance with p-values > 0.1. 219	
  

 220	
  

2.4 Non-stationary potential analysis 221	
  

To supplement the analysis of the speleothem records and help interpret the results, a simple 222	
  

stochastic model derived directly from this data was constructed. Non-stationary potential 223	
  

analysis (Kwasniok, 2013, 2015) is a method for deriving from time series data a simple 224	
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dynamical model which is modulated by external factors, here solar insolation. The 225	
  

technique allows extraction of basic dynamical mechanisms and to distinguish between 226	
  

competing dynamical explanations.  227	
  

 228	
  

The dynamics of the monsoon system are conceptually described as motion in a time- 229	
  

dependent one-dimensional potential landscape; the influence of unresolved spatial and 230	
  

tem- poral scales is accounted for by stochastic noise. The governing equation is a one-231	
  

dimensional non-stationary effective Langevin equation:  232	
  

 233	
  

𝜂 is a white Gaussian noise process with zero mean and unit variance, and 𝜎 is the 234	
  

amplitude of the stochastic forcing. The potential landscape is time-dependent, modulated 235	
  

by the solar insolation: 236	
  

 237	
  

The time-independent part of the potential is modelled by a fourth-order polynomial, 238	
  

allowing for possible bi-stability (Kwasniok and Lohmann, 2009): 239	
  

 240	
  

I(t) is the insolation forcing and γ is a coupling parameter. The modulation of the potential 241	
  

is only in the linear term, that is, the time-independent potential system is subject to the 242	
  

scaled insolation forcing γI(t). The model variable x is identified with the speleothem 243	
  

record. The insolation is represented as a superposition of three main frequencies as  244	
  

 245	
  

with time t measured in ky. The expansion coefficients αi and βi are determined by least- 246	
  

squares regression on the insolation time series over the time interval of the speleothem 247	
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record. The periods Ti are found by a search over a grid with mesh size 0.5ky. They are,

in order of decreasing contribution ↵

2
i + �

2
i , T1 = 23ky, T2 = 19.5ky and T3 = 42ky. This

yields an excellent approximation of the insolation time series over the time interval under

consideration here.

The potential model incorporates and allows to distinguish between two possible scenarios:

(i) In the bifurcation scenario, the monsoon transitions are directly forced by the insolation.

Two states are stable in turn, one at a time. (ii) Alternatively, two stable states could be

available at all times with noise-induced switching between them. The height of the potential

barrier separating the two states would be modulated by the insolation, possibly giving rise

to a stochastic resonance which would explain the high degree of coherence between the solar

forcing and the monsoon transitions.
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constant � are estimated by maximising the likelihood function

L(x1, . . . , xN) =

NY

i=1

p(xn; tn) (6)

as described in Kwasniok (2013). The size of the data set is N . This leaves the noise level

undetermined as a scaling of the potential with a constant c and a simultaneous scaling of

the noise variance with c keeps the quasi-stationary probability density unchanged. We set

� = 1 for the (preliminary) estimation of ai and �. The noise level is now determined from

the dynamical likelihood function based on the time evolution of the system (Kwasniok,

2015). The Langevin equation is discretised according to the Euler-Maruyama scheme:

xn+1 = xn � �tnV
0
(xn; tn) +

q
�tn�⌘n (7)

The sampling interval of the data is �tn = tn+1 � tn. The log-likelihood function of the data

is

l(x1, . . . , xN |x0) = �N

2

log 2⇡�N log ��
N�1X

n=0

1

2

log �tn +
1

2

[xn+1 � xn + �tnV
0
(xn; tn)]

2

�tn�
2

(8)

The scaling constant c is searched on a grid with mesh size 0.01 and the log-likelihood

maximised, giving the final estimates of all parameters. Both estimation procedures are

applied directly to the unevenly sampled data without any prior interpolation. We remark

that the more natural and simpler approach of estimating all parameters simultaneously from

the dynamical likelihood (Kwasniok, 2015) here yields a negative leading-order coe�cient a4

and thus the model cannot be integrated over a longer time period without the trajectory

escaping to infinity. This possibly points at limitations in the degree of validity of the one-

dimensional potential model. Palaeoclimatic records reflect a multitude of complex processes

and any model as simple as eq.(1) cannot be expected to be more than a crude skeleton

model. The described estimation method guarantees a positive leading-order coe�cient a4

and therefore a globally stable model.

