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Abstract 16 

Several studies have been conducted to reconstruct temperature variations across the Aptian 17 

Stage, particularly during the Early Aptian Oceanic Anoxic Event (OAE)1a. There is a 18 

general consensus that a major warming characterized the OAE 1a, although some studies 19 

have provided evidence for transient ‘cold snaps’ or cooler intervals during the event. The 20 

climatic conditions for the middle–late Aptian are less constrained, and a complete record 21 

through the Aptian is not available. Here we present a reconstruction of surface-water 22 

palaeotemperature and fertility based on calcareous nannofossil records from the Cismon and 23 

Piobbico cores (Tethys) and DSDP Site 463 (Pacific Ocean). The data, integrated with 24 

oxygen-isotope and TEX86 records, provide a detailed picture of climatic and ocean fertility 25 

changes during the Aptian Stage, which are discussed in relation to the direct/indirect role of 26 

volcanism. Warm temperatures characterized the pre-OAE 1a interval followed by a 27 
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maximum warming (of ~2–3 °C) during the early phase of anoxia under intense volcanic 28 

activity of the Ontong Java Plateau (OJP). A short-lived (~35ky) cooling episode interrupted 29 

the major warming, following a rapid increase of weathering rates. Nannofossils indicate that 30 

eutrophic conditions were reached when temperatures were at their highest and OJP 31 

volcanism most intense, thus suggesting that continental runoff, together with increased input 32 

of hydrothermal metals, increased nutrient supply to the oceans. The latter part of OAE 1a 33 

was characterized by cooling events, probably promoted by CO2 sequestration during burial 34 

of organic matter. In this phase, high productivity was probably maintained by N2-fixing 35 

cyanobacteria while nannofossil taxa indicating high fertility were rare. The end of anoxia 36 

coincided with the cessation of volcanism and a pronounced cooling. The mid-Aptian was 37 

characterized by high surface-water fertility and progressively decreasing temperatures, 38 

probably resulting from intense continental weathering drawing down pCO2. The lowest 39 

temperatures, combined with low fertility, were reached in the middle–late Aptian across the 40 

interval characterized by blooming of Nannoconus truittii. The data presented suggest that 41 

OJP activity played a direct role in inducing global warming during the early Aptian, whereas 42 

other mechanisms (weathering, deposition of organic matter) acted as feedback processes, 43 

favouring temporary cooler interludes. 44 

 45 

1 Introduction 46 

The Aptian (~121 to ~113 Ma, Malinverno et al., 2012) has been characterized by climatic 47 

changes and profound environmental perturbations including the Oceanic Anoxic Event 1a 48 

(OAE 1a: ~120 Ma), representing a global phenomenon of organic-matter burial in oxygen-49 

depleted oceans. The disturbance in the carbon cycle related to OAE 1a is recorded in 50 

sedimentary successions worldwide, presenting a negative carbon-isotope anomaly at the 51 

onset of OAE 1a, followed by a positive excursion that extends into the late Aptian (e.g. 52 

Weissert, 1989; Weissert and Lini, 1991; Jenkyns, 1995; Menegatti et al., 1998; Bralower et 53 

al., 1999; Erba et al., 1999; Luciani et al., 2001; Bellanca et al., 2002; Price, 2003; van 54 

Breugel et al., 2007; Ando et al., 2008; Méhay et al., 2009; Malkoč et al., 2010; Mahanipour 55 

et al., 2011; Millán et al., 2011; Stein et al., 2011; Bottini et al., 2012; Hu et al., 2012). 56 

Volcanism, associated with the emplacement of the Ontong Java Plateau (OJP), is thought to 57 

be the main triggering mechanism for global anoxia as well as for imposed greenhouse 58 

conditions and ocean acidification during OAE 1a (e.g. Larson, 1991; Erba, 1994; Bralower et 59 
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al., 1994; Larson and Erba, 1999; Jones and Jenkyns, 2001; Leckie et al., 2002; Jenkyns, 60 

2003; Méhay et al., 2009; Tejada et al., 2009; Erba et al., 2010; Bottini et al., 2012).  61 

Several studies are suggestive of significant temperature increase during OAE 1a, as recorded 62 

by different temperature proxies (i.e. oxygen isotopes, TEX86, calcareous nannofossils, 63 

palynomorphs) in the Tethys (e.g. Menegatti et al., 1998; Hochuli et al., 1999; Luciani et al., 64 

2001; Bellanca et al., 2002; Jenkyns, 2003; Millán et al., 2009; Erba et al., 2010; Jenkyns, 65 

2010; Keller et al., 2011; Stein et al., 2011; Bottini et al., 2012; Hu et al., 2012; Husinec et al., 66 

2012), Vocontian Basin (e.g. Moullade et al., 1998; Kuhnt et al., 2011), Lower Saxony Basin 67 

(Mutterlose et al., 2010; Bottini and Mutterlose, 2012; Pauly et al., 2013), North Sea 68 

(Mutterlose and Bottini, 2013), eastern European Russian Platform (Zakharov et al., 2013), 69 

Pacific (e.g. Jenkyns, 1995; Price, 2003; Schouten et al., 2003; Ando et al., 2008; Bottini et 70 

al., 2012), and Atlantic Oceans (e.g. Tremolada et al., 2006). Some works have provided 71 

evidence for a climatic variability during OAE 1a, identifying short-lived cooling events (e.g. 72 

Dumitrescu et al., 2006; Keller et al. 2011; Kuhnt et al., 2011; Jenkyns et al., 2012; Lorenzen 73 

et al., 2013). At the end of OAE 1a, a temperature decline is registered in the Tethys (e.g. 74 

Weissert and Lini, 1991; Menegatti et al., 1998; Hochuli et al., 1999; Luciani et al., 2001; 75 

Bellanca et al., 2002; Millán et al., 2009), Vocontian Basin (e.g. Herrle et al., 2010; Kuhnt et 76 

al., 2011), Boreal Realm (e.g. Rückheim et al., 2006; Malkoč et al., 2010; Bottini and 77 

Mutterlose, 2012; Pauly et al., 2013; Mutterlose and Bottini, 2013), and Pacific Oceans (e.g. 78 

Jenkyns, 1995; Jenkyns and Wilson, 1999; Price, 2003; Dumitrescu et al., 2006; Ando et al., 79 

2008). 80 

For the late Aptian, cooler conditions have been reconstructed based on migration of boreal 81 

species southwards (e.g. Herrle and Mutterlose, 2003; Mutterlose et al., 2009), oxygen-82 

isotope records (e.g. Weissert and Lini, 1991; Jenkyns, 1995; Hu et al., 2012; Price, 2012; 83 

Maurer et al., 2012), putative ice-rafted debris in high latitudes (Kemper 1987; Frakes and 84 

Francis 1988; De Lurio and Frakes 1999; Price, 1999) and, for sea-bottom temperatures, the 85 

presence of glendonites (marine low-temperature hydrated polymorphs of calcium carbonate), 86 

(Kemper 1987). Recently McAnena et al. (2013) have documented, on the basis of TEX86 87 

data, a ~2 Myr long interval of relatively cool conditions (~ 28-29 °C) in the late Aptian in the 88 

Proto-North Atlantic followed by a warming (up to ~31 °C), linked to OAE 1b. 89 

Although the amount of information about temperature variations across the Aptian is 90 

considerable, a complete picture of climatic changes is not available. In most cases, the 91 

girafabi
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records are poorly correlated between the different basins and/or cover limited time intervals 92 

within the ~12 My-long Aptian Stage (Malinverno et al., 2012). In this work, we focus 93 

primarily on surface-water temperatures through the Aptian reconstructed on the basis of 94 

calcareous nannofossils from three well sites: Cismon (Italian Southern Alps), Piobbico 95 

(Umbria–Marche Basin, central Italy) and DSDP Site 463 (Mid-Pacific Mountains). The 96 

existing stratigraphic framework for the three sites and available cyclochronology for the 97 

Cismon core (Malinverno et al., 2010), allow high-resolution dating of climatic fluctuations. 98 

Calcareous nannoplankton live in the (upper) photic zone and are a good proxy of present and 99 

past surface-water conditions, being sensitive to temperature, fertility, salinity and pCO2 100 

(Mutterlose et al., 2005). Extant calcareous nannoplankton occur from coastal areas to the 101 

open ocean, although with different abundance and diversity and, together with diatoms, 102 

dinoflagellates and bacteria constitute marine phytoplanktonic communities. The Mesozoic 103 

geological record confirms the wide geographical/latitudinal distribution of calcareous 104 

nannofossils (coccoliths and nannoliths) that are commonly used to trace palaeoecological 105 

conditions. Within nannofossil assemblages, nannoconids are inferred to have been restricted 106 

to the deep photic zone at the base of the mixed layer on top of the thermocline coinciding 107 

with a deep nutricline (Erba, 1994). In the studied intervals, nannoconids are relatively scarce, 108 

and micrite mostly consists of coccoliths, thus essentially recording the uppermost water 109 

masses.  110 

In this work, stable carbon and oxygen isotopes on bulk rock have been measured to 111 

reconstruct changes in surface-water temperature, taking into account potential diagenetic 112 

modification. The preservation of nannofossils provides information on the early diagenetic 113 

history of pelagic carbonates, (Erba, 1992b; Herrle et al., 2003; Tiraboschi et al., 2009). 114 

Although oxygen-isotope ratios contain a mixing of a primary signal and later diagenetic 115 

phases (Marshall, 1992), hampering the use of palaeotemperature values, the δ18O bulk data 116 

can be used to derive trends toward warmer/cooler conditions. New oxygen-isotope data for 117 

