Fire in ice: Two millennia of boreal forest fire history from the Greenland NEEM ice core

Piero Zennaro^{1,2,*}, Natalie Kehrwald¹, Joseph R. McConnell³, Simon Schüpbach^{1,4}, Olivia J. Maselli³, Jennifer Marlon⁵, Paul Vallelonga^{6,7}, Daiana Leuenberger⁴, Roberta Zangrando², Andrea Spolaor¹, Matteo Borrotti^{1,8}, Elena Barbaro¹, Andrea Gambaro^{1,2}, Carlo Barbante^{1,2,9}

* email: piero@unive.it phone number: +39 041 2348911 fax number: +39 041 2348549

¹ Ca' Foscari University of Venice, Department of Environmental Science, Informatics and Statistics, Santa Marta - Dorsoduro 2137, 30123 Venice, Italy.

² Institute for the Dynamics of Environmental Processes, IDPA-CNR, Dorsoduro 2137, 30123 Venice, Italy.

³ Desert Research Institute, Department of Hydrologic Sciences, 2215 Raggio Parkway, Reno, NV 89512 USA.

⁴ Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

⁵ Yale University, School of Forestry and Environmental Studies, 195 Prospect Street, New Haven, CT 06511 USA.

⁶ Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, Copenhagen Ø, 2100 Denmark.

⁷ Department of Imaging and Applied Physics, Curtin University, Kent St, Bentley WA 6102, Australia.

⁸ European Centre for Living Technology, San Marco 2940, 30124 Venice, Italy.

⁹ Centro B. Segre, Accademia Nazionale dei Lincei, 00165 Rome, Italy

Abstract

Biomass burning is a major source of greenhouse gases and influences regional to global climate. Pre-industrial fire-history records from black carbon, charcoal and other proxies provide baseline estimates of biomass burning at local to global scales, but there remains a need for fire proxies that span millennia in order to understand the role of fire in the carbon cycle and climate system. We use the boreal fire biomarker levoglucosan, and multi-fire source black carbon and ammonium concentrations to reconstruct fire activity from the North Greenland Eemian (NEEM) ice cores (77.49° N; 51.2° W, 2480 masl) over the past 2000 years to infer changes in boreal fire activity over the periods 1000 - 1300 CE and 1500 - 1700 CE coincide with the most extensive central and northern Asian droughts of the past two millennia. Changes in the concentrations of biomass burning tracers in the NEEM ice cores coincide with temperature changes throughout much of the past 2000 years except for during periods of extreme drought, when precipitation changes are the dominant factor. Many of these multi-annual droughts are caused by Asian monsoon failures, thus suggesting a connection between low and high latitude climate processes. North America is a primary source of biomass burning aerosols due to its relative proximity to the NEEM camp. During major fire events, however, isotopic analyses of dust, back-trajectories and links with levoglucosan peaks and regional drought reconstructions suggest that Siberia is also an important source of pyrogenic aerosols to Greenland.

1. Introduction

1 Fire influences regional and global climate through the emission of greenhouse gases and particulates that reflect 2 and absorb incoming solar radiation (Ramanathan and Carmichael, 2008; Bowman et al., 2009; IPCC, 2013). 3 Biomass burning plays an important role in the carbon cycle as it emits up to 50% as much CO_2 as fossil fuel 4 combustion (Bowman et al., 2009). Fire products such as black carbon (BC) have a radiative absorption forcing 5 up to 55% that of CO₂, which is greater and a greater influence than that of other greenhouse gases, forcings 6 such as methane (CH₄), chlorofluorocarbons, nitrous oxide and tropospheric ozone (Ramanathan and 7 Carmichael, 2008; Jacobson, 2004; van der Werf et al., 2004; Running, 2006; McConnell et al., 2007). 8 Combined direct and indirect effects rank BC as the second-largest contributor to globally averaged positive 9 radiative forcing since the pre-industrial period (Ramanathan and Carmichael, 2008; Randerson et al., 2006). 10 Estimates of the radiative forcing of combined biomass burning aerosols are still not well defined but are in the range of $+0.00 \pm 0.20$ W m⁻² (IPCC, 2013). Human activities may have changed the net negative radiative 11 forcing of pre-industrial fires (-1.0 W m⁻²) to approximately -0.5 W m⁻² (from 1850 to 2000 CE) and potentially 12 to -0.8 W m⁻² (from 1850 to 2100 CE) (Ward et al., 2012). 13