Kwasniok F. (2015): Forecasting critical transitions using data-driven nonstationary dynam-

ical modeling, submitted.
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from this and other speleothem sequences (Wang et al., 2001). Since the monthly maximum 296	
  

insolation shifts in time with respect to the precession parameter, the 30°N June insolation 297	
  

was used, though we acknowledge that the insolation changes of 65°N 21 July as used by 298	
  

Wang et al. (2008) are similar with regard to the timing of maxima and minima. Crucially, 299	
  

immediately prior to Termination II, the Chinese speleothem data (including Sanbao Cave) 300	
  

record a ‘Weak Monsoon Interval’ between 135.5 and 129 ka BP (Cheng et al., 2009), 301	
  

suggesting a lag of approximately 6.5 kyrs following Northern Hemisphere summer 302	
  

insolation (Figure 1).  303	
  

 304	
  

Having derived a model from the data, 100 realisations were analysed to test whether early 305	
  

warning signals could be detected in the model output, using the methods set out in section 306	
  

2.3. We initially chose the sampling resolution of the model outputs to be comparable to the 307	
  

speleothem data (102 years). Sampling the same time series at different resolutions and 308	
  

noise levels allows us to explore the effect of these on the early warning signals. 309	
  

Accordingly, the model was manipulated by changing both the noise level and sampling 310	
  

resolution. To enable a straightforward comparison of the rate of forcing and the sampling 311	
  

resolution we linearized the solar insolation using the minimum and maximum values of the 312	
  

solar insolation over the time span of the model (224-128 ka BP). This approach was 313	
  

preferred rather than using a sinusoidal forcing since early warning signals are known to 314	
  

work most effectively when there is a constant increase in the forcing. To detrend the time 315	
  

series data, we ran the model without any external noise forcing to obtain the equilibrium 316	
  

solution to the system, which we then subtracted from the time series, which did include 317	
  

noise. In addition, we manipulated the noise level of the model by altering the amplitude of 318	
  

the stochastic forcing (σ in Equation 1). The time step in the series was reduced so that 319	
  

6000 time points were available prior to the bifurcation and to ensure no data from beyond 320	
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the tipping point was included in the analysis. Sampling the same time series at different 321	
  

resolutions allowed us to explore the effect of this on the early warning signals. When 322	
  

comparing early warning signals for differing sample steps and noise levels, the same 323	
  

iteration of the model was used to enable a direct comparison.  324	
  

 325	
  

3. Results 326	
  

3.1 Searching for bimodality 327	
  

A histogram of δ18O values suggests that there are two modes in the EASM between 224-328	
  

128 ka BP, as displayed by the double peak structure in Figure 3a, supporting a number of 329	
  

studies that observe bimodality in tropical monsoon systems (Schewe et al., 2012; Zickfeld 330	
  

et al., 2005). We also apply a Dip-test of unimodality (Hartigan and Hartigan, 1985) and 331	
  

find that our null hypothesis of unimodality is rejected (D=0.018, p=0.0063) and thus our 332	
  

data is at least bimodal. To investigate further the dynamical origin of this bimodality we 333	
  

applied non-stationary potential analysis (Kwasniok, 2013). This showed a bi-stable 334	
  

structure to the EASM with hysteresis (Figure 3b, c), suggesting that abrupt monsoon 335	
  

transitions may involve underlying bifurcations. The monsoon transitions appear to be 336	
  

predominantly directly forced by the insolation. There is a phase in the middle of the 337	
  

transition cycle between the extrema of the insolation where two stable states are available 338	
  

at the same time but this phase is too short for noise-induced switches to play a significant 339	
  

role. 340	
  

 341	
  

 342	
  

Figure 3 (a) Histogram showing the probability density of the speleothem data aggregated 343	
  

over 224-128 ka BP, (b) Bifurcation diagram obtained from potential model analysis, 344	
  

showing bi-stability and hysteresis. Solid black lines indicate stable states, dotted line 345	
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unstable states, and dashed vertical lines the jumps between the two stable branches. 346	
  

Coloured vertical lines correspond to the insolation values for which the potential curve is 347	
  

shown in panel c; (c) Shows how the shape of the potential well changes over one transition 348	
  

cycle (198-175 ka BP) (green long dash = 535 W/m2, purple short dash = 531 W/m2, blue 349	
  

solid = 490 W/m2, red dotted = 449 W/m2) (for more details see Figure 10). 350	
  

 351	
  

 352	
  

3.2 Tipping point analysis 353	
  

We applied tipping point analysis on the Sanbao Cave δ18O record on each section of data 354	
  

prior to a monsoon transition. Although autocorrelation and variance do increase prior to 355	
  

some of the abrupt monsoon transitions (Figure 4), these increases are not consistent 356	
  

through the entire record. Surrogate datasets used to test for significance of our results 357	
  

showed that p-values associated with these increases are never <0.1 for both autocorrelation 358	
  

and variance (Figure 5). Although a visual increasing trend has been used in previous 359	
  

literature as an indicator of critical slowing down, we choose more selective criteria to 360	
  

guard against the possibility of false positives.  361	
  

 362	
  

 363	
  

Figure 4 a) δ18O speleothem data from Sanbao Cave (SB11) (blue line) and NHSI at July 364	
  