DSDP Site 463 and Piobbico have been generated, and are directly correlated with calcareous 118 

nannofossil variations as well as with new TEX86 data from the Cismon core. 119 

The aims of our work are to: a) trace climatic variations during the Aptian Stage; b) 120 

reconstruct, in high resolution, the climate variability through OAE 1a; c) identify 121 

synchroneity and diachroneity of temperature variations in different oceanic basins; c) trace 122 

girafabi
Note
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the direct/indirect role of volcanism, weathering rates and pCO₂ on climate changes 123 

connected with OAE 1a and its aftermath. 124 

We also characterize the evolution of surface-water fertility during the Aptian Stage. Previous 125 

studies (e.g. Coccioni et al., 1992; Bralower et al. 1993; Erba, 1994, 2004; Premoli Silva et 126 

al., 1999; Leckie et al., 2002; Mutterlose et al., 2005; Tremolada et al., 2006; Bottini and 127 

Mutterlose, 2012) mainly focused on the OAE 1a interval, documenting an increase in 128 

surface-water fertility accompanied by high primary productivity, but a record throughout the 129 

entire Aptian is missing. We therefore highlight fluctuations in fertility during and after OAE 130 

1a, identifying potential relationships with climatic changes on both the short- and the long-131 

term as well as oceanic nutrification. 132 

 133 

2 Material and methods 134 

2.1 Studied sites 135 

We have investigated the Upper Barremian−Aptian interval at three sites in the Tethys and 136 

Pacific Oceans (Figure 1): 137 

The Cismon core, drilled in the Southern Alps, north-eastern Italy (46°02´N; 11°45´E; 398 m 138 

altitude) is represented by a total stratigraphic thickness of 131.8 m with 100% recovery. The 139 

site was located on the southern margin of the Mesozoic Tethys, on the eastward deepening 140 

slope between the Trento Plateau (a pelagic submarine high) and the Belluno Basin (Erba and 141 

Tremolada, 2004). The Cismon sequence was deposited at an estimated palaeo-depth of 1000-142 

1500 m during the Early Cretaceous (Weissert and Lini, 1991; Erba and Larson 1998; 143 

Bernoulli and Jenkyns, 2009). In the uppermost part of the cored section (at 7.80 m) there is a 144 

major hiatus corresponding to the late Aptian and the early–middle Albian. The Selli Level 145 

(sedimentary expression of OAE 1a) is represented by a ~5 m-thick interval, between 23.67 146 

and 18.64 stratigraphic metre depths (Erba and Larson, 1998; Erba et al., 1999). 147 

Lithologically, the Selli Level is characterized by marlstones alternating with black shales and 148 

discrete radiolarian-rich beds (Coccioni et al., 1987; Erba et al., 1999). The interval studied 149 

extends from 35 m to 10 m.   150 

The Piobbico core was drilled at ‘‘Le Brecce’’ (43°35´ 3.78´´N; 12°29´ 10.09´´E), located 3 151 

km west of the town of Piobbico (Marche, Italy), at Km 33 of the Apecchiese State Road No. 152 
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257, on the left hydrographic side of the Biscubio stream. Coring penetrated the entire Marne 153 

a Fucoidi Formation, including the upper transition to the Scaglia Bianca and the lower 154 

transition to the Maiolica. The total length of the core is 84 m with 98.8% recovery; after 155 

adjusting for dip direction, the stratigraphic thickness equals 77 m. The lithostratigraphy and 156 

calcareous plankton biostratigraphy of the core were described by Erba (1988, 1992a) and 157 

Tornaghi et al. (1989). The Selli Level, consisting of black shales and radiolarian-rich beds, 158 

extends from 75.94 to 73.47 m. The interval studied covers the interval from 77 m to 40 m.  159 

DSDP Site 463 was drilled at a water depth of 2525 m on the ancient structural high of the 160 

western Mid-Pacific Mountains (21°21.01′N, 174°40.07′E) during DSDP Leg 62. During the 161 

Early Cretaceous, Site 463 was located at a palaeo-latitude of ~20ºS, with a palaeo-depth 162 

between a few hundred metres (Mélières et al., 1978) and ~1 km (Roth, 1981). The Selli 163 

Level equivalent is located between ~626 and 615 mbsf, corresponding to ~12 m of 164 

tuffaceous limestones containing a number of discrete organic-rich horizons (Thiede et al., 165 

1981; Erba, 1994). The interval studied covers from 650 to 515 mbsf. 166 

2.2 Calcareous nannofossils 167 

Calcareous nannofossils were investigated under polarizing light microscope at 1250X 168 

magnification in smear slides and thin-sections. Smear slides were prepared using standard 169 

techniques, without centrifuging or cleaning in order to retain the original sedimentary 170 

composition. A small quantity of rock was powdered in a mortar with bi-distillate water and 171 

mounted on a glass slide with Norland Optical Adhesive. A total of 285 smear slides for the 172 

Cismon core, 179 smear slides for the Piobbico core and 281 smear slides for DSDP Site 463 173 

were investigated. At least 300 nannofossil specimens were counted in each sample and 174 

percentages of single taxa were calculated relative to the total nannoflora.  175 

Thin-sections were polished to an average thickness of 7µm for optimal view of nannofossils; 176 

a total of 85 thin-sections for the Cismon Core (which integrates the data from Erba and 177 

Tremolada, 2004), 242 for DSDP Site 463, and 179 for Piobbico core were investigated. 178 

Absolute abundances were obtained by counting all nannofossil specimens in 1 mm2 of the 179 

thin-section. 180 

girafabi
Note
It is really difficult to know what is new in this work concerning new nannofossil smear slides with respect to the works of Erba 1994 ; Erba and Tremolada 2004. 
In these latter works, a high number of smear slides and thin sections (for Nannoconus countings) have been already realized.
Can you precise in which lithological parts, not and/or not enough investigated in preceeding works, you have prepared your smear slides and thin sections ?



 7

2.3 Statistical analysis 181 

The software “Statsoft Statistica 6” was used for multivariate “factor analysis” (FA) (R-182 

mode) varimax rotation with principal component extraction to determine the relationships 183 

between samples and variables, and to identify palaeoceanographic and palaeoecological 184 

affinities among selected nannofossil taxa. Factor loadings represent relationships among 185 

individual taxa within the main factors, whereas factor scores denote the relationships within 186 

the sampled cases (lithological samples). The same software was used for the “principal 187 

components and classification analysis” (PCCA) and δ
18O values. The species used in FA and 188 

PCCA statistical analyses (Watznaueria barnesiae, Biscutum constans, Discorhabdus 189 

rotatorius, Zeugrhabdotus erects, Rhagodiscus asper, Zeugrhabdotus diplogrammus, 190 

Staurolithites stradneri, Repagulum parvidentatum, Eprolithus floralis, Nannoconus sp. and  191 

Cretarhabdus surirellus) have been selected on the basis of their palaeoecological 192 

significance (e.g. Roth and Krumbach, 1986; Erba, 1992b; Herrle et al., 2003; Mutterlose et 193 

al., 2005; Tiraboschi et al., 2009). 194 

2.4 Oxygen-isotope analysis 195 

New oxygen stable-isotope analyses were performed at Oxford University on bulk carbonate 196 

fraction of 57 samples from DSDP Site 463 and of 373 samples from Piobbico. Bulk-rock 197 

samples for isotopic analysis were first powdered, cleaned with 10% H2O2 followed by 198 

acetone, and then dried at 60°C. Powders were then reacted with purified orthophosphoric 199 

acid at 90°C and analyzed online using a VG Isocarb device and Prism Mass Spectrometer. 200 

Long-term reproducibility, as determined from repeat measurements of the in-house standard 201 

(Carrara marble), resulted in analytical uncertainties of δ18O = -1.86 ± 0.1. The values are 202 

reported in the conventional delta notation with respect to the Vienna Pee Dee Belemnite (V-203 

PDB) standard. For DSDP Site 463 data are drawn from Price (2003), Ando et al. (2008) and 204 

this work, and for the Cismon core δ18O come from Méhay et al. (2009) and Erba et al. 205 

(2010). 206 

2.5 TEX86 207 

Sediments from the Cismon core were extracted as described by van Breugel et al. (2007). 208 

The polar fractions of the extracts, containing the GDGTs, were dried under a stream of 209 

nitrogen (N2,) redissolved by sonication (5 min) in 200 µl hexane/propanol (99:1; vol:vol), 210 
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Note
This is the big problem of this work, since statistical analysis as it had been done is not rigourous and the interpretations are based on this analysis !
this part is not enough explained.
How did your statistical analysis, with raw data ?
there is a big problem with the statistical analysis you ve done
You have enter in your analysis, species with percentages lower than 5 % and in the same time, you have species like W. barnesiae with percentages higher than 50%. For this kind of analysis, to take statistically  into account species with very low percentages (< 5%) or very high (> 95%) you need to normalize your percentages with an arcsin transformation (Sokal & Rohlf, 1995, for instance
Biometry, third edition (Freeman., pp. 419-422). New York.).
yi’=arcsin√yi avec yi : relative abundance (%) et yi’ : normalized relative abundance. 
Moreover, you don't discuss enough  the selection of your taxa. Some of them introduced in the analysis are not presented on the stratigraphic curves. 
Here you speak about Cretarhabdus surirellus, but in the supplementary tables, it is Cretahabdus sp. ! In the supplementary tables, I found R. irregularis, never mentioned before !
Why do you consider species with percentages lower than 1% ????
you have to discuss more your choice.

girafabi
Note
erectus



 8

and filtered through 0.45 µm polytetrafluoroethylene (PTFE) filters. GDGTs were analyzed 211 

by high-pressure liquid chromatography–mass spectrometry (HPLC/MS) following the 212 

method described by Schouten et al. (2007). Samples were analyzed on an Agilent 1100 series 213 

