

Dear Professor Fisher,

Thank for your and the reviewers comments for our manuscript. Below we respond to individual queries raised by yourself below, followed by response of queries raised in the pdf and finally we show the changes we applied throughout the manuscript (tracked changes on).

Please let us know if there is anything else we need to do or if there was something we overlooked.

Best wishes, Babette, Robin and Joy.

Dear authors

Thank you very much for your careful revisions addressing many of the reviewer comments and improving the clarity of the manuscript considerably.

Reading the manuscript, the reviewer comments, and your replies, I think the paper has clearly advanced providing a unique long-term reconstruction of global biome changes from both data and the biome model BIOME4. This reconstruction will be of immense use for future studies and clearly justifies publication in CP. In line with referee #2, I am still worried that no quantitative estimate can be given on the similarity of model and data based biome reconstructions, which makes an uncertainty estimate (for example for NPP etc.) difficult. However, I admit that deriving such a statistically robust measure within the scope of this paper may be difficult or even impossible considering that uncertainties in the forcing of the climate models, in the climate models themselves and in the BIOME model exist.

While the paper clearly advances our knowledge on terrestrial vegetation changes over the last 120,000 years, I feel strongly that the further discussion of the results on carbon storage and d13C changes in the ocean (Section 4.3 & 4.4.) are walking on too thin ice given the large uncertainties in the biome reconstruction but also in the limitations of your approach:

- the BIOME model cannot quantify changes in inactive/inert carbon pools such as permafrost, which may dominate the carbon storage changes. In fact, your Fig. 7 in the replies to referee #1 shows that including such pools provides a completely different answer and thus your total numbers on terrestrial carbon storage changes (in Gt C) cannot be regarded robust. It would be a bad thing if other scientists used these numbers from your modeling approach for further studies
- your mass balance approach for isotopes in the ocean does not include isotope dilution effects on this long time scale that come about by volcanic, weathering as well as sediment fluxes. Accordingly, your mass balance approach overestimates the d13C changes in the ocean.
- it may be questioned that the turnover times of different biomes are constant over time, impacting your terrestrial carbon storage estimate
- the results are obviously highly dependent on the forcing data (some of the CO2 data used are

lower than latest, improved reconstructions. This has a considerable effect through CO₂ fertilization in your model) and the model version/setup used and the uncertainty of the reconstructed carbon storage is of the same size as the total changes. Taking the additional uncertainties in your approach to calculate terrestrial carbon storage and d¹³C in the ocean into account none of these numbers are known to a sufficient degree.

Accordingly, my editorial suggestion is to remove section 4.3 and 4.4. from the manuscript, before final publication in CP. You could shortly comment on the implications of your results on terrestrial carbon storage and d¹³C in the ocean in the Discussion but any such statement would have to be qualified by stating that the current uncertainties in the approach do not allow to reconstruct robust numbers in terr. carbon storage and d¹³C in the ocean. This should also be stated in the Abstract.

We have followed your editorial suggestion and removed section 4.3 and 4.4 from the manuscript, and only added a short section of implications. We the following sentence to the discussion 'However, the large uncertainties associated with both the climate and biome models and their forcings, as well as those involved in deriving full estimates of carbon storage and ocean $\delta^{13}\text{C}$ from the variables that are explicitly produced in the models currently prohibit the robust quantitative reconstruction of these quantities from our results.'

Since we do not talk about quantitative changes in terrestrial carbon storage and ocean d¹³C and have deleted all sections relating to the methods of how we did this earlier, it seems awkward and also confusing to state in the abstract that the approach we do not discuss or describe does not work. We have thus refrained from doing so.

Specific comments: Please see also some minor corrections and some additional comments in the annotated manuscript attached to my editor's comment's.

In contrast to what I suggested before, I would ask you to move your new figure 2 into the supplement, where it nicely complements the data.

OK

I hope you will understand my concerns and I am looking forward to the revised version of the manuscript.

All the best

Hubertus Fischer

Author response to queries raised in manuscript

Editor queries:

'There is something wrong here as revealed in the supplemental figure 1 that you provided in the replies to referee #1 (or the labeling in that figure is wrong). Looking at the CO2 data used in FAMOUS (red line) in that figure this is clearly the Vostok record (in contrast to what is said below) as illustrated by the erroneously low CO2 conc. during early MIS 3.'

We have clarified the source of the CO2 forcing used in the climate and BIOME4 simulations in the paper in section 2. For FAMOUS, the data was taken from the composite CO2 record published in the supplemental material of the "EPICA" paper of Lüthi et al '08, which was the most recent data at the time that the FAMOUS simulations were begun. As you say, this composite record in fact consists of the Vostok data for the period 22-393 kyr. These sources, and the fact that the MIS3 data is now thought to be erroneous, are highlighted in section 2.2.2.

For HadCM3 climate runs also a composite CO2 curve was used, using Taylor Dome concentrations for MIS3 and EDC96 for MIS1/2 (Vostok was also used beyond 60 kyr). This is described in section 2.2.1.

'Another point pertains the Vostok CO2 data itself. The low VOSTOK data in the early MIS3 are clearly wrong (not your fault) but the high CO2 sensitivity of BIOME4 leads to substantial variations in parallel to the erroneous CO2 variations. This requires a clear statement in the manuscript that these variations are wrong. In fact I would suggest to show the FAMOUS results for the time interval 30-60,000 years BP only in dashed lines to indicate that the results in this time interval are influenced by the too low CO2 concentrations.'

Statements to this effect are now in section 2.2.2, 3.3.4 and 4.1. In addition, as suggested, FAMOUS results in Fig 3 and 4 have been dashed for this period.

'again this is wrong as in Fig. 1 in the reply to referee'1 it is clear that the red line is clearly the Vostok record (see comment above). Please double check and provide all the correct references to the data.'

[see comment above](#)

> line 674, suggested 'but may differ locally'

now reads "although local differences may still occur."

Page 24, line 813 '/little difference to what?/'

now reads "B4H shows little difference from the dry grassland biomes present at 64 ka BP"

Page 24, line 814-815 needs reference.

now reads "perhaps a result of the models' representation of the Mediterranean storm-tracks that would bring moisture inland which are often poorly reproduced in lower-resolution models (Brayshaw et al 2010)."

Brayshaw, D. J., Hoskins, B. and Black, E.: Some physical drivers of changes in the winter storm tracks over the North Atlantic and Mediterranean during the Holocene. Philosophical Transactions of the

Royal Society A: Mathematical, Physical and Engineering Sciences, 368 (1931). pp. 5185-5223, 2010.

Page 25 '/Repeating the comments by referee 2 it would be good to have a quantitative measure for similarity to corroborate this statement. Given the description above I would use a more neutral language to describe model/data agreement./'

now reads "The BIOME 4 simulations compare reasonably [...]"

Page 26, lines 870-871 highlighted green, comment '/This is not true for the strong CO2 variations in the time interval 40-60 kyrs BP; which are only found in the FAMOUS runs and are caused by the erroneously low CO2 concentrations in this time interval from the Vostok record. Again this should be stated clearly and the FAMOUS results for this time interval should be used with caution and qualified (for example by dashed lines) in the figures as unrealistic in this time interval./'

see comment, edits above

1 **Terrestrial biosphere changes over the last 120 kyr and their
2 impact on ocean $\delta^{13}\text{C}$**

3 Babette A.A. Hoogaker¹, Robin S. Smith², Joy S. Singarayer^{3,4}, Rob Marchant⁵, I.
4 Colin Prentice^{6,7}, Judy R.M. Allen⁸, R. Scott Anderson⁹, Shonil A. Bhagwat¹⁰,
5 Hermann Behling¹¹, Olga Borisova¹², Mark Bush¹³, Alexander Correa-Metrio¹⁴, Anne
6 de Vernal¹⁵, Jemma M. Finch¹⁶, Bianca Fréchette¹⁵, Socorro Lozano-Garcia¹⁴,
7 William D. Gosling¹⁷, W. Granoszewski¹⁸, Eric C. Grimm¹⁹, Eberhard Grüber²⁰,
8 Jennifer Hanselman²¹, Sandy P. Harrison^{7,22}, Trevor R. Hill¹⁶, Brian Huntley⁸,
9 Gonzalo Jiménez-Moreno²³, Peter Kershaw²⁴, Marie-Pierre Ledru²⁵, Donatella
10 Magri²⁶, Merna McKenzie²⁷, Ulrich Müller^{28,29}, Takeshi Nakagawa³⁰, Elena
11 Novenko¹², Dan Penny³¹, Laura Sadori²⁶, Louis Scott³², Janelle Stevenson³³, Paul J.
12 Valdes⁴, Marcus Vandergoes³⁴, Andrey Velichko¹², Cathy Whitlock³⁵, Chronis
13 Tzedakis³⁶,

15
16 1. *Earth Science Department, University of Oxford, South Parks Road, Oxford, OX1
17 3AN, UK*
18 2. *NCAS-Climate and Department of Meteorology, University of Reading, UK*
19 3. *Department of Meteorology and Centre for Past Climate Change, University of
20 Reading, U.K.*
21 4. *BRIDGE, School of Geographical Sciences, University of Bristol, University
22 Road, Bristol, BS8 1SS, UK.*
23 5. *Environment Department, University of York, Heslington, York, YO10 5DD, U.K.*
24 6. *AXA Chair of Biosphere and Climate Impacts, Grand Challenges in Ecosystems
25 and the Environment and Grantham Institute – Climate Change and the
26 Environment, Imperial College London, Department of Life Sciences, Silwood
27 Park Campus, Buckhurst Road, Ascot SL5 7PY, UK*
28 7. *Department of Biological Sciences, Macquarie University, North Ryde, NSW
29 2109, Australia*
30 8. *Durham University, School of Biological and Biomedical Sciences, Durham,
31 DH1 3LE, UK.*
32 9. *School of Earth Sciences and Environmental Sustainability, Box 5964 Northern
33 Arizona University, Flagstaff, Arizona, USA 86011.*
34 10. *The Open University, Walton Hall, Milton Keynes MK7 6AA*
35 11. *Department of Palynology and Climate Dynamics, Albrecht-von-Haller Institute
36 for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen,
37 Germany*
38 12. *Institute of Geography, Russian Academy of Sciences, Staromonetny Lane 19,
39 119017 Moscow, Russia*
40 13. *Florida Institute of Technology, Biological Sciences, Melbourne, FL 32901, USA*
41 14. *Instituto de Geología, Universidad Nacional Autónoma de México, Cd.
42 Universitaria, 04510, D.F., México*
43 15. *GEOTOP, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville,
44 Montréal, QC, CANADA, H3C 3P8*

45 | 16. School of Agricultural, Earth and Environmental Science, University of
46 KwaZulu-Natal, Private Bag X01, Scottsville, 32009, South Africa
47 17. Palaeoecology & Landscape Ecology, IBED, Faculty of Science, University of
48 Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands
49 18. Polish Geological Institute-National Research Institute, Carpathian Branch,
50 Skrzatów 1, 31-560 Kraków, Poland
51 19. Illinois State Museum, Research and Collections Center, 1011 East Ash Street,
52 Springfield, IL 62703, USA
53 20. Department of Palynology and Climate Dynamics, Albrecht-von-Haller Institute
54 for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen,
55 Germany
56 21. Westfield State University, Department of Biology, Westfield, MA 01086, USA
57 22. Centre for Past Climate Change and School of Archaeology, Geography and
58 Environmental Sciences (SAGES), University of Reading, Whiteknights, RG6
59 6AH, Reading, UK
60 23. Departamento de Estratigrafía y Paleontología, Facultad de Ciencias,
61 Universidad de Granada, Avda. Fuente Nueva S/N, 18002 Granada, España
62 24. School of Geography and Environmental Science, Monash University,
63 Melbourne, Vic. 3800, Australia
64 25. IRD UMR 226 Institut des Sciences de l'Evolution - Montpellier (ISEM) (UM2
65 CNRS IRD) Place Eugène Bataillon cc 061, 34095 Montpellier cedex, France
66 26. Sapienza University of Rome, Department of Environmental Biology, 00185
67 Roma, Italy
68 27. Monash University, School of Geography and Environmental Science, Clayton
69 Vic. 3168, Australia
70 28. Biodiversity and Climate Research Center (BiK-F), 60325 Frankfurt, Germany
71 29. Institute of Geosciences, Goethe-University Frankfurt, 60438 Frankfurt,
72 Germany
73 30. Ritsumeikan University, Research Centre for Palaeoclimatology, Shiga 525-
74 8577, Japan
75 31. School of Geosciences, The University of Sydney, NSW, 2006, Australia
76 32. University of the Free State, Faculty of Natural and Agricultural Sciences, Plant
77 Sciences, Bloemfontein 9300, South Africa
78 33. Department of Archaeology and Natural History, ANU College of Asia and the
79 Pacific, Australian National University, Canberra, ACT, 0200, Australia
80 34. University of Maine, Climate Change Institute, Orono, ME 04469-5790, USA
81 35. Montana State University, Department of Earth Sciences, Bozeman, MT 59717-
82 3480, USA
83 36. UCL Department of Geography, Gower Street, London, WC1E 6BT, UK
84
85
86

87 **Abstract**

88
89 A new global synthesis and biomization of long (> 40 kyr) pollen-data records
90 is presented, and used with simulations from the HadCM3 and FAMOUS climate
91 models and the BIOME4 vegetation model to analyse the dynamics of the global
92 terrestrial biosphere and carbon storage over the last glacial-interglacial cycle.
93 Simulated biome distributions using BIOME4 driven by HadCM3 and FAMOUS at
94 the global scale over time generally agree well with those inferred from pollen data.

95 Global average areas of the grassland and dry shrubland, desert and tundra biomes
96 show large-scale increases during the Last Glacial Maximum, between ca 64 and 74
97 ka BP, and cool substages of Marine Isotope Stage 5, at the expense of the tropical
98 forest, warm-temperate forest and temperate forest biomes. These changes are
99 reflected in BIOME 4 simulations of global Net Primary Productivity, showing good
100 agreement between the two models. Such changes are likely to affect terrestrial
101 carbon storage, which in return influences the stable carbon isotopic composition of
102 seawater as terrestrial carbon is depleted in ^{13}C . The simulations show good
103 agreement in global net primary productivity (NPP). NPP is strongly influenced by
104 atmospheric carbon dioxide (CO_2) concentrations through CO_2 fertilization. The
105 combined effects of simulated vegetation changes and (via a simple model) soil
106 carbon result in a global terrestrial carbon storage at the Last Glacial Maximum that is
107 210–470 PgC less than in pre-industrial time. Without the contribution from exposed
108 glacial continental shelves the reduction would be larger, 330–960 PgC. Other
109 intervals of low terrestrial carbon storage include stadial intervals at 108 and 85 ka
110 BP, and between 60 and 65 ka BP during Marine Isotope Stage 4. Terrestrial carbon
111 storage, determined by the balance of global NPP and decomposition, influences the
112 stable carbon isotope composition ($\delta^{13}\text{C}$) of seawater because terrestrial organic
113 carbon is depleted in ^{13}C . Using a simple carbon isotope mass balance equation,
114 which combines the BIOME4 model-derived terrestrial carbon store and carbon
115 isotope discrimination with values for the atmosphere from ice core records, we find
116 agreement in trends between modelled ocean $\delta^{13}\text{C}$ based on modelled land carbon
117 storage, and palaeo-archives of ocean $\delta^{13}\text{C}$, confirming that terrestrial carbon storage
118 variations may be important drivers of ocean $\delta^{13}\text{C}$ changes.

119
120 Formatted: Superscript

121 **1. Introduction**

122 ~~The terrestrial biosphere (vegetation and soil) is estimated to contain around~~
123 ~~2000 Pg C (Prentice et al., 2001) plus a similar quantity stored in peatlands and~~
124 ~~permafrost (Ciais et al., 2014).~~ Variations in global climate on multi-millennial time
125 scales have caused substantial changes to ~~the~~ terrestrial vegetation distribution,
126 productivity, and carbon storage~~carbon pools~~. Periodic variations in the Earth's
127 orbital configuration (axial tilt with a ~41 kyr period, precession with ~19 and 23 kyr
128 periods, and eccentricity with ~100 kyr and longer periods) result in small variations
129 in the seasonal and latitudinal distribution of insolation, amplified by feedback
130 mechanisms (Berger, 1978). For the last ~ 0.8 million years long glacial periods have
131 been punctuated by short interglacials on roughly a 100 kyr cycle. Glacial periods are
132 associated with low atmospheric CO₂ concentrations, lowered sea level and extensive
133 continental ice-sheets; interglacial periods are associated with high (similar to pre-
134 industrial) CO₂ concentrations, high sea level and reduced ice-sheets (Petit et al.,
135 1999; Peltier et al., 2004; Lüthi et al., 2008).

136 During glacial-interglacial cycles the productivity ~~of~~, and carbon storage ~~of~~
137 the terrestrial biosphere are influenced by orbitally forced climatic changes and
138 atmospheric CO₂ concentrations. Expansion of ice-sheets during glacial periods
139 caused a significant loss of land area available for colonization, but this was largely
140 compensated by the exposure of continental shelves due to lower sea level. ~~The~~
141 terrestrial biosphere (vegetation and soil) is estimated to contain around 2000 Pg C
142 (Prentice et al., 2001) plus a similar quantity stored in peatlands and permafrost (Ciais
143 et al., 2014). During the last glacial period the terrestrial biosphere was significantly
144 reduced. It has been estimated that the terrestrial biosphere contained 300 to 700 Pg
145 C less carbon during the Last Glacial Maximum (LGM; 21 ka BP) compared with
146 pre-industrial times (Bird et al., 1994; Ciais et al., 2012; Crowley et al., 1995;
147 Duplessy et al., 1988; Gosling and Holden, 2011; Köhler and Fischer, 2004; Prentice
148 et al., 2011). As first noted by Shackleton et al. (1977), the oceanic inventory of
149 carbon isotopes ($\delta^{13}\text{C}$) is influenced by terrestrial carbon storage because terrestrial
150 organic carbon has a negative signature, due to isotopic discrimination during
151 photosynthesis. Many of the estimates of the reduction in terrestrial carbon storage at
152 the LGM have therefore been based on the observed LGM lowering of deep-ocean
153 $\delta^{13}\text{C}$. A reduction in the terrestrial biosphere of this size would have contributed a

154 large amount of CO₂ to the atmosphere, although ocean carbonate compensation
155 would have reduced the expected CO₂ increase to 15 ppm over about 5 to 10 kyr
156 (Sigman and Boyle, 2000).

157 Many palaeoclimate data and modelling studies have focused on the contrasts
158 between the LGM, the mid-Holocene (6 ka BP) and the pre-industrial period. The
159 BIOME 6000 project (http://www.bridge.bris.ac.uk/resources/Databases/BIOMES_data)
160 synthesized palaeovegetation records from many sites to provide global datasets for
161 the LGM and mid-Holocene. Data syntheses are valuable in allowing researchers to
162 see the global picture from scattered, individual records, and to enable model-data
163 comparisons. The data can be interpreted in the context of a global, physically based
164 model that allows the point-wise data to be seen in a coherent way. There are
165 continuous, multi-millennial pollen records that stretch much further back in time
166 than the LGM but they have not previously been brought together in a global
167 synthesis to study changes of the last glacial-interglacial cycle. These records can
168 provide a global picture of transient change in the biosphere and the climate system.
169 Here we have synthesized and biomized (Prentice et al., 1996) a number of these
170 records (for locations see Figure 1), providing a new dataset of land biosphere change
171 that covers the last glacial-interglacial cycle. In section 2.1 we outline the biomization
172 procedures applied to reconstruct land biosphere changes.

