Dear Professor Fisher,

Thank for your and the reviewers comments for our manuscript. Below we respond to individual
queries raised by yourself below, followed by response of queries raised in the pdf and finally we
show the changes we applied throughout the manuscript (tracked changes on).

Please let us know if there is anything else we need to do or if there was something we overlooked.

Best wishes, Babette, Robin and Joy.

Dear authors

Thank you very much for your careful revisions adressing many of the reviewer comments and
improving the clarity of the manuscript considerably.

Reading the manuscript, the reviewer comments, and your replies, | think the paper has clearly
advanced providing a unique long-term reconstruction of global biome changes from both data and
the biome model BIOMEA4. This reconstruction will be of immense use for future studies and clearly
justifies publication in CP. In line with referee #2, | am still worried that no quantitative estimate can
be given on the similarity of model and data based biome reconstructions, which makes an
uncertainty estimate (for example for NPP etc.) difficult. However, | admit that deriving such a
statistically robust measure within the scope of this paper may be difficult or even impossible
considering that uncertainties in the forcing of the climate models, in the climate models themselves
and in the BIOME model exist.

While the paper clearly advances our knowledge on terrestrial vegetation changes over the last
120,000 years, | feel strongly that the further discussion of the results on carbon storage and d13C
changes in the ocean (Section 4.3 & 4.4.) are walking on too thin ice given the large uncertainties in
the biome reconstruction but also in the limitations of your approach:

- the BIOME model cannot quantify changes in inactive/inert carbon pools such as permafrost, which
may dominate the carbon storage changes. In fact, your Fig. 7 in the replies to referee #1 shows that
including such pools provides a completely different answer and thus your total numbers on
terrestrial carbon storage changes (in Gt C) cannot be regarded robust. It would be a bad thing if
other scientists used these numbers from your modeling approach for further studies

- your mass balance approach for isotopes in the ocean does not include isotope dilution effects on
this long time scale that come about by volcanic, weathering as well as sediment fluxes. Accordingly,
your mass balance approach overestimates the d13C changes in the ocean.

- it may be questioned that the turnover times of different biomes are constant over time, impacting
your terrestrial carbon storage estimate

- the results are obviously highly dependent on the forcing data (some of the CO2 data used are



lower than latest, improved reconstructions. This has a considerable effect through CO2 fertilization
in your model) and the model version/setup used and the uncertainty of the reconstructed carbon
storage is of the same size as the total changes. Taking the additional uncertainties in your approach
to calculate terrestrial carbon storage and d13C in the ocean into account none of these numbers
are known to a sufficient degree.

Accordingly, my editoral suggestion is to remove section 4.3 and 4.4. from the manuscript, before
final publication in CP. You could shortly comment on the implications of your results on terrestrial
carbon storage and d13C in the ocean in the Discussion but any such statement would have to be
qualified by stating that the current uncertainties in the approach do not allow to reconstruct robust
numbers in terr. carbon storage and d13C in the ocean. This should also be stated in the Abstract.

We have followed your editorial suggestion and removed section 4.3 and 4.4 from the manuscript,
and only added a short section of implications. We the following sentence to the discussion
'However, the large uncertainties associated with both the climate and biome models and their
forcings, as well as those involved in deriving full estimates of carbon storage and ocean 8"C from
the variables that are explicitly produced in the models currently prohibit the robust quantitative
reconstruction of these quantities from our results.'

Since we do not talk about quantitative changes in terrestrial carbon storage and ocean d13C and
have deleted all sections relating to the methods of how we did this earlier, it seems awkward and
also confusing to state in the abstract that the approach we do not discuss or describe does not
work. We have thus refrained from doing so.

Specific comments: Please see also some minor corrections and some additional comments in the
annotated manuscript attached to my editor's comment's.

In contrast to what | suggested before, | would ask you to move your new figure 2 into the
supplement, where it nicely complements the data.

OK

| hope you will understand my concerns and | am looking forward to the revised version of the
manuscript.

All the best

Hubertus Fischer



Author response to queries raised in manuscript

Editor queries:

'There is something wrong here as revealed in the supplemental figure 1 that you provided in the
replies to referee #1 (or the labeling in that figure is wrong). Looking at the CO2 data used in
FAMOUS (red line) in that figure this is clearly the Vostok record (in contrast to what is

said below) as illustrated by the erroneously low CO2 conc. during early MIS 3.'

We have clarified the source of the CO2 forcing used in the climate and BIOME4 simulations in the
paper in section 2. For FAMOUS, the data was taken from the composite CO2 record published in the
supplemental material of the "EPICA" paper of Luethi et al '08, which was the most recent data at
the time that the FAMOUS simulations were begun. As you say, this composite record in fact consists
of the Vostok data for the period 22-393 kyr. These sources, and the fact that the MIS3 data is now
thought to be erroneous, are highlighted in section 2.2.2.

For HadCM3 climate runs also a composite CO2 curve was used, using Taylor Dome concentrations
for MIS3 and EDC96 for MIS1/2 (Vostok was also used beyong 60 kyr). This is described in section
2.2.1.

'Another point pertains the Vostok CO2 data itself. The low VOSTOK data in the early MIS3 are
clearly wrong (not your fault) but the high CO2 sensitivity of BIOME4 leads to substantial variations
in parallel to the erroneous CO2 variations. This requires a clear statement in the manuscript that
these variations are wrong. In fact | would suggest to show the FAMOUS results for the time interval
30-60,000 years BP only in dashed lines to indicate that the results in this time interval are
influenced by the too low CO2 concentrations.'

Statements to this effect are now in section 2.2.2, 3.3.4 and 4.1. In addition, as suggested, FAMOUS
results in Fig 3 and 4 have been dashed for this period.

'again this is wron as in Fig. 1 in the reply to referee'l it is clear that the red line is clearly the
Vostok record (see comment above). Please double check and provide all the correct references to

the data.'

see comment above
> line 674, suggested 'but may differ locally'

now reads "although local differences may still occur."

Page 24, line 813 '/little difference to what?/'

now reads "B4H shows little difference from the dry grassland biomes present at 64 ka BP"

Page 24, line 814-815 needs reference.

now reads "perhaps a result of the models’ representation of the Mediterranean storm-tracks that
would bring moisture inland which are often poorly reproduced in lower-resolution models
(Brayshaw et al 2010)."

Brayshaw, D. J., Hoskins, B. and Black, E.: Some physical drivers of changes in the winter storm tracks
over the North Atlantic and Mediterranean during the Holocene. Philosophical Transactions of the



Royal Society A: Mathematical, Physical and Engineering Sciences, 368 (1931). pp. 5185-5223, 2010.

Page 25 '/Repeating the comments by referee 2 it would be good to have a quantitative measure for
similarity to corroborate this statement. Given the description above | would use a more neutral
language to describe model/data agreement./'

now reads "The BIOME 4 simulations compare reasonably [...]"

Page 26, lines 870-871 highlighted green, comment '/This is not true for the strong CO2 variations in
the time interval 40-60 kyrs BP; which are only found in the FAMOUS runs and are caused by the
erroneously low CO2 concentrations in this time interval from the Vostok record. Again this should
be stated clearly and the FAMOUS results for this time interval should be used with caution and
qualified (for example by dashed lines) in the figures as unrealistic in this time interval./'

see comment, edits above
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Abstract

A new global synthesis and biomization of long (> 40 kyr) pollen-data records
is presented, and used with simulations from the HadCM3 and FAMOUS climate
models and the BIOME4 vegetation model to analyse the dynamics of the global
terrestrial biosphere and carbon storage over the last glacia-interglacial cycle.
Simulated biome distributions using BIOME4 driven by HadCM3 and FAMOUS at
the global scale over time generally agree well with those inferred from pollen data.

Global average areas of-the grassland and dry shrubland, desert and tundra biomes

show large-scale increases during the Last Glacia Maximum, between ca 64 and 74

ka BP; and cool substages of Marine |sotope Stage 5, at the expense of the tropical

forest, warm-temperate forest and temperate forest biomes. These changes are
reflected in BIOME 4 simulations of global Net Primary Productivity, showing good

agreement _between the two models. Such changes are likely to affect terrestrial

carbon storage, which in return influences the stable carbon isotopic composition of

seawater as terrestrial carbon is depleted in *C.
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1. Introduction

=Variations in global climate on multi-millennial time
scales have caused substantial changes to—the terrestrial vegetation distribution,
productivity, and carbon storagecarber—peels. Periodic variations in the Earth’'s
orbital configuration (axial tilt with a ~41 kyr period, precession with ~19 and 23 kyr

periods, and eccentricity with ~100 kyr and longer periods) result in small variations
in the seasonal and latitudina distribution of insolation, amplified by feedback
mechanisms (Berger, 1978). For the last ~ 0.8 million years long glacial periods have
been punctuated by short interglacials on roughly a 100 kyr cycle. Glacia periods are
associated with low atmospheric CO, concentrations, lowered sealevel and extensive
continental ice-sheets; interglacial periods are associated with high (similar to pre-
industrial) CO, concentrations, high sea level and reduced ice-sheets (Petit et al.,
1999; Peltier et a., 2004; Lithi et al., 2008).

During glacia-interglacial cycles the productivity-ef; and carbon storage ofin;

the terrestrial biosphere are influenced by orbitally forced climatic changes and
atmospheric CO, concentrations. Expansion of ice-sheets during glacial periods
caused a significant loss of land area available for colonization, but this was largely
compensated by the exposure of continental shelves due to lower sea level. The
terrestrial_biosphere (vegetation and soil) is estimated to contain around 2000 Pg C

(Prentice et al., 2001) plus a similar quantity stored in peatlands and permafrost (Ciais

et a., 20142). During the last glacial period the terrestria biosphere was significantly
reduced-. It has been estimated that the terrestrial biosphere contained 300 to 700 Pg
C less carbon during the Last Glacial Maximum (LGM; 21 ka BP) compared with
pre-industrial times (Bird et a., 1994; Ciais et a., 2012; Crowley et a., 1995;
Duplessy et a., 1988; Gosling and Holden, 2011; K&hler and Fischer, 2004; Prentice
et al., 2011). As first noted by Shackleton et a. (1977), the oceanic inventory of
carbon isotopes (5*3C) is influenced by terrestrial carbon storage because terrestrial
organic carbon has a negative signature, due to isotopic discrimination during
photosynthesis. Many of the estimates of the reduction in terrestrial carbon storage at
the LGM have therefore been based on the observed LGM lowering of deep-ocean

8"C. A reduction in the terrestrial biosphere of this size would have contributed a

For Climate of the Past Discussions
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large amount of CO, to the atmosphere, although ocean carbonate compensation
would have reduced the expected CO; increase to 15 ppm over about 5 to 10 kyr
(Sigman and Boyle, 2000).