LC/MSD SL. A Prevail Cyano column (150 mm × 2.1 mm, 3 mm) was used with 214 

hexane:propanol (99:1; vol:vol) as an eluent. After the first 5 min, the eluent increased by a 215 

linear gradient up to 1.8% isopropanol (vol) over the next 45 min at a flow rate of 0.2 mL 216 

min-1. Identification and quantification of the GDGTs isomers was achieved by integrating the 217 

peak areas of relevant peaks in m/z 1300, 1298, 1296, 1292, 1050, 1036 and 1022 selected ion 218 

monitoring scans. The TEX86 ratio was calculated following Schouten et al. (2002): 219 

 220 

TEX86 = ([GDGT 2] + [GDGT 3] + [crenarchaeol regioisomer]) / ([GDGT 1] + [GDGT 2] + 221 

[GDGT 3] + [crenarchaeol regioisomer])       (1) 222 

 223 

where numbers correspond to isoprenoid GDGTs from marine Thaumarchaeota with 1, 2 or 3 224 

cyclopentane moieties, and the crenarchaeol regioisomer has the antiparallel configuration of 225 

crenarchaeol (Sinninghe Damsté et al., 2002). 226 

The TEX86 values were converted to SST using the most recent core-top calibration as 227 

proposed by Kim et al. (2010) for oceans with SST > 15°C: 228 

 229 

SST = 38.6 + 68.4 × log (TEX86)        (2) 230 

 231 

The Branched and Isoprenoid Tetraether (BIT) index is based on the relative abundance of 232 

non-isoprenoidal GDGTs derived from soil bacteria versus a structurally related isoprenoid 233 

GDGT, ‘crenarchaeol’ with four cyclopentane moieties and one cyclohexane moiety, 234 

produced by marine Thaumarchaeota. The BIT index, which thus represents a measure for 235 

soil versus marine organic matter input in marine sediments, was calculated according to 236 

Hopmans et al. (2004): 237 

 238 

BIT = ([GDGT-I] + [GDGT-II] + [GDGT-III]) / ([Crenarchaeol] + [GDGT-I] + [GDGT-II] + 239 

[GDGT-III])  240 
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          (3) 241 

3 Stratigraphic framework 242 

In this work, the stratigraphic framework for the three cores investigated is based on carbon-243 

isotope stratigraphy calibrated with calcareous nannofossil and foraminiferal biostratigraphy. 244 

For the Cismon core and DSDP Site 463, magnetic chron CM0 has been used to define the 245 

base of the Aptian; this level was not reached with the Piobbico core. 246 

In addition to the two well-known, high-amplitude δ13C Aptian excursions, several minor 247 

fluctuations are identified in the carbon-isotope record from the Tethys, Pacific and Atlantic 248 

Oceans, which allow codification of major and minor perturbations. Menegatti et al. (1998) 249 

focused on the late Barremian-early Aptian interval and identified segments C1-C8. 250 

Subsequently, Bralower et al. (1999) extended the codification of Menegatti et al. (1998) 251 

through the rest of the Aptian Stage (C1-C11). Herrle et al. (2004) introduced new codes for 252 

the Aptian starting from Ap6, coinciding with C5 and C6 of Menegatti et al. (1998), to Al2. 253 

McAnena et al. (2013) used the Ap9-Al3 segments previously identified by Herrle et al. 254 

(2004).  255 

The studied sections cover the latest Barremian to earliest Albian time interval. We revised 256 

the Herrle et al. (2004) carbon-isotope segments by extending their codes down to Ap1 and 257 

renaming the earliest Albian fluctuations Al1 to Al3. Segments Ap1-Ap7 coincide with 258 

previously identified segments C1-C7 (Menegatti et al., 1998). The δ13C curve for the rest of 259 

the Aptian shows several fluctuations, allowing a higher resolution subdivision into segments 260 

Ap8–Ap18. In this paper, we applied a double coding for Ap1/C1 through Ap7/C7 segments 261 

and used the new Ap8-Ap18 and Al1-Al3 codes for the late Aptian–earliest Albian time 262 

interval. At Cismon, we identify segments Ap1–Ap8, at Piobbico Ap2–Al3, and at DSDP Site 263 

463 Ap1‒Ap15. Segments Ap8–Ap15 are less well defined at DSDP Site 463 due to 264 

incomplete core recovery. 265 

In addition to nannofossil zones NC6-NC8 (Bralower et al., 1995), we used the “nannoconid 266 

decline” and the “nannoconid crisis” (e.g. Erba et al., 2010) as further bio-horizons. 267 

Moreover, in the late Aptian the “Nannoconus truittii acme” (Mutterlose, 1989; Erba, 1994; 268 

Herrle and Mutterlose, 2003), defines a globally recognized interval where N. truittii 269 

dominates the assemblages with abundances from 5 up to 40 % of the total nannofloras.  270 

girafabi
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As far as lithostratigraphy is concerned, the Selli Level or its equivalents are identified at all 271 

three sites. A lithological revision of the Piobbico core also allowed the identification of the 272 

Kilian Level Equivalent, corresponding to the prominent black shale at the bottom of 273 

lithological Unit 12 within core 44 (Erba, 1988). The Kilian level Equivalent in the Piobbico 274 

core  is characterized by very fine laminations, without bioturbation, and has a thickness of 33 275 

cm (from 45.13 to 44.80 m). Following Petrizzo et al. (2012), the Kilian Level marks the 276 

Aptian/Albian boundary.  277 

Regarding the Piobbico core, we identify the presence of a hiatus that eliminates part of the 278 

basal Selli Level. In particular, on the basis of the correlation between the lithology and 279 

carbon-isotope record from the Piobbico core with the equivalent records from the Cismon 280 

core and DSDP Site 463 (Figure 2), as well as from other sedimentary basins, we note that: 1) 281 

the δ13C values from 75.94 to 74.80 m, ranging between 2 and 3 ‰, probably correspond to 282 

segments Ap4/C4 and Ap5/C5 rather than to the negative excursion Ap3/C3 where values of 283 

Cismon and DSDP Site 463 sediments are below 1‰; 2) δ18O values from 75.94 to 74.80 m 284 

fall between -3 and -1‰ and never reach the highly negative values (-4‰) characteristic of 285 

those in the Ap3/C3 segment of the other two sites, but rather conform to the range of values 286 

detected in segments Ap4/C4 and Ap5/C5; 3) the Selli Level in the Cismon core is 287 

characterized by three lithological sub-units (Erba et al., 1999), the lowermost being 288 

represented by laminated black shales corresponding to segment Ap3/C3, the second 289 

characterized by prevailing light grey marlstones corresponding to segments Ap4/C4 and 290 

Ap5/C5, and the uppermost one characterized by laminated black shales corresponding to 291 

segment Ap6/C6. The total organic carbon content (TOC) in the Cismon core shows highest 292 

values corresponding to segments Ap4/C, the base of segment Ap5/C5, as well as segment 293 

Ap6/C6. Similar high values are detected at DSDP Site 463 in coeval stratigraphic positions. 294 

At Piobbico, only two lithological sub-units are recognized (Erba, 1988) following the 295 

definition of Coccioni et al. (1987, 1989). The lower part, namely the “green interval”, is 296 

dominated by light green claystones, while the upper “black interval” is characterized by 297 

laminated black shales. It is therefore possible that the lowermost black shale interval 298 

normally found in the Selli Level equivalents is missing at Piobbico and only the other two 299 

lithostratigraphic intervals, corresponding to Ap4/C4-Ap5/C5 and Ap6/C6, respectively, are 300 

represented. 301 

 302 
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4 Results 303 

4.1 Calcareous nannofossil abundances 304 

Figures 3−5 illustrate the distribution of the high-fertility (D. rotatorius, B. constans, Z. 305 

erectus) and low-fertility (W. barnesiae) nannofossil taxa (following Roth and Krumbach, 306 

1986; Premoli Silva et al., 1989a, 1989b; Watkins, 1989; Coccioni et al., 1992; Erba et al., 307 

1992b; Williams and Bralower, 1995; Bellanca et al., 1996; Herrle, 2002, 2003; Herrle et al., 308 

2003; Bornemann et al., 2005; Mutterlose et al., 2005; Tremolada et al., 2006; Tiraboschi et 309 

al., 2009), as well as of the warm-temperature (R. asper, Z. diplogrammus) and cool-310 

temperature (S. stradneri, E. floralis, R. parvidentatum) taxa (following Roth and Krumbach, 311 

1986; Wise, 1988; Erba, 1992b; Erba et al., 1992; Mutterlose, 1992; Herrle and Mutterlose, 312 

2003; Herrle et al., 2003; Tiraboschi et al., 2009).  313 

A description of the major trends of these taxa is given for the three sections investigated: 314 

In the Cismon core (Fig. 3), W. barnesiae is the dominant species with mean abundance of 315 

66.8%. Rhagodiscus asper ranges from 0 to 20% of the total assemblage (mean: 3%) showing 316 

the highest peaks in the lowermost part of the Selli Level (segments Ap3/C3 and Ap4/C4 of 317 

the carbon-isotope curve). Zeugrhabdotus diplogrammus ranges from 0 to 2% (mean: 0.1%).  318 

Staurolithites stradneri ranges from 0 to 4% (mean: 0.2%), and shows peaks in the uppermost 319 

part of the Selli Level (segment Ap6/C6). Eprolithus floralis ranges from 0 to 6% (mean: 320 