173 To improve understanding of land biosphere interactions with the ocean-
174 atmospheric reservoir, we have modelled the terrestrial biosphere for the last 120 kyr,
175 from the previous (Eemian) interglacial to the pre-industrial period. Details of the
176 atmosphere ocean general circulation model (AOGCM) climate and vegetation model
177 simulations are provided in section 2.2. In section 3 we evaluate biome
178 reconstructions based on our model outputs using the BIOME 6000 project
179 (www.bridge.bris.ac.uk/resources/Databases/BIOMES_data), and our new biomized
180 synthesis of terrestrial pollen data records, focusing on the pre-industrial period, 6 ka
181 BP (mid-Holocene), 21 ka BP (LGM), 54 ka BP (a relatively warm interval in the last
182 glacial period), 64 ka BP, (a relatively cool interval in the glacial period), 84 ka BP
183 (the early part of the glacial cycle), and 120 ka BP (the Eemian interglacial). The
184 effects of rapid millennial scale climate fluctuations were not simulated. Finally in
185 section 4 we use our biome simulations to estimate net primary productivity and
186 ~~terrestrial carbon storage. Using a simple $\delta^{13}\text{C}$ model, we then assess the contribution~~

187 ~~of terrestrial biosphere and carbon storage changes to deep ocean $\delta^{13}\text{C}$ over the last~~
188 ~~120 kyr and compare this with deep ocean benthic foraminiferal carbon isotope~~
189 ~~records, representative for the $\delta^{13}\text{C}$ of deep ocean water.~~

190 **2 Methods**

191 **2.1 Biomization**

192 Biomization assigns pollen taxa to one or more plant functional types (PFTs).
193 The PFTs are assigned to their respective biomes and affinity scores are calculated for
194 each biome (sum of the square roots of pollen percentages contributed by the PFTs in
195 each biome). This method was first developed for Europe (Prentice et al., 1996) and
196 versions of it have been applied to most regions of the world (Jolly et al., 1998;
197 ~~Elenga et al., 2000;~~ Takahara et al., 1999; Tarasov et al., 2000; Thompson and
198 Anderson, 2000; Williams et al., 2000; [Elenga et al., 2004](#); Pickett et al., 2004;
199 Marchant et al., 2009). We apply these regional PFT schemes (Table 1) to pollen
200 records that generally extend > 40 kyr, assigning the pollen data to megabiomes
201 (tropical forest, warm-temperate forest, temperate forest, boreal forest, savannah/dry
202 woodland, grassland/dry shrubland, desert and tundra) as defined by Harrison and
203 Prentice (2003), in order to harmonize regional variations in PFT to biome
204 assignments and to allow globally consistent model-data comparisons.

205 Table 2 lists the pollen records used. Biomization matrices and megabiome
206 score data can be found in the Supplementary Information. For taxa with no PFT
207 listing, the family PFT was used if part of the regional biomization scheme. Plant
208 taxonomy was checked using [itis.gov](#), [tropicos.org](#), and the African Pollen Database.
209 Pollen taxa can be assigned to more than one PFT either because they include several
210 species in the genus or family, with different ecologies, or because they comprise
211 species that can adopt different habitats in different environments.

212 Age models provided with the individual records were used. However, in
213 cases where radiocarbon ages were only provided for specific depths (e.g. Mfabeni,
214 CUX), linear interpolations between dates were used to estimate ages for the
215 remaining depths. Some age models may be less certain, especially at sites which
216 experience variable sedimentation rates and/or erosion. Sometimes more than one age
217 model accompanies the data, illustrating the range of ages and also that there can be
218 large uncertainties. To aid comparison, for several Southern European sites (e.g. Italy
219 and Greece) it has been assumed that vegetation changes occurred synchronously

220 within the age uncertainties of their respective chronologies, for which there is
221 evidence (e.g. Tzedakis et al., 2004b).

222 **2.2 Model simulations**

223 Global simulations of vegetation changes over the last glacial cycle were
224 produced using a vegetation model (BIOME4) forced offline using previously
225 published climate simulations from two AOGCMs (HadCM3 and FAMOUS). By
226 using two models we test the robustness of the reconstructions to different climate
227 forcings.

228 **2.2.1 HadCM3**

229 HadCM3 is a general circulation model, consisting of coupled atmospheric
230 model, ocean, and sea ice models (Gordon et al., 2000; Pope et al., 2000). The
231 resolution of the atmospheric model is 2.5 degrees in latitude by 3.75 degrees in
232 longitude by 19 unequally spaced levels in the vertical. The resolution of the ocean is
233 1.25 by 1.25 degrees with 20 unequally spaced layers in the ocean extending to a
234 depth of 5200 m. The model contains a range of parameterisations, including a
235 detailed radiation scheme that can represent the effects of minor trace gases (Edwards
236 and Slingo, 1996). The land surface scheme used is the Met Office Surface Exchange
237 Scheme 1 (MOSES1; Cox et al., 1999). In this version of the model, interactive
238 vegetation is not included. The ocean model uses the Gent–McWilliams mixing
239 scheme (Gent and McWilliams, 1990), and sea ice is a thermodynamic scheme with
240 parameterisation of ice-drift and leads (Cattle and Crossley, 1995).

241 Multiple “snap-shot” simulations covering the last 120 kyr have been
242 performed with HadCM3. The boundary conditions and set-up of the original set of
243 simulations have been previously documented in detail in Singarayer and Valdes
244 (2010). The snap-shots were done at intervals of every 1 ka between the pre-industrial
245 (PI) and LGM (21 ka BP), every 2 ka between the LGM and 80 ka BP, and every 4 ka
246 between 80 and 120 ka BP. Boundary conditions are variable between snap-shots but
247 constant for each simulation. Orbital parameters are taken from Berger and Loutre
248 (1991). Atmospheric concentrations of CO₂ were taken from [a stacked ice core record](#)
249 [of Vostok](#) (Petit et al., 1999) [prior to 62 kyr, incorporating Taylor Dome \(Indermühle](#)
250 [et al., 2000\) to 22 kyr and EDC96](#) (Monnin et al., 2001) up to 0 kyr. and CH₄, and
251 N₂O were taken from EPICA (Spahni et al., 2005; Loulergue et al., 2008), and all
252 [greenhouse gas concentrations were](#) on the EDC3 timescale (Parrenin et al., 2007).
253 The prescription of ice-sheets was achieved with ICE-5G (Peltier (2004) for 0-21 ka

254 BP, and extrapolated to the pre-LGM period from the ICE-5G reconstruction using
255 the method described in Eriksson et al (2012). The simulations were each spun up
256 from the end of previous runs described in Singarayer and Valdes (2010) to adjust to
257 the modified ice-sheet boundary conditions for 470 years. The monthly climatologies
258 described hereafter are of model years 470-499. The model performs reasonably well
259 in terms of glacial-interglacial global temperature anomaly (HadCM3 is in the middle
260 of the distribution of global climate models and palaeoclimate reconstructions), high
261 latitude temperature trends (although as with all models, the magnitude of the
262 temperature anomalies in the glacial is underestimated), as well as at lower latitudes
263 (Singarayer and Valdes, 2010; Singarayer and Burrough, 2015).

264 2.2.2 FAMOUS

265 FAMOUS (Smith, 2012) is an Earth System Model, derived from HadCM3. It
266 is run at approximately half the spatial resolution of HadCM3 to reduce the
267 computational expense associated with atmosphere-ocean GCM simulations without
268 fundamentally sacrificing the range of climate system feedbacks of which it is
269 capable. Pre-industrial control simulations of FAMOUS have both an equilibrium
270 climate and global climate sensitivity similar to that of HadCM3. A suite of transient
271 FAMOUS simulations of the last glacial cycle, conducted with specified atmospheric
272 CO₂, ice-sheets and changes in solar insolation resulting from variation in the Earth's
273 orbit, compare well with the NGRIP, EPICA and MARGO proxy reconstructions of
274 glacial surface temperatures (Smith and Gregory, 2012). For the present study, we use
275 the most realistically-forced simulation of the Smith and Gregory (2012) suite
276 (experiment ALL-ZH), forced with northern hemisphere ice-sheets taken from the
277 physical ice-sheet modelling -work of Zweck and Huybrechts (2005), atmospheric
278 CO₂, CH₄ and N₂O concentrations from the EPICA project (Lüthi et al. (2008) and
279 Spahni et al. (2005) mapped onto the EDC3 (Parrenin et al. 2007) age scale) and
280 orbital forcing from Berger (1978). The composite CO₂ record contained in Lüthi et
281 al. (2008) uses data from the Vostok core (Petit et al. 1999) between 22 and 393 kyr.
282 The Vostok record is now believed (Bereiter et al. 2012) to be erroneously low during
283 the early part of Marine Isotope Stage 3. For this reason, the FAMOUS results during
284 this period are likely biased too cold. Although of a lower spatial resolution than
285 HadCM3, these FAMOUS simulations have the benefit of being transient, and
286 representing low-frequency variability within the climate system, as well as using
287 more physically plausible ice-sheet extents before the LGM than were used in the

Formatted: Subscript

288 HadCM3 simulations. To allow the transient experiments to be conducted in a
289 tractable amount of time, these forcings were all “accelerated” by a factor of ten, so
290 that the 120 kyr of climate are simulated in 12model kyr – this method has been
291 shown to have little effect on the surface climate (Timm and Timmerman, 2007;
292 Ganapolski et al., 2010) although it does distort the response of the deep ocean. In
293 addition, we did not include changes in sea level, Antarctic ice volume, or meltwater
294 from ice-sheets to enable the smooth operation of the transient simulations. The
295 impact ~~on the terrestrial carbon budget~~ of ignoring the continental shelves exposed by
296 lower sea-levels will be discussed later; the latter two approximations are unlikely to
297 have an impact over the timescales considered here. Although within the published
298 capabilities of the model, interactive vegetation was not used during this simulation,
299 with (icesheets aside) the land surface characteristics of the model being specified as
300 for a preindustrial simulation.

301

302 **2.2.3 BIOME4**

303 BIOME4 (Kaplan et al. 2003) is a biogeochemistry-biogeography model that
304 predicts the global vegetation distribution based on monthly mean temperature,
305 precipitation and sunshine fraction, as well as information on soil texture, depth and
306 atmospheric CO₂. It derives a seasonal maximum leaf area index that maximises NPP
307 for a given PFT by simulating canopy conductance, photosynthesis, respiration and
308 phenological state. Model gridboxes are then assigned biome types based on a set of
309 rules that use dominant and sub-dominant PFTs, as well as environmental limits.

310 Two reconstructions of the evolution of the climate over the last glacial cycle
311 were obtained by calculating monthly climate anomalies with respect to the simulated
312 pre-industrial for the HadCM3 and FAMOUS glacial climate simulations
313 respectively, then adding these anomalies, on the native FAMOUS and HadCM3
314 grids, to an area averaged interpolation of the Leemans and Cramer (1991) observed
315 climatology provided with the BIOME4 distribution. These climate reconstructions
316 were then used to force two BIOME4 simulations. The climate anomaly method
317 allows us to correct for known systematic errors in the climates of HadCM3 and
318 FAMOUS and produce more accurate results from BIOME4, although the method
319 assumes that the pre-industrial errors in each model are systematically present, and
320 unchanged over ice-free regions, throughout the whole glacial cycle. We chose to use
321 the actual climate model grids for the BIOME4 simulations, rather than interpolating

322 onto the higher-resolution observational climatology grid, to avoid concealing the
323 significant impact that the climate model resolution has on the vegetation simulation,
324 and to highlight the differences between the physical representation of the climate
325 between the two different models. Because of its lower resolution, FAMOUS cannot
326 represent geographic variation at the same scale as HadCM3, which not only affects
327 the areal extent of individual biomes, but also how altitude is represented in the
328 model, which can have a significant effect on the local climate and resulting biome
329 affinity. The frequency of data available from the FAMOUS run also limits the
330 accuracy of the minimum surface air temperature it can force BIOME4 with, as only
331 monthly average temperatures were available. This results in some aspects of the
332 FAMOUS-forced BIOME4 simulation seeing a less extreme climate than it should,
333 and may artificially favour more temperate vegetation in some locations.

334 Soil properties on exposed shelves were extrapolated from the nearest pre-
335 industrial land points. There is no special correction for the input climate anomalies
336 over this exposed land, which results in a slightly subdued seasonal cycle at these
337 points (due to smaller inter-seasonal variation of ocean temperatures). The version of
338 the observational climatology distributed with BIOME4 includes climate values for
339 these areas. The BIOME4 runs used the time-varying CO₂ records that were used to
340 force the corresponding climate models, as described in sections 2.2.1 and 2.2.2. As
341 well as affecting productivity, the lower CO₂ concentrations found during the last
342 glacial favour the growth of plants that use the C₄ photosynthetic pathway (Ehleringer
343 et al., 1997), which can affect the distribution of biomes as well. All other BIOME4
344 parameters as well as soil characteristics were held constant at pre-industrial values.

345 The results of the HadCM3-forced BIOME4 simulation will be referred to in
346 this paper as B4H, and those from the FAMOUS-forced BIOME4 simulation as B4F.
347

348 **3. Results**

349 In this section, the results of both the pollen-based biomization for individual
350 regions and the biome reconstructions based on the GCM climate simulations will be
351 outlined. The biomized records and biomization matrix can be found in the
352 supplementary information. Biome changes relating to millennial scale climate
353 oscillations are discussed elsewhere (e.g. Harrison and Sanchez Goñi, 2010 and
354 references therein).

355 **3.1 Biomization**

356 This method translates fossil pollen assemblages into a form that allows direct
357 data-model comparison and allows the reconstruction of past vegetation conditions.

358 | **Biome affinity scores for each location are shown in the Supplementary Information.**

359 **3.1.1 North America**

360 Two regional PFT schemes were used for sites from North America: the
361 scheme of Williams et al. (2000) for northern and eastern North America and the
362 scheme of Thompson and Anderson (2000) for the western USA. For their study of
363 biome response to millennial climate oscillations between 10 and 80 ka BP
364 | Jiménez-Moreno et al. (2010) applied one scheme for the whole of North America,
365 with a subdivision for southeastern pine forest. All biomization matrices and scores for
366 individual sites used in our study, generally at 1 kyr resolution, as well as explanatory
367 files can be found in the Supplementary Information. The Arctic Baffin Island sites
368 (Amarok and Brother of Fog) have highest affinity scores for tundra during the ice-
369 free Holocene and last interglacial.

370 | At Lake Tulane (Florida) the grassland and dry shrubland biome has the
371 highest affinity scores for the last 52 kyr, apart from two short intervals (~14.5 to 15.5

Formatted: Font: Not Italic

372 | ka BP and ~36.5 to 37.5 ka BP) where warm-temperate forest and temperate forest
373 have highest scores (Fig. 2a). According to Williams et al. (2000), present day, 6 ka

Formatted: Font: Not Italic

Formatted: Font: Not Italic

374 | BP, and LGM records of most of Florida and the Southeast of America should be
375 characterized by highest affinity scores for the warm-temperate forest biome
376 (Williams et al., 2000). The discrepancy of our biomization results with those of the
377 regional biomization results of Williams et al. (2000) is due to high percentages of

Formatted: Font: Not Italic

378 | Quercus, Pinus undiff (both are in the grassland and dry shrubland and warm-
379 temperate forest biomes), and Cyperaceae and Poaceae that contribute to highest
380 affinity scores of the grassland and shrubland biome. Interestingly, the temperate

Formatted: Font: Not Italic

Formatted: Font: Not Italic

381 | forest biome has highest affinity scores in a short interval (~15 ka BP) during the
382 | deglaciation (Fig. 2a). In Jiménez-Moreno et al. (2010) Pinus does not feature in the
383 grassland and dry shrubland biome, but comprises a major component of the
384 | southeastern pine forest; hence their biomized Lake Tulane records fluctuates
385 between the 'grassland and dry shrubland' biome and 'southeastern pine forest biome'.

Formatted: Font: Not Italic

386 | In western NorthNorthwest America pollen data from San Felipe (16 to 47 ka
387 | BP), Potato Lake (last 35 kyr), and Bear Lake (last 150 kyr) all show highest scores
388 for the grassland and dry shrubland biome. Potato Lake is currently situated within a

Formatted: Font: Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic

389 forest (Anderson, 1993). In our biomizations *Pinus* pollen equally contribute to scores
390 of boreal forest, temperate forest, warm-temperate forest and the grassland and dry
391 shrubland biomes. In addition, high contributions of Poaceae occur so that the
392 grassland and dry shrubland biome has highest affinity scores throughout the last 35
393 kyr. Again, in the Jiménez-Moreno et al. (2010) biomizations *Pinus* does not feature
394 in the grassland and dry shrubland biome, hence the forest biomes have highest
395 affinity scores in their biomizations. At Carp Lake the Holocene is characterized by
396 alternating highest affinity scores between the temperate forest and grassland and dry
397 shrubland biomes whereas during the glacial only the grassland and dry shrubland
398 biome attains highest affinity scores. The age model of Carp Lake suggests this record
399 goes back to the Eemian, and if so, then last interglacial climate was lacking the
400 alternation between the temperate forest and grassland and dry shrubland biomes as
401 was the case found during the late Holocene. Modern and LGM biomizations at Carp
402 Lake and Bear Lake are similar to those of Thompson and Anderson (2000) modern
403 and those of the LGM also compare well (Thompson and Anderson, 2000).
404 Biomizations for Carp Lake between 10 and 80 ka BP by Jiménez-Moreno et al.
405 (2010) generally look similar to ours, apart from 36, 57-70 and 72-80 ka BP where the
406 temperate forest biome shows highest affinity scores because *Pinus* undiff. is treated
407 as insignificant in their biomization. Biomizations of Bear Lake between 10 and 80 ka
408 BP are similar to Jiménez-Moreno et al. (2010).

409 3.1.2 Latin America

410 The regional biomization scheme of Marchant et al. (2009) was used for Latin
411 American locations. Hessler et al. (2010) discuss the effects of millennial climate
412 variability on the vegetation of tropical Latin America and Africa between 23N and
413 23S, using similar biomization schemes. In our study eleven sites from Central and
414 South America are considered covering a latitudinal gradient of 49° (from 20° to -29°)
415 and an elevation range of 3900 m (from 110-4010 m asl [above sea level]) (Table 2).
416 Five of the sites are from relatively low elevations (<1500 m asl), from north to south
417 these are: Lago Quexil and Petén-Itzá in Guatemala and Salitre, ~~and~~ Colonia and
418 Cambara in South East Brazil. The high elevation records (>1500 m asl), with the
419 exception of the most northerly site in Mexico (Lake Patzcuaro), are distributed along
420 the Andean chain: Ciudad Universitaria X (Colombia), Laguna Junin (Peru), Lake
421 Titicaca (Bolivia/Peru) and Salar de Uyuni (Bolivia).

422 The five lowland sites indicate the persistence of forest biomes for much of
423 the last 130 kyr (Fig. 2bi). In Central American the Lago Quexil record stretches back
424 to 36 ka BP and has highest affinity scores for the warm-temperate forest biome
425 during the early Holocene. During glacial times the temperate forest biome
426 dominates, intercalated with mainly the grassland and dry shrubland and desert
427 biomes during the LGM and last deglaciation. At Lago Petén-Itzá (also Guatemala)
428 highest affinity scores for the warm-temperate forest biome are recorded for the last
429 86 kyr. The Salitre and Colonia records are the only Latin American sites that fall
430 within the tropical forest biome today. The majority of the Salitre record shows high
431 affinities for tropical forest from ~64 ka BP to modern; apart from an interval
432 coinciding with the Younger Dryas which displays highest affinity scores for the
433 warm-temperate forest biome. The southern-most Brazilian record, at Colonia, has
434 highest affinity scores for tropical forest for the last 40 kyr, except between 28 and 21
435 ka BP (~coincident with the LGM) when scores were highest for the warm-temperate
436 forest biome. Between 120 and 40 ka BP highest affinity scores alternate between the
437 tropical forest and warm-temperate forest biome at Colonia. The biomized Colonia
438 record of Hessler et al. (2010) generally shows the same features, apart from an
439 increase in affinity scores for the dryer biomes between 10 and 18 ka BP. To the
440 south, at Cambara (Brazil), highest affinity scores are found for warm-temperate
441 forest during the Holocene and between 38 and 29 ka BP, whilst during the interval
442 in-between they alternate between warm-temperate forest and grassland and dry
443 shrubland.

444 Apart from Laguna Junin, higher elevation sites (>1500 m: Lake Patzcuaro,
445 Titicaca, Uyuni, and CUX) do not show a strong glacial-interglacial cycling in their
446 affinity scores; Mexican site Lake Patzcuaro (2240 m) and Colombian site CUX
447 (2560 m) have highest affinity scores mainly for warm-temperate forest over the last
448 35 kyr, although they alternate between warm-temperate forest and temperate forest
449 during the Holocene and at CUX also during the LGM (Fig. 2bii). Lake Patzcuaro and
450 CUX biomization results for the Holocene, 6 ka BP and LGM compare well with
451 those derived by Marchant et al. (2009). At Uyuni (3643 m) highest affinity scores are
452 for temperate forest and grassland and dry shrubland biome between 108 and 18 ka
453 BP. At Titicaca (3810 m) high affinity scores are found for temperate forest over the
454 last 130 kyr, apart from during the previous interglacial (Eemian) when highest
455 affinity scores for the desert biome occur. Finally at Lago Junin-Junin highest affinity

456 scores alternate between warm-temperate forest and temperate forest during the
457 Holocene and temperate forest and grassland and dry shrubland during the glacial.