Many palaeoclimate data and modelling studies have focused on the contrasts
between the LGM, the mid-Holocene (6 ka BP) and the pre-industrial period. The
BIOME 6000 project  (http://www.bridge.bris.ac.uk/resources/Databases/BIOMES data)
synthesized palaeovegetation records from many sites to provide global datasets for
the LGM and mid-Holocene. Data syntheses are valuable in allowing researchers to
see the global picture from scattered, individual records, and to enable model-data
comparisons. The data can be interpreted in the context of a global, physically based
model that allows the point-wise data to be seen in a coherent way. There are
continuous, multi-millennial pollen records that stretch much further back in time
than the LGM but they have not previously been brought together in a global
synthesis to study changes of the last glacial-interglacial cycle. These records can
provide a global picture of transient change in the biosphere and the climate system.
Here we have synthesized and biomized (Prentice et a., 1996) a number of these
records (for locations see Figure 1), providing a new dataset of land biosphere change
that coversthe last glacia-interglacial cycle. In section 2.1 we outline the biomization
procedures applied to reconstruct land biosphere changes.

To improve understanding of land biosphere interactions with the ocean-
atmospheric reservoir, we have modelled the terrestrial biosphere for the last 120 kyr,
from the previous (Eemian) interglacial to the pre-industrial period. Details of the
atmosphere ocean general circulation model (AOGCM) climate and vegetation model
simulations are provided in section 2.2. In section 3 we evauate biome
reconstructions based on our model outputs using the BIOME 6000 project
(www.bridge.bris.ac.uk/resources/Databases/BIOMES data), and our new biomized
synthesis of terrestrial pollen data records, focusing on the pre-industrial period, 6 ka
BP (mid-Holocene), 21 ka BP (LGM), 54 ka BP (arelatively warm interval in the last
glacia period), 64 ka BP, (arelatively cool interval in the glacial period), 84 ka BP
(the early part of the glacial cycle), and 120 ka BP (the Eemian interglacial). The
effects of rapid millennia scale climate fluctuations were not simulated. Finaly in

section 4 we use our biome simulations to estimate net primary productivity. and

. I . | . I 543; II7 . .
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2 Methods

2.1 Biomization

Biomization assigns pollen taxa to one or more plant functional types (PFTS).
The PFTs are assigned to their respective biomes and affinity scores are calculated for
each biome (sum of the square roots of pollen percentages contributed by the PFTs in
each biome). This method was first developed for Europe (Prentice et a., 1996) and
versions of it have been applied to most regions of the world (Jolly et al., 1998;
Elenga—et—al—2000—Takahara et al., 1999; Tarasov et al., 2000; Thompson and
Anderson, 2000; Williams et al., 2000; Elenga et al., 2004; Pickett et al., 2004;
Marchant et al., 2009). We apply these regional PFT schemes (Table 1) to pollen
records that generally extend > 40 kyr, assigning the pollen data to megabiomes

(tropical forest, warm--temperate forest, temperate forest, boreal forest, savannah/dry
woodland, grassand/dry shrubland, desert and tundra) as defined by Harrison and
Prentice (2003), in order to harmonize regional variations in PFT to biome
assignments and to allow globally consistent model-data comparisons.

Table 2 lists the pollen records used. Biomization matrices and megabiome
score data can be found in the Supplementary Information. For taxa with no PFT
listing, the family PFT was used if part of the regiona biomization scheme. Plant
taxonomy was checked using itis.gov, tropicos.org, and the African Pollen Database.
Pollen taxa can be assigned to more than one PFT either because they include several
species in the genus or family, with different ecologies, or because they comprise
species that can adopt different habitats in different environments.

Age models provided with the individual records were used. However, in
cases where radiocarbon ages were only provided for specific depths (e.g. Mfabeni,
CUX), linear interpolations between dates were used to estimate ages for the
remaining depths. Some age models may be less certain, especialy at sites which
experience variable sedimentation rates and/or erosion. Sometimes more than one age
model accompanies the data, illustrating the range of ages and also that there can be
large uncertainties. To aid comparison, for several Southern European sites (e.g. Italy

and Greece) it has been assumed that vegetation changes occurred synchronously

For Climate of the Past Discussions
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within the age uncertainties of their respective chronologies, for which there is
evidence (e.g. Tzedakis et al., 2004b).
2.2 Mode simulations

Global simulations of vegetation changes over the last glacial cycle were
produced using a vegetation model (BIOME4) forced offline using previously
published climate simulations from two AOGCMs (HadCM3 and FAMOUS). By
using two models we test the robustness of the reconstructions to different climate
forcings.

221 HadCM3

HadCM3 is a general circulation model, consisting of coupled atmospheric
model, ocean, and sea ice models (Gordon et al., 2000; Pope et a., 2000). The
resolution of the atmospheric model is 2.5 degrees in latitude by 3.75 degrees in
longitude by 19 unequally spaced levelsin the vertical. The resolution of the ocean is
1.25 by 1.25 degrees with 20 unequally spaced layers in the ocean extending to a
depth of 5200 m. The model contains a range of parameterisations, including a
detailed radiation scheme that can represent the effects of minor trace gases (Edwards
and Slingo, 1996). The land surface scheme used is the Met Office Surface Exchange
Scheme 1 (MOSESL; Cox et a., 1999). In this version of the model, interactive
vegetation is not included. The ocean model uses the Gent—-McWilliams mixing
scheme (Gent and -McWilliams, 1990), and sea ice is a thermodynamic scheme with
parameterisation of ice-drift and leads (Cattle and Crossley, 1995).

Multiple ‘‘snap-shot’”’ simulations covering the last 120 kyr have been
performed with HadCM 3. The boundary conditions and set-up of the original set of
simulations have been previousy documented in detail in Singarayer and Vades
(2010). The snap-shots were done at intervals of every 1 ka between the pre-industrial
(Pl) and LGM (21 kaBP), every 2 ka between the LGM and 80 ka BP, and every 4 ka
between 80 and 120 ka BP. Boundary conditions are variable between snap-shots but
constant for each simulation. Orbital parameters are taken from Berger and Loutre
(1991). Atmospheric concentrations of CO, were taken from a stacked ice core record
of Vostok (Petit et al., 1999) prior to 62 kyr, incorporating Taylor Dome (Indermihle
et al., 2000) to 22 kyr and EDC96 (Monnin et a., 2001) up to 0 kyr.-and CH,4, and
N.O were taken from EPICA (Spahni et a., 2005; Loulergue et a., 2008), and all
greenhouse gas concentrations were on the EDC3 timescale (Parrenin et a., 2007).
The prescription of ice-sheets was achieved with ICE-5G (Peltier (2004) for 0-21 ka

For Climate of the Past Discussions
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BP, and extrapolated to the pre-LGM period from the ICE-5G reconstruction using
the method described in Eriksson et al (2012). The simulations were each spun up
from the end of previous runs described in Singarayer and Valdes (2010) to adjust to
the modified ice-sheet boundary conditions for 470 years. The monthly climatologies
described hereafter are of model years 470-499. The model performs reasonably well
in terms of glacia-interglacial global temperature anomaly (HadCM3 isin the middle
of the distribution of globa climate models and palaeoclimate reconstructions), high
latitude temperature trends (although as with al models, the magnitude of the
temperature anomalies in the glacial is underestimated), as well as at lower latitudes
(Singarayer and Vades, 2010; Singarayer and Burrough, 2015).
222FAMOUS

FAMOUS (Smith, 2012) is an Earth System Model, derived from HadCM3. It
is run at approximately half the spatial resolution of HadCM3 to reduce the
computational expense associated with atmosphere-ocean GCM simulations without
fundamentally sacrificing the range of climate system feedbacks of which it is
capable. Pre-industrial control simulations of FAMOUS have both an equilibrium
climate and global climate sensitivity similar to that of HadCM3. A suite of transient
FAMOUS simulations of the last glacia cycle, conducted with specified atmospheric
CO,, ice-sheets and changes in solar insolation resulting from variation in the Earth’s
orbit, compare well with the NGRIP, EPICA and MARGO proxy reconstructions of
glacia surface temperatures (Smith and Gregory, 2012). For the present study, we use
the most redistically-forced simulation of the Smith and Gregory (2012) suite
(experiment ALL-ZH), forced with northern hemisphere ice-sheets taken from the
physical ice-sheet modelling -work of Zweck and Huybrechts (2005), atmospheric
CO,, CH4 and N>O concentrations from the EPICA project (Lthi et al. (2008) and
Spahni et al. (2005) mapped onto the EDC3 (Parrenin et al. 2007) age scale) and

al. (2008) uses data from the Vostok core (Petit et al. 1999) between 22 and 393 kyr.
The Vostok record is now believed (Bereiter et a. 2012) to be erroneously low during

the early part of Marine |sotope Stage 3. For this reason, the FAMOUS results during

this period are likely biased too cold. Although of a lower spatial resolution than
HadCM3, these FAMOUS simulations have the benefit of being transient, and
representing low-frequency variability within the climate system, as well as using

more physically plausible ice-sheet extents before the LGM than were used in the
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HadCM3 simulations. To alow the transient experiments to be conducted in a
tractable amount of time, these forcings were al “accelerated” by a factor of ten, so
that the 120 kyr of climate are simulated in 12model kyr — this method has been
shown to have little effect on the surface climate (Timm and Timmerman, 2007;
Ganapolski et al., 2010) athough it does distort the response of the deep ocean. In
addition, we did not include changes in sea level, Antarctic ice volume, or meltwater
from ice-sheets to enable the smooth operation of the transient simulations. The
impact en-theterrestrial-carben-budget-of ignoring the continental shelves exposed by
lower sea-levels will be discussed later; the latter two approximations are unlikely to
have an impact over the timescales considered here. Although within the published
capabilities of the model, interactive vegetation was not used during this simulation,
with (icesheets aside) the land surface characteristics of the model being specified as

for apreindustrial simulation.

2.2.3BIOME4

BIOME4 (Kaplan et a. 2003) is a biogeochemistry-biogeography model that
predicts the global vegetation distribution based on monthly mean temperature,
precipitation and sunshine fraction, as well as information on soil texture, depth and
atmospheric CO,, It derives a seasonal maximum leaf areaindex that maximises NPP
for a given PFT by simulating canopy conductance, photosynthesis, respiration and
phenological state. Model gridboxes are then assigned biome types based on a set of
rules that use dominant and sub-dominant PFTs, as well as environmental limits.