0.2%) and shows peaks just above the top of the Selli Level (Ap7/C7). Biscutum constans 321 

ranges from 0 to 2% (mean: 0.2%), D. rotatorius from 0 to 3.5% (mean: 0.4%), and Z. erectus 322 

from 0 to 4.1% (mean: 0.15%). These three species are more abundant in the lower part of the 323 

Selli Level (segments Ap3/C3, Ap4/C4 and part of Ap5/C5). Nannoconids show a decline in 324 

abundance starting prior to magnetic chron CM0 (where they show high abundances up to 325 

40% in smear slides; 1*104 specimens/mm2 in thin-section) and reaching a minimum 326 

corresponding with segment Ap3/C3 of the carbon-isotope curve where they are virtually 327 

absent.   328 

In the Piobbico core (Fig. 4), the interval from 75.29 to 73.92 m, within the Selli Level, is 329 

barren of calcareous nannofossils. In the rest of studied interval, Watznaueria barnesiae is the 330 

dominant species with a mean abundance of 62%. Rhagodiscus asper ranges from 0 to 7.7% 331 

(mean: 2.4%). Zeugrhabdotus diplogrammus fluctuates between 0 and 1.2% (mean: 1%). 332 

Eprolithus floralis ranges from 0 to 3.5% (mean: 0.5%), R. parvidentatum from 0 to 0.3% 333 
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(mean: 0.04%), and S. stradneri from 0 to 3% (mean: 0.6%); these taxa are more abundant 334 

above the Selli Level, showing the highest values in corresponding with segments Ap11, 335 

Ap13-Ap15 of the carbon-isotope curve. Biscutum constans ranges from 0 to 4.1% (mean: 336 

0.1%), D. rotatorius from 0 to 20% (mean: 2.7%), and Z. erectus from 0 to 6.5% (mean: 337 

0.9%). The latter three species are more abundant corresponding with segments Ap9-Ap11 of 338 

the carbon-isotope curve. Nannoconids are absent to rare throughout most of the studied 339 

interval except for an interval between 60.37 and 55.61 m, where they show rather high 340 

abundances (up to 40 % relative abundance in smear slides; 4*103 specimens/mm2 absolute 341 

abundance in thin-section). This particular interval is dominated by N. truittii and coincides 342 

with the “N. truittii acme”.  343 

At DSDP Site 463 (Fig. 5), the intervals from 624.24 to 623.96 mbsf and from 623.16 to 344 

622.57 mbsf, within the Selli Level, are barren of calcareous nannofossils. Watznaueria 345 

barnesiae is the dominant species with a mean abundance of 58%. Rhagodiscus asper ranges 346 

from 0 to 32% (mean: 6.5%), having the highest values in the lower part of the section below 347 

the Selli Level Equivalent. Zeugrhabdotus diplogrammus ranges from 0 to 2.7% (mean: 1%). 348 

Eprolithus floralis ranges from 0 to 8.4% (mean: 0.9%) and S. stradneri from 0 to 11.15% 349 

(mean: 2.0%); both taxa are particularly abundant in levels corresponding to segments Ap12 350 

and part of Ap13. Biscutum constans ranges from 0 to 6.7% (mean: 0.6%), D. rotatorius from 351 

0 to 30% (mean: 2.4%), and Z. erectus from 0 to 16% (mean: 1.2%). These three species are 352 

more abundant within the lower part of the Selli Level Equivalent (segments Ap3-Ap4 of the 353 

carbon-isotope curve). A peak is also detected around segment Ap8. Nannoconids are 354 

abundant below the Selli Level Equivalent and between 568.27 and 540.73 mbsf (segments 355 

Ap12 and part of Ap13) showing abundances up to 40 % (relative abundance in smear slides) 356 

and 4*103 specimens/mm2 (absolute abundance in thin-section), dominated by Nannoconus 357 

truittii , which marks the Nannoconus truittii acme interval.  358 

 359 

For each studied site, two significant factors were extracted from the FA (R-mode) varimax 360 

rotation analysis: 361 

In the Cismon core (Fig. 6A, Tab. 1 of Supplementary material), Factor 1 (F1) and Factor 2 362 

(F2) represent 32% of the total variance. F1 (19% of the total variance) shows the highest 363 

positive loadings for W. barnesiae and the highest negative loadings for D. rotatorius, B. 364 

constans, Z. erectus. F2 (13% of the total variance) shows positive loadings for W. barnesiae, 365 
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S. stradneri, E. floralis, and negative loadings for R. asper, C. surirellus and Z. 366 

diplogrammus. F1 is interpreted to correspond with surface-water fertility and F2 to surface-367 

water temperature, respectively. 368 

In the Piobbico core (Fig. 6B, Tab. 2 of Supplementary material). F1 and F2 represent 36% 369 

of the total variance. F1 (25% of the total variance) shows high positive loadings for Z. 370 

erectus, D. rotatorius, B. constans, R. irregularis, C. surirellus, R. asper and high negative 371 

loadings for Nannoconus sp. and W. barnesiae. F2 (11% of the total variance) shows the 372 

highest positive loadings for W. barnesiae, S. stradneri, E. floralis and the highest negative 373 

loadings for Nannoconus sp. F1 is interpreted to correspond with surface-water fertility and 374 

F2 with surface-water temperature, respectively. 375 

At DSDP Site 463 (Fig. 6C, Tab. 3 of Supplementary material), F1 and F2 represent 36% of 376 

the total variance. F1 (17% of the total variance) shows the highest positive loadings for D. 377 

rotatorius, Z. diplogrammus, B. constans, R. irregularis and the highest negative loadings for 378 

Nannoconus sp. F2 (19% of the total variance) shows the highest positive loadings for 379 

Nannoconus sp., E. floralis, S. stradneri and the highest negative loadings for W. barnesiae, 380 

R. asper, B. constans. F1 is interpreted to correspond with surface-water fertility and F2 with 381 

surface-water temperature, respectively. 382 

Nannoconids show apparently a different affinity at Piobbico compared to the Cismon and 383 

DSDP Site 463 records, being associated with taxa indicator of warm waters and high 384 

nutrients, instead of the cold-water species S. stradneri and E. floralis. However, this 385 

discrepancy can be explained with the record of Piobbico starting around the “nannoconid 386 

crisis”, thus excluding the latest Barremian–earliest Aptian interval dominated by 387 

nannoconids. It is well possible that the results of the FA are in this case not reliable or should 388 

be considered with caution. 389 

  390 

The results of the PCCA analysis are summarized as follow: 391 

In the Cismon core (Fig. 6D, Tab. 4 of Supplementary material), the first component (22% of 392 

the total variance) shows the highest positive loadings for D. rotatorius, B. constans, Z. 393 

erectus and the highest negative loadings for W. barnesiae and Nannoconus sp. The second 394 

component (15% of the total variance) shows the highest positive loadings for S. stradneri, W. 395 

barnesiae and the δ18O (associated variable), and the highest negative loadings for R. asper 396 
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and C. surirellus. The 1 axis is interpreted to correspond with surface-water fertility, the 2 397 

axis to surface-water temperature. 398 

In the Piobbico core (Fig. 6E, Tab. 5 of Supplementary material), the first component (28% 399 

of the total variance) shows the highest positive loadings for D. rotatorius, B. constans, Z. 400 

erectus and the highest negative loadings for Nannoconus sp. The second component (11% of 401 

the total variance) shows the highest positive loadings for E. floralis, S. stradneri, W. 402 

barnesiae and the highest negative loadings for D. rotatorius. The associated variable δ18O 403 

has loadings close to zero. The 1 axis is interpreted to correspond with surface-water fertility, 404 

while the interpretation for the 2 axis is not straightforward, but might correspond with 405 

surface-water temperature. 406 

The dataset collected in this work for Piobbico core has been integrated with the dataset from 407 

Tiraboschi et al. (2009) covering the Albian. The results of the PCCA analysis performed on 408 

the integrated dataset are presented in Figure 6F. The first component (32% of the total 409 

variance) shows the highest positive loadings for D. rotatorius, B. constans, Z.diplogrammus, 410 

R. asper, C. surirellus, R. irregularis, Z. erectus and the highest negative loadings for 411 

W.barnesiae and Nannoconus sp..  The second component (13% of the total variance) shows 412 

the highest positive loadings for E. floralis, S. stradneri and R. parvidentatum and the highest 413 

negative loadings for R. asper, Z.diplogrammus and B. constans. Also the associated variable 414 

δ
18O exhibits positive loadings. The 1 axis is interpreted to correspond with surface-water 415 

fertility, while the 2 axis corresponds with surface-water temperature. 416 

 417 

At DSDP Site 463 (Fig. 6G, Tab. 6 of Supplementary material), the first component (24% of 418 

the total variance) shows the highest negative loadings for R. asper, Z. erectus, and lower 419 

negative loadings for S. stradneri, E. floralis. The second component (16% of the total 420 

variance) shows the highest positive loadings for D. rotatorius, R. irregularis, B. constans, Z. 421 

erectus, and negative loadings for W. barnesiae, and Nannoconus sp., δ18O (associated 422 

variable) has loadings close to zero. The 1 axis is interpreted to correspond with surface-water 423 

temperature, the 2 axis with surface-water fertility. 424 

4.2 Nannofossil Temperature and Nutrient Indices 425 

On the basis of reconstructed nannofossil affinities to temperature and nutrient content of 426 

surface waters, some authors (e.g. Herrle et al., 2003; Tiraboschi et al., 2009) have proposed 427 
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two indices: the Temperature Index (TI) and the Nutrient Index (NI). According to these 428 

palaeoecological reconstructions, and the results of our FA and PCCA analysis, we modified 429 

the formulae of Herrle et al. (2003) by excluding taxa that are sparse and rare in the studied 430 

sections. The formulae of the indices used here are (4) and (5): 431 

 432 

TI = (Ss + Ef + Rp) / (Ss + Ef + Rp + Ra + Zd) x100     (4) 433 

 434 

NI = (Bc +Dr + Ze) / (Bc + Dr + Ze + Wb) x 100      (5) 435 

 436 

Where: Ss = S.stradneri; Ef = E.floralis; Rp = R.parvidentatum; Ra = R.asper; Zd = 437 