458 3.1.3 Africa

459 For the biomization of African pollen records the scheme of Elenga et al.
460 (2004) was applied. What is specifically different from Southern European
461 biomizations is that Cyperaceae ~~is-are~~ not included as this taxon generally occurs in
462 high abundances in association with wetland environments where ~~it-they~~ represents a
463 local signal (Elenga et al., 2004). It is noted that most African sites are from highland
464 or mountain settings, with the exception of Mfabeni (11 m.a.s.l.).

465 At the mountain site Kashiru swamp in Burundi the Holocene is characterized
466 by an alternation of highest affinity scores for tropical forest, warm-temperate forest
467 and the grassland and dry shrubland biomes. During most of the glacial, scores are
468 highest for the grassland and dry shrubland biome, preceded by an interval where
469 warm-temperate forest showed highest scores (Fig. 2e). Our results are similar to
470 those obtained by Hessler et al. (2010). Highest affinity scores for tropical forest and
471 warm-temperate forest ~~were-are~~ found during the Holocene at the Rusaka Burundi
472 mountain site, whereas those of the last glacial again ~~had-have~~ highest scores for the
473 grassland and dry shrubland biome. At the Rwanda Kamiranzovy Site the grassland
474 and dry shrubland biome displayed highest scores during the last glacial (from ~30 ka
475 BP) and deglaciation, occasionally alternating with the warm-temperate forest biome.
476 In Uganda at the low mountain site Albert F (619 m) the Holocene and potentially
477 Bølling Allerød is dominated by highest affinity scores for tropical forest, whereas the
478 Younger Dryas and last glacial show highest affinity scores for the grassland and dry
479 shrubland biome (Fig. 2e). In the higher-elevation Ugandan mountain site Mubwindi
480 swamp (2150 m), the Holocene pollen record shows alternating highest affinity scores
481 between tropical forest and the grassland and dry shrubland biome, whereas the
482 glacial situation is similar to the Albert F site (e.g. dominated by highest scores for the
483 grassland and dry shrubland biome). In South Africa, the Mfabeni Swamp record
484 shows highest affinity scores for the grassland and dry shrubland biome for the last 46
485 kyr-~~years~~, occasionally ~~alternated~~ with the savanna and dry woodland biome, and
486 tropical forest biome during the late Holocene. At the Deva Deva Swamp in the
487 Uluguru Mountains highest affinity scores are for the grassland and dry shrubland
488 biome for the last ~48 kyr. At Saltpan the grassland and dry shrubland biome
489 dominates throughout the succession, including the Holocene and glacial. At Lake

490 Tritrivakely (Madagascar) the grassland and dry shrubland biome dominates, apart
491 from between 3 and 0.6 ka BP when the tropical forest biome ~~dominates shows~~
492 ~~highest affinity scores~~(Fig. 2e). Our results compare well with those of Elenga et al.
493 (2004) who show a LGM reduction in tropical rainforest and lowering of mountain
494 vegetation zones in major parts of Africa.

495 3.1.4 Europe

496 For European pollen records three biomization methods were used that are
497 region specific. For Southern Europe the biomization scheme of Elenga et al. (2004)
498 was used, where Cyperaceae ~~is-are~~ included in the biomization as ~~it-they~~ can occur as
499 ~~an~~ ‘upland’ species characteristic of tundra. For sites from the Alps the biomization
500 scheme of Prentice et al. (1992) was used, and for Northern European records the
501 biomization scheme of Tarasov et al. (2000). Fletcher et al. (2010) use one uniform
502 biomization scheme to discuss millennial climate in European vegetation records
503 between 10 and 80 ka BP.

504 In Southern Europe at the four Italian sites (Monticchio, Lago di Vico,
505 Lagaccione and Valle di Castiglione) the Holocene and last interglacial show highest
506 affinity scores for ~~warm-temperate forest and temperate forest~~ ~~biomes~~. During most
507 of the glacial and also cold interglacial substages the ~~grassland and dry shrubland~~
508 biome has highest affinity scores, whereas during warmer interstadial intervals of the
509 last glacial the ~~temperate forest biome~~ had highest affinity scores ~~again~~ (Fig. 2di). At
510 Tenaghi Phillipon and Ioannina a similar biome sequence may be observed, with
511 highest affinity scores for ~~temperate forest and warm-temperate forest~~ ~~biomes~~ during
512 interglacials. During the last glacial and ~~cool substages of the previous~~~~last~~ interglacial
513 ~~cool substages~~ the ~~grassland and dry shrubland~~ biome showed highest affinity scores
514 at Tenaghi Philippon. At Ioannina the LGM and last glacial cool stadial intervals have
515 highest affinity scores for ~~grassland and dry shrubland~~, whereas affinity scores of
516 glacial interstadial periods are highest for ~~temperate forest~~ (Fig. 2di). Our biomization
517 results for Southern European sites agree well with those of Elenga et al. (2004) who
518 also found a shift to dryer grassland and dry shrubland biomes during glacial times.
519 Instead of a desert and tundra biome, Fletcher et al. (2010) define a xerophytic steppe
520 and eurythermic conifer biome in their biomizations ~~for Europe~~, giving subtle
521 differences in the biomization records, with the Fletcher et al. (2010) biomized
522 records showing an important contribution of affinity scores to the xerophytic steppe
523 biome. Characteristic species for the xerophytica ~~shrub-steppe~~ biome include

Formatted: Font: Not Italic
Formatted: Font: Not Italic
Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic
Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic
Formatted: Font: Not Italic

Formatted: Font: Not Italic

524 artemisia*Artemisia*, chenopodiaceae*Chenopodiaceae* and ephedra*Ephedra*, which in
525 the Southern Europe biomization scheme of Elenbaas et al. (2000) feature in the desert
526 biome and grassland and dry shrubland biome (only ephedra*Ephedra*).

Formatted: Font: Italic
Formatted: Font: Italic
Formatted: Font: Italic
Formatted: Font: Italic

527 All four alpine sites are from altitudes between 570 and 670 m and for all four
528 sites the last interglacial period was characterized by having highest scores for the
529 temperate forest biome (Fig. 2dii). At Füramoos the last glacial showed highest
530 affinity scores for the tundra biome, whilst during the Holocene the temperate forest
531 biome shows highest affinity scores (Fig. 2dii). In the Fletcher scheme characteristic
532 pollen for the eurythermic conifer biome include pinus*Pinus* and juniperus*Juniperus*.
533 In our biomization pinus*Pinus* and juniperus*Juniperus* contributes to all biomes
534 except for the desert and tundra biomes.

Formatted: Font: Not Italic
Formatted: Font: Not Italic
Formatted: Font: Not Italic
Formatted: Font: Italic
Formatted: Font: Italic
Formatted: Font: Italic
Formatted: Font: Italic

535 Most Northern European sites are mainly represented for the last interglacial
536 period, apart from Horoszki Duze in Poland. At most sites the temperate forest biome
537 and boreal forest biome show highest affinity scores during the last interglacial
538 (Eemian), whereas cool substages and early glacial (Butovka, Horoszki Duze) show
539 high affinity scores for the grass and dry shrubland biome. These results compare well
540 with Prentice et al. (2000), who suggest a southward displacement of the Northern
541 hemisphere forest biomes and more extensive tundra and steppe like vegetation
542 during the LGM.

Formatted: Font: Not Italic
Formatted: Font: Not Italic
Formatted: Font: Italic

543 3.1.5 Asia

544 For the higher latitude site Lake Baikal the biomization scheme of Tarasov et
545 al. (2000) was used. For the two Japanese pollen sites we used the biomization
546 scheme of Takahara et al. (1999). At Lake Baikal, during the Eemian the highest
547 affinity scores are for the boreal and temperate forest biomes; the penultimate
548 deglaciation and cool substage show highest affinity scores for the grassland and dry
549 shrubland biome, similar to Northern European Sites. Pollen taxa such as *Carpinus*,
550 *Pterocarya*, *Tilia cordata* and *Quercus* have probably been redeposited or transported
551 over a large distance; however they all make up less than 1% of the pollen spectrum
552 and therefore did not influence the biomization much.

Formatted: Font: Not Italic
Formatted: Font: Not Italic
Formatted: Font: Not Italic

553 At Lake Suigetsu in Japan the warm-temperate forest biome shows highest
554 affinity scores over the last 120 kyr; those of other biomes (including tundra) do show
555 increasing affinity scores during glacial times but never exceeding those of the warm-
556 temperate forest biome. At lake Biwa the warm-temperate forest biome shows highest
557 affinity scores during interglacial times, whilst in-between they alternate between the

Formatted: Font: Not Italic
Formatted: Font: Not Italic
Formatted: Font: Not Italic
Formatted: Font: Not Italic

558 | ~~warm-temperate forest biome and the temperate forest biome. These results agree~~
559 | well with those of Takahara et al. (1999) and Takahara et al. (2010).

Formatted: Font: Not Italic

Formatted: Font: Not Italic

560 | 3.1.6 East Asia/Australasia

561 | For East Asian and Australasian sites the scheme of Pickett et al. (2004) was
562 | used. In Thailand the Khorat Plateau site shows highest affinity scores for the ~~tropical~~
563 | forest biome over the last ~40 kyr. At New Caledonia's Xero Wapa, the ~~warm-~~
564 | temperate forest and ~~tropical~~ forest biomes show highest affinity scores over the last
565 | 127 kyr. In Australia's Caledonian Fen interglacial times (Holocene and previous
566 | interglacial) ~~show highest affinity scores for the savanna and dry woodland biome has~~
567 | ~~highest affinity scores~~. During the glacial the ~~grassland and dry shrubland biome~~
568 | generally shows highest affinity scores, occasionally alternated with highest scores for
569 | the ~~savanna and dry woodland biome during the early part of Marine Isotope Stage~~
570 | (MIS) 3 and what would be MIS 5a (ca. 80-85 ka BP). Over most of the last glacial-
571 | interglacial cycle highest affinity scores at Lynch's Crater are for the ~~tropical forest~~
572 | and ~~warm-temperate forest biomes~~. ~~with t~~The ~~savannah and dry forest biome~~
573 | ~~becomes~~ important during MIS 4 to 2 and generally ~~having the shows~~ highest affinity
574 | scores between 40 and 7 ka BP, probably ~~the as a~~ result of increased biomass burning
575 | (human activities) causing the replacement of dry rainforest by savannah. In addition,
576 | the significance of what is considered to be tundra from MIS 4 is due to an increase in
577 | Cyperaceae with the expansion of swamp vegetation over what was previously a lake.
578 | At Okarito (New Zealand), the temperate ~~forest biome has highest affinity scores~~
579 | throughout (occasionally alternated with ~~warm-temperate forest~~), apart from during
580 | the LGM and deglaciation (~25~~to~~14 ka BP), where those of ~~savanna and dry~~
581 | ~~woodland, and grassland and dry shrubland~~ show highest affinity scores. Biomization
582 | results for the Australian mainland and Thailand agree well with those obtained by
583 | Pickett et al. (2004) for the Holocene and LGM.

Formatted: Font: Not Italic

584 | 3.2 HadCM3/FAMOUS model comparison

585 | Although the source codes of HadCM3 and FAMOUS are very similar,
586 | differences in the resolution of the models and the setup of their simulations result in
587 | a number of differences in both the climates they produce and the vegetation patterns
588 | seen in B4H and B4F over the last glacial cycle. Specific regions and times where
589 | they disagree on the dominant biome type will be discussed later, but there are a
590 | number of features that apply throughout the simulations.

591 Both B4H and B4F keep the underlying soil types constant as for the pre-
592 industrial throughout the glacial cycle. ~~In terms of the global land carbon budget, the~~
593 ~~largest difference between the simulations comes from whether sea level changes are~~
594 ~~included or not.~~ The HadCM3 snapshot simulations allowed for the exposure of
595 coastal shelves as sea-level changed through the glacial cycle, with reconstructions
596 based on Peltier and Fairbanks (2006) who used the SPECMAP $\delta^{18}\text{O}$ record
597 (Martinson et al., 1987) to constrain ice volume/sea level change from the last
598 interglacial to the LGM. FAMOUS, on the other hand, kept global mean sea level as
599 for the present day throughout the whole transient simulation. As a consequence the
600 area of land available to vegetation expands and contracts with falling and rising sea
601 level in B4H but remains unchanged in B4F. Inclusion of changing land exposure
602 with sea level therefore allows for significant additional vegetation changes ~~and~~
603 ~~represents a potentially major factor in the global carbon budget. This difference~~
604 will be discussed further later.

605 Full details of the climates produced by FAMOUS and HadCM3 in these
606 simulations can be found in Smith and Gregory (2012) and Singarayer and Valdes
607 (2010). In general, land surface temperature anomalies in the HadCM3 simulations
608 are a degree or so colder than in FAMOUS. This difference in temperature, present
609 ~~to~~ ~~in~~ some degree ~~we~~ throughout most of the simulation is attributed mainly to
610 differences in surface height and ice-sheet ice extent, although differences in the CO₂
611 forcing play a role in MIS 3. FAMOUS model results are also, on average, slightly
612 drier compared with those of HadCM3. This is additionally related to the model
613 resolution, with HadCM3 showing much more regional variation (some areas become
614 wetter and some drier), whilst FAMOUS produces a more spatially uniform drying as
615 the climate cools. A notable exception to this general difference is in north-western
616 Europe, where FAMOUS more closely reproduces the temperatures reconstructed
617 from Greenland ice-cores (Masson-Delmotte et al., 2005), compared to ~~which~~ the
618 HadCM3 simulations used here which have a significant warm bias at the LGM.
619 Millennial scale cooling events and effects of ice-rafting are not features of our model
620 runs, which present a relatively temporally smoothed simulation of the last glacial
621 cycle.

622 **3.3 Data-model comparison.**

Formatted: Subscript

623 We present here an overview of the vegetation reconstructions for the last
624 glacial-interglacial cycle simulated in B4H and B4F. We compare the simulated
625 biomes in B4H and B4F with each other and with the dominant megabiome derived
626 from the pollen-based biomizations, restricting our description of the results to major
627 areas of agreement and disagreement. Maps of the dominant megabiomes produced
628 by B4H and B4F with superimposed reconstructed dominant megabiomes for these
629 periods are shown and be seen in Figure 32.

630 We focus on a few specific periods, detailed below, since reviewing every
631 detail present in this comparison is unfeasible. The pre-industrial period serves as a
632 test-bed to identify biases inherent in our model setup, before climate anomalies have
633 been added. The 6 ka BP mid-Holocene period represents an orbital and ice-sheet
634 configuration favouring generally warm northern hemisphere climate (Berger and
635 Loutre, 1991). The LGM simulation at 21 ka BP is at the height of the last glacial
636 cycle, when ice-sheets were at their fullest extent, orbital insolation seasonality was
637 similar to present and CO₂ was at its lowest concentration (~185 ppm), and the
638 resulting climate was cold and dry in most regions. These three time periods form the
639 basis of the standard PMIP2 simulations and were used in the BIOME 6000 project.
640 We thus additionally compare our simulations with the BIOME 6000 results for these
641 time periods. The 54 ka BP interval is representative of peak warm conditions during
642 Marine Isotope Stage 3 (MIS 3), where both the model climates and some proxy
643 evidence suggest relatively warm conditions, at least for Europe (Voelker et al.,
644 2002), associated with temporarily higher levels of greenhouse gases, an orbital
645 configuration that favours warmer northern-hemisphere summers, and northern
646 hemisphere ice sheet volume roughly half that of the LGM. The time slice 64 ka BP
647 represents MIS 4, both greenhouse gases and northern-hemisphere insolation were
648 lower, and northern hemisphere ice volume was two-thirds higher than at 54 ka BP,
649 resulting in significantly cooler global climate. 84 ka BP is representative of stadial
650 conditions of the early part of the glacial (at the end of MIS 5), after both global
651 temperatures and atmospheric concentrations of CO₂ have fallen significantly and the
652 Laurentide ice-sheet has expanded to a significant size but before the Fennoscandian
653 ice-sheet can have a major influence on climate. The 84 ka BP period can be
654 compared with the Eemian (120 ka BP, the earliest climate simulation used here),
655 which represents the end of the last interglacial warmth (MIS 5e), before glacial
656 inception. The Eemian period (120 ka BP) differs from the pre-industrial mainly in

657 insolation. The earlier parts of the Eemian (e.g. 125 ka BP) are often studied due to
658 their higher temperature and sea level compared to the Holocene (Dutton and
659 Lambeck, 2012), but 120 ka BP is the oldest point for which both FAMOUS and
660 HadCM3 climates were available.

661 **3.3.1 Pre-industrial**

662 Our BIOME4 simulations were forced using anomalies from the pre-industrial
663 climates produced by HadCM3 and FAMOUS. Differences between B4H and B4F
664 for this period thus only arise from the way the pre-industrial climate forcing has been
665 interpolated onto the two different model grids we used. Differences between B4H
666 and B4F and the pollen-based reconstructions for this period highlight biases that are
667 not directly derived from climates of HadCM3 and FAMOUS, but are inherent to
668 BIOME4, the pollen-based reconstruction method, or simply the limitations of the
669 models' geographical resolution.

670 Although few of the long pollen records synthesised in this study extend to the
671 modern period and their geographical coverage is sparse, a comparison with previous
672 high-resolution biomizations of BIOME6000 (see Table 1 for details; these studies
673 include the sites synthesised here amongst many others) and Marchant et al. (2009)
674 show that they are generally representative of the regionally dominant biome. The
675 biomized records of Carp Lake and Lake Tulane in North America are exceptions,
676 showing dry grassland conditions rather than the forests (conifer and warm-mixed,
677 respectively) that are more typical of their regions (Williams et al., 2000).

678 There is generally very good agreement between B4H and B4F for this period
679 and the high-resolution BIOME6000 and Marchant et al. (2009) studies. A notable
680 exception, common to both B4H and B4F, can be seen in the south-west US being
681 misclassified compared to the regional biomization of Thompson and Anderson
682 (2000). The open conifer woodland biome they assign to sites in this region appears to
683 be sparsely distributed (their figure 2) amongst larger areas likely to favour grassland
684 and desert, and thus may be unrepresentative of areas on the scale of the climate
685 model gridboxes. The limitations of HadCM3 and FAMOUS's spatial resolution
686 appear most evident in South America, where the topographically-influenced mix of
687 forest and grassland biomes found by Marchant et al. (2009) cannot be correctly
688 reproduced, with disagreement at the grid-box scale between B4F and B4H. Eurasia is
689 generally well reproduced, although the Asian boreal forest biome does not extend far
690 enough north, and overruns what should be a broad band of steppe around 50°N on its

691 southern boundary. Australia, with a strong gradient in climate from the coasts to the
692 continental areas also shows the influence of the coarse model resolutions, with B4F
693 more accurately reproducing the southern woodlands but neither simulation
694 reproducing the full extent of the desert interior. Both Australian records are from the
695 eastern coastal ranges; there are no long continuous records in the interior because of
696 the very dry conditions. Overall, our comparison with the full BIOME6000 dataset
697 gives reasonable support to our working hypothesis that BIOME4, operating on the
698 relatively coarse climate model grids we use here, is capable of producing a realistic
699 reconstruction of global biomes, but may differ locally although local differences may
700 still occur.

701 3.3.2 6 ka BP mid-Holocene

702 As for the pre-industrial, in both the mid-Holocene and LGM periods the high
703 resolution biomizations of the BIOME6000 project (see Table 1) provide a better base
704 for comparison of our model results than the relatively sparse, long time-series pollen
705 records synthesised in this study. A common thread in the BIOME 6000 studies is the
706 global similarity between the reconstructions for 6 ka BP and the pre-industrial, and
707 this is, by and large, also the result seen in B4H and B4F. An increase in vegetation
708 on the northern boundary of the central Africa vegetation band is the most notable
709 difference compared to the pre-industrial in the regional biomizations (Jolly et al.,
710 1998), which is also suggested by the long central African pollen records synthesised
711 here. Both climate model-based reconstructions show grassland on the borders of pre-
712 industrial desert areas in North Africa, although the additional amount of rainfall in
713 both models is too low, and the model resolution too low insufficient to represent any
714 significant “greening” of the desert. B4F shows a smaller change in tropical forest
715 area in central Africa than B4H does, agreeing better with the regional biome
716 reconstructions. Both HadCM3 and FAMOUS predict similar patterns and changes in
717 precipitation for this period, but the magnitude of the rainfall anomaly in FAMOUS is
718 slightly lower. The reduction in forest biomes at the tip of South Africa in B4F has
719 some support from Jolly et al. (1998), although B4F initially overestimates forest in
720 this area.