65°N (grey line). Grey hatched areas show the sections of data selected for tipping point 365	
  

analysis. b) These panels show the corresponding autocorrelation and variance for each 366	
  

period prior to a transition.  367	
  

 368	
  

 369	
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Figure 5 Histogram showing frequency distribution of Kendall tau values from 1000 370	
  

realisations of a surrogate time series model, for Sanbao Cave (a, b) and Hulu Cave (c, d) 371	
  

δ18O data. The grey dashed lines indicate the 90% and 95% significance level and the blue 372	
  

and red vertical lines show the Kendall tau values for autocorrelation and variance, for each 373	
  

section of speleothem data analysed. The blue circle in (a) and the red circle in (b) indicate 374	
  

the Kendall tau values for the section of data spanning the period 150 to 129 ka BP 375	
  

immediately prior to Termination II.  376	
  

 377	
  

 378	
  

The only section of data prior to a monsoon transition that sees p-values of <0.1 for the 379	
  

increases in both autocorrelation and variance is for the data spanning the period 150 to 129 380	
  

ka BP in the Sanbao Cave record, before Monsoon Termination II (Figure 6). We find that 381	
  

the Kendall tau value for autocorrelation has a significance level of p < 0.05 and for 382	
  

variance a significance level of p < 0.1 (Figure 5a and 5b). These proportional positive 383	
  

trends in both autocorrelation and variance are consistent with critical slowing down on the 384	
  

approach to a bifurcation (Ditlevsen and Johnsen, 2010). Figure 6c illustrates the density of 385	
  

data points before and after interpolation, showing that this pre-processing is unlikely to 386	
  

have biased the results. 387	
  

 388	
  

 389	
  

Figure 6 Tipping Point analysis on data from Sanbao Cave (Speleothem SB11) (31°40’N, 390	
  

110°26’E). (a) Data was smoothed over an appropriate bandwidth (purple line) to produce 391	
  

data residuals (b), and analysed over a sliding window (of size between the two grey 392	
  

vertical lines). The grey vertical line at 131 ka BP indicates the tipping point, and the point 393	
  

up to which the data is analysed. (c,d) Data density, where the black points are the original 394	
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data and the pink points are the data after interpolation. (e) AR(1) values and associated 395	
  

Kendall tau value, and (f) displays the variance and associated Kendall tau. 396	
  

 397	
  

To test whether the signal is present in other EASM records, we undertook the same 398	
  

analysis on a second speleothem sequence (Figure 7), covering the same time period. We 399	
  

find that speleothem MSP from Hulu Cave (32°30’N, 119°10’E) (Wang et al., 2001) 400	
  

displays a comparable increase in autocorrelation and variance to speleothem SB11 from 401	
  

Sanbao Cave, though these do display slightly lower p-values; see Figure 5c and 5d.  402	
  

 403	
  

 404	
  

Figure 7 Tipping Point analysis on data from Hulu Cave (Speleothem MSP) (32°30' N, 405	
  

119°10' E) (a) Data was smoothed over an appropriate bandwidth (purple line) to produce 406	
  

data residuals (b), and analysed over a sliding window (of size between the two grey 407	
  

vertical lines). The grey vertical line at 131 kaBP indicates the tipping point, and the point 408	
  

up to which the data is analysed. (c, d) Data density, where the black points are the original 409	
  

data and the pink points are the data after interpolation. (e) Autocorrelation values and 410	
  

associated Kendall tau value, and (f) the variance and associated Kendall tau. 411	
  

 412	
  

 413	
  

Furthermore, a sensitivity analysis was performed (results shown for data preceding the 414	
  

monsoon termination in both speleothem SB11 and MSP, Figure 8) to ensure that the results 415	
  

were robust over a range of parameters by running repeats of the analysis with a range of 416	
  

smoothing bandwidths used to detrend the original data (5-15% of the time series length) 417	
  

and sliding window sizes in which indicators are estimated (25-75% of the time series 418	
  

length). The colour contours show how the Kendall tau values change when using different 419	
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parameter choices; for the autocorrelation at Sanbao Cave the Kendall tau values are over 420	
  

0.8 for the vast majority of smoothing bandwidth and sliding window sizes (Figure 8a), 421	
  

indicating a robust analysis.  422	
  

 423	
  

 424	
  

Figure 8 Contour plots showing a range of window and bandwidth sizes for the analysis; 425	
  