Z.diplogrammus; Bc = B.constans; Dr = D.rotatorius; Ze = Z.erectus; Wb = W.barnesiae. 438 

 439 

The nannofossil TI, calibrated against carbon-isotope stratigraphy, has revealed systematic 440 

and synchronous changes in the Cismon core, Piobbico core and at DSDP Site 463. A 441 

complete nannofossil record through OAE 1a is available only for the Cismon core, because 442 

the Selli Level of the Piobbico core is incomplete and many samples are barren of 443 

nannofossils, while at DSDP Site 463 the top of the Selli Level Equivalent is probably not 444 

recovered and some samples are barren. In the three investigated sites, the TI and NI show the 445 

following fluctuations: 446 

 447 

At Cismon (Fig. 3) the TI shows high-frequency fluctuations superimposed on a longer term 448 

trend. The warmest temperatures were reached in the early phase of OAE 1a (corresponding 449 

to segment Ap3/C3 of the carbon-isotope curve). Cooling interludes are registered within the 450 

Selli Level, especially across segments Ap4/C4 to Ap5/C5. The interval represented by the 451 

uppermost part of the Selli Level (segment Ap6/C6), suggests that a pronounced cooling 452 

episode was followed by another cold snap after deposition of sediments just above the Selli 453 

Level. In the overlying interval (Ap7/C7), the TI shows relatively high-amplitude 454 

fluctuations. The NI indicates that the highest surface-water fertility was recorded in the lower 455 

part of the Selli Level (segments Ap3/C3 to base of Ap5/C5). The rest of the Selli Level 456 

shows low NI. Fertility started to increase in the Ap7/C7 interval. 457 
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At Piobbico (Fig. 4), the TI shows the warmest temperatures in the lowermost part of the 458 

recovered Selli Level corresponding to base of Ap5/C5. All samples in the Ap5/C5−Ap6/C6 459 

interval are barren of calcareous nannofossils and therefore the TI cannot be used for relative 460 

palaeotemperature fluctuations. Corresponding to segments Ap7/C7−Ap9, a general cooling 461 

is detected (Ap8), interrupted by a brief warming. Then, from Ap9, a warming continued 462 

through most of Ap11. The rest of the late Aptian was characterized by a prolonged cooling 463 

episode (from top of Ap11 to top of Ap15) followed, at the end of the Aptian, by a warming 464 

trend showing two temperature peaks coinciding with the 113 Level and the Kilian Level at 465 

the Aptian/Albian boundary. The earliest Albian (Al1−Al3) shows a brief relative cooling 466 

immediately after the Kilian temperature spike, followed by a general warming. 467 

The NI exhibits relatively high values in the interval immediately preceding the Selli Level 468 

and in its lowermost portions, corresponding to the base of Ap5/C5. All samples in the 469 

Ap5/C5−Ap6/C6 interval are barren of calcareous nannofossils and therefore the NI cannot be 470 

used for illustrating palaeofertility fluctuations. Above the Selli Level, a long interval of 471 

increased fertility (Ap7−Ap11) shows maximum values in the Ap9–Ap10 interval. The 472 

Nannoconus truittii acme is characterized by low surface-water fertility, followed by a 473 

relative increase of the NI up to Ap15. The Aptian/Albian boundary interval is marked by a 474 

decrease of the NI interrupted by a relative increase through the Kilian Level. The lowermost 475 

Albian (Al2−Al3) exhibits a trend to increased fertility extending through the Albian 476 

(Tiraboschi et al., 2009). 477 

At DSDP Site 463 (Fig. 5), the TI indicates warm temperatures just before and at the onset of 478 

OAE 1a. The warmest temperatures are reached at the level of segment Ap3/C3. Relative 479 

cooling interludes are registered within the Selli Level Equivalent, in segments Ap4/C4 and 480 

Ap5/C5. During the late Aptian, a long cooling (Ap7-Ap14) is registered with the coolest 481 

temperatures recorded from the top of Ap12 to the base of Ap13. The NI indicates relatively 482 

high values in the interval preceding the Selli Level Equivalent. Two maxima are recorded in 483 

the Ap3/C3 and at the base of Ap5/C5, respectively. Low NI is detected in the rest of the Selli 484 

Level Equivalent. An increase of the NI starts in Ap7 and continues up to the base of Ap12, 485 

with a maximum corresponding to Ap8. A decrease in then recorded during the Nannoconus 486 

truittii  acme interval, followed by a relative increase. 487 
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4.3 Oxygen isotope fluctuations 488 

The three oxygen-isotope records are somewhat scattered, and probably reflect a contribution 489 

from diagenetic cement. However, δ18O trends are reproduced at the three studied sites 490 

independently of lithology, and nannofossil preservation is persistently moderate; we 491 

conclude, therefore, that the oxygen-isotope records contain a primary palaeotemperature 492 

signal only marginally modified by lithification. The main trends (Figs. 3-5) are summarized 493 

as follows: 494 

Along segments Ap1/C1 and Ap2/C2 the isotopic ratios are relatively stable, being ~ -2‰ at 495 

DSDP Site 463, -1.5‰ at Piobbico and -1‰ at Cismon. At the end of segment Ap2/C2 values 496 

start to decrease, reaching -4‰ in correspondence with the negative carbon-isotope excursion 497 

(segment Ap3/C3). At Cismon, the decreasing trend is interrupted by a short-lived (~35 ky) 498 

interval of higher values (-1.5‰). At segment Ap4/C4, the δ18O values start increasing and in 499 

the middle part of the Selli Level (segment Ap5/C5) they fluctuate: between -1 and -2‰ at 500 

Cismon, between -1 and -3 ‰ at Piobbico, and between -1 and -4‰ at DSDP Site 463. 501 

Corresponding with segment Ap6/C6, δ
18O values are relatively stable between -1 and -2 ‰. 502 

Starting from segment Ap7/C7, oxygen isotopes illustrate progressively increasing ratios 503 

reaching ~-1‰ around the Nannoconus truittii acme interval and then decrease to a minimum 504 

of ~-3‰ close to the Aptian/Albian boundary. With respect to coeval sediments in the Tethys 505 

and Pacific Ocean, we notice that the oxygen-isotope values of the Cismon are greater by 1‰. 506 

4.4 TEX86 507 

A total of 32 samples from the Cismon core have been analyzed for TEX86 of which 17 508 

contained detectable amounts of GDGTs (Tab. 7). TEX86 data for a number of sediments were 509 

excluded as they contained relatively mature organic matter, i.e. the hopane 22S/(22S+22R) 510 

ratio was >0.2 (van Breugel et al., 2007) at which level TEX86 values will become biased 511 

towards lower temperatures (Schouten et al., 2004). Nearly all sediments have BIT values < 512 

0.3, suggesting relatively low input of soil-derived GDGTs, and thus no bias of the TEX86 513 

(Weijers et al., 2006). The values obtained for the OAE 1a interval (Figs. 2, 8) comprise one 514 

sample having a TEX86 value of 0.57 indicative of ~22°C sea-surface temperature (SST) and 515 

corresponding to the most negative δ
13C values (segment Ap3/C3). The rest of segment 516 

Ap3/C3 is characterized by values from 0.67 to 0.61 (SST= ~24 to 27°C). Segments Ap4/C4 517 

and Ap5/C5 are characterized by relatively stable values lying between 0.66 and 0.64  (SST = 518 
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~25–26°C). Corresponding to segment Ap6/C6, one sample gives a TEX86 value of 0.58 (SST 519 

= ~22.5°C) and the following one of 0.64 (SST = ~25.5°C). 520 

 521 

5 Discussion 522 

5.1 Long- and short-term temperature fluctuations d uring the Aptian 523 

Long-term temperature variations are comparable with the results of previous studies based 524 

on various temperature proxies (i.e. calcareous nannofossils, palynomorph, oxygen isotopes, 525 

and TEX86). The high-resolution sampling and the stratigraphic calibration of the studied 526 

sections, enabled better constraints on long-term temperature changes and detected short-term 527 

variability improving the characterization of climate changes during the Aptian.  528 

Long-term temperature fluctuations. A warming pulse (Fig. 7), starting at the time of the 529 

“nannoconid crisis”, characterized the onset of OAE 1a. The highest temperatures are 530 

recorded in the core of the negative carbon-isotope interval (segment Ap3/C3), as also 531 

documented in other sections in the Tethys (e.g. Menegatti et al., 1998; Hochuli et al., 1999; 532 

Luciani et al., 2001; Bellanca et al., 2002; Jenkyns, 2003; Millán et al., 2009; Erba et al., 533 

2010; Jenkyns, 2010; Keller et al., 2011; Stein et al., 2011; Bottini et al., 2012; Hu et al., 534 

2012; Husinec et al., 2012), Vocontian Basin (e.g. Moullade et al., 1998; Kuhnt et al., 2011), 535 

Boreal Realm (Mutterlose et al., 2010; Bottini and Mutterlose, 2012; Pauly et al., 2013; 536 

Mutterlose and Bottini, 2013), eastern European Russian Platform (Zakharov et al., 2013), 537 

and Pacific Ocean (e.g. Jenkyns, 1995; Price, 2003; Schouten et al., 2003; Ando et al., 2008; 538 