721 B4H and B4F show limited changes elsewhere too. In North America,
722 FAMOUS’s increase in rainfall anomalies produces more woodland in the west in
723 B4F compared to the pre-industrial, which is not seen in B4H. This is not a
724 widespread difference shown in the regional biomization, although individual sites do

725 change. Marchant et al. (2009) suggest drier biomes than the pre-industrial for some
726 northern sites in Latin America, agreeing with B4F but not B4H. For Eurasia and into
727 China, Prentice (1996), Tarasov et al. (2000) and Yu et al. (2000) all suggest greater
728 areas of warmer forest biomes to the north and west across the whole continent, with
729 less tundra in the north. Neither BIOME4 simulation shows these differences,
730 however, with some additional grassland at the expense of forest on the southern
731 boundary in B4H, and B4F predicting more tundra in the north. Although both
732 FAMOUS and HadCM3 produce warmer summers for this period, in line with the
733 increased seasonal insolation from the obliquity of the Earth's orbit at this time, the
734 colder winters they also predict for Eurasia skew annual average temperatures to a
735 mild cooling which appears to prevent the additional forest growth to the north and
736 west seen in the pollen-based reconstructions.

737 **3.3.3 21 ka BP (Last Glacial Maximum)**

738 For the LGM, both the BIOME4 simulations and pollen-data-based
739 reconstructions predict a global increase in grasslands at the expense of forest, with
740 more tundra in northern Eurasia and desert area in the tropics than during the
741 Holocene. Along with the cooler, drier climate, lower levels of atmospheric CO₂ also
742 favour larger areas of these biomes. Our long pollen records do not have sufficient
743 spatial coverage to fully describe these differences, showing only smaller areas of
744 forest biomes in southern Europe, central Africa and Australia, but there is again good
745 general agreement between our two BIOME4 simulations and the regional
746 biomizations of the BIOME6000 project.

747 The FAMOUS and HadCM3 grids do not seem to have sufficient resolution to
748 reproduce much of the band of tundra directly around the Laurentide ice-sheet in
749 either B4H or B4F, but the forest biomes the simulations show for North America are
750 largely supported by Williams et al. (2000). However, Thompson and Anderson
751 (2000) suggest larger areas of the open-conifer biome in the southwestern US than in
752 the Holocene that the BIOME4 simulations again do not show. Both B4H and B4F
753 predict a smaller Amazon rainforest area. Marchant et al. (2009) suggest that the
754 Holocene rainforest was preceded by cooler forest biomes, whereas both HadCM3
755 and FAMOUS simulate climates that favours grasslands. Marchant et al. (2009) also
756 provide evidence for cool, dry grasslands in the south of the continent; FAMOUS
757 follows this climatic trend but B4F suggests desert or tundra conditions, whilst B4H
758 shows a smaller area of the desert biome. For Africa, Elenga et al. (2000) show

759 widespread grassland areas where the Holocene has forest, with which the simulations
760 agree, and dry woodland in the southeast, ~~with which~~ neither B4H or B4F show;
761 HadCM3 and FAMOUS appear to be too cold for BIOME4 to retain this biome.
762 Elenga et al. (2000) also shows increased grassland area in southern Europe, which is
763 not strongly indicated by either B4H or B4F, which have some degree of forest cover
764 here.

765 The large areas of tundra shown by Tarasov et al. (2000) in northern Eurasia
766 to the east of the Fennoscandian ice-sheet are well reproduced by the BIOME4
767 simulations, although HadCM3's slightly wetter conditions produce more of the
768 boreal forest in the centre of the continent in B4H. The generally smaller amounts of
769 forest cover in Europe in B4F agree with the distribution of tree populations in
770 Europe at the LGM proposed by Tzedakis et al (2013) better than those from B4H,
771 possibly due to HadCM3's warm bias at the glacial maximum. Both B4H and B4F
772 agree with the smaller areas of tropical forest in China and southeast Asia
773 reconstructed by Yu et al. (2000) and Pickett et al. (2004) compared to the Holocene,
774 but have too much forest area in China compared to the biomization of Yu et al.
775 (2000). Neither BIOME4 simulation reproduces the reconstructed areas of xerophytic
776 biomes in south Australia, or the tropical forest in the north (Pickett et al., 2004).

777 **3.3.4 54 ka BP (~~early~~ Marine Isotope Stage 3)**

778 There are fewer published biomization results for periods before the LGM, so
779 our model-data comparison is restricted to the pollen-based biomization results at
780 sites synthesised in this paper. Of these sites, only two sites show a different
781 megabiome affiliation when compared to the LGM: in South America Uyuni shows
782 highest affinity scores for the forest biome, and in Australia, Caledonian Fen shows
783 highest affinity scores for the dry woodland biome (both sites show highest affinity
784 score for grassland during the LGM). Overall, the few sites where data are available
785 show little differences compared with the LGM. This is perhaps a surprise given the
786 evidence that this was ~~a~~ relatively warm interval ~~within~~ the last glacial, ~~at least~~ in
787 Europe~~at least~~ (Voelker et al., 2002). These mostly unchanged biome assignments
788 derived from our pollen data records are supported by our BIOME4 simulations in
789 that, although both FAMOUS and HadCM3 do produce relatively warm anomalies
790 compared to the LGM, both B4H and B4F simulations at 54 ka BP are similar to the
791 LGM ~~local~~ close to the pollen sites in the Americas, most of southern Europe (apart

792 from Ioannina where the data show highest affinity scores for temperate forest) and
793 east Africa.

794 In other parts of the world, the biomes simulated at 54 ka BP in B4H and B4F
795 do differ significantly from those of the LGM. Both BIOME4 simulations show
796 increased vegetation in Europe and central Eurasia due to the climate influenced by
797 the smaller Fennoscandian ice-sheet, as well as reduced desert areas in North Africa
798 and Australia, generally reflecting a warmer and wetter climate under higher CO₂
799 availability than at the LGM. However our simulations disagree on both the climate
800 anomalies and the likely impact on the vegetation in several areas in this period.
801 These include differences, both local and far-field, related to prescribed ice-sheets,
802 particularly in North America where the ice-sheet configuration in FAMOUS shows
803 largely separate Cordilleran and Laurentide ice-sheets compared to the more uniform
804 ice coverage of the continent in HadCM3. Further afield, B4H has significantly more
805 tropical rainforest, especially in Latin America, and predicts widespread boreal forest
806 cover right across Eurasia. B4F however, reproduces a more limited forest extent,
807 with more grassland in central Eurasia. The differences in the tropics appear to be
808 linked to ~~a~~ larger rainfall anomalies in HadCM3 than FAMOUS, whilst the west and
809 interior of northern Eurasia is cooler in FAMOUS than HadCM3. This may be due to
810 the erroneously variable and low CO₂ applied to FAMOUS from the Vostok record
811 around this period, or it may indicate, possibly due to a stronger response to
812 precessional forcing in FAMOUS, whilst the west and interior of northern Eurasia is
813 cooler in FAMOUS than HadCM3, with a greater influence from the Fennoscandian
814 ice-sheet.

Formatted: Subscript

815 3.3.5 64 ka BP (Marine Isotope Stage 4)

816 There are only a few differences between biomized records at the LGM, 54 ka
817 BP, and 64 ka BP-~~(Figure 3)~~. Apart from one southern European site (Ioannina),
818 which has a highest affiliation with grassland (compared with temperate forest during
819 the LGM), the pollen biome affiliations are much the same as at the LGM for the sites
820 presented here. The two sites in northern Australasia show a highest affiliation with
821 the warm-temperate forest biome during this period, compared with tropical forest at
822 54 ka BP, however affinity scores between the two types are close, so this is unlikely
823 to be related to different climates. The BIOME 4 simulations support this as they also
824 do not show major differences at the pollen sites.

825 Both B4H and B4F are, in general, similar for 64 and 54ka BP. The 64ka BP
826 climate in HadCM3 is cooler and drier than for 54ka BP, with B4H producing larger
827 areas of tundra in north and east Eurasia and patchy tropical forests. There is less
828 difference between 64ka BP and 54ka BP in the FAMOUS reconstructions, which
829 simulates a cooler climate at 54ka BP compared to HadCM3, so B4F and B4H agree
830 better in this earlier period than at 54ka BP. North American vegetation distributions
831 primarily differ between B4H and B4F in this period due to the different
832 configurations of the Laurentide ice-sheet imposed on the climate models.

833 **3.3.6 84 ka BP (Marine Isotope Stage 5b)**

834 The pollen-based biomization for 84 ka BP clearly reflects the warmer and
835 wetter conditions with more CO₂ available than at 64 ka BP, especially in Europe,
836 with the majority of sites showing highest affinity scores for the temperate forest
837 biomes. Sites in other parts of the world show similar affinity scores to those at the 64
838 ka BP timeslice, although there are not many sites and it is less clear whether they
839 reflect widespread climatic conditions.

840 The BIOME4 simulations reflect the warmer European climate resulting from
841 the smaller Fennoscandian ice-sheet at 84ka BP than 64ka BP, with B4F showing
842 some European forest cover, and B4H extending Eurasian vegetation up to the Arctic
843 coast. B4H shows more of this vegetation to be grassland rather than forest however,
844 probably a result of a slightly cooler climate in HadCM3. Around the southern
845 European pollen sites themselves, however, B4H shows little difference from the dry
846 grassland biomes present at 64 ka BP and B4F predicts dry woodlands, perhaps a
847 result of the models' representation of the poorly modelled Mediterranean storm-
848 tracks that would bring moisture inland which are often poorly reproduced in lower-
849 resolution models (Brayshaw et al 2010).

850 Although there are differences in the configuration of the Laurentide ice-sheet
851 between the HadCM3 and FAMOUS, both B4H and B4F reproduce dry vegetation
852 types in Midwest America and significant boreal forest further north at 84 ka BP.
853 Both BIOME4 simulations show significantly smaller desert areas in North Africa
854 and larger areas of forest in the tropical belt than at 64 ka BP, reflecting significant
855 precipitation and higher CO₂ levels here, although both also show a dry anomaly over
856 Latin America. Because of increased rainfall in Australia, B4H shows a smaller desert
857 compared with 54 ka BP.

858 **3.3.7 120 ka BP (last interglacial period, Marine Isotope Stage 5e)**

859 This time-slice represents the previous interglacial, and would be expected to
860 have the smallest anomalies from the pre-industrial control climate of the climate
861 models. The pollen-based biomization shows widespread forest cover for Eurasia,
862 with the only other difference from both the 84 ka BP period and the pre-industrial
863 control being Lake Titicaca, which has the highest affinity toward desert for this
864 period. The affinity scores for temperate forest are almost as high for this site, and
865 neither HadCM3 nor FAMOUS has the resolution to reproduce the local climate for
866 this altitude well (Bush et al., 2010), although both do reflect dry conditions near the
867 coast here.

868 The models do indeed produce relatively small climate anomalies and
869 vegetation similar to the pre-industrial control and each other. Both models produce
870 widespread forest cover north of 40N, much as for the pre-industrial climate, although
871 FAMOUS is slightly too wet over North America for B4F to produce mid-west
872 grasslands as seen in B4H. Both B4H and B4F increase the extent of their tropical
873 forests, although FAMOUS has a relative dry anomaly over central Africa, and B4F
874 has less tropical forest than for the pre-industrial or B4H, which once again appears to
875 have a stronger response to precessional forcing.

876

877 **4 Global terrestrial vegetation changes**

878 The BIOME 4 simulations compare well~~reasonably re is good general~~
879 ~~agreement between our BIOME 4 simulations and with pollen synthesis biomizations~~
880 ~~of — BIOME 6000 (pre-industrial, 6 ka BP and LGM) and from both this those~~
881 ~~presented in this~~ paper and BIOME 6000. Below we calculate quantitative changes in
882 the biome areas and net primary productivity~~global terrestrial biosphere and carbon~~
883 ~~cycle~~, keeping in mind that these calculations carry some uncertainties relating to
884 several mismatches. As is discussed in section 3.1 there are several occasions where
885 the modern biomized pollen data do not agree with actual biome presence; for
886 example Potato Lake and Lake Tulane in North America. In both cases high
887 contributions of Pinus and some other taxa skewed the affinity scores towards drier
888 biomes (grassland and dry woodland). For the past, not knowing whether a pollen
889 distribution is representative for an area puts restrictions on the biomization method.
890 It is however noted that in most cases the biomized pre-industrial pollen agree well
891 with pre-industrial biomes. The climate models produce some differences in climate
892 forcing of the vegetation due to 1) difference in resolution, affecting the biome areal

893 extent and altitude and 2) ice-sheet extent, affecting temperature (section 3.2). We can
894 use the pre-industrial as a test-bed to compare model outputs and pollen-
895 reconstructions (using the BIOME 6000 database) ~~– showing that~~ there are some biases
896 that can be attributed to biases in BIOME4, some to the biomization method, and
897 some to the models' limiting geographical resolution.

898 **4.1 Biome areas**

899 Whilst there is general agreement between B4H and B4F, there are also areas
900 and periods with significant regional differences. A clearer picture of the effect on the
901 global biosphere can be seen by using the global total areas of each megabiome for
902 the two simulations (Figure 43). Cooler temperatures, reduced moisture, and lower
903 levels of CO₂ through the glacial result in a general reduction of forest biomes and
904 increases in grassland, desert, and tundra. Lower levels of atmospheric CO₂ also
905 preferentially favour plants using the C4 photosynthetic pathway (Ehleringer et al.,
906 1997), contributing to the expansion of the grassland and desert biomes during the
907 glacial. The changes in atmospheric CO₂ levels through the glacial cycle are largely
908 common to all the BIOME4 simulations, so CO₂ fertilisation effects and C3/C4
909 competition are generally not responsible for differences in vegetation response
910 between B4F and B4H. The exception to this rule comes between 40 and 60 kyr BP,
911 where the FAMOUS runs sees erroneously strong CO₂ variations in this time interval
912 from the Vostok record which may affect both the climate used to force B4F and the
913 fertilisation effects. B4F predicts consistently lower areas of warm-temperate and
914 boreal forest than B4H, and higher amounts of grassland and desert. FAMOUS also
915 neglects the additional area of land that HadCM3 sees as continental shelves are
916 exposed, reducing the area of land available to the biosphere, although some of this
917 additional land is occupied by the northern hemisphere ice-sheets in HadCM3. The
918 global total areas of biomes highlights a significant oscillation in the areas of the
919 different megabiomes of ~20 kyr in length – this is particularly notable between 60
920 and 120 ka BP in the grassland megabiome and results from the 23 kyr cycle in the
921 precession of the Earth's orbit. The precession cycle exerts a significant influence on
922 the seasonality of the climate, as noted in tropical precipitation records (e.g. the East
923 Asian monsoon; Wang et al., 2008; Carolin et al., 2013). Such variations are not
924 explicitly evident in the dominant megabiome types at any of the pollen sites, but the
925 precession oscillation does appear in the individual biome affinity scores of several

Formatted: Subscript

926 sites ([Fig. 2Supplementary Information](#)), lending support to this feature of the model
927 reconstructions.

928 **4.2 Net Primary Productivity**

929 Net Primary Productivity (NPP) is the net flux of carbon into green plants (in
930 this case terrestrial plants) due to photosynthesis, after accounting for plant
931 respiration. Global NPP derived from our BIOME4 simulations for the PI is 74 PgC
932 year⁻¹ for B4H and 78 PgC year⁻¹ for B4F ([Figure 4](#)). These values are somewhat
933 higher than previously estimated present-day ranges of 46 [to](#) 62 PgC year⁻¹ (Tinker
934 and Ineson, 1990; Nemani et al., 2003). Recent estimates using eddy covariance flux
935 data estimate global NPP as ~62 PgC year⁻¹ (assuming 50% carbon use efficiency to
936 convert from GPP to NPP; Beer et al. 2010).

937 Some other model estimates for the PI are also lower (e.g. Prentice et al.,
938 2011: 59.2 PgC year⁻¹). As mentioned in section 3.3.1, BIOME4 is driven solely by an
939 observational climate dataset for the pre-industrial due to the anomaly approach used
940 to reduce the impact of climate model biases (see methods section 2.1.3). Therefore,
941 any overestimate in NPP is not a result of the climate model forcing but possibly due
942 to biases in the vegetation model, and/or biases in the observational climatology used
943 to drive the model, and the spatial resolution used. For example, the lower resolution
944 topography does not represent mountainous regions such as the Andes well nor its
945 topographically-induced variation in vegetation (see section 3.3.1), which may
946 positively skew NPP values. The model may also overestimate NPP compared to
947 observationally based techniques for the modern or pre-industrial, partly because it
948 does not contain any representation of non-climatically induced changes, e.g.
949 cultivation or land degradation.

950 The LGM BIOME4 simulations show a global NPP decline to ~42 PgC year⁻¹
951 in B4F and 48 PgC year⁻¹ in B4H ([Figure 4](#)). While these are also higher than some
952 other model-based estimates of 28-40 PgC year⁻¹ (e.g. François et al., 1999; 2002), the
953 relative decrease in the LGM in our simulations to approximately two-thirds of PI is
954 consistent with several previous studies. A calculation based primarily on isotopic
955 evidence has produced an even lower estimate of LGM NPP of 20 ± 10 PgC year⁻¹
956 (Ciais et al., 2012); with LGM primary productivity approximately 50% lower than
957 their PI estimate.

958 The PI-LGM difference is greater in B4F than in B4H (Fig. [5a4](#)), primarily
959 due to the fact that HadCM3's glacial land area increases as sea-level lowers, enabling

960 additional NPP on continental shelf regions, whereas FAMOUS land area remains the
961 same. This is demonstrated by recalculating global NPP for B4H neglecting exposed
962 shelf regions (B4H_NS), which then matches the values from B4F (Fig. 5a, green
963 line). The effect of vegetating continental shelves on global NPP is small in
964 comparison to the overall decrease during the glacial period; NPP reduction at the
965 LGM is 40% for B4H_NS and 35% for B4H compared to the PI. The impact of large
966 continental ice-sheets reducing the land surface area available for primary production
967 has a negligible effect on NPP compared to reduced CO₂ and glacial climate change.
968 These high-latitude areas only contribute a small fraction of global NPP in any case
969 and if the area covered in ice at the LGM is excluded from NPP calculations of the PI,
970 global NPP only decreases by a maximum of ~5 PgC yr⁻¹. In addition, sensitivity tests
971 with B4H, with and without CO₂, variation suggests that CO₂ fertilization, rather than
972 climate, is the primary driver of lower glacial NPP [in the model](#) (accounting for
973 around 85% of the reduction in global NPP at the LGM).

974 Some differences in the timing of some multi-millennial peaks/troughs in NPP
975 between B4H and B4F are apparent, especially in the earlier half of the simulation.
976 These differences, all of the order of a few thousand years, can largely be ascribed to
977 the different CO₂ forcings used for B4H and B4F as well as the multiple snap-shot
978 setup of the HadCM3 run, which only produces simulations at 2 or 4 ka intervals,
979 compared to the 1 ka resolution of B4F. Differences in the forcing provided by the
980 ice-sheet reconstructions used in the models, as well as in the strength of their
981 responses to orbital forcing in the early part of the glacial ([e.g see the oscillations in
982 area coverage of various biomes in Figure 43](#)) may also play a role.

983 Both BIOME4 simulations predict slightly lower NPP during the previous
984 interglacial, the Eemian (3-5 PgC yr⁻¹ lower) compared with pre-industrial times. The
985 first large-scale decrease in NPP occurs during the initial glaciation following the
986 Eemian, between 120 ka BP and 110 ka BP (in both simulations). There is then a
987 second large drop of ~10 PgC yr⁻¹ (HadCM3_S) to ~20 PgC yr⁻¹ (B4H_NS, B4F)
988 between 75 ka BP and 60 ka BP, associated with MIS 4. NPP then increases during
989 MIS 3, followed by the final reduction (~10 PgC year⁻¹) to lowest values during the
990 LGM (Figure 64). We note here that the details of the magnitude and timing of the
991 NPP variations will be highly dependent on the prescribed CO₂ curve given that CO₂
992 fertilization is the predominant factor driving the changes. A recent composite CO₂
993 curve derived from several ice core records (Bereiter et al., 2013) has CO₂ that is 5-

994 20 ppm higher during MIS 3 and MIS 4 than either Vostok or EDC records. Further
995 sensitivity tests with B4F forced with higher CO₂ levels suggest that NPP could be up
996 to 8 PgC/yr higher at certain time slices (see supplementary Figure 1).