(a) Sanbao SB11 autocorrelation, (b) Sanbao SB11 variance, (c) Hulu MSP autocorrelation, 426	
  

(d) Hulu MSP variance. Black stars indicate the parameters used for the analysis in Figures 427	
  

6 and 7.  428	
  

 429	
  

 430	
  

3.3 Non-stationary potential analysis 431	
  

To help interpret these results we applied our potential model. In the model we find 432	
  

transitions occur under direct solar insolation forcing when reaching the end of the stable 433	
  

branches, explaining the high degree of synchronicity between the transitions and solar 434	
  

forcing. The initial 100 realisations produced from our potential model appear broadly to 435	
  

follow the path of June insolation at 30°N with a small phase lag (Figure 9). The model 436	
  

simulations also follow the speleothem palaeodata for all but the monsoon transition at 129 437	
  

ka BP near Termination II, where the model simulations show no extended lag with respect 438	
  

to the insolation.   439	
  

 440	
  

 441	
  

Figure 9 Probability range of 100 model simulations, with the June 30°N NHSI (in red), 442	
  

and the palaeodata from SB11 (in green)  443	
  

 444	
  



	
   19	
  

 445	
  

No consistent early warning signals were found in the initial 100 model simulations during 446	
  

the period 224-128 ka BP. In order to detect critical slowing down on the approach to a 447	
  

bifurcation, the data must capture the gradual flattening of the potential well. We suggest 448	
  

that early warning signals were not detected due to a relatively fast rate of forcing compared 449	
  

to the sampling of the system; this comparatively poor sampling prevents the gradual 450	
  

flattening of the potential well from being recorded in the data; a feature common to many 451	
  

palaeoclimate datasets. Figure 10 illustrates the different flattening of the potential well 452	
  

over a normal transition cycle and over the transition cycle at the termination. There is more 453	
  

visible flattening in the potential at the termination, as seen in panel (c), which is thought to 454	
  

be due to the reduced amplitude of the solar forcing at the termination. 455	
  

 456	
  

 457	
  

Figure 10 Potential analysis showing the changing shape of the potential well over (b) a 458	
  

normal transition cycle; and (c) the transition cycle at the termination. (Dotted lines show 459	
  

stages of the transition over high, medium, and low insolation values).  460	
  

 461	
  

 462	
  

To test the effect on the early warning signals of the sampling resolution of the model, we 463	
  

compared a range of different sampling time steps in the model (see section 2.4) measuring 464	
  

the Kendall tau values of autocorrelation and variance over each realisation of the model 465	
  

(one realisation displayed in Figure 11), which demonstrates the effects of increasing the 466	
  

sampling time step in the model. We found that whereas an increasing sampling time step 467	
  

produces a steady decrease in the Kendall tau values for autocorrelation (Figure 11b), 468	
  

Kendall tau values remain fairly constant for variance (Figure 11c), suggesting that the 469	
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latter is not affected by time step changes. This supports the contention by Dakos et al. 470	
  

(2012b) that ‘high resolution sampling has no effect on the estimate of variance’. In 471	
  

addition, we manipulated the noise level and found that decreasing the noise level by a 472	
  

factor of 2 was necessary to identify consistent early warning signals. This is illustrated in 473	
  

Figure 11a, where the grey line represents the noise level as determined by the model, 474	
  

which does not follow a step transition, and cannot be adequately detrended by the equation 475	
  

derived from the model. However, once the noise level is sufficiently reduced, early 476	
  

warning signals (displayed here as high Kendall tau values for autocorrelation and variance) 477	
  

can be detected.  478	
  

 479	
  

 480	
  

Figure 11 a) Example of single realisation of the approach to a bifurcation over 4 noise 481	
  

levels (original noise = grey, 0.5 noise = black, 0.2 noise = blue, 0.1 noise = green), the red 482	
  

line is the detrending line and the grey dashed vertical line is the cut-off point where data is 483	
  

analysed up to; b) distribution of Kendall tau values for autocorrelation over increasing 484	
  

sample step; c) distribution of Kendall tau values for variance over increasing sample step. 485	
  

 486	
  

 487	
  

4. Discussion 488	
  

It is important to note here that although the detection of early warning signals in time series 489	
  

data has been widely used for the detection of bifurcations in a range of systems (Dakos et 490	
  

al., 2008), there are instances when critical slowing down cannot be detected/recorded prior 491	
  

to a bifurcation. This can be due to external dynamics of the system, such as a high level of 492	
  

stochastic noise, or when there is an insufficient sampling resolution. These results confirm 493	
  

that early warning signals may not be detected for bifurcations if the rate of forcing is too 494	
  