Bottini et al., 2012). Warm conditions persisted through OAE 1a, although fluctuations are 539 

detected, as discussed below. A major cooling, coeval with segment Ap7/C7, marks the end 540 

of global anoxia; it is followed by a warm phase preceding a major long-lasting cooling 541 

episode starting during segment Ap8 and extending through most of the late Aptian. 542 

Minimum temperatures were reached soon after the N. truittii acme, confirming the cooling 543 

(of ~4°C down to ~28°C) indicated by TEX86 reconstructed from the Proto-North Atlantic 544 

(McAnena et al., 2013). Further evidence of significant cooling during the late Aptian derives 545 

from the occurrence of the Boreal (cold water) species R. parvidentatum at low latitudes as 546 

documented here for the Piobbico core and DSDP Site 463 (Figs. 4, 5, 7), and in the 547 

Vocontian Basin, North Sea and Proto-North Atlantic Ocean (Herrle and Mutterlose 2003, 548 

Rückheim et al., 2006; Herrle et al., 2010; McAnena et al., 2013). Close to the Aptian/Albian 549 
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boundary, temperatures show a relative increase, with warm peaks at the 113 level and Kilian 550 

equivalent. 551 

Climate variability during OAE 1a. The integration of nannofossil TI and oxygen-isotope 552 

data allows the identification of a sequence of synchronous temperature variations labelled A 553 

to M (Fig. 8) at the three studied sites. After a warming pulse at the onset of OAE 1a (Interval 554 

A), a brief (~35 ky) cooling interlude interrupted warm conditions corresponding to the 555 

interval of minimum δ13C values (Interval B). It was followed by a maximum warming in the 556 

core of segment Ap3/C3 (Interval C). A cooling episode (Interval D) coincides with segment 557 

Ap4/C4 and base Ap5/C5. Intermediate climatic conditions, including one minor cooling 558 

episode (Interval E), a warm interlude (Interval F) and another minor cooling (Interval G), 559 

characterize segment Ap5/C5. Warmer temperatures (Interval H) preceded a more prominent 560 

cooling (Interval I) correlating with the latest part of OAE 1a and corresponding with segment 561 

Ap6/C6.The end of anoxia was marked by a short-lived warming (Interval L) and a further 562 

major cooling (Interval M) coinciding with the onset of segment Ap7/C7. A cool snap across 563 

segment Ap4/C4 interrupting the main warming has also been detected in the Vocontian 564 

Basin (Kuhnt et al., 2011; Lorenzen et al., 2013), Tethys (Menegatti et al., 1998; Luciani et 565 

al., 2001; Stein et al., 2011), and Turkey (Hu et al., 2012). 566 

The correlation of oxygen-isotope and calcareous nannofossil datasets with SST estimates 567 

from TEX86 is difficult since the TEX86 data available for OAE 1a have a much lower 568 

resolution and provide relatively scattered records. The new TEX86 data for the Cismon core 569 

are suggestive of SSTs ranging between 22°C and 27°C. The lowermost data point, which 570 

corresponds to Interval B, indicates an SST of ~22°C which is the coolest value for the 571 

studied interval and well matches with cooler conditions reconstructed from other data. The 572 

SST values for the following three data points are rather puzzling: two indicate temperatures 573 

of ~23–25 °C and fall in Interval C - the warmest of OAE 1a - while the third data point 574 

shows almost 27°C although it falls in Interval D, interpreted to correspond to a time of  575 

relative cooling. The rest of the samples, encompassing Intervals E to H, and representing 576 

minor temperature fluctuations, fall between 25°C and 27°C. We identify one more 577 

discrepancy in the relatively low estimated SST (22.5 °C) for one sample falling in Interval H, 578 

suggested by TI and oxygen isotopes to be a relatively warm interlude.  579 

Another problem of the TEX86 data of the Cismon core is related to the SSTs, which are ~5°C 580 

to 8°C lower compared with the TEX86 records from other sites. TEX86 data from DSDP Site 581 
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463 cover the Ap4/C4 to Ap6/C6 interval and range between 31°C and 34°C (recalibrated 582 

from Schouten et al., 2003 using Eq. 2). At Shatsky Rise, temperatures fall between 30°C and 583 

35°C (recalibrated values from Dumitrescu et al., 2006 using Eq. 2). Here, two cooling 584 

interludes are detected: the first cooling of 4°C down to 30°C was during segment Ap4/C4 585 

and corresponds to the cooling of our Interval D. The second cooling of 5°C down to 30°C 586 

seems to corresponds to segment Ap6/C6 and possibly reflects the cooling of Interval I. In the 587 

Lower Saxony Basin, SSTs indicate a distinctive warming during OAE 1a (segment C3-C6), 588 

with TEX86 temperature estimates of 31–34°C. The TEX86 data for the interval following 589 

OAE 1a (the C7 segment) reveal stable SSTs around 30°C (Mutterlose et al., 2010). 590 

We notice that although the temperature variability (∆ = ~ 4–5°C) is similar in all sites, at 591 

Cismon the absolute temperatures are generally 5°C to 8 °C lower than at DSDP Site 463, 592 

Shatsky Rise and Lower Saxony Basin. For Cismon, also the highest (coolest temperature) 593 

δ18O values are ~1‰ greater than those registered at DSDP Site 463 and ~0.5‰ greater than 594 

those at Piobbico. Generally cooler temperatures for Cismon could be explained by different 595 

latitudinal settings, the Cismon site being at ~ 30°N, the Shatsky Rise at an almost equatorial 596 

position and the DSDP Site 463 at ~20°S. However, this seems not to apply to the Boreal 597 

section (39°N) characterized by the highest (~35°C) SST. Another possible explanation for 598 

this discrepancy may be that the TEX86 values from the Cismon core are already affected by 599 

the higher level of thermal maturity (i.e. hopane 22S/(22S+22R) ratios of 0.1–0.2). It has been 600 

documented that destruction of GDGTs during thermal maturation processes results in lower 601 

TEX86 values due to the fact that GDGTs with cyclopentane moieties are thermally less stable 602 

(Schouten et al., 2004). Finally, it has been shown in several modern settings that TEX86, 603 

although calibrated against sea-surface temperature, may sometimes reflect changes in 604 

subsurface water temperatures as well (e.g. Huguet et al., 2007; Lopes dos Santos et al., 605 

2010), possibly because the source organisms, Thaumarchaeota, also reside in the deeper 606 

thermocline where nutrients such as ammonia might be available. 607 

5.2 Long- and short term changes in surface water f ertility  608 

The nannofossil NI exhibits similarities between the three studied sites (simplified in Fig. 7, 609 

where nannofossil data are calibrated against the δ13C curve, adopting the timescale of 610 

Malinverno et al., 2012). The earliest Aptian (segments Ap1/C1 and Ap2/C2) is characterized 611 

by low to intermediate NI values suggestive of oligotrophic conditions. The onset of OAE 1a 612 
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was marked by increasing fertility, which reached a maximum in the core interval of the 613 

negative carbon-isotope excursion (segment Ap3/C3). A decrease in surface-water fertility 614 

characterized the rest of the Selli Level (segments Ap4/C4-Ap6/C6). A shift to meso- to 615 

eutrophic conditions is detected from segment Ap8 to the beginning of the N. truittii acme 616 

interval, corresponding to minimal fertility conditions. The latest Aptian is then characterized 617 

by intermediate NI values, continuing into the earliest Albian. 618 

 619 

The early Aptian has been generally seen as a time of warm and humid climate, mainly 620 

responsible for accelerated continental weathering, and consequent important nutrient fluxes 621 

to the ocean sustaining high productivity (e.g. Leckie et al., 2002; Erba, 2004; Föllmi 2012). 622 

It has also been proposed that higher fertility in the global ocean was triggered directly by 623 

submarine igneous events that introduced enormous quantities of biolimiting metals within 624 

hydrothermal plumes (e.g. Larson and Erba, 1999; Leckie et al., 2002; Erba, 2004). 625 

Peaks in the NI are detected at the levels of the “nannoconid decline” (~1 Ma before OAE 1a) 626 

and the “nannoconid crisis”. This relationship is in agreement with the interpretation of 627 

nannoconids as oligotrophic taxa, which suffered during episodes of increased surface-water 628 

fertility. The results of the FA and PCCA analysis also support this affinity for nannoconids. 629 

Their virtual absence during the early phase of OAE 1a has been interpreted as the result of 630 

widespread meso- to eutrophic conditions (e.g. Coccioni et al., 1992; Bralower et al., 1994; 631 

Erba, 1994, 2004; Premoli Silva et al., 1999) combined with excess CO2 in the ocean–632 

atmosphere system (Erba and Tremolada, 2004; Erba et al., 2010). 633 

As far as the OAE 1a interval is concerned, the fluctuations in surface-water fertility 634 

reconstructed in our work are in agreement with other studies on calcareous nannofossils from 635 

the Tethys, Boreal Realm and Atlantic Ocean. Furthermore, other proxies, for example 636 

palynomorphs (Hochuli et al., 1999) and phosphorus (e.g. Föllmi et al., 2006; Föllmi and 637 

Gainon, 2008; Stein et al., 2012), support this interpretation. 638 

5.3 Climate and environmental changes and their rel ation to igneous–tectonic 639 

events during the Aptian  640 

Our data confirm a relationship between major volcanic episodes and climate change, with 641 

associated (or subsequent) perturbations in ocean chemistry, structure and fertility. 642 

Specifically, the construction of the OJP LIP, documented in the Os-isotopic record (Tejada et 643 
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al., 2009; Bottini et al., 2012), Pb isotopes (Kuroda et al., 2011), and biomarkers (Méhay et al. 644 