997 Changes in NPP will likely affect terrestrial carbon storage, which in turn
998 influences the stable carbon isotope composition ($\delta^{13}\text{C}$) of seawater because terrestrial
999 organic carbon is depleted in ^{13}C . Various

1000 **4.3 Terrestrial carbon storage**

1001 Early modelling studies and data-based reconstructions produced a range of 270-
1002 1100 PgC decrease in terrestrial carbon storage during the LGM compared with pre-
1003 industrial time (see summary table 1 in Köhler and Fischer, 2004). ~~These estimates~~
1004 ~~were based on various techniques including isotopic mass balance based on known~~
1005 ~~marine and atmospheric $\delta^{13}\text{C}$ values (Bird et al., 1994), and either data-based or~~
1006 ~~simple model-based reconstructions where constant carbon storage per unit area of~~
1007 ~~each biome was assumed (e.g. Prentice et al., 1993; Crowley, 1995).~~ These early
1008 estimates were unreliable, however, because (a) they do not account for variation in
1009 carbon storage within biomes and (b) they neglect the substantial influence of
1010 atmospheric CO₂ concentration on carbon storage (see Prentice and Harrison, 2009,
1011 for a fuller discussion). More recent studies have narrowed the range of LGM
1012 terrestrial carbon storage decreases to 300-700 PgC. ~~Prentice et al. (2011) estimated a~~
1013 ~~550-694 PgC decrease at the LGM using the LPX dynamic vegetation model forced~~
1014 ~~by four Palaeoclimate Modelling Intercomparison Project Phase II climate model runs~~
1015 ~~for the LGM.~~ Using isotopic and modelling methods Ciais et al. (2012) suggested that
1016 only 330 PgC less carbon was stored in the terrestrial biosphere at the LGM than PI
1017 Holocene. ~~While this is of the same order as other estimates it represents a reduction~~
1018 ~~of only 10% from PI. Ciais et al. (2012) also~~ They included a large inert carbon pool
1019 to represent permafrost and peatland carbon storage in their modelling, (which are not
1020 included in most dynamic vegetation models). and Their optimization procedure
1021 suggested that this inert carbon pool was larger by 700 PgC at the LGM than PI,
1022 meaning the reduction in their active terrestrial biosphere was therefore larger than
1023 most other studies have suggested, at approximately 1000 PgC.

1024 Globally decreased LGM deep ocean stable carbon isotope ratios ($\delta^{13}\text{C}$), as recorded
1025 by benthic foraminifera at -0.3 to -0.4‰, have also been ~~were previously used as an~~
1026 alternative method to calculate the decrease in global LGM terrestrial carbon storage
1027 compared with the PI (e.g. Broecker and Peng, 1993; Duplessy et al., 1988, Bird et al,

Formatted: Indent: First line: 0 cm

1028 1996; Kaplan et al., 2002; Beerling et al, 1999). A more recent estimate derived from
1029 a compilation of 133 ocean cores is $-0.34 \pm 0.13\%$ (Ciais et al., 2012), and an
1030 ensemble of ocean circulation model simulations suggests a similar decrease of -0.31
1031 $\pm 0.2\%$ (Tagliabue et al., 2009). Robust reconstructions of terrestrial carbon storage
1032 could be used in utilizing a similar, but inverted approach to estimate global ocean
1033 $\delta^{13}\text{C}$ changes over the same time period.

1034 From our NPP simulations of changes in NPP over the glacial cycle we would
1035 expect lower terrestrial carbon storage shortly following the last interglacial period,
1036 with lowest values during the LGM. We would also expect, given the compensation
1037 in terms of NPP, that the vegetation on the exposed continental shelves would be an
1038 important consideration for changes in total terrestrial carbon storage. However, the
1039 large uncertainties associated with both the climate and biome models and their
1040 forcings, as well as the BIOME model those involved in deriving full estimates of
1041 carbon storage and ocean $\delta^{13}\text{C}$ from the variables that are explicitly produced in the
1042 models currently prohibit the robust quantitative reconstruction of terrestrial carbon
1043 storage (and ocean $\delta^{13}\text{C}$) these quantities with time from our results.

Formatted: Superscript

1044 ~~As BIOME4 does not compute the size of the terrestrial carbon reservoir, here~~
1045 ~~we estimate carbon storage over the last glacial cycle using the method of Wang et al.~~
1046 ~~(2011). Consistent with BIOME4's assumption of steady states for its reconstructed~~
1047 ~~vegetation, this method assumes that the carbon storage for each gridpoint is in~~
1048 ~~balance with the modelled NPP, via turnover times that are characteristic of the soil~~
1049 ~~and vegetation. Although the heterogeneity of soil organic matter means that some~~
1050 ~~soil carbon varies on millennial timescales, the soil response to changes in climate~~
1051 ~~tends to be dominated by the more labile carbon pools, with effective residence times~~
1052 ~~for soil carbon being measured in decades rather than centuries (Carvalhais et al.,~~
1053 ~~2014). The steady state soil carbon assumption used here neglects a lag in total~~
1054 ~~biosphere carbon response, although on the millennial timescales analysed here it is~~
1055 ~~unlikely to introduce major inaccuracy.~~

1056 ~~We estimate total terrestrial carbon storage as the sum of vegetation carbon,~~
1057 ~~C_{veg} , and soil carbon, C_{soil} derived using equations 1 and 2 below:~~

$$1058 C_{\text{veg}} = \sum_{\text{biome}} NPP_{\text{biome}} \cdot \tau_{\text{biome}}^v \quad [1]$$

Formatted: Lowered by 2 pt

Formatted: Lowered by 15 pt

$$1059 C_{\text{soil}} = \sum_{\text{biome}} NPP_{\text{biome}} \cdot \tau_{\text{biome}}^s \cdot \exp[-k(T - T_{\text{ref}})] \quad [2]$$

Formatted: Lowered by 2 pt

Formatted: Lowered by 15 pt

1060 where τ_{biome}^v is the turnover time of vegetation carbon, which is assumed to depend
1061 primarily on vegetation type, and is therefore kept constant for each mega biome. The
1062 turnover time of soil is heavily dependent on temperature and therefore τ_{biome}^s is
1063 modified by the multiplier $\exp[-k(T - T_{ref})]$, where T is the surface temperature at
1064 each grid cell, T_{ref} is the temperature for the PI, and $k=0.034$ (corresponding to a Q_{10}
1065 value of 1.4) following Wang et al. (2011). The time constants τ_{biome}^v and τ_{biome}^s were
1066 estimated separately for the B4F and B4H by dividing modern carbon storage by the
1067 model's reconstructed pre industrial NPP, using carbon storage values for each
1068 megabiome from Table 3.2 (MRS and IGBP columns) in Prentice et al (2001). The
1069 values for the derived turnover times are given in Table 3.

Formatted: Lowered by 6 pt

1070 The small differences in pre industrial NPP by biome between B4H and B4F
1071 (related to both model setup and resolution differences between HadCM3 and
1072 FAMOUS) result in differences in τ_{biome}^v and τ_{biome}^s values used to calculate carbon
1073 storage, and hence different sensitivities to changes in NPP. The assumption of
1074 equilibrium between carbon storage and simulated NPP inherent to this method means
1075 that the calculation of these time constants, and the resultant estimates of terrestrial
1076 carbon storage, are rather sensitive to small differences in the setups of the models
1077 and the choice of modern carbon storage data used for comparison. This leads to an
1078 additional uncertainty of around 10% on the terrestrial carbon storage numbers thus
1079 derived.

Formatted: Lowered by 6 pt

Formatted: Lowered by 6 pt

1080 During the interglacials B4F and B4H estimate high terrestrial carbon storage: 2100
1081 PgC during the pre industrial period and 2000 PgC during the last interglacial (Fig.
1082 5b). However, entering the glacial, B4F predicts larger carbon storage decreases than
1083 B4H. During the LGM, the terrestrial carbon reduction of 800 PgC is nearly twice as
1084 large in B4F compared with B4H (470 PgC). Roughly one third of the difference
1085 between B4F and B4H can be accounted for by the increase in continental shelf area
1086 in HadCM3 that are not included in FAMOUS. The rest comes partly from the wetter
1087 and warmer climate in glacial HadCM3 than FAMOUS, which enables a greater
1088 retention of forest biome areas into the glacial in B4H (Figures 2 and 3), and partly
1089 from differences in the carbon turnover times derived for each model. In particular the
1090 timescales derived for B4F likely give an upper bound on the change in terrestrial
1091 carbon that might be expected from the FAMOUS glacial climate anomalies.

Formatted: Indent: First line: 0 cm

1092 Both B4H and B4F give Holocene total terrestrial carbon storage estimates
1093 similar to previous studies including Ciais et al.'s (2012) estimates for the active land
1094 biosphere. The reduction in carbon storage at the LGM compared to pre industrial
1095 time according to B4H is within the range given previously, whereas the estimate
1096 from B4F is larger than most estimates, but more similar to Ciais et al.'s estimated
1097 decrease for the active terrestrial biosphere.

1098 Closer examination of the trends during the last glacial cycle reveals that
1099 modelled terrestrial carbon storage (Fig. 5b) displays variation at the ~23 kyr time
1100 scale that is not evident for NPP (Fig. 5a), in both B4F and B4H for the early glacial.
1101 The prevalence of a ~23 kyr cycle relates to the precession of the Earth's orbit,
1102 changing the seasonality of climate. This periodicity is particularly notable between
1103 60 and 120 ka BP (when eccentricity modulation of precession is largest) in the
1104 grassland and temperate forest megabiome areas (Fig. 4). The largest contributor to
1105 this multi-millennial variability in carbon storage is the extent to which northern
1106 hemisphere mid latitudes are forested (temperate forest vs. grassland). This variation
1107 at 23 kyr periodicity is more evident in B4F than B4H, even though both models
1108 drive similar sized periodical changes in megabiome coverage. In B4H, slightly
1109 wetter glacial conditions result in greater overall forested areas; a decline in temperate
1110 and tropical forest is compensated for by an increase in warm temperate and boreal
1111 forest (Fig. 4). B4F, on the other hand, shows declines in all forest types through the
1112 glacial. This drives a greater glacial decline in B4F carbon storage, as well as slightly
1113 larger precessional variation in carbon storage.

1114 ————— The first large scale reduction in terrestrial carbon storage occurs
1115 shortly after the previous interglacial, where both models (including B4H) show a 500
1116 PgC decrease (Figure 6). Predicted sizes of the terrestrial biosphere then vary around
1117 a 1800 PgC mean by about ±100 PgC for B4H and B4H_NS, whereas B4F shows
1118 another large decrease at ~65 ka BP by another 500 PgC, providing terrestrial carbon
1119 storage estimates in MIS 4 that are similar to the LGM.

1120 Formatted: Indent: First line: 1.27
1121 cm

1122 4.4 Implications for ocean carbon

1123 ————— Changes in ocean carbon storage have been calculated here by
1124 combining the modelled changes in terrestrial biosphere carbon storage with changes
1125 in atmospheric carbon dioxide recorded in ice cores. The difference in atmospheric
carbon between the PI and LGM is approximately 180 PgC (Barnola et al., 1987)

1126 which when added to the decrease in terrestrial carbon storage, equates to an increase
1127 in total ocean carbon storage of 1050 PgC for B4F and 650 PgC for B4H.

1128 ————— Globally decreased LGM deep ocean stable carbon isotope ratios
1129 ($\delta^{13}\text{C}$), as recorded by benthic foraminifera at -0.3 to $-0.4\text{\textperthousand}$, suggests that global
1130 LGM terrestrial carbon storage was decreased by 500 to 700 Pg compared with the PI
1131 (assuming vegetation and soil $\delta^{13}\text{C}$ of $-25\text{\textperthousand}$) (e.g. Broecker and Peng, 1993;
1132 Duplessy et al., 1988; Bird et al., 1996; Kaplan et al., 2002; Beerling et al., 1999). A
1133 more recent estimate derived from a compilation of 133 ocean cores is $-0.34 \pm 0.13\text{\textperthousand}$
1134 (Ciais et al., 2012). An ensemble of ocean circulation model simulations suggests a
1135 similar decrease of $-0.31 \pm 0.2\text{\textperthousand}$ (Tagliabue et al., 2009).

1136 ————— Using our modelled glacial interglacial terrestrial carbon storage
1137 changes the above approach may be inverted to estimate global ocean $\delta^{13}\text{C}$ changes
1138 over the same time period. The mass balance approach of Bird et al. (1996) was
1139 followed to estimate ocean $\delta^{13}\text{C}$ at any point from 120 ka BP to the PI. Using the
1140 modelled terrestrial biosphere carbon mass and that of the atmosphere (from the ice
1141 core record), contributions to global ocean mass changes were estimated. First,
1142 changes in total terrestrial biosphere $\delta^{13}\text{C}$ were estimated by multiplying the terrestrial
1143 carbon storage calculated at each grid point (described above in section 3.4.3) by the
1144 model output $\delta^{13}\text{C}$ for each grid cell from BIOME4 (the model outputs
1145 discrimination, which is then subtracted from the atmospheric $\delta^{13}\text{C}$). These were then
1146 averaged to produce a global terrestrial biosphere $\delta^{13}\text{C}$ (Fig. 6a). Ice core records
1147 suggests variations in atmospheric $\delta^{13}\text{C}$ between -6.4 to $-7\text{\textperthousand}$ but the time periods
1148 covered only extends from the LGM through the deglaciation (Leuenberger et al.,
1149 1992; Lourantou et al., 2010; Schmitt et al., 2012) and the penultimate deglaciation
1150 (Schneider et al., 2013), but does not cover the last glacial period. Comparison of the
1151 two time periods shows that the LGM was around $0.4\text{\textperthousand}$ heavier than the penultimate
1152 glacial maximum, suggestive of a long term trend (Schneider et al., 2013). We use the
1153 values from the ice core records for the available time periods and interpolate between
1154 22 and 105 kyr BP to echo the long term trend. Sensitivity tests (not shown)
1155 demonstrated that the calculated $\delta^{13}\text{C}$ ocean changes would not be significantly
1156 different whether constant modern ($-6.5\text{\textperthousand}$) or varying atmospheric $\delta^{13}\text{C}$ was used.
1157 Differences in calculated ocean $\delta^{13}\text{C}$ were generally less than 4\textperthousand ($0.02\text{\textperthousand}$) and were a
1158 maximum of 15% during the Younger Dryas (~ 12 –11 kyr BP) from either prescribing

1159 a modern $\delta^{13}\text{C}$ or measured $\delta^{13}\text{C}$. In other words, global ocean $\delta^{13}\text{C}$ is not
1160 particularly sensitive to atmospheric $\delta^{13}\text{C}$. Calculated terrestrial and atmospheric $\delta^{13}\text{C}$
1161 were combined and, assuming total isotopic mass balance over time, total ocean $\delta^{13}\text{C}$
1162 anomalies from pre-industrial were calculated for the last 120 kyr (Fig. 6b).

1163 ————— The modelled terrestrial biosphere $\delta^{13}\text{C}$ (Fig. 6a) displays the largest
1164 increase during the LGM when atmospheric CO_2 was at its lowest concentrations, due
1165 to changes in C_4 vegetation input (C_4 vegetation discriminates against ^{13}C less than C_3
1166 vegetation when carbon is incorporated by photosynthesis). Consequently, $\delta^{13}\text{C}$
1167 increases (becomes less negative) when C_4 vegetation is more prevalent. The
1168 differences in biome area between B4F and B4H (Fig. 4), in particular warm
1169 temperate and boreal forest coverage, do not result in large differences in terrestrial
1170 biosphere $\delta^{13}\text{C}$. The extent of C_4 -type vegetation is similar between the models and
1171 differences in other biomes have little impact on overall isotopic signature.

1172 ————— The reconstructed total ocean $\delta^{13}\text{C}$ of the two models mimics the
1173 trends in total terrestrial carbon storage; when carbon storage is reduced, ocean $\delta^{13}\text{C}$
1174 decreases and when carbon storage is increased, ocean $\delta^{13}\text{C}$ increases (Figure 6, 7).
1175 Changes to terrestrial biosphere $\delta^{13}\text{C}$ are of secondary importance compared to the
1176 size of the terrestrial carbon pool. The total ocean LGM to PI change in $\delta^{13}\text{C}$ as
1177 estimated using this method is -0.34% for B4H and -0.65% for B4F (Fig. 6b). The
1178 additional exposed continental shelf areas available in HadCM3 account for less than
1179 half of the difference between the two (compare B4H and B4H_NS in Fig. 6b). Even
1180 though B4F and B4H display similar trends in terrestrial biosphere $\delta^{13}\text{C}$, the larger
1181 decrease in terrestrial carbon from B4F results in almost double the change in ocean
1182 $\delta^{13}\text{C}$, although as noted above this is likely at the extreme end of the uncertainty range
1183 of the consequences of the FAMOUS climate anomalies.

1184 ————— The predicted PI to LGM decrease in total ocean $\delta^{13}\text{C}$ from B4H is
1185 similar to that inferred e.g. by Ciais et al. (2012) and Tagliabue et al. (2009) whereas
1186 B4F seems to be outside the range of recent estimates. Recently compiled deep-ocean
1187 records of Oliver et al. (2010), covering the last glacial cycle, display similar trends to
1188 our modelled ocean $\delta^{13}\text{C}$ over the entire glacial cycle (Fig. 6b and c). The absolute
1189 magnitude of glacial interglacial variation in B4H is closer to that in the
1190 reconstructions, whereas B4F variation is nearly twice the amplitude. However, the
1191 temporal variation in B4F has some features that are more similar to the data
1192 compilation, such as lighter values in MIS4 that are similar to the LGM values (Fig.

6b and c). The $\delta^{13}\text{C}$ excursion of deep Pacific $\delta^{13}\text{C}$ stack ~ 64 ka BP (coincident with Marine Isotope Stage 4 or the early Wisconsin glacial advance) is as large as, or larger than that of the LGM (Oliver et al., 2010), and is not notable in the B4H derived estimates (Fig. 6). The very low deep Pacific values might not be completely due to changes in terrestrial carbon storage and perhaps partly relate to reorganisation of water masses and/or ocean productivity (Kohfeld et al., 2005; Leduc et al., 2010; Bereiter et al., 2012). Most longer benthic foraminiferal $\delta^{13}\text{C}$ records show even lower values during the penultimate glaciation, as part of a longer timescale trend in increasing ocean $\delta^{13}\text{C}$ since ca. 250 ka BP (Hoogakker et al., 2006; Piotrowski et al., 2009; Oliver et al., 2010), which is not captured here. This may be related to longer term in carbon reservoirs changes that may be linked to changes in ocean ventilation and/or productivity (Wang et al., 2001; Hoogakker et al., 2006; Rickaby et al., 2007), not represented in our modelling approach.

Our model estimates assume a constant inert terrestrial carbon pool (permafrost and peatlands). As described in section 4.3, Ciais et al (2012) infer that this carbon pool was larger by around 700 GtC at the LGM compared with the pre-industrial. We have estimated the impact on ocean $\delta^{13}\text{C}$ of including this estimate and its uncertainty (700 GtC \pm 600 GtC, Ciais et al, 2012), assuming that the inert terrestrial carbon pool was the same size at the last interglacial as the PI with an average $\delta^{13}\text{C}$ of $-27\text{\textperthousand}$, linearly interpolating to the LGM estimate. While there are large uncertainties on the inert terrestrial pool, in general its inclusion improves the B4F comparison to data (Supplementary Figure 2) and results in poorer simulated changes from B4H. Including uncertainties in the size of the inert terrestrial carbon store, atmospheric CO₂, atmospheric $\delta^{13}\text{C}$, and discrimination in permafrost, the PI to LGM decline in global ocean $\delta^{13}\text{C}$ from the B4F model is $0.4 \pm 0.2\text{\textperthousand}$, and $0.1 \pm 0.2\text{\textperthousand}$ for B4H.

While the distribution of $\delta^{13}\text{C}$ in oceans is affected by several factors such as reorganisation of water masses (especially in the North Atlantic), ocean productivity and export (Brovkin et al., 2002; Kohfeld and Ridgwell, 2009) and nutrient utilisation, the modelled results presented here suggest that the large scale trends in ocean $\delta^{13}\text{C}$ may be dominated by terrestrial carbon storage variation, as Shackleton (1977) first proposed.