Two reconstructions of the evolution of the climate over the last glacial cycle
were obtained by calculating monthly climate anomalies with respect to the simulated
pre-industrial  for the HadCM3 and FAMOUS glacia climate simulations
respectively, then adding these anomalies, on the native FAMOUS and HadCM3
grids, to an area averaged interpolation of the Leemans and Cramer (1991) observed
climatology provided with the BIOME4 distribution. These climate reconstructions
were then used to force two BIOME4 simulations. The climate anomaly method
allows us to correct for known systematic errors in the climates of HadCM3 and
FAMOUS and produce more accurate results from BIOME4, athough the method
assumes that the pre-industrial errors in each model are systematically present;_and
unchanged over ice-free regions; throughout the whole glacial cycle. We chose to use
the actual climate model grids for the BIOME4 simulations, rather than interpolating
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onto the higher-resolution observationa climatology grid, to avoid concealing the
significant impact that the climate model resolution has on the vegetation simulation,
and to highlight the differences between the physical representation of the climate
between the two different models. Because of its lower resolution, FAMOUS cannot
represent geographic variation at the same scale as HadCM 3, which not only affects
the areal extent of individual biomes, but also how dltitude is represented in the
model, which can have a significant effect on the local climate and resulting biome
affinity. The frequency of data available from the FAMOUS run aso limits the
accuracy of the minimum surface air temperature it can force BIOME4 with, as only
monthly average temperatures were available. This results in some aspects of the
FAMOUS-forced BIOME4 simulation seeing a less extreme climate than it should,
and may artificially favours more temperate vegetation in some locations.

Soil properties on exposed shelves were extrapolated from the nearest pre-
industrial land points. There is no specia correction for the input climate anomalies
over this exposed land, which results in a slightly subdued seasonal cycle at these
points (due to smaller inter-seasonal variation of ocean temperatures). The version of
the observational climatology distributed with BIOME4 includes climate values for
these areas. The BIOME4 runs used the time-varying CO, records that were used to
force the corresponding climate models, as described in sections 2.2.1 and 2.2.2. As
well as affecting productivity, the lower CO, concentrations found during the last
glacia favour the growth of plants that use the C, photosynthetic pathway (Ehleringer
et a., 1997), which can affect the distribution of biomes as well. All other BIOME4
parameters as well as soil characteristics were held constant at pre-industrial values.

The results of the HadCM3-forced BIOME4 simulation will be referred to in
this paper as B4H, and those from the FAMOUS-forced BIOME4 simulation as B4F.

3. Results

In this section, the results of both the pollen-based biomization for individual
regions and the biome reconstructions based on the GCM climate simulations will be
outlined. The biomized records and biomization matrix can be found in the
supplementary information. Biome changes relating to millennial scale climate
oscillations are discussed elsewhere (e.g. Harrison and Sanchez Gofii, 2010 and

references therein).
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3.1 Biomization

This method trandlates fossil pollen assemblages into a form that allows direct
data-model comparison and allows the reconstruction of past vegetation conditions.
Biome affinity scoresfor each location are shown in the Supplementary Information.
3.1.1 North America

Two regional PFT schemes were used for sites from North America: the

scheme of Williams et al. (2000) for northern and eastern North America and the
scheme of Thompson and Anderson (2000) for the western USA. For their study of
biome response to millennial climate oscillations between 10 and 80 ka BP
Jiméineéz-Moreno et a. (2010) applied one scheme for the whole of North America,
with a subdivsion for southeastern pine forest. All biomization matrices and scores for
individual sites used in our study, generally at 1 kyr resolution, as well as explanatory
files can be found in the Supplementary Information. The Arctic Baffin Island sites
(Amarok and Brother of Fog) have highest affinity scores for tundra during the ice-
free Holocene and last interglacial.

highest affinity scoresfor the last 52 kyr, apart from two short intervals (~14.5 t015.5
ka BP and ~36.5 to 37.5 ka BP) where warm-temperate forest and temperate forest

have highest scores{Fig—2a). According to Williams et al. (2000), present day, 6 ka
BP, and LGM records of most of Florida and the Southeast of America should be
characterized by highest affinity scores for the warm-temperate forest biome

(Williams et al., 2000). The discrepancy of our biomization results with those of the
regional biomization results of Williams et al. (2000) is due to high percentages of
Quercus, Pinus undiff (both are in the grassand and dry shrubland and warm-

temperate forest biomes), and Cyperaceae and Poaceae that contribute to highest
affinity scores of the grassland and shrubland biome. Interestingly, the temperature
forest biome has highest affinity scores in a short interval (~15 ka BP) during the
deglaciation-{Fig—2a}. In Jiméineéz-Morene et a. (2010) Pinus does not feature in the

grassand and dry shrubland biome, but comprises a maor component of the

southeastern pine forest; hence their biomized Lake Tulane records fluctuates
between the 'grassland and dry shrubland' biome and 'southeastern pine forest biome'.
In western NorthNerthwest America pollen data from San Felipe (16 to 47 ka
BP), Potato Lake (last 35 kyra), and Bear Lake (last 150 kyr) al show highest scores
for the grassland and dry shrubland biome. Potato Lake is currently situated within a
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forest (Anderson, 1993). In our biomizations Pinus pollen equally contribute to scores

O U A

of boreal forest, temperate forest, warm-temperate forest and the grassland and dry - - { Formatted: Font: Not Italic
shrubland biomes. In addition, high contributions of Poaceae occur so that the \%Forma“e": Font: Not talic
. . o Formatted: Font: Not Italic
grassland and dry shrubland biome has highest affinity scores throughout the last 35 Formatted: Font: Not Itafic
kyr. Again, in the Jiméineéz-Morene et al. (2010) biomizations Pinus does not feature \\[ Formatted: Font: Not ltalic
in the grassland and dry shrubland biome, hence the forest biomes have highest [ Formatted: Font: Italic
affinity scores in their biomizations. At Carp Lake the Holocene is characterized by
alternating highest affinity scores between the temperate forest and grassland and dry \{ Formatted: Font: Not Italic
shrubland biomes whereas during the glacial only the grassland and dry shrubland [ Formatted: Font: Not talic
. . . o . [ Formatted: Font: Not Italic
biome attains highest affinity scores. The age model of Carp Lake suggests this record
goes back to the Eemian, and if so, then last interglacial climate was lacking the
aternation between the temperate forest and grassland and dry shrubland biomes as \{ Formatted: Font: Not Italic
was the casefound during the |ate Holocene. Modern and LGM biomizations at Carp ~{ Formatted: Font: Not tali
Lake and Bear Lake are similar to those of Thompson and Anderson (2000) medern
Biomizations for Carp Lake between 10 and 80 ka BP by Jiméinéez-Morene et al.
(2010) generally look similar to ours, apart from 36, 57-70 and 72-80 ka BP where the
temperate forest biome shows highest affinity scores because Pinus undiff. is treated { Formatted: Font: Italic

asinsignificant in their biomization. Biomizations of Bear Lake between 10 and 80 ka
BP are similar to Jiméineez-Morene et a. (2010).
3.1.2Latin America

The regional biomization scheme of Marchant et al. (2009) was used for Latin
American locations. Hessler et al. (2010) discuss the effects of millennia climate
variability on the vegetation of tropical Latin America and Africa between 23N and
23S, using similar biomization schemes. In our study_eleven sites from Central and
South America are considered covering a latitudinal gradient of 49° (from 20° to -29°)
and an elevation range of 3900 m (from 110-4010 m adl [above sea level]) (Table 2).
Five of the sites are from relatively low elevations (<1500 m agl), from north to south
these are: Lago Quexil and Petén-1tza in Guatamala and Salitre,—and Colonia and
Cambara in South East Brazil. The high elevation records (>1500 m adl), with the
exception of the most northerly site in Mexico (Lake Patzcuaro), are distributed along
the Andean chain: Ciudad Universitaria X (Colombia), Laguna Junin (Peru), Lake
Titicaca (Bolivia/Peru) and Salar de Uyuni (Bolivia).
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The five lowland sites indicate the persistence of forest biomes for much of
the last 130 kyr-(Fig—2bb. In Central American the Lago Quexil record stretches back
to 36 ka BP and has highest affinity scores for the warm-temperate forest biome

A

during the early Holocene. During glacial times the temperate forest biome

dominates, intercalated with mainly the grassland and dry shrubland and desert

| _-= { Formatted:
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biomes during the LGM and last deglaciation. At Lago Petén-I1tza (also Guatamala)
highest affinity scores for the warm-temperate forest biome are recorded for the last
86 kyr. The Salitre and Colonia records are the only Latin American sites that fall
within the tropical forest biome today. The majority of the Salitre record shows high

affinities for tropical forest from ~64 ka BP to modern; apart from an interva

coinciding with the Younger Dryas which displays highest affinity scores for the
warm-temperate forest biome. The southern-most Brazilian record, at Colonia, has
highest affinity scores for tropical forest for the last 40 kyr, except between 28 and 21

ka BP (~coincident with the LGM) when scores were highest for the warm-temperate
forest biome. Between 120 and 40 ka BP highest affinity scores alternate between the

Iropical forest and warm-temperate forest biome at Colonia. The biomized Colonia
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record of Hessler et a. (2010) generally shows the same features, apart from an
increase in affinity scores fof the dryer biomes between 10 and 18 ka BP. To the
south, at Cambara (Brazil), highest affinity scores are found for warm-temperate
forest during the Holocene and between 38 and 29 ka BP, whilst during the interval
in-—between they aternate between warm--temperate forest and grassland and dry
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shrubland.