2009), suggestive of a stepwise accumulation of volcanogenic CO2 in the atmosphere (Fig. 8), 645 

correlates in time with OAE 1a and was marked by global warming at the onset of the mid-646 

Cretaceous greenhouse (e.g. Larson and Erba, 1999; Jenkyns, 2003). A short-lived event of 647 

possible methane hydrate dissociation probably promoted a ~100 kyr-long interval of 648 

accelerated continental weathering, temporarily reducing the CO2 concentrations and inducing 649 

a subsequent cooling interlude (~35 ky). The next interval, marked by a maximum warming, 650 

coincided with the beginning of the most intense volcanic phase of OJP (Bottini et al., 2012). 651 

This correspondence is suggestive for a (super)greenhouse climate triggered by excess 652 

volcanogenic CO2. The rest of OAE 1a was accompanied by climate variability including 653 

cooling interludes. Termination of widespread anoxia–dysoxia coincided with the end of the 654 

main emplacement of the OJP (Bottini et al., 2012) and a major cooling. 655 

Large-scale igneous–tectonic events took place also during the late Aptian, but their causal 656 

impact on climate changes are less obvious, since palaeotemperatures were generally cooler. 657 

We notice that submarine volcanism (construction of OJP, Manihiki Plateau, Hikurangi 658 

Plateau, the early phase of Kerguelen Plateau) correlates with global warming, but subaerial 659 

volcanism (Kerguelen Plateau LIP) was associated with relatively cool conditions (Fig. 7). In 660 

addition to magmatic fluxes of different orders of magnitude (lower for Kerguelen, see 661 

Eldholm and Coffin, 2000), subaerial volcanism probably injected ashes and gases into the 662 

atmosphere inducing short-term cooling associated with individual degassing phases. 663 

Feedbacks related to atmospheric CO2 drawdown via accelerated weathering were probably 664 

most significant, as also suggested by Ca isotopes (Blättler et al., 2012). On the basis of 665 

pedogenic calcretes from South Korea, Hong and Lee (2012) documented a decrease in CO2 666 

concentrations from ~1000 to ~500 ppmV for an interval in the late Aptian corresponding, as 667 

discussed above, to relatively cooler temperatures. However, these data present a large 668 

uncertainty in the age assignment. Recently published data by Li et al. (2014), from similar 669 

continental facies in south-east China spanning the same age, are suggestive of higher values. 670 

Specifically, here we present (Fig. 7) a revised plot of Li et al. (2014) data based on the 671 

Malinverno et al. (2012) time scale, which indicate progressively increasing CO2 672 

concentrations from ~1000 up to ~2000 ppmV across the N. truittii acme interval despite a 673 

general cooling trend. In correspondence of the lowest temperatures reached in the latest 674 

Aptian, CO2 estimates decrease to ~1600 ppmV.  The following early Albian warming trend 675 

was instead paralleled by increasing CO2 concentrations up to 2600 ppm.  676 
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 The long-lasting cool conditions of the late Aptian have been recently quantified using TEX86 677 

data (McAnena et al., 2013), which indicate a total decrease of palaeotemperatures of ~ 4°C 678 

(from 32°C to 28°C) in the equatorial Proto-Atlantic Ocean followed by a warming (~4°C) 679 

linked to the earliest Albian OAE 1b. The trends of our nannofossil TI curve are similar to 680 

these TEX86-reconstructed SST changes (Fig. 7), so we adopt the values of McAnena et al. 681 

(2013) to estimate climate variations through the Aptian using the nannofossil TI fluctuations. 682 

The warming at the onset of OAE 1a corresponds to an increase of 2–3°C and climate 683 

variability during OAE 1a is marked by a cooling of ~2°C. The prominent cooling at the end 684 

of global anoxia corresponds to a decrease of ~3°C, followed by a warming of ~3°C and the 685 

coolest interval in the late Aptian is marked by a further decrease of ~4°C. As far as OAE 1a 686 

is concerned, the SST variability estimated from the TI (2–3 °C) differs little from the direct 687 

TEX86 estimates of 4–5 °C. 688 

 689 

Volcanically linked climate change seems closely connected to nutrient recycling and ocean 690 

fertilization. Different eruption styles and duration, as well as magma composition and 691 

quantity, presumably produced diverse weathering rates and introduction of biolimiting 692 

metals. Although calcareous nannoplankton are but one group of primary producers and they 693 

thrive under oligotrophic–mesotrophic conditions, the nannofossil NI can be used to trace the 694 

trophic levels of surface waters in the past. Figure 7 suggests that nutrient availability was 695 

strongly coupled with climate change in the early Aptian, but less so in the late Aptian. 696 

Fertility fluctuations could be due to differential weathering rates. During OAE 1a, 697 

greenhouse conditions generated by repetitive volcanogenic CO2 emissions (e.g. Méhay et al., 698 

2009; Erba et al., 2010) might have increased weathering rates, and thereby the supply of 699 

nutrients. We see a correspondence between maximum warming and high surface-water 700 

fertility. In addition, the largest submarine volcanic pulses at the beginning of OAE 1a and in 701 

the mid–late Aptian seem to have introduced biolimiting metals during submarine plateau 702 

construction. The nutrients presumably stimulated primary productivity with consequent 703 

consumption of oxygen through organic matter and metal oxidation, hence promoting anoxic 704 

conditions. The upper part of the Selli Level has high TOC content, indicating that 705 

productivity and/or preservation of organic matter was relatively high. The apparent 706 

oligotrophic conditions suggested by the NI are explained by biomarker data and nitrogen 707 

stable isotopes, indicating N-fixing cyanobacteria as the likely main primary producers during 708 
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OAE 1a (Kuypers et al., 2004; Dumitrescu and Brassell, 2006). Their N-fixation potentially 709 

provided N nutrients for the rest of the oceanic biota and presumably was the key-process in 710 

the production of organic matter, maintaining higher productivity through OAE 1a. The 711 

accumulation and burial of organic matter would have progressively acted as storage for 712 

excess CO2, leading to lower temperatures and, possibly, to the termination of OAE 1a under 713 

less active (or ceased) OJP volcanism. We notice that the two more intense cooling interludes 714 

across OAE 1a correspond to levels with relatively high TOC content (>4%), suggesting that 715 

the burial of organic matter may have acted as a reservoir for excess CO2, thus temporarily 716 

mitigating greenhouse conditions.  717 

Among Cretaceous calcareous nannofloras, nannoconids are interpreted as specific to the 718 

lower photic zone, associated with a deep nutricline, so that they thrived when surface waters 719 

were characterized by oligotrophic conditions (Erba, 1994, 2004). The record of nannoconid 720 

distribution compared with the nannofossil NI confirms this hypothesis for the entire Aptian 721 

interval: the “nannoconid crisis” correlates with an increase of the NI, while the return of 722 

nannoconids following deposition of the Selli Level and the  N. truittii acme corresponds to 723 

minima in the NI curve. We stress the fact that nannoconid abundance does not unequivocally 724 

correlate with climate change, at least in the Aptian, because the “nannoconid crisis” 725 

coincides with major warming while the final nannoconid disruption (the end of the  N. truittii 726 

acme) corresponds to the most severe cooling.  727 

These data contradict the interpretation of McAnena et al. (2013) for the nannoconid failure 728 

due to cold conditions in the late Aptian and imply a different explanation for abundance 729 

changes of these rock-forming nannofossils. We believe that volcanically induced CO2 730 

concentrations played a key role for nannoconid calcification, regardless of climatic 731 

conditions (Erba, 2006). Both the OJP and Kerguelen LIPs emitted huge quantities of CO2 732 

that arguably provoked ocean acidification. We emphasize that the prolonged cooling in the 733 

late Aptian promoted CO2 absorption in the ocean and acidification. The nannoconid crises, 734 

including their final collapse in the latest Aptian, could thus be viewed as failures in 735 

biocalcification. Similarly, the major reduction in size, decrease in abundance, and species 736 

turnover documented for planktonic foraminifers (Huber and Leckie, 2011), which is coeval 737 

with the final nannoconid decline and a nannofossil turnover, might be the response of 738 

calcareous zooplankton to volcanically triggered ocean acidification. 739 

 740 
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6 Conclusions 741 

• Quantitative study of calcareous nannofossils integrated with oxygen-isotope and TEX86 742 

records from the Tethys and Pacific Oceans has provided a reconstruction of the climatic 743 

evolution through the entire Aptian. The excellent stratigraphic time control on the 744 

studied sections coupled with high sampling density, allows confirmation of some of the 745 

climatic variations detected in previous work and highlights, during OAE 1a, temperature 746 

fluctuations not previously detected.  747 

The results from the Tethys and Pacific Oceans confirm climatic variability through the 748 

Aptian, characterized by a warming trend that began prior to and reached a maximum 749 

during OAE 1a, coincident in time with the negative carbon-isotope excursion. The rest 750 

of OAE 1a was marked by subsequent cold snaps and a further cooling took place when 751 

the uppermost part of the Selli Level was being deposited. A cooling marked the end of 752 

global anoxia and another long-lasting cooling characterized the middle late Aptian, 753 

culminating soon after the N. truittii acme. The latest Aptian was, instead, characterized 754 

by a gradual warming accorded by nannofossil assemblages and TEX86 data. SSTs from 755 

TEX86 are suggestive of 24–27 °C in the Tethys during OAE 1a, which are nevertheless 756 