	
   21	
  

fast compared to the sampling rate, such that the flattening of the potential is poorly 495	
  

recorded in time series. ‘Missed alarms’ may therefore be common in palaeodata where 496	
  

there is an insufficient sampling resolution to detect the flattening of the potential; a high 497	
  

sampling resolution is thus recommended to avoid this issue. There is more flattening 498	
  

visible in the potential for the monsoon transition at 129 ka BP (Termination II) which is 499	
  

due to the reduced amplitude of the solar forcing at the termination, but it is unclear whether 500	
  

this is sufficient to explain the early warning signal detected in the palaeodata. We suggest 501	
  

that additional forcing mechanisms may be driving the termination e.g. (Caley et al., 2011) 502	
  

which cannot be captured by the potential model (as evidenced by the trajectory of the data 503	
  

falling outside the probability range of the potential model (Figure 9)).  504	
  

 505	
  

One possible reason for the detection of a critical slowing down immediately prior to the 506	
  

termination (129 ka BP) is a change in the background state of the climate system. 507	
  

Termination II is preceded by a Weak Monsoon Interval (WMI) in the EASM at 135.5-129 508	
  

ka BP (Cheng et al., 2009), characterised by the presence of a longer lag between the 509	
  

change in insolation and the monsoon transition. The WMI is thought to be linked to 510	
  

migrations in the Inter-tropical Convergence Zone (ITCZ) (Yancheva et al., 2007). Changes 511	
  

in the latitudinal temperature gradient (Rind, 1998) or planetary wave patterns (Wunsch, 512	
  

2006) driven by continental ice volume (Cheng et al., 2009) and/or sea ice extent (Broccoli 513	
  

et al., 2006) have been suggested to play a role in causing this shift in the ITCZ. For 514	
  

instance, the cold anomaly associated with Heinrich event 11 (at 135 ka BP) has been 515	
  

invoked as a possible cause of the WMI, cooling the North Atlantic and shifting the Polar 516	
  

Front and Siberian High southwards, forcing an equatorward migration of westerly airflow 517	
  

across Asia (Broecker et al., 1985; Cai et al., 2015; Cheng et al., 2009). Such a scenario 518	
  

would have maintained a low thermal gradient between the land and sea, causing the Weak 519	
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Monsoon Interval and potentially suppressing a simple insolation response. The implication 520	
  

is that during the earlier monsoon transitions in Stage 6, continental ice volume and/or sea-521	
  

ice extent was less extensive than during the WMI, allowing the solar insolation response to 522	
  

dominate.  523	
  

 524	
  

 525	
  

5. Conclusions 526	
  

We analysed two speleothem δ18O records from China over the penultimate glacial cycle as 527	
  

proxies for the past strength of the EASM to test whether we could detect early warning 528	
  

signals of the transitions between the strong and weak regimes. After determining that the 529	
  

data was bimodal, we derived a non-stationary potential model directly from this data 530	
  

featuring a fold bifurcation structure. We found evidence of critical slowing down before 531	
  

the abrupt monsoon shift at Termination II (129 ka BP) in the speleothem δ18O data. 532	
  

However, we do not find consistent early warning signals of a bifurcation for the abrupt 533	
  

monsoon shifts in the period between 224-150 ka BP, which we term ‘missed alarms’. 534	
  

Exploration of sampling resolution from our model suggests that the absence of robust 535	
  

critical slowing down signals in the palaeodata is due to a combination of rapid forcing and 536	
  

the insufficient sampling resolution, preventing the detection of the steady flattening of the 537	
  

potential that occurs before a bifurcation. We also find that there is a noise threshold at 538	
  

which early warning signals can no longer be detected. We suggest that the early warning 539	
  

signal detected at Termination II in the palaeodata is likely due to the longer lag during the 540	
  

Weak Monsoon Interval, linked to cooling in the North Atlantic. This allows a steadier 541	
  

flattening of the potential associated with the stability of the EASM and thus enables the 542	
  

detection of critical slowing down. Our results have important implications for identifying 543	
  

early warning signals in other natural archives, including the importance of sampling 544	
  



	
   23	
  

resolution and the background state of the climate system (full glacial versus termination). 545	
  

In addition, it is advantageous to use archives which record multiple transitions, rather than 546	
  

a single shift, such as the speleothem records reported here; the detection of an early 547	
  

warning signal during one transition compared to previous events in the same record 548	
  

provides an insight into changing/additional forcing mechanisms.  549	
  

 550	
  

 551	
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