Apart from Laguna Junin, higher elevation sites (>1500 m: Lake Patzcuaro,
Titicaca,~ Uyuni, and CUX) do not show a strong glacia-interglacial cycling in their
affinity scores; Mexican site Lake Patzcuaro (2240 m) and Colombian site CUX
(2560 m) have highest affinity scores mainly for warm-temperate forest over the last

35 kyr, although they aternate between warm--temperate forest and temperate forest
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during the Holocene and at CUX also during the LGM {Fig—2bii). Lake Patzcuaro and
CUX biomization results for the Holocene, 6 ka BP and LGM compare well with
those derived by Marchant et al. (2009). At Uyuni (3643 m) highest affinity scoresare
for temperate forest and grassland and dry shrubland biome between 108 and 18 ka
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BP. At Titicaca (3810 m) high affinity scores are found for temperate forest over the

last 130 kyr, apart from during the previous interglacial (Eemian) when highest
affinity scores for the desert biome occur. Finally at Lago juri-Junin highest affinity
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scores dternate between warm-temperate forest and temperate forest during the - { Formatted: Font: Not Italic
Holocene and temperate forest and grassland and dry shrubland during the glacial. ~{ Formatted: Font: Not lali
. { Formatted: Font: Not Italic
31.3Africa \[ Formatted: Font: Not Italic
For the biomization of African pollen records the scheme of Elenga et al.
(2004) was applied. What is specificaly different from Southern European
biomizations is that Cyperaceae s-are not included as this taxaen generally occursin
high abundances in association with wetland environments where i-they represents a
local signa (Elenga et al., 2004). It is noted that most African sites are from highland
or mountain settings, with the exception of Mfabeni (11 m.a.s.l.).
At the mountain site Kashiru swamp in Burundi the Holocene is characterized
by an alternation of highest affinity scores for tropical forest, warm--temperate forest \{ Formatted: Font: Not ltalic
and the grassiand and dry shrubland hiomes. During most of the glacial, scores are | [ Formatted: Font: Not itali
. . . [ Formatted: Font: Not ltalic
highest for the grassland and dry shrubland biome, preceded by an interval where { Formatted: Font: Not Itafic
warm--temperate forest showed highest scores{Fig—2¢}. Our results are similar to __—{ Formatted: Font: Not Italic
those obtained by Hessler et al. (2010). Highest affinity scores for tropical forest and ﬂ Formatted: Font: Not Italic
warm-temperate forest were-are found during the Holocene at the Rusaka Burundi [ Formatted: Font: Not 'talfc
- *{ Formatted: Font: Not Italic
mountain site, whereas those of the last glacial again had-have highest scores for_the
grassland and dry shrubland piome. At the Rwanda Kamiranzovy Site the grassland \{ Formatted: Font: Not Italic
and dry shrubland biome displayed highest scores during the last glacial (from ~30 ka \{{ Formatted: Font: Not Italic
L . . . . Formatted: Font: Not Italic
BP) and deglaciation, occasionally aternating with the warm--temperate forest biome. { Formatted: Font: Not ltalic
In Uganda at the low mountain site Albert F (619 m) the Holocene and potentially
Balling Allerad is dominated by highest affinity scores for tropical forest, whereas the { Formatted: Font: Not Italic
Y ounger Dryas and last glacial show highest affinity scores for the grassland and dry { Formatted: Font: Not Italic
shrubland biome-{Fig—2¢}. In the higher-elevation Ugandan mountain site Mubwindi
swamp (2150 m), the Holocene pollen record shows alternating highest affinity scores
between ftropical forest and the grassand and dry shrubland biome, whereas the \{ Formatted: Font: Not Italic
glacial situation is similar to the Albert F site (e.g. dominated by highest scores for the ~{ Formatted: Font: Not talic
grassland and dry shrubland biome). In South Africa, the Mfabeni Swamp record { Formatted: Font: Not Italic
shows highest affinity scores for the grassland and dry shrubland biome for the last 46 { Formatted: Font: Not Italic
kyr—years, occasionally; aternated with the savanna and dry woodland bieme; and { Formatted: Font: Not Italic
tropical forest biome during the late Holocene. At the Deva Deva Swamp in the
Uluguru Mountains highest affinity scores are for_the grassland and dry shrubland { Formatted: Font: Not Italic

biome for the last ~48 kyr. At Saltpan the grassland and dry shrubland biome

dominates throughout the succession, including the Holocene and glacial. At Lake
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Tritrivakely (Madagascar) the grassland and dry shrubland biome dominates, apart
from between 3 and 0.6 ka BP when the tropical forest biome deminates-shows
highest affinity scorestFig—2¢}. Our results compare well with those of Elenga et al.
(2004) who show a LGM reduction in tropical rainforest and lowering of mountain

vegetation zones in major parts of Africa.
3.1.4 Europe

For European pollen records three biomization methods were used that are
region specific. For Southern Europe the biomization scheme of Elenga et a. (2004)
was used, where Cyperaceae is-are included in the biomization as i-they can occur as
an ‘upland’ species characteristic of tundra. For sites from the Alps the biomization
scheme of Prentice et al. (1992) was used, and for Northern European records the
biomization scheme of Tarasov et a. (2000). Fletcher et a. (2010) use one uniform
biomization scheme to discuss millennia climate in European vegetation records
between 10 and 80 ka BP.

In Southern Europe at the four Italian sites (Monticchio, Lago di Vico,
Lagaccione and Valle di Castiglione) the Holocene and last interglacial show highest

of the glacial and also cold interglacial substages the grassland and dry shrubland

biome has highest affinity scores, whereas during warmer interstadial intervals of the
last glacial the temperate forest biome had highest affinity scores-again{Fig—2eb. At

Tenaghi Phillipon and loannina a similar biome sequence may be observed, with

highest affinity scores for temperate forest and warm--temperate forest biomes during

interglacials. During the last glacial and cool substages of the previoustast interglacial
cool-substages the grassland and dry shrubland biome showed highest affinity scores

at Tenaghi Philippon. At loanninathe LGM and last glacia cool stadial intervals have
highest affinity scores for grassand and dry shrubland, whereas affinity scores of

glacia interstadial periods are highest for temperate forest-{Fig—2¢b). Our biomization

results for Southern European sites agree well with those of Elenga et al. (2004) who
aso found a shift to dryer grassland and dry shrubland biomes during glacial times.
Instead of a desert and tundra biome, Fletcher et al. (2010) define a xyrophytic steppe
and eurythermic conifer biome in their biomizations_for Europe, giving subtle
differences in the biomization records, with the Fletcher et al. (2010) biomized
records showing an important contribution of affinity scores to the xerophytic steppe
biome. Characteristic species for the xerophytica shrub—steppe biome include

For Climate of the Past Discussions

|_-~= { Formatted: Font: Not Italic
\\\\{ Formatted: Font: Not Italic
[ Formatted: Font: Not Italic
/,,/{ Formatted: Font: Not Italic
//{ Formatted: Font: Not Italic
h { Formatted: Font: Not ltalic
/,/{ Formatted: Font: Not Italic
/,/{ Formatted: Font: Not Italic
/,/{ Formatted: Font: Not Italic




524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542

546
547

549
550
551
552
553
554
555
556
557

the Southern Europe biomization scheme of Elenga et a. (2000) feature in the dessert,
biome and grassland and dry shrubland biome (only ephedrgEphedra).
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All four alpine sites are from atitudes between 570 and 670 m and for all four
sites the last interglacial period was characterized by having highest scores for the
temperate forest biome{Fig—2di). At Firamoos the last glacia showed highest
affinity scores for the tundra biome, whilst during the Holocene the temperate forest
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biome shows highest affinity scores-{Fig—2dit}. In the Fletcher scheme characteristic
pollen for the eurythermic conifer biome include pirus,Pinus and juniperugJuni per us.
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In our biomization pHus-Pinus and juriperds-Juniperus contributes to all biomes

except for the desert and tundra biomes.

Most Northern European sites are mainly represented for the last interglacial

period, apart from Horoszki Duze in Poland. At most sites the temperate forest biome

and boreal forest biome show highest affinity scores during the last interglacia

(Eemian), whereas cool substages and early glacia (Butovka, Horoszki Duze) show
high affinity scores for the grass and dry shrubland biome These results compare well

with Prentice et al. (2000), who suggest a southward displacement of the Northern
hemisphere forest biomes and more extensive tundra and steppe like vegetation
during the LGM.
3.15Asa

For the higher latitude site Lake Baikal the biomization scheme of Tarasov et
a. (2000) was used. For the two Japanese pollen sites we used the biomization
scheme of Takahara et a. (1999). At Lake Bakal, during the Eemian the highest
affinity scores are for_the porea and temperate forest biomes; the penultimate
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deglaciation and cool substage show highest affinity scores for_the grassland and dry

shrubland_biome, similar to Northern European Sites. Pollen taxa such as Carpinus,
Pterocarya, Tilia cordata and Quercus have probably been redeposited or transported
over alarge distance; however they all make up less than 1% of the pollen spectrum
and therefore did not influence the biomization much.

At Lake Suigetsu in Japan the warm-temperate forest biome shows highest

affinity scores over the last 120 kyr; those of other biomes (including tundra) do show

increasing affinity scores during glacial times but never exceeding those of the warm-

temperate forest biome. At lake Biwa the warm-temperate forest biome shows highest

affinity scores during interglacial times, whilst in-between they alternate between the
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Wwarm-temperate forest biome and the temperate forest biome. These results agree - - { Formatted: Font: Not Italic
well with those of Takahara et al. (1999) and Takaharaet al. (2010). [ Formatted: Font: Not italic
3.1.6 East Asia/Australasia
For East Asian and Australasian sites the scheme of Pickett et al. (2004) was
used. In Thailand the Khorat Plateau site shows highest affinity scores for the tropical { Formatted: Font: Not Italic
forest biome over the last ~40 kyr. At New Caedonids Xero Wapa, the warm- { Formatted: Font: Not Italic
temperate forest and tropical forest biomes show highest affinity scores over the last { Formatted: Font: Not Italic
127 kyr. In Australias Caledonian Fen interglacial times (Holocene and previous
interglacial) show highest affinity scores for the savanna and dry woodland biome-has { Formatted: Font: Not Italic
highest—affinity—seores. During the glacial the grassland and dry shrubland biome { Formatted: Font: Not Italic
generally shows highest affinity scores, occasionally alternated with highest scores for
the savanna and dry woodland biome during the early part of Marine Isotope Stage { Formatted: Font: Not Italic
(MI1S) 3 and what would be MIS 5a (ca. 80-85 ka BP). Over most of the last glacial—
interglacial cycle highest affinity scores at Lynch’s Crater are for the tropical forest { Formatted: Font: Not Italic
and warm-—temperate forest biomes. —with-tThe savannah and dry forest biome \{ Formatted: Font: Not Italic
becomes important during MIS 4 to 2 and generally having theshows highest affinity ~ Fermatted: Font: Not tali
scores between 40 and 7 ka BP, probably the-as a result of increased biomass burning
(human activities) causing the replacement of dry rainforest by savannah. In addition,
the significance of what is considered to be tundrafrom MIS 4 is due to an increase in
Cyperaceae with the expansion of swamp vegetation over what was previously alake.
At Okarito (New Zealand), the temperate forest biome has highest affinity scores \{ Formatted: Font: Not ltalic
throughout (occasionally alternated with warm-temperate forest), apart from during 7:’\{ Formatted: Font: Not Italic
O ~{ Formatted: Font: Not Italic
the LGM and deglaciation (~25-to—14ka BP), where those of savanna and dry { Eormatted: Font. Not Italic
woodland, and grassland and dry shrubland show highest affinity scores. Biomization [ Formatted: Font: Not Italic
results for the Australian mainland and Thailand agree well with those obtained by ~{ Formatted: Font: Not Italic