5. ConclusionsSummary

1227 We have creatused a new global synthesis and biomization of long pollen
1228 records, and used it -in conjunction with model simulations to analyse the sensitivity
1229 of the global terrestrial biosphere to climate change over the last glacial-interglacial
1230 cycle. Model output and biomized pollen data generally agree, lending confidence to
1231 our global scale analysis of the carbon cycle derived from the model simulations,
1232 showing a reduction in the global average areas of tropical forest, warm-temperate
1233 forest and temperate forest biomes during the LGM, MIS 4 and cool substages of MIS
1234 5, whilst -showing an increase in the global average areas of the grassland and dry
1235 shrubland, desert and tundra biomes. BIOME 4 simulations of global Net Primary
1236 Productivity also indicate significant reductions at those intervals, driven by changes
1237 in vegetated land area and CO₂ fertilization. We used the models to estimate changes
1238 in global terrestrial net primary production and carbon storage. Carbon storage
1239 variations have a strong 23 kyr (precessional) cycle in the first half of the glacial
1240 cycle in particular. Estimates of global carbon storage by a BIOME4 simulation
1241 forced by HadCM3 climate at the LGM are -470 PgC below modern levels, taking
1242 the contribution of exposed continental shelves and their colonisation are taken into
1243 account. Other intervals of significant reductions in terrestrial carbon storage include
1244 stadial conditions -115 and -85 ka BP and between -60 and -65 ka BP during Marine
1245 Isotope Stage 4. Comparison of modelled ocean δ¹³C, using output of B4H, B4H_NC
1246 and B4F, and compiled palaeo-archives of ocean δ¹³C suggest an important role of
1247 terrestrial carbon storage changes in driving ocean δ¹³C changes. Modelled ocean
1248 δ¹³C changes derived with B4F are larger because of larger glacial decreases changes
1249 in terrestrial carbon storage. The differences in terrestrial carbon storage between the
1250 models in turn derive from differences in the variability of ice sheet prescription (Fig.
1251 4) and differences in climates between the models, where HadCM3 is generally wetter
1252 and slightly warmer in the glacial than FAMOUS, which means productivity and
1253 extent of warm temperate and boreal forests does not decrease in B4H as it does into
1254 the glacial in B4F.

1255 Existing data coverage is still low, and so there are still large areas of
1256 uncertainty in our knowledge of the palaeo-Earth system. Better spatial and temporal
1257 coverage for all parts of the globe, especially lowland areas, are required, and for this
1258 we need data from new sites incorporated into global datasets that are easily
1259 accessible by the scientific community.

Formatted: Subscript

1260

1261 The synthesised biomized dataset presented in this paper can be downloaded as
1262 supplementary material to this paper, or may be obtained by contacting the authors.
1263 Output from the climate and biome model simulations are also available from the
1264 authors.

1265

1266 **Acknowledgements**

1267 Prof. W.A. Watts is thanked for his contribution to counting the Monticchio pollen
1268 record. The authors would like to acknowledge funding from the NERC QUEST
1269 programme (grant NE/D001803/1) and NCAS-Climate. JSS and PJV acknowledge
1270 BBC for funding initial climate simulations.

1271

1272

1273

1274

1275

1276

1277 **References**

1278

1279 Allen, J.R.M., Brandt, U., Hubberten, H.-W., Huntley, B., Keller, J., Kraml, M.,
1280 Mackensen, A., Mingram, J., Negenkamp, J.F.W., Nowaczyk, N.R., Oberhansli, H.,
1281 Watts, W.A., Wulf, S., Zolitschka, B.: Rapid environmental changes in southern
1282 Europe during the last glacial period, *Nature*, 400, 740-743, 1999.

1283

1284 Anderson, R.S.: A 35,000 year vegetation and climate history from Potato Lake,
1285 Mogollon Rim, Arizona. *Quaternary Res.*, 40, 351-359, 1993.

1286

1287 Barnola, J.M., Raynaud, D., Korotkevich, Y.S., Lorius, C.: Vostok ice core provides
1288 160,000-year record of atmospheric CO₂, *Nature*, 329, 408-414, 1987.

1289

1290 Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N.,
1291 Rödenbeck C., Arain, M.A., Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A.,
1292 Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W.,
1293 Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F., Papale, D.:
1294 Terrestrial gross carbon dioxide uptake: global distribution and covariation with
1295 climate, *Science*, 329, 834-838, 2010.

1296

1297 Beerling, D.J.: New estimates of carbon transfer to terrestrial ecosystems between the
1298 last glacial maximum and the Holocene, *Terra Nova*, 11, 162–167, 1999.

1299

1300 Behling, H., Pillar, V., Orlóci, L., Bauermann, S.G.: Late Quaternary Araucaria
1301 forest, grassland (Campos), fire and climate dynamics, studied by high-resolution
1302 pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern
1303 Brazil, *Palaeogeogr. Palaeoclim.*, 203, 277-297, 2004.

1304

1305 Bereiter, B., Lüthia, D., Siegrista, M., Schüpbacha, S., Stocker, T.F., Fischer, H.:
1306 Mode change of millennial CO₂ variability during the last glacial cycle associated
1307 with a bipolar marine carbon seesaw, PNAS, 109,25, 9755-9760, 2012.

1308

1309 Berger, A.: Long-term variations of daily insolation and Quaternary climatic changes,
1310 Journal of Atmospheric Science 35, 2362–2367, 1978.

1311

1312 Berger, A., Loutre, M.F.: Insolation values for the climate of the last 10 million years.
1313 Quaternary Sci. Rev., 10, 297–317, 1991.

1314

1315 Beuning, K.R.M., Talbot, M., Kelts, K.: A revised 30,000-year paleoclimatic and
1316 paleohydrologic history of Lake Albter, East Africa, Palaeogeogr. Palaeoclim., 136,
1317 259-279, 1997.

1318

1319 Bird, M., Lloyd, J., Farquhar, G.D.: Terrestrial carbon storage at the LGM, Nature
1320 371, 566, 1994.

1321

1322 Bird, M., Lloyd, J., Farquhar, G.D.: Terrestrial carbon storage from the last glacial
1323 maximum to the present, Chemosphere, 33, 1675-1685, 1996.

1324

1325 Bonnefille, R., Chalié, F.: Pollen-inferred precipitation time series from equatorial
1326 mountains, Africa, the last 40 kyr BP, Global Planet. Change, 26, 25-50, 2000.

1327

1328 Borisova, O.K.: Vegetation and climate changes at the Eemian/Weichselian
1329 transition: new palynological data from central Russian Plain, Polish Geological
1330 Institute Special Papers, 16, 9-17, 2005.

1331

1332 [Brayshaw, D. J., Hoskins, B. and Black, E.: Some physical drivers of changes in the
1333 winter storm tracks over the North Atlantic and Mediterranean during the Holocene.
1334 Philosophical Transactions of the Royal Society A: Mathematical, Physical and
1335 Engineering Sciences, 368 \(1931\). pp. 5185-5223, 2010.](#)

1336

1337 Broeker, W.S., Peng, T-H.: What caused the glacial to interglacial CO₂ change? ;in:
1338 (Heimann, M. ed.) The Global Carbon Cycle. Springer-Verlag, Berlin Heidelberg,
1339 1993.

1340

1341 [Brovkin, V., Bendtsen, J., Claussen, M., Ganopolski, A., Kubatzki, C., Petoukhov, V.,
1342 and Andreev, A.: Carbon cycle, vegetation, and climate dynamics in the Holocene:
1343 Experiments with the CLIMBER-2 model, Global Biogeochem. Cy., 16, 1139,
1344 doi:10.1029/2001gb001662, 2002.](#)

1345

1346 Bush, M.B., Hanselman, J.A., Gosling, W.D.: Non-linear climate change and Andean
1347 feedbacks: An imminent turning point? Glob. Change Biol., 16, 3223-3232, 2010.

1348

1349 [Carolin, S.A., Cobb, K.M., Adkins, J.F., Clark, B., Conroy, J.L., Lejau, S., Malang, J.,
1350 Tuen, A.A.: Varied response of western Pacific hydrology to climate forcings over the
1351 last Glacial period, Science, 340, 1564-1566, 2013.](#)

1352

1353 [Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., Mu,
1354 M., Saatchi, S., Santoro, M., Thurner, M., Weber, U., Ahrens, B., Beer, C., Cescatti,](#)

1355 | [A., Randerson, J., Reichstein, M.: Global covariation of carbon turnover times with](#)
1356 | [climate in terrestrial ecosystems, Nature 514, 213-217 2014](#)

1357 |
1358 | Cattle, H., Crossley, J.: Modelling Arctic climate-change, Philos. Trans. Royal Soc.
1359 | A, 352, 201–213, 1995.
1360 |
1361 | Chepstow-Lusty, A.J., Bush, M.B., Frogley, M.R., Baker, P.A., Fritz, S.C., Aronson,
1362 | J.: Vegetation and climate change on the Bolivian Altiplano between 108,000 and
1363 | 18,000 yr ago, Quaternary Res., 63, 90-98, 2005.
1364 |
1365 | Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., Scholze, M., Hoffmann, G., Lourantou,
1366 | A., Harrison, S.P., Prentice, I.C., Kelley, D.I., Koven, C., Piao, S.L.: Large inert
1367 | carbon pool in the terrestrial biosphere during the Last Glacial Maximum, Nat.
1368 | Geosci., 5, 74-79, 2012.
1369 |
1370 | Correa-Metrio, A., Bush, M.B., Cabrera, K.R., Sully, S., Brenner, M., Hodell, D.A.,
1371 | Escobar, J., Guilderson, T.: Rapid climate change and no-analog vegetation in
1372 | lowland Central America during the last 86,000 years, Quaternary Sci. Rev., 38, 63-
1373 | 75, 2012.
1374 |
1375 | Cox, P.M., Betts, R.A., Bunton, C.B., Essery, R.L.H., Rowntree, P.R., Smith, J.: The
1376 | impact of new land surface physics on the GCM simulation of climate and climate
1377 | sensitivity, Clim. Dyn 15, 183–203, 1999.
1378 |
1379 | Crowley, T.J.: Ice age terrestrial carbon changes revisited, Global Biogeochem. Cy.,
1380 | 9, 377-389, 1995.
1381 |
1382 | Duplessy, J.C., Shackleton, N.J., Fairbanks, R.G., Labeyrie, L., Oppo, D., Kallel, N.:
1383 | Deepwater source variations during the last climatic cycle and their impact on the
1384 | global deepwater circulation, Paleoceanography, 3, 343-360, 1988.
1385 |
1386 | Dutton, A., Lambeck, K.: Ice volume and sea level during the last interglacial,
1387 | Science, 337, 216-219, 2012.
1388 |
1389 | Edwards, J.M., Slingo, A.: Studies with a flexible new radiation code.1. Choosing a
1390 | configuration for a large-scale model, Q.J. Royal Met. Soc, 122, 689–719, 1996.
1391 |
1392 | [Ehleringer, J.R.; Cerling, T.E. & Helliker, B.R.: C4 photosynthesis, atmospheric CO2](#)
1393 | [and climate. Oecologa, 112, 285-299, 1997.](#)
1394 |
1395 | Elenga, H., Peyron, O., Bonnefille, R., Jolly, D., Cheddadi, R., Guiot, J., Andrieu, V.,
1396 | Bottema, S., Buchet, G., de Beaulieu, J.-L., Hamilton, A.C., Maley, J., Marchant, R.,
1397 | Perez-Obiol, R., Reille, M., Riollet, G., Scott, L., Straka, H., Taylor, D., Van Campo,
1398 | E., Vincens, A., Laarif, F., Jonson, H.: Pollen-based biome reconstruction for
1399 | Southern Europe and Africa 18,000 yr BP, J. Biogeogr., 27, 621-634, 2004.
1400 |
1401 | [Elsig, J., Schmitt, J., Leuenberger, D., Schneider, R., Eyer, M., Leuenberger M., Joos, F., Fischer, H., Stoerker, T.S.: Stable isotope constraints on Holocene carbon cycle](#)
1402 | [changes from an Antarctic ice Core, Nature, 461, 507-510, 2004.](#)
1403 |
1404 |

1405 Eriksson A., Betti, L., Friend A.D., Lycett S.J., Singarayer J.S., Von Cramon N.,
1406 Valdes P.J., Balloux F., Manica A.: Late Pleistocene climate change and the global
1407 expansion of anatomically modern humans, PNAS, 109, 40, 16089-16094, 2012.

1408

1409 Finch, J.M., Hill, T.R.: A late Quaternary pollen sequence from Mfabeni Peatland,
1410 South Africa: reconstructing forest history in Maputaland, Quaternary Res. 70, 442-
1411 450, 2008.

1412

1413 Finch, J., Leng, M.J., Marchant, R.: Late Quaternary vegetation dynamics in a
1414 biodiversity hotspot, the Uluguru Mountains of Tanzania, Quaternary Res., 72, 111-
1415 122, 2009.

1416

1417 [Fletcher, W.J., Sanchez Goñi, M.F., Allen, J.R.M., Cheddadi, R., Combourieu-](#)
1418 [Nebout, N., Huntley, B., Lawson, I., Londeix, L., Magri, D., Margari, V., Müller,](#)
1419 [U.C., Naughton, F., Novenko, E., Roucoux, K., Tzedakis, P.C.:](#)
1420 [Millennial-scale variability during the last glacial in vegetation records from Europe,](#)
1421 [Quat. Sci. Rev., 29, 2839-2864, 2010.](#)

1422

1423 François L.M., Goddéra, Y., Warnanta, P., Ramstein, G., de Noblet, N., Lorenz, S.:
1424 Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and
1425 last glacial maximum times, Chem. Geol., 159, 163-189, 1999.

1426

1427 François, L., Faure, H., Probst, J-L.: The global carbon cycle and its changes over
1428 glacial-interglacial cycles, Global Planet. Change 33, vii-viii, 2002.

1429

1430 Fréchette, B., Wolfe, A.P., Miller, G.H., Richard, P.J.H., de Vernal, A.: Vegetation
1431 and climate of the last interglacial on Baffin Island, Arctic Canada, Palaeogeogr.
1432 Palaeocl., 236, 91-106, 2006.

1433

1434 Fritz, S.C., Baker, P.A., Seltzer, G.O., Ballantyne, A., Tapia, P.M., Cheng, H.,
1435 Edwards, R.L.: Quaternary glaciation and hydrologic variation in the South American
1436 tropics as reconstructed from the Lake Titicaca drilling project, Quaternary Res., 68,
1437 410-420, 2007.

1438

1439 Ganopolski, A., Calov, R., Claussen, M.: Simulation of the last glacial cycle with a
1440 coupled climate ice-sheet model of intermediate complexity, Clim. Past., 6, 229-244,
1441 2010.

1442

1443 Gasse, F., Van Campo, E.: A 40,000-yr pollen and diatom record from Lake
1444 Tritivakely, Madagascar, in the Southern Tropics, Quaternary Res., 49, 299-311,
1445 1998.

1446

1447 Gent, P.R., McWilliams, J.C.: Isopycnal mixing in ocean circulation models, Journal
1448 of Physical Oceanography, 20, 150-155, 1990.

1449

1450 Gordon, C., Cooper, C., Senior, C.A., Banks, H., Gregory, J.M., Johns, T.C.,
1451 Mitchell, J.F.B., Wood, R.A.: The simulation of SST, sea ice extents and ocean heat
1452 transports in a version of the Hadley Centre coupled model without flux adjustments,
1453 Clim. Dynam., 16, 147-168, 2000.

1454

1455 Gosling, W.D., Bush, M.B., Hanselman, J.A., Chepstow-Lusty, A.: Glacial-
1456 interglacial changes in moisture balance and the impact of vegetation in the southern
1457 hemisphere tropical Andes (Bolivia/Peru), *Palaeogeogr. Palaeocl.*, 259, 35-50, 2008.
1458

1459 Gosling, W.D., Holden, P.D.: Precessional forcing of tropical vegetation carbon
1460 storage, *J. Quaternary Sci.*, 26, 463-467, 2011.
1461

1462 Granoszewski W.: Late Pleistocene vegetation history and climatic changes at
1463 Horoszki Duże, Eastern Poland: a palaeobotanical study, *Acta Palaeobotanica*, Suppl.
1464 4, 1-95, 2003.
1465

1466 Grichuk, V.P., Zelikson, E.M., Nosov, A.A.: New data on the interglacial deposits
1467 near Il'inskoye on the Yakhroma River, *Bulleten' Komissii po Izucheniyu*
1468 *Chetvertichnogo Perioda*, 52, 150-156, 1983.
1469

1470 Grimm, E.C., Watts, W.A., Jacobson, G.L., Hansen, B.C.S., Almquist, H.R.,
1471 Dieffenbacher-Krall, A.C.: Evidence for warm wet Heinrich events in Florida,
1472 *Quaternary Sci. Rev.*, 25, 2197-2211, 2006.
1473

1474 Grüger, E.: Spätriß, Riß/Würm und Frühwürm am Samerberg in Oberbayern – ein
1475 vegetationsgeschichtlicher Beitrag zur Gliederung des Jungpleistozäns, *Geologica*
1476 *Bavarica*, 80, 5-64, 1979a.
1477

1478 Grüger, E.: Die Seeablagerungen vom Samerberg/Obb. und ihre Stellung im
1479 Jungpleistozan, Eiszeitalter und Gegenwart, 29, 23-34, 1979b.
1480

1481 Grüger, E., Schreiner: Riß/Würm- und würmzeitliche Ablagerungen im Wurzacher
1482 Becken (Rheingletschergebiet), *Neues Jahrbuch für Geologie und Paläontologie*,
1483 Abhandlungen, 189, 81-117, 1993.
1484

1485 Hanselman, J.A., Bush, M.B., Goslingm W.D., Collins, A., Knox, C., Baker, P.A.,
1486 Fritz, S.C.: A 370,000-year record of vegetation and fire history around Lake Titicaca
1487 (Bolivia/Peru), *Palaeogeogr. Palaeocl.*, 305, 201-214, 2011.
1488

1489 Hansen, B.C.W., Wright, H.E., Jr., Bradbury, J.P.: Pollen studies in the Junin area,
1490 central Peruvian Andes, *Geol. Soc. Am. Bull.*, 1454-1465, 1984.
1491

1492 Harrison, S.P., Prentice, C.I.: Climate and CO₂ controls on global vegetation
1493 distribution at the last glacial maximum: analysis based on palaeovegetation data,
1494 biome modelling and palaeoclimate simulations, *Glob. Change Biol.*, 9, 983-1004,
1495 2003.
1496

1497 [Harrison, S.P., Sanchez Goñi, M.F.: Global patterns of vegetation response to
1498 millennial-scale variability and rapid climate change during the last glacial period,
1499 Quat. Sci. Rev., 29, 2957-2980, 2010.](#)
1500

1501 [Hessler, I., Dupont, L., Bonnefille, R., Behling, H., González, C., Helmens, K.F.,
1502 Hooghiemstra, H., Lebamba, J., Ledru, M.-P., Lézine, A.-M., Maley, J., Marret, F.,
1503 Vincens, A.: Millennial-scale changes in vegetation records from tropical Africa and
1504 South America during the last glacial, Quat. Sci. Rev., 29, 2882-2899, 2010.](#)

1505
1506 ~~Hoogakker, B.A.A., Rohling, E.J., Palmer, M.R., Tyrrell, T., Rothwell, R.G.: Underlying causes for long term global ocean $\delta^{13}\text{C}$ fluctuations over the last 1.20 Myr, Earth Planet. Sc. Lett., 248, 15-29, 2006.~~
1507
1508
1509
1510 Indermühle, A., Stocker, T.F., Joos, F., Fischer, H., Smith, H.J., Wahlen, M., Deck,
1511 B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R., Stauffer, B.: Holocene
1512 carbon-cycle dynamics based on CO₂ trapped in ice at Taylor Dome, Antarctica,
1513 Nature, 398, 121-126, 1999.
1514
1515 [Indermühle, A., E. Monnin, B. Stauffer, T.F. Stocker, and M. Wahlen. Atmospheric CO₂ concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophysical Research Letters 27:735-738, 2000.](#)
1516
1517
1518
1519 Jiménez-Moreno G., Anderson, R.S., Fawcett, P.J.: Orbital- and millennial-scale
1520 vegetation and climate changes of the past 225 ka from Bear Lake, Utah-Idaho
1521 (USA), Quaternary Sci. Rev., 26, 1713-1724, 2007.
1522
1523 [Jiménez-Moreno, G., Anderson, R.S., Desprat, S., Grigg, L.D., Grimm, E.C., Heusser, L.E., Jacobs, B.F., López-Martínez, C., Whitlock, C.L., Willard, D.A.: Millennial-scale variability during the last glacial in vegetation records from North America, Quat. Sci. Rev., 29, 2865-2881, 2010.](#)
1524
1525
1526
1527
1528
1529 Jolly, D., Prentice, C., Bonnefille, R., Ballouche, A., Bengo, M., Brenac, P., Buchet,
1530 G., Burney, D., Cazet, J.P., Cheddadi R., Edorh, T., Elenga, H., Elmoutaki, S., Guiot,
1531 J., Laarif, F., Lamb, H., Lezine, A.M., Maley, J., Mbenza, M., Peyron, O., Reille, M.,
1532 Raynaud-Farrera, I., Riollet, G., Ritchie, J.C., Roche, E., Scott, L., Ssemmanda, I.,
1533 Straka, H., Umer, M., van Campo, E., Vilimumbalo, S., Vincens, A., Waller, M.:
1534 Biome reconstruction from pollen and plant macrofossil data for Africa and the
1535 Arabian peninsula at 0 and 6000 Years, J. Biogeogr., 25, 1007-1027, 1998.
1536
1537 ~~Joos, F., Gerber, S., Prentice, I.C., Otto Bliesner, B. and Valdes, P.: Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum, Global Biogeochem. Cy., 18, doi: 10.1029/2003GB002156, 2004.~~
1538
1539
1540
1541 Kaplan, J. O., I. C. Prentice, Buchmann, N.: The stable carbon isotope composition of
1542 the terrestrial biosphere: Modeling at scales from the leaf to the globe, Global
1543 Biogeochem. Cycles, 16, doi:10.1029/2001GB001403, 2002.
1544
1545 Kaplan, J.O., Bigelow, N.H., Bartlein, P.J., Christensen, T.R., Cramer, W., Harrison,
1546 S.P., Matveyeva, N.V., McGuire, A.D., Murray, D.F., Prentice, I.C., Razzhivin, V.Y.,
1547 Smith, B. and Walker, D.A., Anderson, P.M., Andreev, A.A., Brubaker, L.B.,
1548 Edwards, M.E., Lozhkin, A.V., Ritchie, J.: Climate change and Arctic ecosystems II:
1549 Modeling, palaeodata-model comparisons, and future projections, J. Geophys. Res-
1550 Atmos., 108 (D19), 8171, 2003
1551
1552 Kershaw, P.: Climate change and Aboriginal burning in north-east Australia during
1553 the last two glacial/interglacial cycles, Nature, 322, 47-49, 1986.
1554