5°C to 8 °C lower than estimates from the Pacific Ocean and Boreal Realm, being 757 

probably affected by maturity levels or other factors. Although the earliest Aptian was 758 

characterized by oligotrophic conditions, the onset of OAE 1a was marked by increasing 759 

fertility, which reached a maximum at a time corresponding to the core of the negative 760 

carbon-isotope excursion. A decrease in surface-water fertility is recorded from the 761 

younger part of the Selli Level. A shift to warm and meso- to eutrophic conditions is 762 

detected after OAE 1a up to the beginning of the N. truittii acme interval, corresponding 763 

to minimal fertility conditions. The latest Aptian was then characterized by intermediate 764 

fertility, continuing into the earliest Albian. 765 

• Our data indicate that the beginning of the prolonged volcanic phase during OAE 1a 766 

coincided with the warmest temperatures and the highest surface-water fertility. 767 

Weathering and hydrothermal activity were the main drivers of nutrient input, positively 768 

affecting meso-to eutrophic taxa but having a negative impact on oligotrophic species 769 

such as nannoconids, which were not greatly affected by climatic changes. Rapid ‘cold 770 

snaps’ are detected when OJP volcanism apparently continued, suggestive of feedback 771 

mechanisms, drawing down CO2 and affecting the climate. The end of anoxia was in 772 

phase with diminished OJP activity and global cooling. We hence see a direct 773 
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relationship between OJP volcanism and climatic changes in the interval encompassing 774 

OAE 1a. 775 

We suggest that OJP volcanism directly caused general global warming, while the excess 776 

burial of organic matter acted as an additional and/or alternative process to weathering, 777 

causing CO2 drawdown and consequent climate change during OAE 1a. Massive 778 

subaerial volcanism (Kerguelen Plateau LIP), which took place during the late Aptian, 779 

was associated with relatively cool conditions, implying the dominant effect of 780 

atmospheric CO2 drawdown via accelerated weathering. 781 

 782 

 783 

Appendix A: Taxonomy 784 

Calcareous nannofossils cited in this work: 785 

Biscutum Black in Black and Barnes, 1959 786 

Biscutum constans (Górka 1957) Black in Black and Barnes, 1959 787 

Cretarhabdus Bramlette and Martini, 1964 788 

Cretarhabdus surirellus (Deflandre, 1954) Reinhardt, 1970 789 

Discorhabdus Noël, 1965 790 

Discorhabdus rotatorius (Bukry 1969) Thierstein 1973 791 

Eprolithus Stover, 1966 792 

Eprolithus floralis (Stradner, 1962) Stover, 1966 793 

Nannoconus Kamptner, 1931 794 

Repagulum Forchheimer, 1972 795 

Repagulum parvidentatum (Deflandre and Fert, 1954) Forchheimer, 1972 796 

Rhagodiscus Reinhardt, 1967 797 

Rhagodiscus asper (Stradner, 1963) Reinhardt, 1967 798 

Staurolithites Caratini, 1963 799 

Staurolithites stradneri (Rood et al., 1971) Bown, 1998 800 
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Watznaueria Reinhardt, 1964 801 

Watznaueria barnesiae (Black, 1959) Perch-Nielsen, 1968 802 

Zeugrhabdotus Reinhardt, 1965 803 

Zeugrhabdotus diplogrammus (Deflandre in Deflandre and Fert, 1954) Burnett in Gale et 804 

al., 1996 805 

Zeugrhabdotus erectus (Deflandre in Deflandre and Fert, 1954) Reinhardt, 1965 806 

 807 

 808 
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Hikurangi Plateau. B) Stratigraphic ranges of the studied sections. Latest Barremian to earliest 1169 

Albian chronologic framework is from Erba et al. (under final review by the editor). 1170 

Numerical ages are based on the timescale of Malinverno et al. (2012). K = Niveau Kilian; 1171 

113 = 113 Level; N.c. = Nannoconid crisis; N.d.= Nannoconid decline. 1172 

 1173 

 1174 
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 1175 

Figure 2. Correlation between the Cismon core, the Piobbico core and DSDP Site 463. δ
13C 1176 

data after: Erba et al. (1999) and Méhay et al. (2009) for the Cismon core; Erba et al. (under 1177 

final review by the editor) for the Piobbico core; Price (2003), Ando et al. (2008) and Bottini 1178 

et al. (2012) for DSDP Site 463. Bulk δ18O data after: Erba et al. (2010) for the Cismon core; 1179 

Price (2003), Ando et al. (2008) and this work for DSDP Site 463. TOC after: Erba et al. 1180 

(1999) and Bottini et al. (2012) for the Cismon core; Ando et al. (2008) for DSDP Site 463. 1181 

TEX86 after: Schouten et al. (2003) for DSDP Site 463; this work for the Cismon core. For 1182 

both cores SST was calculated using the equation of Kim et al. (2010). Grey bands indicate 1183 

intervals of higher (darker) and lower (lighter) TOC values.  1184 

 1185 

 1186 

 1187 

Figure 3. Cismon core: fluctuations of calcareous nannofossil temperature and fertility 1188 

indicator taxa. Temperature (TI) and Nutrient (NI) indices based on calcareous nannofossils 1189 

(low values of the TI indicate high temperatures and vice versa; high values of the NI indicate 1190 
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high surface-water productivity and vice versa). δ
13C is from Erba et al. (1999) and Méhay et 1191 

al. (2009). Nannofossil and foraminiferal biostratigraphy is from Erba et al. (1999). 1192 

Magnetostratigraphy is from Channell et al. (2000). Bulk δ18O data are from Erba et al. 1193 

(2010).  1194 

 1195 

 1196 

 1197 

Figure 4. Piobbico core: fluctuations of calcareous nannofossil temperature and fertility 1198 

indicator taxa. Temperature (TI) and Nutrient (NI) indices based on calcareous nannofossils 1199 

(low values of the TI indicate high temperatures and vice versa; high values of the NI indicate 1200 

high surface-water productivity and vice versa). Orange curve indicates smoothed TI and NI 1201 

records based on three-point moving average. δ
13C is from Erba et al. (under final review by 1202 

the editor). Nannofossil and foraminiferal biostratigraphy is from Erba et al. (1988) and 1203 

Tornaghi et al. (1989). Bulk δ18O data are from this work. 1204 

 1205 

 1206 
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 1207 

Figure 5. DSDP Site 463 Mid-Pacific Mountains: fluctuations of calcareous nannofossil 1208 

temperature and fertility indicator taxa. Temperature (TI) and Nutrient (NI) indices based on 1209 

calcareous nannofossils (low values of the TI indicate high temperatures and vice versa; high 1210 

values of the NI indicate high surface-water productivity and vice versa). δ13C is from Price 1211 

(2003), Ando et al. (2008), Bottini et al. (2012). Nannofossil and foraminiferal biostratigraphy 1212 

is from Erba, (1994) and Ando et al. (2008). Magnetostratigraphy is from Tarduno et al. 1213 

(1989). Bulk δ18O data are from Price (2003), Ando et al. (2008), and this work.  1214 

 1215 

 1216 

 1217 

Figure 6. On the top row, the results of Factor Analysis (R-mode) varimax normalized 1218 

rotation with principal component extraction are presented for (A) Cismon core, (B) Piobbico 1219 

core and (C) DSDP Site 463. On the bottom row, the results of the principal component and 1220 

classification analysis (PCCA) are presented for (D) Cismon core, (E) Piobbico core, (F) 1221 
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Piobbico core, including the Albian dataset from Tiraboschi et al. (2009), (G) DSDP Site 463. 1222 

The associated variable is the δ
18O. 1223 

 1224 

 1225 

 1226 

Figure 7. Nannofossil-based temperature and nutrient variations across the Aptian 1227 

reconstructed in this work and across the Albian (from Tiraboschi et al., 2009). The thick-1228 

grey curve represents SST from McAnena et al. (2013). Bio-chemo-magneto stratigraphy 1229 

after Erba et al. (under final review by the editor). Numerical ages are based on the timescale 1230 

of Malinverno et al. (2012). Multiproxy-based volcanic phases and radiometric ages of the 1231 

Greater Ontong Java Event (GOJE) and Kerguelen LIPs are from Erba et al. (under final 1232 

review by the editor). Atmospheric CO2: Li et al. (2014). Nannofossil data and isotopic data 1233 

are integrated with nannofossil data from the Albian (Tiraboschi et al., 2009). 1234 

 1235 

 1236 
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 1237 

Figure 8. Nannofossil temperature index (TI), TEX86, and oxygen-isotope values for the 1238 

Cismon core, Piobbico core and DSDP Site 463 plotted against chemostratigraphy. The age 1239 

determination is based on the cyclocronology available for the Cismon core (Malinverno et 1240 

al., 2010). δ13C data after: Erba et al. (1999) and Méhay et al. (2009) for the Cismon core; 1241 

Erba et al. (under final review by the editor) for the Piobbico core; Price (2003), Ando et al. 1242 

(2008) and Bottini et al. (2012) for DSDP Site 463. Bulk δ18O data after: Erba et al. (2010) for 1243 

the Cismon core; Price (2003), Ando et al. (2008) and this work for DSDP Site 463. TOC 1244 

after: Erba et al. (1999) and Bottini et al. (2012) for the Cismon core; Ando et al. (2008) for 1245 

DSDP Site 463. TEX86 after: Schouten et al. (2003) for DSDP Site 463; this work for the 1246 

Cismon core (SST calculated using the equation of Kim et al., 2010). On the left is reported 1247 

the Os-isotope curve (Bottini et al., 2012) and the volcanogenic CO2 pulses (red arrows) 1248 

reconstructed by Erba et al. (2010). The intervals A to M represent the climatic interludes 1249 

(warming and cooling) reconstructed in this work.  1250 
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