Pickett et al. (2004) for the Holocene and LGM.
3.2HadCM 3/[FAMOUS model comparison

Although the source codes of HadCM3 and FAMOUS are very similar,
differences in the resolution of the models and the setup of their simulations resultsin
a number of differences in both the climates they produce and the vegetation patterns
seen in B4H and B4F over the last glacial cycle. Specific regions and times where
they disagree on the dominant biome type will be discussed later, but there are a
number of features that apply throughout the simulations.
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591 Both B4H and B4F keep the underlying soil types constant as for the pre-
592 | industrial throughout the glacial cycle. taterms-of the-global-tand-carbon-budget-the
503 i vy 1 1 m A i A

594 | ineluded—or—not—The HadCM3 snapshot simulations allowed for the exposure of
595 coastal shelves as sea-level changed through the glacial cycle, with reconstructions
596 based on Peltier and Fairbanks (2006) who used the SPECMAP &0 record
597 (Martinson et al., 1987) to constrain ice volume/sea level change from the last
598 interglacia to the LGM. FAMOUS, on the other hand, kept global mean sea level as

599 for the present day throughout the whole transient simulation. As a consequence the

600 area of land available to vegetation expands and contracts with falling and rising sea
601 level in B4H but remains unchanged in B4F. Inclusion of changing land exposure
602 | with sea level therefore alows for significant additional vegetation changes and
603 . . : .

604  will be discussed further later.

605 Full detéils of the climates produced by FAMOUS and HadCM3 in these
606 simulations can be found in Smith and Gregory (2012) and Singarayer and Valdes

607  (2010). In general, land surface temperature anomalies in the HadCM3 simulations
608 are a degree or so colder than in FAMOUS. This difference in temperature, present

609 | to some degreefwe throughout most of the simulation is attributed mainly to

610 | differencesin surface height and ice-sheet ice extent, although differencesin the CO, - - { Formatted: Subscript

611 | forcing play arole in MIS 3. FAMOUS model results are also, on average, dightly
612 | drier compared with those of HadCM3. This is additionally related to the model

613  resolution, with HadCM3 showing much more regional variation (some areas become
614  wetter and some drier), whilst FAMOUS produces a more spatially uniform drying as
615 the climate cools. A notable exception to this genera difference is in north-western
616 Europe, where FAMOUS more closaly reproduces the temperatures reconstructed
617 | from Greenland ice-cores (Masson-Delmotte et al., 2005), compared to which-the
618 | HadCM3 simulations used here which have a significant warm bias at the LGM.
619 Millennial scale cooling events and effects of ice-rafting are not features of our model
620 runs, which present a relatively temporally smoothed simulation of the last glacia
621 cycle

622 3.3 Data-model comparison.
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We present here an overview of the vegetation reconstructions for the last
glacia-interglacial cycle simulated in B4H and B4F. We compare the simulated
biomes in B4H and B4F with each other and with the dominant megabiome derived
from the pollen-based biomizations, restricting our description of the results to major
areas of agreement and disagreement. Maps of the dominant megabiomes produced
by B4H and B4F with superimposed reconstructed dominant megabiomes for these
periods are shownean-be-seen in Figure 32.

We focus on a few specific periods, detailed below, since reviewing every

detail present in this comparison is unfeasible. The pre-industrial period serves as a
test-bed to identify biases inherent in our model setup, before climate anomalies have
been added. The 6 ka BP mid-Holocene period represents an orbital and ice-sheet
configuration favouring generally warm northern hemisphere climate (Berger and
Loutre, 1991). The LGM simulation at 21 ka BP is at the height of the last glacial
cycle, when ice-sheets were at their fullest extent, orbital insolation seasonality was
similar to present and CO, was at its lowest concentration (~185 ppm), and the
resulting climate was cold and dry in most regions. These three time periods form the
basis of the standard PMIP2 simulations and were used in the BIOME 6000 project.
We thus additionally compare our simulations with the BIOME 6000 results for these
time periods. The 54 ka BP interval is representative of peak warm conditions during
Marine Isotope Stage 3 (MIS 3), where both the model climates and some proxy
evidence suggest relatively warm conditions, at least for Europe (Voelker et a.,
2002), associated with temporarily higher levels of greenhouse gases, an orbital
configuration that favours warmer northern-hemisphere summers, and northern
hemisphere ice sheet volume roughly half that of the LGM. The time slice 64 ka BP
represents MIS 4, both greenhouse gases and northern-hemisphere insolation were
lower, and northern hemisphere ice volume was two-thirds higher than at 54 ka BP,
resulting in significantly cooler global climate. 84 ka BP is representative of stadial
conditions of the early part of the glacial (at the end of MIS 5), after both global
temperatures and atmospheric concentrations of CO, have fallen significantly and the
Laurentide ice-sheet has expanded to a significant size but before the Fennoscandian
ice-sheet can have a mgjor influence on climate. The 84 ka BP period can be
compared with the Eemian (120 ka BP, the earliest climate simulation used here),
which represents the end of the last interglacial warmth (MIS 5e), before glacia
inception. The Eemian period (120 ka BP) differs from the pre-industrial mainly in
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insolation. The earlier parts of the Eemian (e.g. 125 ka BP) are often studied due to
their higher temperature and sea level compared to the Holocene (Dutton and
Lambeck, 2012), but 120 ka BP is the oldest point for which both FAMOUS and
HadCM 3 climates were available.

3.3.1 Pre-industrial

Our BIOME4 simulations were forced using anomalies from the pre-industrial
climates produced by HadCM3 and FAMOUS. Differences between B4H and B4F
for this period thus only arise from the way the pre-industrial climate forcing has been
interpolated onto the two different model grids we used. Differences between B4H
and B4F and the pollen-based reconstructions for this period highlight biases that are
not directly derived from climates of HadCM3 and FAMOUS, but are inherent to
BIOME4, the pollen-based reconstruction method, or simply the limitations of the
models geographical resolution.

Although few of the long pollen records synthesised in this study extend to the
modern period and their geographical coverage is sparse, a comparison with previous
high-resolution biomizations of BIOMEG00O (see Table 1 for details; these studies
include the sites synthesised here amongst many others) and Marchant et al. (2009)
show that they are generally representative of the regionaly dominant biome. The
biomized records of Carp Lake and Lake Tulane in North America are exceptions,
showing dry grassland conditions rather than the forests (conifer and warm-mixed,
respectively) that are more typical of their regions (Williams et al., 2000).

There is generally very good agreement between B4H and B4F for this period
and the high-resolution BIOMEGOOO and Marchant et a. (2009) studies. A notable
exception, common to both B4H and B4F, can be seen in the south-west US being
misclassified compared to the regional biomization of Thompson and Anderson
(2000). The open conifer woodland biome they assign to sitesin this region appears to
be sparsely distributed (their figure 2) amongst larger areas likely to favour grassland
and desert, and thus may be unrepresentative of areas on the scale of the climate
model gridboxes. The limitations of HadCM3 and FAMOUS's spatia resolution
appear most evident in South America, where the topographically-influenced mix of
forest and grassland biomes found by Marchant et al. (2009) cannot be correctly
reproduced, with disagreement at the grid-box scale between B4F and B4H. Eurasiais
generally well reproduced, although the Asian boreal forest biome does not extend far

enough north, and overruns what should be a broad band of steppe around 50°N on its
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southern boundary. Australia, with a strong gradient in climate from the coasts to the
continental areas also shows the influence of the coarse model resolutions, with B4F
more accurately reproducing the southern woodlands but neither simulation
reproducing the full extent of the desert interior. Both Australian records are from the
eastern coastal ranges; there are no long continuous records in the interior because of
the very dry conditions. Overall, our comparison with the full BIOMEG0OOO dataset
gives reasonable support to our working hypothesis that BIOME4, operating on the
relatively coarse climate model grids we use here, is capable of producing a realistic
reconstruction of global biomes, but-may-differtocalhy-athough local differences may
sti-occur.
3.3.2 6 ka BP mid-Holocene

Asfor the pre-industrial, in both the mid-Holocene and LGM periods the high

resolution biomizations of the BIOMEG0QO project (see Table 1) provide a better base
for comparison of our model results than the relatively sparse, long time-series pollen
records synthesised in this study. A common thread in the BIOME 6000 studiesis the
global similarity between the reconstructions for 6 ka BP and the pre-industrial, and
thisis, by and large, aso the result seen in B4H and B4F. An increase in vegetation
on the northern boundary of the central Africa vegetation band is the most notable
difference compared to the pre-industrial in the regional biomizations (Jolly et al.,
1998), which is also suggested by the long central African pollen records synthesised
here. Both climate model-based reconstructions show grassland on the borders of pre-
industrial desert areas in North Africa, although the additional amount of rainfall in
both models is too low, and the model resolution tee-tewinsufficient to represent any
significant “greening” of the desert. B4F shows a smaller change in tropical forest
area in centra Africa than B4H does, agreeing better with the regiona biome
reconstructions. Both HadCM 3 and FAMOUS predict similar patterns and changesin
precipitation for this period, but the magnitude of the rainfall anomaly in FAMOUS is
dightly lower. The reduction in forest biomes at the tip of South Africain B4F has
some support from Jolly et a. (1998), although B4F initially overestimates forest in
thisarea.

B4H and B4F show limited changes elsewhere too. In North America,
FAMOUS's increase in rainfall anomalies produces more woodland in the west in
B4F compared to the pre-industrial, which is not seen in B4H. This is not a
widespread difference shown in the regional biomization, although individual sites do
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change. Marchant et a. (2009) suggest drier biomes than the pre-industrial for some
northern sites in Latin America, agreeing with B4F but not B4H. For Eurasia and into
China, Prentice (1996), Tarasov et a. (2000) and Yu et a. (2000) all suggest greater
areas of warmer forest biomes to the north and west across the whole continent, with
less tundra in the north. Neither BIOME4 simulation shows these differences,
however, with some additional grassland at the expense of forest on the southern
boundary in B4H, and B4F predicting more tundra in the north. Although both
FAMOUS and HadCM3 produce warmer summers for this period, in line with the
increased seasonal insolation from the obliquity of the Earth’s orbit at this time, the
colder winters they also predict for Eurasia skew annua average temperatures to a
mild cooling which appears to prevent the additional forest growth to the north and
west seen in the pollen-based reconstructions.