1555
1556 Kershaw, A.P., McKenzie, G.M., Porch, N., Roberts, R.G., Brown, J., Heijnis, H., Orr,
1557 L.M., Jacobsen, G., Newall, P.R.: A high resolution record of vegetation and climate
1558 through the last glacial cycle from Caledonia Fen, south-eastern highlands of
1559 Australia, *J. Quaternary Sci.*, 22, 481-500, 2007.
1560
1561 ~~Kohfeld, K.E., Le Quéré, C., Harrison, S.P., Anderson, R.F.: Role of marine biology
1562 in glacial interglacial CO₂ cycles, *Science*, 308, 74-78, 2005.~~
1563
1564 ~~Kohfeld, K. E., Ridgwell, A.: Glacial interglacial variability in atmospheric CO₂, in
1565 Surface Ocean-Lower Atmosphere Processes, Eds. C. Le Quéré and E. S. Saltzman,
1566 AGU Geophysical Monograph Series, Volume 187, 350 pp., 2009.~~
1567
1568 Köhler, P., Fischer, H.: Simulating changes in the terrestrial biosphere during the last
1569 glacial/interglacial transition, *Global Planet. Change*, 43, 33-55, 2004.
1570
1571 Ledru, M.-P., Behling, H., Fournier, M.L., Martin, L., Servant, M.: Localisation de la
1572 fôret d'Acaucaria du Brazil au cours de l'Holocène. Implications paleoclimatiques,
1573 C.R. Académie Science Paris, 317, 517-521, 1994.
1574
1575 Ledru M.-P., Soares Braga, P.I., Soubies, F., Fournier, M.L., Martin, L., Suguio, K.,
1576 Turcq, B.: The last 50,000 years in the Neotropics (southern Brazil): evolution of
1577 vegetation and climate, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 123, 239-257, 1996.
1578
1579 Ledru, M.-P., Mourguia, P., Riccomini, C.: Related changes in biodiversity,
1580 insolation and climate in the Atlantic rainforest since the last interglacial,
1581 *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 271, 140-152, 2009.
1582
1583 ~~Leduc, G., Vidal, L., Tachikawa, A., Bard, E.: Changes in Eastern Pacific Ocean
1584 ventilation at intermediate depth over the last 150 kyr BP, *Paleoceanography*, 298,
1585 217-228, 2010.~~
1586
1587 Leemans, R., Cramer, W.P., The IIASA Database for Mean Monthly Values of
1588 Temperature, Precipitation, and Cloudiness on a Global Terrestrial Grid, International
1589 Institute for Applied Systems Analyses, Laxenberg, Austria, 62 pp., 1991.
1590
1591 ~~Leuenberger, M., U. Siegenthaler, Langway, C.C.: Carbon isotope composition of
1592 atmospheric CO₂ during the last ice age from an Antarctic ice core, *Nature*, 357, 488-
1593 490, 1992.~~
1594
1595 Leyden, B.W.: Guatamalan forest synthesis after Pleistocene aridity, *PNAS*, 81, 4856-
1596 4859, 1984.
1597
1598 Leyden, B.W., Brenner, M., Hodell, D.A., Curtis, J.H.: Late Pleistocene climate in
1599 the central American lowlands. in: Swar, P.K. (Ed.) *American Geophysical Union
1600 Geophys. Mono.* 78, 1993.
1601
1602 Leyden, B.W., Brenner, M., Hodell, D.A., Curtis, J.H.: Orbital and internal forcing of
1603 the climate on the Yucatán peninsula for the past ca. 36 ka, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*,
1604 109, 193-210, 1994.

1605
1606 | [Lloyd, J., Farquhar, G.D.: \$^{13}\text{C}\$ discrimination during \$\text{CO}_2\$ assimilation by the](#)
1607 | [terrestrial biosphere, *Oecologia*, 99, 201–215, 1994.](#)

1608
1609 | Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B.,
1610 | Barnola, J.-M., Raynaud, D., Stocker, T.F., Chappellaz, J.: Orbital and millennial-
1611 | scale features of atmospheric CH_4 over the past 800,000 years, *Nature* 453, 383–386,
1612 | 2008.

1613
1614 | [Lourantou, A., J. V. Lavrič, P. Köhler, J. M. Barnola, D. Paillard, E. Michel, D.](#)
1615 | [Raynaud, Chappellaz, J.: Constraint of the \$\text{CO}_2\$ rise by new atmospheric carbon](#)
1616 | [isotopic measurements during the last deglaciation, *Global Biogeochem. Cy.*, 24,](#)
1617 | [GB2015, doi:10.1029/2009GB003545, 2010.](#)

1618
1619 | Lozano-Garcia, M.S., Ortega-Guerrero, B., Sosa-Nájera, S.: Mid- to Late-Wisconsin
1620 | pollen record of San Felipe Basin, Baja California, *Quaternary Res.*, 58, 84–92, 2002.

1621
1622 | [Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U.,](#)
1623 | [Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., Stocker, T.F.: High-resolution](#)
1624 | [carbon dioxide concentration record 650,000–800,000 years before present, *Nature*,](#)
1625 | [453, 379–382, 2008.](#)

1626
1627 | Magri, D.: Late Quaternary vegetation history at Lagaccione near Lago di Bolsena
1628 | (central Italy), *Rev. Palaeobot. Palyno.*, 106, 171–208, 1999.

1629
1630 | Magri, D., Sadori, L.: Late Pleistocene and Holocene pollen stratigraphy at Lago di
1631 | Vico, central Italy, *Veg. Hist. Archaeobot.*, 8, 247–260, 1999.

1632
1633 | Magri, D., Tzedakis, P.C.: Orbital signatures and long-term vegetation patterns in the
1634 | Mediterranean, *Quatern. Int.*, 73–74, 69–78, 2000.

1635
1636 | Marchant, R., Cleef, A., Harrison, S.P., Hooghiemstra, H., Markgraf, V., van Boxel,
1637 | J., Ager, T., Almeida, L., Anderson, R., Baied, C., Behling, H., Berrio, J.C.,
1638 | Burbridge, R., Björck, S., Byrne, R., Bush, M., Duivenvoorden, J., Flenley, J., De
1639 | Oliveira, P., van Geel, B., Graf, K., Gosling, W.D., Harbele, S., van der Hammen, T.,
1640 | Hansen, B., Horn, S., Kuhry, P., Ledru, M.-P., Mayle, F., Leyden, B., Lozano-Garcia,
1641 | S., Melief, A.M., Moreno, P., Moar, N.T., Prieto, A., van Reenen, G., Salgado-
1642 | Labouriau, M., Schäbitz, F., Schreve-Brinkman, E.J., Wille, M.: Pollen-based biome
1643 | reconstructions for Latin America at 0, 6,000 and 18,000 radiocarbon years ago, *Clim.*
1644 | *Past*, 5, 725–767, 2009.

1645
1646 | Marchant, R., Taylor, D., Hamilton, A.: Late Pleistocene and Holocene history at
1647 | Mubwindi Swamp, Southwest Uganda, *Quaternary Res.*, 47, 316–328, 1997.

1648
1649 | Martinsen, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore Jr., T.C., Shackleton,
1650 | N.J.: Age dating and orbital theory of the ice ages: development of a high resolution
1651 | 0–300,000-year chronostratigraphy, *Quaternary Res.*, 27, 1–30, 1987.

1652 | [Masson-Delmotte, V., Jouzel, J., Landais, A., Stievenard, M., Johnsen, S.J., White,](#)
1653 | [J.W.C., Werner, M., Sveinbjörnsdóttir, A., Fuhrer, K.: GRIP deuterium excess reveals](#)

1654 [rapid and orbital-scale changes in Greenland moisture origin, Science, 309, 118-121, 2005.](#)

1655
1656
1657 [Monnin E., A. Indermühle, A. Dällenbach, J. Flückiger, B. Stauffer, T. F. Stocker, D. Raynaud, and J.-M. Barnola, Atmospheric CO₂ concentrations over the last glacial termination, Science 291, 112-114, 2001.](#)

Formatted: Subscript

Formatted: English (U.S.)

1658
1659
1660
1661 Müller, U.C.: A Late-Pleistocene pollen sequence from the Jammertal, southwestern Germany with particular reference to location and altitude as factors determining
1662
1663 Eemian forest composition, *Veg. Hist. Archaeobot.*, 9, 125-131, 2000.

1664
1665 Müller U.C., Pross, J., Bibus, E.: Vegetation response to rapid climate change in
1666
1667 Central Europe during the past 140,000 yr based on evidence from the Füramoos pollen record, *Quaternary Res.*, 59, 235-245, 2003.

1668
1669 Nakagawa T, Okuda M, Yonenobu H, Miyoshi N, Fujiki T, Gotanda K, Tarasov P,
1670
1671 Morita Y, Takemura K, Horie S.: Regulation of the monsoon climate by two different orbital rhythms and forcing mechanisms, *Geology*, 36, 491-494, 2008.

1672
1673 Nemanı, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.K.,
1674
1675 Myneni, R.B., Running, S.W.: Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999, *Science*, 300, 1560-1563, 2003.

1676
1677 Novenko, E.Y., Seifert-Eulen, M., Boettger, T., Junge, F.W.: Eemian and Early
1678
1679 Weichselian vegetation and climate history in Central Europe: A case study from the Klinge section (Lusatia, eastern Germany), *Rev. Palaeobot. Palyno.*, 151, 72-78,
1680 2008.

1681
1682 [Oliver, K., Hoogakker, B.A.A., Crowhurst, S., Henderson, G., Rickaby, R., Elderfield, H., Edwards, N. A.: A synthesis of marine sediment core δ¹³C data over the last 150,000 years, Clim. Past., 5, 2497-2554, 2010.](#)

1683
1684
1685
1686 [Olson, J.S., Watts, J.A., Allison, L.J.: Carbon in live vegetation of Major world ecosystems, ORNL 5862, Oak Ridge National Laboratory, 1983.](#)

1687
1688 Parrenin, F., Barnola, J.-M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J.,
1689 Dreyfus, G., Fischer, H., Fujita, S., Jouzel, J., Kawamura, K., Lemieux-Dudon, B.,
1690 Louergue, L., Masson-Delmotte, V., Narcisi, B., Petit, J.-R., Raisbeck, G., Raynaud,
1691 D., Ruth, U., Schwander, J., Severi, M., Spahni, R., Steffensen, J.P., Svensson, A.,
1692 Udisti, R., Waelbroeck, C., Wolff, E.: The EDC3 agescale for the EPICA dome C ice
1693 core, *Clim. Past*, 3, 485-497, 2007.

1694
1695 Partridge, T.C., Kerr, S.J., Metcalfe, S.E., Scott, L., Talma, A.S., Vogel, J.C.: The
1696 Pretoria Saltpan: a 200,000 year Southern African lacustrine sequence, *Palaeogeogr.
1697 Palaeocl.*, 101, 317-337, 1993.

1698
1699
1700 Peltier, W.R.: Global glacial isostasy and the surface of the iceage Earth: the ICE-5G
1701
1702 (VM2) model and GRACE, *Annu. Rev. Earth Pl. Sc.*, 32, 111-149, 2004.

1703 | [Peltier, W.R., Fairbanks, R.G.: Global glacial ice volume and last glacial maximum](#)
1704 | [duration from an extended Barbados sea level record, Quat. Sci. Rev., 25, 3322-3337,](#)
1705 | [2006.](#)

1706 |
1707 | Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender,
1708 | M., Chappellaz, J., Davis, J., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand,
1709 | M., Lipenkov, V., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., Stevenard, M.:
1710 | Climate and atmospheric history of the past 420 000 years from the Vostok Ice Core,
1711 | Antarctica, *Nature*, 399, 429–436, 1999.

1712 |
1713 | Penny, D.: A 40,000 palynological record from north-east Thailand: implications for
1714 | biogeography and palaeo-environmental reconstructions, *Palaeogeogr. Palaeocl.*, 171,
1715 | 97-128, 2001.

1716 |
1717 | Pickett, E., Harrison, S.P., Hope, G., Harle, K., Dodson, J., Kershaw, A.P., Prentice,
1718 | I.C., Backhouse, J., Colhoun, E.A., D'Costa, D., Flenley, J., Grindrod, J., Haberle, S.,
1719 | Hassell, C., Kenyon, C., Macphail, M., Helene Martin, H., Martin, A.H., McKenzie,
1720 | M., Newsome, J.C., Penny, D., Powell, J., Raine, J.I., Southern, W., Stevenson, J.,
1721 | Sutra, J.-P., Thomas, I., van der Kaars, S., War, J.: Pollen-based reconstructions of
1722 | biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at
1723 | 0, 6000 and 18,000 ^{14}C yr BP, *J. Biogeogr.*, 31, 1381-1444, 2004.

1724 |
1725 | [Piotrowski, A.M., Banakar V. K., Serivner A. E., Elderfield H., Galy A., and Dennis](#)
1726 | [A.: Indian Ocean Circulation and Productivity during the Last Glacial Cycle, Earth](#)
1727 | [Planet. Sc. Lett., 285, 179-189, 2009.](#)

1728 |
1729 | Pope, V.D., Gallani, M.L., Rountree, P.R., Stratton, R.A.: The impact of new
1730 | physical parameterisations in the Hadley Centre climate model: HadAM3, *Clim.*
1731 | *Dyn.*, 16, 123–146, 2000.

1732 |
1733 | [Prentice, I.C., Sykes, M.T., Lautenschlager, M., Harrison, S.P., Denissenko, O.,](#)
1734 | [Bartlein, P.J.: Modelling global vegetation patterns and terrestrial carbon storage](#)
1735 | [at the last glacial maximum, Global Ecol. Biogeogr. Lett., 3, 67-76, 1993.](#)

1736 |
1737 |
1738 | Prentice, C.I., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A., Solomon,
1739 | A.M.: A global biome model based on plant physiology and dominance, soil
1740 | properties and climate, *J. Biogeogr.*, 19, 117-134, 1992.

1741 |
1742 | [Prentice, I.C., Sykes, M.T., Lautenschlager, M., Harrison, S.P., Denissenko, O.,](#)
1743 | [Bartlein, P.J.: Modelling global vegetation patterns and terrestrial carbon storage](#)
1744 | [at the last glacial maximum, Global Ecol. Biogeogr. Lett., 3, 67-76, 1993.](#)

1745 |
1746 | [Prentice, I.C., Guiot, J., Huntley, B., Jolly, D., Cheddadi, R.: Reconstructing biomes](#)
1747 | [from palaeoecological data: a general method and its application to European pollen](#)
1748 | [data 0 and 6 ka, Clim. Dyn., 12, 185-194, 1996.](#)

1749 |

1750 | [Prentice, I.C., Jolly, D., BIOME 6000 participants.: Mid-Holocene and glacial-](#)
1751 | [maximum vegetation geography of the northern continents and Africa, Journal of](#)
1752 | [Biogeogr. 27, 507-519, 2000.](#)
1753 |
1754 | Prentice, I. C., et al.: The carbon cycle and atmospheric carbon dioxide. In Climate
1755 | Change 2001: the scientific basis (ed. IPCC), pp. 183–237. Cambridge University
1756 | Press, 2001.
1757 |
1758 | Prentice, I. C., Harrison, S.P.: Ecosystem effects of CO₂ concentration: evidence from
1759 | past climates, *Clim. Past*, 5, 297–303, 2009.
1760 |
1761 | Prentice, I.C., Harrison, S.P., Bartlein, P.J: Global vegetation and terrestrial carbon
1762 | cycle changes after the last ice age, *New Phytologist*, 189, 988-998, 2011.
1763 |
1764 | [Rickaby, R.E.M., Bard, E., Sonzogni, C., Rostek, F., Beaufort, L., Barker, S., Rees,](#)
1765 | [G., Schrag, D.P.: Coccolith chemistry reveals secular variations in the global carbon](#)
1766 | [cycle? Earth Planet. Sc. Lett., 253, 83-95, 2007.](#)
1767 |
1768 | [Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A., Chappellaz, J.,](#)
1769 | [Köhler, P., Joos, F., Stocker, T.F., Leuenberger, M., Fischer, H.: Carbon isotope](#)
1770 | [constraints on the deglacial CO₂ rise from ice cores, Science, 336, 711-714, 2012.](#)
1771 |
1772 | [Schneider, R., Schmitt, J., Köhler, P., Joos, F., & Fischer, H.: A reconstruction of](#)
1773 | [atmospheric carbon dioxide and its stable carbon isotopic composition from the](#)
1774 | [penultimate glacial maximum to the last glacial inception, Clim. Past, 9, 2507-2523,](#)
1775 | [2013.](#)
1776 |
1777 | Scott, L.: The Pretoria Saltpan: a unique source of Quaternary palaeoenvironmental
1778 | information, *S. Afr. J. Sci.*, 84, 560-562, 1988.
1779 |
1780 | Scott L.: Palynological analysis of the Pretoria Saltpan (Tswaing crater) sediments
1781 | and vegetation history in the Bushveld Savanna biome, South Africa, in "Tswaing,
1782 | investigations into the origin, age and palaeoenvironments of the Pretoria Saltpan."
1783 | (T. C. Partridge, Ed.), Council of Geoscience (Geological Survey of South Africa),
1784 | Pretoria, 198 pp.,1999a.
1785 |
1786 | Scott, L: Vegetation history and climate in the Savanna biome South Africa since
1787 | 190,000 ka: A comparison of pollen data from the Tswaing Crater (the Pretoria
1788 | Saltpan) and Wonderkrater, *Quatern. Int.*, 57-58, 215-223, 1999b.
1789 |
1790 | Shackleton, N.J.: Carbon-13 in Uvigerina: Tropical rainforest history and the
1791 | equatorial Pacific carbonate dissolution cycles, In Anderson, N., Malahof, A. (Eds.),
1792 | The Fate of Fossil Fuel CO₂ in the Oceans, Plenum, New York, pp. 401-427, 1977.
1793 |
1794 | Sigman, D.M., Boyle, E.A.: Glacial/interglacial variations in atmospheric carbon
1795 | dioxide, *Nature*, 407, 859-869, 2000.
1796 |
1797 | Singarayer J.S., Valdes, P.J.: High-latitude climate sensitivity to ice-sheet forcing
1798 | over the last 120 kyr, *Quaternary Sci. Rev.*, 29, 43-55, 2010.
1799 |

1800 Singarayer J.S., and Burrough S.L.: Interhemispheric dynamics of the African rainbelt
1801 during the late Quaternary. *Quaternary Science Reviews*, 24, 48-67, 2015.

1802

1803 Smith, R.S.: The FAMOUS climate model (versions XFXWB and XFHC):
1804 desctiption update to version XDBUA, *Geoscientific Model Development*, 5, 269-
1805 276, 2012.

1806

1807 Smith, R.S., Gregory, J.M.: The last glacial cycle: transient simulations with an
1808 AOGCM, *Clim. Dynam.*, 38, 1545-1559, 2012.

1809

1810 Spahni, R., Chappellaz, J., Stocker, T.F., Louergue, L., Hausmann, G.,
1811 Kawamura, K., Fluckiger, J., Schwander, J., Raynaud, D., Masson-Delmotte, V.,
1812 Jouzel, J.: Variations of atmospheric methane and nitrous oxide during the last
1813 650000 years from Antarctic ice cores, *Science*, 310, 1317-1321, 2005.