3.3.321 kaBP (Last Glacial Maximum)

For the LGM, both the BIOME4 simulations and pollen-data-based
reconstructions predict a global increase in grassands at the expense of forest, with
more tundra in northern Eurasia and desert area in the tropics than during the
Holocene. Along with the cooler, drier climate, lower levels of atmospheric CO, also
favour larger areas of these biomes. Our long pollen records do not have sufficient
spatial coverage to fully describe these differences, showing only smaller areas of
forest biomes in southern Europe, central Africaand Australia, but there is again good
general agreement between our two BIOME4 simulations and the regionad
bi omi zations of the BIOMEG000 project.

The FAMOUS and HadCM 3 grids do not seem to have sufficient resolution to
reproduce much of the band of tundra directly around the Laurentide ice-sheet in
either B4H or B4F, but the forest biomes the simulations show for North America are
largely supported by Williams et al. (2000). However, Thompson and Anderson
(2000) suggest larger areas of the open-conifer biome in the southwestern US than in
the Holocene that the BIOME4 simulations again do not show. Both B4H and B4F
predict a smaller Amazon rainforest area. Marchant et al. (2009) suggest that the
Holocene rainforest was preceded by cooler forest biomes, whereas both HadCM 3
and FAMOUS simulate climates that favours grasslands. Marchant et al. (2009) also
provide evidence for cool, dry grasslands in the south of the continent; FAMOUS
follows this climatic trend but B4F suggests desert or tundra conditions, whilst B4H
shows a smaller area of the desert biome. For Africa, Elenga et al. (20002004) show
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widespread grassland areas where the Holocene has forest, with which the simulations
agree, and dry woodland in the southeast, with-which neither B4H or B4F show;
HadCM3 and FAMOUS appear to be too cold for BIOME4 to retain this biome.
Elenga et a. (2000) also shows increased grassland area in southern Europe, which is
not strongly indicated by either B4H or B4F, which have some degree of forest cover
here.

The large areas of tundra shown by Tarasov et a. (2000) in northern Eurasia
to the east of the Fennoscandian ice-sheet are well reproduced by the BIOME4
simulations, although HadCM3's dlightly wetter conditions produce more of the
boreal forest in the centre of the continent in B4H. The generally smaller amounts of
forest cover in Europe in B4F agree with the distribution of tree populations in
Europe at the LGM proposed by Tzedakis et a (2013) better than those from B4H,
possibly due to HadCM3's warm bias at the glacial maximum. Both B4H and B4F
agree with the smaller areas of tropical forest in China and southeast Asia
reconstructed by Yu et a. (2000) and Pickett et al. (2004) compared to the Holocene,
but have too much forest area in China compared to the biomization of Yu et al.
(2000). Neither BIOME4 simulation reproduces the reconstructed areas of xerophytic
biomesin south Australia, or the tropical forest in the north (Pickett et al., 2004).
3.3.454 ka BP (early Marine I sotope Stage 3)

There are fewer published biomization results for periods before the LGM, so
our model-data comparison is restricted to the pollen-based biomization results at
sites synthesised in this paper. Of these sites, only two sites show a different
megabiome affiliation when compared to the LGM: in South America Uyuni shows
highest affinity scores for the forest biome, and in Australia, Caledonian Fen shows
highest affinity scores for the dry woodland biome (both sites show highest affinity
score for grassland during the LGM). Overall, the few sites where data are available
show little differences compared with the LGM. This is perhaps a surprise given the
evidence that this was a relatively warm interval within the last glacial, at least in
Europe-at-teast-_(Voelker et al., 2002). These mostly unchanged biome assignments
derived from our pollen data records are supported by our BIOME4 simulations in
that, although both FAMOUS and HadCM3 do produce relatively warm anomalies
compared to the LGM, both B4H and B4F simulations at 54 ka BP are similar to the
LGM leeal-close to the pollen sites in the Americas, most of southern Europe (apart
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from loannina where the data show highest affinity scores for temperate forest) and
east Africa.

In other parts of the world, the biomes simulated at 54 kaBP in B4H and B4F
do differ significantly from those of the LGM. Both BIOME4 simulations show
increased vegetation in Europe and central Eurasia due to the climate influenced by
the smaller Fennoscandian ice-sheet, as well as reduced desert areas in North Africa
and Australia, generally reflecting a warmer and wetter climate under higher CO,
availability than at the LGM. However our simulations disagree on both the climate
anomalies and the likely impact on the vegetation in several areas in this period.
These include differences, both local and far-field, related to prescribed ice-sheets,
particularly in North America where the ice-sheet configuration in FAMOUS shows
largely separate Cordilleran and Laurentide ice-sheets compared to the more uniform
ice coverage of the continent in HadCM 3. Further afield, B4H has significantly more
tropical rainforest, especially in Latin America, and predicts widespread boreal forest
cover right across Eurasia. B4F however, reproduces a more limited forest extent,
with more grassland in central Eurasia. The differences in the tropics appear to be
linked to a-larger rainfall anomalies in HadCM 3 than FAMOUS, whilst the west and
interior of northern Eurasia is cooler in FAMOUS than HadCM3. This may be due to
the erroneously variable and low CO, applied to FAMOUS from the Vostok record
around this period, or it may indicate —pessibly—due-to—a stronger response to
precessional forcing_in FAM OU S-whist-the-west-and-interior-of-northern-Eurasia-is
cooleri-FAMOUS than-HadCM3, with a greater influence from the Fennoscandian
ice-sheet.

3.3.564 kaBP (Marine | sotope Stage 4)

There are only a few differences between biomized records at the LGM, 54 ka
BP, and 64 ka BP-{Figure-3}. Apart from one southern European site (loannina),
which has a highest affiliation with grassiand (compared with temperate forest during

the LGM), the pollen biome affiliations are much the same as at the LGM for the sites
presented here. The two sites in northern Australasia show a highest affiliation with
the warm-temperate forest biome during this period, compared with tropical forest at
54 ka BP, however affinity scores between the two types are close, so thisis unlikely
to be related to different climates. The BIOME 4 simulations support this as they also
do not show major differences at the pollen sites.
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Both B4H and B4F are, in general, similar for 64 and 54ka BP. The 64ka BP
climate in HadCM3 is cooler and drier than for 54ka BP, with B4H producing larger
areas of tundra in north and east Eurasia and patchy tropical forests. There is less
difference between 64ka BP and 54ka BP in the FAMOUS reconstructions, which
simulates a cooler climate at 54ka BP compared to HadCM 3, so B4F and B4H agree
better in this earlier period than at 54ka BP. North American vegetation distributions
primarly differ between B4H and B4F in this period due to the different
configurations of the Laurentide ice-sheet imposed on the climate models.

3.3.6 84 kaBP (Marine | sotope Stage 5b)

The pollen-based biomization for 84 ka BP clearly reflects the warmer and
wetter conditions with more CO, available than at 64 ka BP, especially in Europe,
with the magjority of sites showing highest affinity scores for the temperate forest
biomes. Sitesin other parts of the world show similar affinity scores to those at the 64
ka BP timeslice, athough there are not many sites and it is less clear whether they
reflect widespread climatic conditions.

The BIOME4 simulations reflect the warmer European climate resulting from
the smaller Fennoscandian ice-sheet at 84ka BP than 64ka BP, with B4F showing
some European forest cover, and B4H extending Eurasian vegetation up to the Arctic
coast. B4H shows more of this vegetation to be grassland rather than forest however,
probably a result of a slightly cooler climate in HadCM3. Around the southern
European pollen sites themselves, however, B4H shows little difference from the dry
grassland biomes present at 64 ka BP and B4F predicts dry woodlands, perhaps a
result of the models' representation of thepeerhy—medelled Mediterranean storm-
tracks that would bring moisture inland_which are often poorly reproduced in lower-
resolution models (Brayshaw et al 2010).

Although there are differences in the configuration of the Laurentide ice-sheet
between-the HadCM3 and FAMOUS, both B4H and B4F reproduce dry vegetation
types in Midwest America and significant boreal forest further north at 84 ka BP.

Both BIOME4 simulations show significantly smaller desert areas in North Africa

and larger areas of forest in the tropical belt than at 64 ka BP, reflecting significant
precipitation and higher CO, levels here, although both also show a dry anomaly over
Latin America. Because of increased rainfall in Australia, B4H shows a smaller desert
compared with 54 ka BP.

3.3.7120 ka BP (last interglacial period, Marine | sotope Stage 5€)
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This time-slice represents the previous interglacial, and would be expected to
have the smallest anomalies from the pre-industrial control climate of the climate
models. The pollen-based biomization shows widespread forest cover for Eurasia,
with the only other difference from both the 84 ka BP period and the pre-industrial
control being Lake Titicaca, which has the highest affinity toward desert for this
period. The affinity scores for temperate forest are aimost as high for this site, and
neither HadCM 3 nor FAMOUS has the resolution to reproduce the local climate for
this altitude well (Bush et al., 2010), although both do reflect dry conditions near the
coast here.

The models do indeed produce relatively small climate anomalies and
vegetation similar to the pre-industrial control and each other. Both models produce
widespread forest cover north of 40N, much as for the pre-industrial climate, although
FAMOUS is dlightly too wet over North America for B4F to produce mid-west
grasslands as seen in B4H. Both B4H and B4F increase the extent of their tropical
forests, although FAMOUS has a relative dry anomaly over central Africa, and B4F
has less tropical forest than for the pre-industrial or B4H, which once again appears to

have a stronger response to precessional forcing.

4 Global terrestrial vegetation changes

The BIOME 4 simulations compare wellreasonably re—is—good—general
i i with peHen-synthesisbiomizations
of — BIOME 6000 (pre-industrial, 6 ka BP and LGM) and frem-beth-thisthose
presented in this paper-and-BHOME-6000. Below we cal culate guantitative-changesin

the biome areas and net primary productivityglobal-terrestrial-biesphere-and-carben
eyele, keeping in mind that these calculations carry some uncertainties relating to

several mismatches. As is discussed in section 3.1 there are several occasions where
the modern biomized pollen data do not agree with actual biome presence; for
example Potato Lake and Lake Tulane in North America. In both cases high
contributions of Pinus and some other taxa skewed the affinity scores towards drier
biomes (grassland and dry woodland). For the past, not knowing whether a pollen
distribution is representative for an area puts restrictions on the biomization method.
It is however noted that in most cases the biomized pre-industrial pollen agree wek
with pre-industrial biomes. The climate models produce some differences in climate

forcing of the vegetation due to 1) difference in resolution, affecting the biome areal
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extent and altitude and 2) ice-shest extent, affecting temperature (section 3.2). We can
use the pre-industrial as a test-bed to compare model outputs and pollen-
reconstructions (using the BIOME 6000 database): showing that there are some biases
that can be attributed to biases in BIOME4, some to the biomization method, and
some to the models’ limiting geographical resolution.
4.1 Biome areas

Whilst there is general agreement between B4H and B4F, there are also areas
and periods with significant regional differences. A clearer picture of the effect on the
global biosphere can be seen by using the global total areas of each megabiome for
the two simulations (Figure 43). Cooler temperatures, reduced moisture, and lower
levels of CO, through the glacial result in a general reduction of forest biomes and
increases in grassland, desert, and tundra. Lower levels of atmospheric CO, aso
preferentially favour plants using the C4 photosynthetic pathway (Ehleringer et al.,
1997), contributing to the expansion of the grassland and desert biomes during the
glacia. The changes in atmospheric CO, levels through the glacial cycle are largely
common to all the BIOME4 smulations, so CO; fertilisation effects and C3/C4
competition are generally not responsible for differences in vegetation response
between B4F and B4H. The exception to this rule comes between 40 and 60 kyr BP,

where the FAMOUS runs sees erroneously strong CO, variationsin this time interval

from the Vostok record which may affect both the climate used to force B4F and the

fertilisation effects. B4F predicts consistently lower areas of warm-temperate and
boreal forest than B4H, and higher amounts of grassland and desert. FAMOUS also
neglects the additional area of land that HadCM3 sees as continental shelves are

exposed, reducing the area of land available to the biosphere, athough some of this
additional land is occupied by the northern hemisphere ice-sheets in HadCM 3. The
global total areas of biomes highlights a significant oscillation in the areas of the
different megabiomes of ~20 kyr in length — this is particularly notable between 60
and 120 ka BP in the grassland megabiome and results from the 23 kyr cycle in the
precession of the Earth’s orbit. The precession cycle exerts a significant influence on
the seasonality of the climate, as noted in tropical precipitation records (e.g. the East
Asian monsoon; Wang et al., 2008;_Carolin et al., 2013). Such variations are not

explicitly evident in the dominant megabiome types at any of the pollen sites, but the
precession oscillation does appear in the individual biome affinity scores of severa
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sites (Fig—2Supplementary Information), lending support to this feature of the model

reconstructions.
4.2 Net Primary Productivity

Net Primary Productivity (NPP) is the net flux of carbon into green plants (in
this case terrestrial plants) due to photosynthesis, after accounting for plant
respiration. Global NPP derived from our BIOME4 simulations for the Pl is 74 PgC
year for B4H and 78 PgC year™ for B4F (Figure 4). These values are somewhat
higher than previously estimated present-day ranges of 46 to -62 PgC year™ (Tinker
and Ineson, 1990; Nemani et al., 2003). Recent estimates using eddy covariance flux
data estimate global NPP as ~62 PgC year™ (assuming 50% carbon use efficiency to
convert from GPP to NPP; Beer et a. 2010).

Some other model estimates for the Pl are also lower (e.g. Prentice et d.,
2011: 59.2 PgC year™). As mentioned in section 3.3.1, BIOME4 is driven solely by an
observational climate dataset for the pre-industrial due to the anomaly approach used
to reduce the impact of climate model biases (see methods section 2.1.3). Therefore,
any overestimate in NPP is not a result of the climate model forcing but possibly due
to biases in the vegetation model, and/or biases in the observational climatology used
to drive the model, and the spatial resolution used. For example, the lower resolution
topography does not represent mountainous regions such as the Andes well nor its
topographically-induced variation in vegetation (see section 3.3.1), which may
positively skew NPP vaues. The model may also overestimate NPP compared to
observationally based techniques for the modern or pre-industrial, partly because it
does not contain any representation of non-climatically induced changes, e.g.
cultivation or land degradation.

The LGM BIOME4 simulations show a global NPP decline to ~42 PgC year™
in B4F and 48 PgC year™ in B4H (Figure 4). While these are also higher than some
other model-based estimates of 28-40 PgC year™ (e.g. Francois et al., 1999; 2002), the
relative decrease in the LGM in our simulations to approximately two-thirds of Pl is
consistent with several previous studies. A calculation based primarily on isotopic
evidence has produced an even lower estimate of LGM NPP of 20 + 10 PgC year™
(Ciais et d., 2012); with LGM primary productivity approximately 50% lower than
their Pl estimate.

The PI-LGM difference is greater in B4F than in B4H (Fig. 5a4), primarily

dueto the fact that HadCM3's glacial land area increases as sea-level lowers, enabling
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additional NPP on continental shelf regions, whereas FAMOUS land area remains the
same. This is demonstrated by recalculating global NPP for B4H neglecting exposed
shelf regions (B4H_NS), which then matches the values from B4F (Fig. 5a, green
line). The effect of vegetating continental shelves on global NPP is small in
comparison to the overal decrease during the glacial period; NPP reduction at the
LGM is40% for B4H_NS and 35% for B4H compared to the PI. The impact of large
continental ice-sheets reducing the land surface area available for primary production
has a negligible effect on NPP compared to reduced CO, and glacial climate change.
These high-latitude areas only contribute a small fraction of global NPP in any case
and if the area covered inice at the LGM is excluded from NPP cal culations of the PI,
global NPP only decreases by a maximum of ~5 PgC yr. In addition, sensitivity tests
with B4H, with and without CO,, variation suggests that CO, fertilization, rather than
climate, is the primary driver of lower glacial NPP in the model (accounting for
around 85% of the reduction in global NPP at the LGM).

Some differences in the timing of some multi-millennial peaks/troughsin NPP
between B4H and B4F are apparent, especidly in the earlier half of the ssimulation.
These differences, al of the order of a few thousand years, can largely be ascribed to
the different CO, forcings used for B4H and B4F as well as the multiple snap-shot
setup of the HadCM3 run, which only produces simulations at 2 or 4 ka intervals,
compared to the 1 ka resolution of B4F. Differences in the forcing provided by the
ice-sheet reconstructions used in the models, as well as in the strength of their

responses to orbital forcing in the early part of the glacia (e.g see-the oscillations in

area coverage of various biomesin Figure 43) may also play arole.

Both BIOME4 simulations predict sightly lower NPP during the previous
interglacial, the Eemian (3-5 PgC yr™ lower) compared with pre-industrial times. The
first large-scale decrease in NPP occurs during the initial glaciation following the
Eemian, between 120 ka BP and 110 ka BP (in both simulations). There is then a
second large drop of —10 PgC yr* (HadCM3_S) to —20 PgC yr* (B4H_NS, B4F)
between 75 ka BP and 60 ka BP, associated with MIS 4. NPP then increases during
MIS 3, followed by the final reduction (<10 PgC year™) to lowest values during the
LGM (Figure 84). We note here that the details of the magnitude and timing of the
NPP variations will be highly dependent on the prescribed CO, curve given that CO,
fertilization is the predominant factor driving the changes. A recent composite CO,

curve derived from several ice core records (Bereiter et a., 2013) has CO; that is 5-
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994 | 20ppm higher during MIS 3 and MIS 4 than either-V ostok-er-EBC+records. Further
995  sengitivity tests with B4F forced with higher CO, levels suggest that NPP could be up
996 to 8 PgClyr higher at certain time slices (see supplementary Figure 1).

997 Changes in NPP will likely affect terrestrial carbon storage, which in turn

998 | influences the stable carbon isotope composition (5°C) of seawater because terrestrial

999 | organic carbon is depleted in **C. Various
1000 | 43 Terrestrial-carbon-storage——
1001 | Eearly modelling studies and data-based reconstructions produced a range of 270—**"*{Formatted: Indent: First line: 0 cm}
1002 1100 PgC decrease in terrestrial carbon storage during the LGM compared with pre-
1003 | industria time (see summary table 1 in Koehler and Fischer, 2004). Fhese-estimates
1004 : : : N .
1005
1006
1007
1008 estimates were unreliable, however, because (a) they do not account for variation in

1009 carbon storage within biomes and (b) they neglect the substantial influence of
1010  atmospheric CO, concentration on carbon storage (see Prentice and Harrison, 2009,

1011  for a fuller discussion). More recent studies have narrowed the range of LGM

1012 | terrestria carbon storage decreases to 300-700 PgC. Prentice-et-al-—{2011)-estimated-a

1013 0-604 Pqg decrease-at-the Vi ana-the DY dvham vedetation-modealfo

1014
1015 | ferthebGM-Using isotopic and modelling methods Ciais et al. (2012) suggested that
1016  only 330 PgC less carbon was stored in the terrestrial biosphere at the LGM than Pl
1017 | Holocene. While thisis-of the-same-order-as-other-estimates-it-represents-a-reducti
1018 | ef-enhy-10% from-PlCiaiset-a{2012)-alsoThey included a large inert carbon pool
1019 | to represent permafrost and peatland carbon storage in their modelling, {which-are-rot
1020 | included-in—most—dynamic—vegetation—modelsy—and tFheir optimization procedure
1021  suggested that this inert carbon pool was larger by 700 PgC at the LGM than PI,
1022 meaning the reduction in their active terrestrial biosphere was therefore larger than
1023 | most other studies have suggested, at approximately 1000 PgC.

1024 | Globally decreased LGM deep ocean stable carbon isotope ratios (5**C), as recorded
1025 | by benthic foraminifera at —0.3 to —0.4%o, have also beenwereprevieusly used as an
1026 | dternative method to calculate the decrease in global LGM terrestrial carbon storage
1027 | compared with the PI (e.g. Broecker and Peng, 1993; Duplessy et a., 1988, Bird et al,
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1996; Kaplan et al., 2002; Beerling et al, 1999). A more-recent estimate derived from
a compilation of 133 ocean cores is —0.34 + 0.13%o (Ciais et al., 2012), and an

ensemble of ocean circulation model simulations suggests a similar decrease of -0.31
+ 0.2%o (Tagliabue et al., 2009). Robust reconstructions of terrestrial carbon storage
could be used ingtiiizing a similar, but inverted approach to estimate global ocean

5'3C changes over the same time period.