1814

1815 Stevenson, J., Hope, G.: A comparison of late Quaternary forest changes in new
1816 Caledonia and northeastern Australia, *Quaternary Res.*, 64, 372-383, 2005.

1817

1818 ~~Sykes, C.M.T., Lautenschlager, M., Harrison, S.P., Denissenko, O., Bartlein, P.J.:
1819 Modelling Global Vegetation Patterns and Terrestrial Carbon Storage at the Last
1820 Glacial Maximum, *Global Ecol. Biogeogr.*, 3, 67-76, 1993.~~

1821

1822 Tagliabue, A., Bpp, L., Roche, D.M., Bouttes, N., Dutay, J.-C., Alkama, R.,
1823 Kageyama, M., Michel, E., Paillard, D.: Quantifying the roles of ocean circulation
1824 and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide
1825 at the last glacial maximum, *Clim. Past.*, 5, 695-706, 2009.

1826

1827 Takahara, H., Sugita, S., Harrison, S.P., Miyoshi, N., Morita, Y., Uchiyama., T.:
1828 1999. Pollen-based reconstructions of Japanese biomes at 0, 6000 and 18,000 ^{14}C yr
1829 BP, *J. Biogeogr.*, 27. 665-683, 1999.

1830

1831 ~~Takahara, H., Igarashi, Y., Hayashi, R., Kumond, F., Liewe, P.-M., Yamamoto, M.,
1832 Kawai, S., Oba, T., Irino, T.: Millennial-scale variability in vegetation records from
1833 the East Asian Islands: Taiwan, Japan and Sakhalin, *Quat. Sci. Rev.*, 29, 2900-2917,
1834 2010.~~

1835

1836

1837 ~~Tarasov, P.E., Webb, T., Andreev, A.A., Afanas'eva, N.B., Berezina, N., Bezusko,
1838 L.G., Blyaharchuk, T.A., Bolikhovskaya, N.S., Cheddadi, R., Chernavskaya, M.M.,
1839 Chernova, G.M., Dorofeyuk, N.I., Dirksen, V.G., Elina, G.A., Filminova, L.V.,
1840 Glebov, F.Z., Guiot, J., Gunova, V.S., Harrison, S.P., Jolly, D., Khomutova, V.I.,
1841 Kvavadze, E.V., Osipova, I.M., Panova, N.K., Prentice, I.C., Saarse, L., Sevastyanov,
1842 D.V., Volkova, V.S., Zernitskaya, V.P.: Present day and mid Holocene biomes
1843 reconstructed from pollen and plant macrofossil data from the former Soviet Union
1844 and Mongolia, *J. Biogeogr.*, 25, 1029-1053, 1998.~~

1845

1846 Tarasov, P.E., Volkova, V.S., Webb, T., Guiot, J., Andreev, A.A., Bezusko, L.G.,
1847 Bezusko, T.V., Bykova, G.V., Dorofeyuk, N.I., Kvavadze, E.V., Osipova, I.M.,
1848 Panova, N.K., Sevastyanov, D.V.: Last glacial maximum biomes reconstructed from

1849 pollen and plant macrofossil data from Northern Eurasia, *J. Biogeogr.*, 27, 609-620,
1850 2000.

1851

1852 Thompson, R.S., Anderson, K.H.: Biomes of Western North America at 18,000, 6000
1853 and 0 ^{14}C yr BP reconstructed from pollen and packrat midden data, *J. Biogeogr.*, 27,
1854 555-584, 2000.

1855

1856 Timm, O. and Timmermann, A.: Simulation of the last 21,000 years using accelerated
1857 transient boundary conditions, *J. Clim.*, 20, 4377-4401, 2007.

1858

1859 Tinker, P.B., Ineson, P.: Soil organic matter and biology in relation to climate change,
1860 In: Scharpenseel, H.W., Schomaker, M., Ayoub, A. (Eds.), *Soils on a Warmer Earth*,
1861 *Developments in Soil Science*, Vol. 20, Elsevier, Amsterdam, pp. 71-87, 1990.

1862

1863 Tzedakis, P.C., Frogley, M.R., Heaton T.H.E.: Duration of last interglacial in
1864 northwestern Greece, *Quaternary Res.*, 58, 53-55, 2002.

1865

1866 Tzedakis, P.C., Frogley, M.R., Lawson, I.T., Preece, R.C., Cacho, I., de Abreu, L.:
1867 Ecological thresholds and patterns of millennial-scale climate variability: The
1868 response of vegetation in Greece during the last glacial period, *Geology*, 32, 109-112,
1869 2004a.

1870

1871 Tzedakis, P.C., Roucoux, K.H., De Abreu, L., Shackleton, N.J.: The duration of forest
1872 stages in southern Europe and interglacial climate variability, *Science*, 3006, 2231-
1873 2235, 2004b.

1874

1875 Tzedakis, P.C., Hooghiemstra, H., Pälike, H.: The last 1.35 million years at Tenaghi
1876 Philippon: revised chronostratigraphy and long-term vegetation trends, *Quaternary*
1877 *Sci. Rev.*, 23-24, 3416-3430, 2006.

1878

1879 [Tzedakis, P.C., Emerson, B.C., Hewitt, G.M.: Cryptic or mystic? Glacial tree refugia](#)
1880 [in northern Europe. Trends in Ecolog. and Evolut.](#), 28, 696-704, 2013.

1881

1882 Vandergoes, M.J., Newnham, R.M., Preusser, F., Hendy, C.H., Lowell, T.V.,
1883 Fitzsimons, S.J., Hogg, A.G., Kasper, H.U., Schlüchter, C.: Regional insolation
1884 forcing of late Quaternary climate change in the Southern Hemisphere, *Nature*, 436,
1885 242-245, 2005.

1886

1887 van der Hammen, T., González, E.: Upper Pleistocene and Holocene climate and
1888 vegetation of the Saban de Bogotá, *Leides Geologische Mededelingen*, 25, 261-315,
1889 1960.

1890

1891 [Voelker, A.H.L., & workshop participants: Global distribution of centennial-scale](#)
1892 [records for Marine Isotope Stage \(MIS\) 3: a database. Quaternary Sci. Rev.](#), 21, 1185
1893 [1212, 2002.](#)

1894

1895 Velichko, A.A., Novenko, E.Y., Pisareva, V.V., Zelikson, E.M., Boettger, T., Junge,
1896 F.W.: Vegetation and climate changes during the Eemian interglacial in Central and
1897 Eastern Europe: Comparative analysis of pollen data, *Boreas*, 34, 207-219, 2005.

1898 [Voelker, A.H.L., & workshop participants: Global distribution of centennial-scale](#)
1899 [records for Marine Isotope Stage \(MIS\) 3: a database, Quaternary Sci. Rev., 21, 1185-](#)
1900 [1212, 2002.](#)

1901

1902

1903 [Wang, H., Ni, J. and Prentice C.: Sensitivity of potential natural vegetation in China](#)
1904 [to projected changes in temperature, precipitation and atmospheric CO₂, Reg.](#)
1905 [Environ. Change \(2011\) 11:715–727](#)

1906

1907 [Wang, P., Tian, J., Cheng, X., Liu, C., Xu, J.: Carbon reservoir changes preceded](#)
1908 [major ice sheet expansion at the mid-Brunhes event, Geology, 31, 239–242, 2003.](#)

1909

1910 Wang, Y., Cheng, H., Edwards, R.L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X.,
1911 Wang, X., An, Z.: Millennial-and orbital-scale changes in the East Asian monsoon
1912 over the past 224,000 years, *Nature*, 451, 1090-1093, 2008.

1913

1914 Watts, W.A., Bradbury, J.P.: Palaeoecological studies on Lake Patzcuaro on the west-
1915 central Mexican Plateau and at Chalco in the Basin of México, *Quaternary Res.*, 17,
1916 56-70, 1982.

1917

1918 Whitlock, C., Bartlein, P.J.: Vegetation and climate change in northwest America
1919 during the past 125 kyr, *Nature*, 388, 57-61, 1997.

1920

1921 Wijmstra, T.A.: Palynology of the first 30 metres of a 120 m deep section in northern
1922 Greece, *Acta Bot. Neerl.*, 18, 511-527, 1969.

1923

1924 Wijmstra, T.A., Smith, A.: Palynology of the middle part (30-78 metres) of a 120 m
1925 deep section in northern Greece (Macedonia), *Acta Bot. Neerl.*, 25, 297-312, 1976.

1926

1927 Williams, J.W., Webb, T., Richard, P.H., Newby, P.: Late Quaternary biomes of
1928 Canada and the eastern United States, *J. Biogeogr.*, 27, 585-607, 2000.

1929

1930 [Yu, G., Chen, X., Ni, J., Cheddadi, R., Guiot, J., Han, H., Harrison, S.P., Huang, C.,](#)
1931 [Ke, M., Kong, Z., Li, S., Li, W., Liew, P., Liu, G., Liu, J., Liu, K.-B., Prentice, I.C.,](#)
1932 [Qui, W., Ren, G., Song, C., Sugita, S., Sun, X., Tang, L., Van Campo, E., Xia, Y., Xu,](#)
1933 [Q., Yan, S., Yang, X., Zhao, J., Zheng, Z.: Palaeovegetation of China: a pollen](#)
1934 [data-based synthesis for the mid-Holocene and last glacial maximum,](#)
1935 [Journal of Biogeogr., 27, 635-664, 2000](#)

1936

1937 [Zinke, P.J., Stangenberger, A.G., Post, W.M., Emanuel, W., R. & Olson, J.S.:](#)
1938 [Worldwide organic soil carbon and nitrogen data, ORNLTM8857, Oak Ridge](#)
1939 [National Laboratory, Oak Ridge, 1984.](#)

1940 [Zweck, C., Huybrechts, P.: Modeling of the northern hemisphere ice sheets during the](#)
1941 [last glacial cycle and glaciological sensitivity, Journal of Geophys. Res., 110,](#)
1942 [D07103, doi:10.1029/2004JD005489, 2005.](#)

1943

1944

1945

1946 Table 1. Details of the various biomization schemes applied for the different regions.

1947

1948

Africa	Jolly et al. (1998)
Southeast Asia, Australia	Pickett et al. (2004)
Japan	Takahara et al. (1999)
Southern Europe	Elenga et al. (2000)
North East Europe	Tarasov et al. (2000)
North America: Western North	Thompson and Anderson (2000)
North America: East and North East	Williams et al. (2000)
Latin America	Marchant et al. (2009)

1949

1950

1951

1952

1953

Table 2: Details of the locations of pollen-data records synthesised in this study.

	Core	Latitude	Longitude	A.S. L. (m)	Age ~ / (ka BP)	Reference	Biomization reference
North America							
Canada (short)	Brother-of-Fog	67.18	-63.25	380	Last interglacial	Frechette et al., 2006	Williams et al., 2000
Canada (short)	Amarok	66.27	-65.75	848	Holocene and last interglacial	Frechette et al., 2006	Williams et al., 2000
USA	Carp Lake	45.92	-120.88	714	0 to ca 130	Whitlock and Bartlein, 1997	Thompson and Anderson, 2000
USA	Bear Lake	41.95	-111.31	1805	0 to 150	Jiménez-Moreno et al., 2007	Thompson and Anderson, 2000
USA	Potato lake	34.4	-111.3	2222	2 to ca 35	Anderson et al., 1993	Thompson and Anderson, 2000
USA	San Felipe	31	-115.25	400	16 to 42	Lozano-Garcia et al., 2002	Thompson and Anderson, 2000
USA	Lake Tulane	27.59	-81.50	36	0 to 52	Grimm et al., 2006	Williams et al., 2000
Latin America							
Mexico	Lake Patzcuaro	19.58	-101.58	2044	3 to 44	Watts and Bradbury, 1982	Marchant et al., 2009
Guatamala	Lake Petén-Itzá	16.92	-89.83	110	0-86	Correa-Metrio et al., 2012	Marchant et al., 2009
Colombia	Ciudad Universitaria X	-4.75	-74.18	2560	0 to 35	van der Hammen and González, 1960	Marchant et al., 2009
Peru	Laguna Junin	-11.00	-76.18	4100	0 to 36 (LAPD1?)	Hansen et al., 1984	Marchant et al., 2009
Peru/Bolivia	Lake Titicaca	-15.9	-69.10	3810	3-370 (shown until 140)	Gosling et al., 2008; Hanselman et al., 2011; Fritz et al., 2007	Marchant et al., 2009
Guatamala	Lago Quexil	16.92	-89.88	110	9 to 36	Leyden, 1984; Leyden et al., 1993; 1994	Marchant et al., 2009

Brazil	Salitre	-19.00	-46.77	970	2 to 50 (LAPD1)	Ledru, 1992; 1993; Ledru et al., 1994, 1996	Marchant et al., 2009
Brazil	Colonia	-23.87	-46.71	900	0 to 120	Ledru et al., 2009	Marchant et al., 2009
Brazil	Cambara	-29.05	-50.10	1040	0 to 38	Behling et al., 2004	Marchant et al., 2009
Peru/Bolivia	Lake Titicaca	~-16 to - 17.5	~-68.5 to -70	3810	3-138	Hanselman et al., 2011; Fritz et al., 2007	Marchant et al., 2009
Bolivia	Uyuni	-20.00	-68.00	653	17 to 108	Chepstow Lusty et al., 2005	Marchant et al., 2009
Europe							
Russia	Butovka	55.17	36.42	198	Holocene, early glacial and Eemian	Borisova, 2005	Tarasov et al., 2000
Russia	Ilinskoye	53	37	167	early glacial & Eemian	Grichuk et al. 1983, Velichko et al., 2005	Tarasov et al., 2000
Poland	Horoszki Duze	52.27	23		~75 to Eemian	Granoszewski, 2003	Tarasov et al., 2000
Germany	Klinge	51.75	14.51	80	early glacial, Eemian & Saalian (penultimate glacial)	Novenko et al. 2008	Tarasov et al., 2000
Germany	Füramoos	47.59	9.53	662	0 to 120	Muller et al., 2003	Prentice et al., 1992
Germany	Jammertal	48.10	9.73	578	Eemian	Muller, 2000	Prentice et al., 1992
Germany	Samerberg	47.75	12.2	595	Eemian and early Würmian	Grüger, 1979a, b	Prentice et al., 1992
Germany	Wurzach	47.93	9.89	650	Eemian and early Würmian	Grüger and Schreiner, 1993	Prentice et al., 1992
Italy	Lagaccione	42.57	11.85	355	0 to 100	Magri, 1999	Elenga et al., 2004
Italy	Lago di Vico	42.32	12.17	510	0 to 90	Magri and Sadoni, 1999	Elenga et al., 2004
Italy	Valle di Castiglione	41.89	12.75	44	0 to 120	Magri and Tzedakis 2000	Elenga et al., 2004
Italy	Monticchio	40.94	15.60	656	0 to 120	Allen et al., 1999	Elenga et al. , 2004
Greece	Ioannina	39.76	20.73	470	0 to 120	Tzedakis et al., 2002; 2004a	Elenga et al., 2004
Greece	Tenaghi Philippon	41.17	24.30	40	0 to 120	Wijmstra, 1969; Wijmstra and Smith, 1976; Tzedakis et al., 2006	Elenga et al.

Africa							
Uganda	ALBERT-F	1.52	30.57	619	0 to 30	Beuning et al. 1997	Jolly et al., 1998
Uganda	Mubwindi swamp3	-1.08	29.46	2150	0 to 40	Marchant et al., 1997	Jolly et al., 1998
Rwanda	Kamiranzovu swamp 1	-2.47	29.12	1950	13 to 40	Bonnefille and Chalie, 2000	Jolly et al., 1998
Burundi	Rusaka	-3.43	29.61	2070	0 to 47	Bonnefille and Chalie, 2000	Jolly et al., 1998
Burundi	Kashiru Swamp A1	-3.45	29.53	2240	0 to 40	Bonnefille and Chalie, 2000	Jolly et al., 1998
Burundi	Kashiru Swamp A3	-3.45	29.53	2240	0 to 40	Bonnefille and Chalie, 2000	Jolly et al., 1998
Tanzania	Uluguru	-7.08	37.62	2600	0 to >45	Finch et al., 2009	Jolly et al., 1998
Madagascar	Lake Tritrivakely	-19.78	46.92	1778	0 to 40	Gasse and Van Campo, 1998	Jolly et al., 1998
South Africa	Tswaing (Saltpan) Crater	-25.57	28.07	1100	0 to 120 (although after 35 probably less secure based)	Scott 1988b; Partridge et al. 1993; Scott 1999a; 1999b	Jolly et al., 1998
South Africa	Mfabeni swamp	-28.13	32.52	11	0 to 43	Finch and Hill, 2008	Jolly et al., 1998
Australasia							
Russia	Lake Baikal	53.95	108.9		114 to 130		
Japan	Lake Biwa	35	135	85.6	0 to 120	Nakagawa et al., 2008	Takahara et al., 1999
Japan	Lake Suigetsu	35.58	135.88	~0	0 to 120	Nakagawa et al., 2008	Takahara et al., 1999
Thailand	Khorat Plateau	17	103	~180	0 to 40	Penny, 2001	Pickett et al., 2004
Australia	Lynch's Crater	-17.37	145.7	760	0 to 120	Kershaw, 1986	Pickett et al., 2004
New Caledonia	Xero Wapo	-22.28	166.97	220	0 to 120	Stevenson and Hope, 2005	Pickett et al., 2004
Australia	Caldeonia fen	-37.33	146.73	1280	0 to 120	Kershaw et al., 2007	Pickett et al., 2004
New Zealand	Okarito	-43.24	170.22	70	0 to 120	Vandergoes et al., 2005	Pickett et al., 2004

1957
1958
1959
1960
1961

1962
1963

Table 3: values for τ_{biome}^v and τ_{biome}^s (years) by megabiome derived for B4F and B4H

B4F	TrF	WTeF	TeF	BoF	SDW	GDS	De	Tn
τ_{biome}^v	43.4	11.2	11.2	12.4	45.5	1.47	4.7	1.1
τ_{biome}^s	8.2	12.3	12.3	73.6	48.3	11.3	75	62.5

B4H	TrF	WTeF	TeF	BoF	SDW	GDS	De	Tn
τ_{biome}^v	11.7	9.0	9.0	11.0	8.1	2.1	4.7	1.1
τ_{biome}^s	7.4	9.9	9.9	65.5	25.4	16.0	74.0	62.8

1964
1965
1966
1967

TrF: tropical forest; WTeF: warm temperate forest; TeF: temperate forest; BoF: boreal forest; SDW: savannah and dry woodland; GDS: grass and dry shrubland; De: desert; Tn: tundra

1968
1969
1970

Figure 1: Locations and altitudes of pollen records superimposed on pre-industrial HadCM3 orography (m).

1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981

Figure 2: Biome affinity scores for the various regions. (ai) For Northeast America, using the Williams et al. (2000) biomization scheme, (aii) For North and Northwest America using the Thompson and Anderson (2000) biomization scheme. (2b) For Latin America using the Marchant et al. (2009) biomization scheme. (2c) For Africa using the Elenga et al. (2004) biomization scheme. (2d) For Southern Europe using the Elenga et al. (2004) biomization scheme, (2di) Alps using the Prentice et al. (1996) biomization scheme, and (2dii) northern Europe using the Tarasov et al. (2000) biomization scheme. (2e) Lake Baikal using the Tarasov et al. (2000) biomization scheme, (2f) Japan using the Takahara et al. (2000) biomization scheme. (2fii) East Asia/Australasia using the Pickett et al. (2004) biomization scheme.

1982
1983
1984
1985

Figure 32: Reconstructed biomes (defined through highest affinity score) superimposed on simulated biomes using FAMOUS (B4F, left) and HadCM3 (B4H, right) climates for selected marine isotope stages (denoted in ka BP).

1986
1987
1988
1989
1990
1991

Figure 43: Global area coverage of megabiome types in the model reconstructions. S indicates the inclusion of potentially-vegetated continental shelves after sea level lowering, NS indicates no vegetated continental shelves following sea level lowering. FAMOUS megabiome areas are dotted between 30 and 60 ka BP in the period where the Vostok CO₂ data used to force the simulation is thought to be erroneously low.

Formatted: Lowered by 6 pt

1992
1993
1994
1995
1996
1997
1998

Figure 54: Net Primary Production ~~and carbon storage~~ throughout the last glacial cycle derived from the model-based biome reconstructions. B4H includes the additional influence of land exposed by sea-level changes, B4H_NS and B4F do not.

Formatted: Subscript

Figure 6: (a) modelled $\delta^{13}\text{C}$ for terrestrial biosphere; (b) change in modelled total ocean $\delta^{13}\text{C}$ (c) benthic foraminifera deep ocean $\delta^{13}\text{C}$ compiled by Oliver et al (2010).