From ourNPP simulations of changes in NPP over the glacia cycle we would

expect lower terrestrial carbon storage shortly following the last interglacial period,

with lowest values during the LGM. We would also expect, given the compensation

in terms of NPP, that the vegetation on the exposed continental shelves would be an

important consideration for changes in total terrestrial carbon storage. However, the

large uncertainties associated with both the climate and biome models and their
forcings, as well as the BIOME -medel-those involved in deriving full estimates of

carbon storage and ocean 5*°C -from the variables that are explicitly produced in the
models currently prohibit the robust quantitative reconstruction of terrestrial-carbon
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We have creatused a new global synthesis and biomization of long pollen

records, and used it -in conjunction with model simulations to analyse the sensitivity

of the global terrestrial biosphere to climate change over the last glacia-interglacial
cycle. Model output and biomized pollen data generally agreetending-confidence-to

showing a reduction in the global average areas of tropical forest, warm-temperate
forest and temperate forest biomes during the LGM, MIS 4 and cool substages of MIS

5, whilst —showing an increase in the global average areas of the grassland and dry

shrubland, desert and tundra biomes. BIOME 4 simulations of global Net Primary

Productivity aso indicate significant reductions at those intervals, driven by changes

Existing data coverage is till low, and so there are dtill large areas of

uncertainty in our knowledge of the palaeo-Earth system. Better spatial and temporal
coverage for all parts of the globe, especialy lowland areas, are required, and for this
we need data from new sites incorporated into global datasets that are easily
accessible by the scientific community.
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The synthesised biomized dataset presented in this paper can be downloaded as
supplementary material to this paper, or may be obtained by contacting the authors.
Output from the climate and biome model simulations are also available from the
authors.
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Table 1. Details of the various biomization schemes applied for the different regions.

Africa Jolly et al. (1998)
Southeast Asia, Australia Pickett et al. (2004)
Japan Takaharaet a. (1999)

Southern Europe

Elenga et al. (20002004)

North East Europe

Tarasov et a. (2000)

North America: Western North

Thompson and Anderson (2000)

North America: East and North East

Williams et al. (2000)

Latin America

Marchant et a. (2009)
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Table 2: Details of the lacations of pollen-data records synthesised in this study.

Core Latitude | Longitu | A.S. | Age~/(ka | Reference Biomization
de L. BP) reference
(m)
North
America
Canada Brother-of- 67.18 -63.25 380 | Last Frechette et al., | Williams et
(short) Fog interglacial 2006 al., 2000
Canada Amarok 66.27 -65.75 848 | Holocene Frechette et al., | Williams et
(short) and last 2006 al., 2000
interglacial
USA Carp Lake 45.92 -120.88 | 714 | Otocal30 Whitlock and | Thompson
Bartlein, 1997 | and
Anderson,
2000
USA Bear Lake 41.95 -111.31 | 1805 | Oto 150 Jiménez- Thompson
Moreno et al. and
2007 Anderson,
2000
USA Potato lake 344 -111.3 2222 | 2toca3s Anderson et Thompson
a., 1993 and
Anderson,
2000
USA San Felipe 31 -115.25 | 400 | 16to42 Lozano-Garcia | Thompson
et al., 2002 and
Anderson,
2000
USA Lake Tulane | 27.59 -81.50 36 Oto52 Grimm et al., Williams et
2006 a., 2000
Latin
America
Mexico Lake 19.58 -101.58 | 2044 | 3to 44 Watts and Marchant et
Patzcuaro Bradbury, al., 2009
1982
Guatamaa Lake Petén- | 16.92 -89.83 110 | 0-86 Correa-Metrio | Marchant et
Itza etal., 2012 a., 2009
Colombia Ciudad -4.75 -74.18 2560 | 0to 35 van der Marchant et
Universitaria Hammen and al., 2009
X Gonzédlez,
1960
Peru Laguna Junin | -11.00 -76.18 4100 | Oto 36 Hansen et al., Marchant et
(LAPD1?) 1984 a., 2009
Peru/Bolivia | Lake -15.9 -69.10 | 3810 | 3-370 Godingeta., | Marchant et
Titicaca (shown until | 2008; al., 2009
140) Hanselman et
a., 2011; Fritz
et al., 2007
Guatamala Lago Quexil | 16.92 -89.88 110 | 9to 36 Leyden, 1984; | Marchant et
Leydeneta., | al., 2009
1993;
1994
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Brazil Salitre -19.00 -46.77 970 | 2to50 Ledru, 1992; Marchant et
(LAPD1) 1993; Ledru et | a., 2009
al., 1994, 1996
Brazil Colonia -23.87 -46.71 900 0to 120 Ledruetal., Marchant et
2009 al., 2009
Brazil Cambara -29.05 -50.10 1040 | 0to 38 Behlingetd., | Marchant et
2004 al., 2009
Peru/Bolivia | Lake ~-16to- | ~68.5 3810 | 3-138 Hanselmanet | Marchant et
Titicaca 17.5 to-70 al., 2011; Fritz | al., 2009
et a., 2007
Bolivia Uyuni -20.00 -68.00 653 | 17to 108 Chepstow Marchant et
Lusty et al., al., 2009
2005
Europe
Russia Butovka 55.17 36.42 198 Holocene, Borisova, 2005 | Tarasov et
early glacia al., 2000
and Eemian
Russia Ilinskoye 53 37 167 | early glacia | Grichuk etal. | Tarasov et
& Eemian 1983, Velichko | al., 2000
et al., 2005
Poland Horoszki 52.27 23 ~75to Granoszewski, | Tarasov et
Duze Eemian 2003 al., 2000
Germany Klinge 51.75 1451 80 early glacial, | Novenko et al. | Tarasov et
Eemian & 2008 al., 2000
Sadlian
(penultimate
glacial)
Germany Firamoos 47.59 9.53 662 0to 120 Muller et al., Prentice et
2003 al., 1992
Germany Jammertal 48.10 9.73 578 Eemian Muller, 2000 Prentice et
al., 1992
Germany Samerberg 47.75 12.2 595 | Eemianand | Gruger, 1979a, | Prentice et
early b al., 1992
Wirmian
Germany Wurzach 47.93 9.89 650 | Eemianand | Griger and Prentice et
early Schreiner, al., 1992
Wirmian 1993
Italy Lagaccione | 42.57 11.85 355 | 0to 100 Magri, 1999 Elengaet a.,
2004
Italy Lago di Vico | 42.32 12.17 510 |0to90 Magri and Elengaet d.,
Sadori, 1999 2004
Italy Valledi 41.89 12.75 44 0to 120 Magri and Elengaet d.,
Cadtiglione Tzedakis 2000 | 2004
Italy Monticchio | 40.94 15.60 656 | Oto 120 Allenetd., Elengaet a.
1999 , 2004
Greece loannina 39.76 20.73 470 | 0to120 Tzedakisetd., | Elengaetd.,
2002; 2004a 2004
Greece Tenaghi 41.17 24.30 40 0to 120 Wijmstra, Elengaet al.
Philippon 1969;
Wijmstra and
Smith, 1976;
Tzedakiset a.,
2006
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1957
1958
1959
1960
1961

Africa

Uganda ALBERT-F | 152 30.57 619 |0to30 Beuningeta. | Jolly etdl.,
1997 1998
Uganda M ubwindi -1.08 29.46 2150 | 0to 40 Marchant et Jolly et dl.,
swamp3 a., 1997 1998
Rwanda Kamiranzovy | -2.47 29.12 1950 | 13to0 40 Bonnefilleand | Jolly et dl.,
swamp 1 Chalie, 2000 1998
Burundi Rusaka -3.43 29.61 2070 | Oto 47 Bonnefilleand | Jolly et al.,
Chalie, 2000 1998
Burundi Kashiru -3.45 29.53 2240 | 0to 40 Bonnefilleand | Jolly et a.,
Swamp Al Chalie, 2000 1998
Burundi Kashiru -3.45 29.53 2240 | 0to 40 Bonnefilleand | Jolly et al.,
Swamp A3 Chalie, 2000 1998
Tanzania Uluguru -7.08 37.62 2600 | 0to>45 Finch et al., Jolly et al.,
2009 1998
Madagascar | Lake -19.78 46.92 1778 | 0to 40 Gasseand Van | Jolly et d.,
Tritrivakely Campo, 1998 1998
| South Africa | Tswaing -25.57 28.07 1100 | O0to 120 Scott 1988b; Jolly et dl.,
(Sdltpan) (dthough Partridge et al. | 1998
Crater after 35 1993; Scott
probably less | 1999g;
secure based) | 1999b
South Africa | Mfabeni -28.13 32.52 11 0to 43 Finch and Hill, | Jolly et &l.,
swamp 2008 1998
Australasia
Russia LakeBakal | 53.95 108.9 114 to 130
Japan Lake Biwa 35 135 85.6 |0to120 Nakagawa et Takahara et
al., 2008 a., 1999
Japan Lake 35.58 13588 | ~0 0to 120 Nakagawa et Takahara et
Suigetsu al., 2008 al., 1999
Thailand Khorat 17 103 ~180 | Oto 40 Penny, 2001 Pickett et d.,
Plateau 2004
Australia Lynch's -17.37 145.7 760 0to 120 Kershaw, 1986 | Pickett et al.,
Crater 2004
New XeroWapo | -22.28 166.97 | 220 | Oto120 Stevensonand | Pickett et al.,
Caledonia Hope, 2005 2004
Australia Caldeonia -37.33 146.73 1280 | 0to 120 Kershaw et d., | Pickett et al.,
fen 2007 2004
New Zealand | Okarito -43.24 170.22 | 70 0to 120 Vandergoeset | Pickett et al.,
al., 2005 2004
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1962
1963

1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
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Figure 1: Locations and altitudes of pollen records superimposed on pre-industrial
HadCM3 orography (m).

Figure 32: Reconstructed biomes (defined through highest affinity score)
superimposed on simulated biomes using FAMOUS (B4F, left) and HadCM3 (B4H,
right) climates for selected marine isotope stages (denoted in ka BP).

Figure 43: Global area coverage of megabiome types in the model reconstructions. S
indicates the inclusion of potentially-vegetated continental shelves after sea level
lowering, NS indicates no vegetated continental shelves following sea level lowering.
FAMOUS megabiome areas are dotted between 30 and 60 ka BP in the period where
the Vostok CO, data used to force the simulation is thought to be erroneously [ow.
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Figure 54: Net Primary Production and-carben-sterage-throughout the last glacial
cycle derived from the model-based biome reconstructions. B4H includes the
additional influence of land exposed by sea-level changes, B4AH NS and B4F do not.
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ocean-8-°C{c) benthic foraminifera deep-ocean-5C-compiled-by-Oliver-et-al-{2010)-
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