14

15 Fire influences the climate system, but in turn centennial-scale Holocene fire variations are influenced by climate 16 (Marlon et al., 2013; Power et al., 2008). Precipitation decreases fuel flammability (Pechony and Shindell, 2010) 17 but biomass burning is highest at intermediate moisture levels (Daniau et al., 2012), a balance must therefore be 18 struck between climatic conditions that are wet enough to allow biomass to grow, but dry enough to allow 19 combustion (Pyne, 2001). Increased temperatures and atmospheric CO₂ permit greater plant productivity and 20 could result in greater fuel availability and hence increased fire activity (Marlon et al., 2008; Daniau et al., 21 2010). Human activities have also had an influence on biomass burning trends (Marlon et al., 2008) through 22 deforestation and slash-and-burn agricultural practices (FAO, 2007); practices which may have affected fire 23 regimes during the entire past millennia (Bowman et al., 2009; Kaplan et al., 2011; Ruddiman, 2003). The 24 observable impact of humans on fire regimes differs by geographic region (McWethy et al., 2009; Marlon et al.,

2012; Power et al., 2008) but over the course of the 20th century human activity has begun to influence the global
fire regime more than natural causes (Marlon et al., 2008; Pechony and Shindell, 2010).

27

28 1.1 Boreal Forest Fires

29 The circumpolar boreal zone contains about 30% of world's forests with half of the world's forest carbon and 30 about 30% of world's terrestrial carbon. Any change to the boreal forest carbon balance may therefore 31 considerably affect the global atmospheric CO₂ (Conard et al., 2002). Annual area burned (extent) and the global 32 importance of fires in the boreal zone have often been underestimated (Conard et al., 2002). However, it is estimated that between 50,000 and 200,000 km² of boreal forests burn every year, mainly in Northern Asia and 33 34 North America (de Groot et al., 2013; Wooster and Zhang, 2004). On average boreal and temperate vegetation 35 fires represent 4% of global biomass burning and up to 12% during extreme events, when about 20% of global 36 BC may be produced (Lavoue et al., 2000). Thus, boreal forest fires are an important source of air pollutants 37 throughout the Arctic, and a major font of BC (Quinn et al., 2008; Lavoue et al., 2000). Due to the light-38 absorbing properties of BC and the associated decrease in surface snow albedo, boreal forest fire BC has a 39 significant radiative impact on the Arctic atmosphere (Quinn et al., 2008; Flanner et al., 2007; Hansen and 40 Nazarenko, 2004).

41

42 North American and Eurasian boreal fire regimes differ due to distinctive fuel, weather, and fire ecology 43 (Wooster and Zhang, 2004; de Groot et al., 2013). Mean fire intensity and fuel consumption is higher in North 44 America than in Russia, even though the spatial extent of forests is greater in Russia (Wooster and Zhang, 2004; 45 de Groot et al., 2013). Different fire regimes suggest a dominance of crown fires in North America and surface 46 fires in Russia (Wooster and Zhang, 2004; de Groot et al., 2013). Accordingly, Russian fires may burn less fuel 47 than North American fires (de Groot et al., 2013) and thus emit less pyro-products into the atmosphere per unit 48 of area burned (Wooster and Zhang, 2004). Over the period 2001-2007, the average size of large fires in Central Siberia was estimated as approximately 13.1 km², with an average 18,900 km² burned each year at an average 49 50 fire intensity of 4858 kW m⁻¹ (de Groot et al., 2013). In western Canada the annual average size of individual

large fires is 59.3 km², with a total of 5,600 km² burned annually and an average fire intensity of 6047 kW m⁻¹ 51 52 (de Groot et al., 2013). The carbon emission rate is 53% higher in the Canadian study area, due to higher pre-53 burn forest floor fuel loads and higher fuel consumption by crown fires. However, the Russian study area had 54 much higher total carbon emissions due to the greater annual area burned (de Groot et al., 2013). During the major fire year of 2004, an additional 31,000 km² of Canadian boreal forests and approximately 27.000 km² of 55 56 Alaskan forests burned (Stohl et al., 2006) resulting in strong Pan-Arctic enhancements of light absorbing 57 aerosols (Stohl et al., 2006). This strong burning year in Canada and Alaska is coincident with a pronounced 58 decrease in snow albedo at Summit, Greenland due to the deposition of dark particles on the snow surface. 59 Boreal forest fires in Siberia may have a larger impact on total global fire emissions than those in North America 60 due to the larger Siberian burn area (Stohl, 2006; Stohl et al., 2006). Siberian forest fires are a major 61 extratropical source of carbon, in particular carbon monoxide and black carbon (Lavoue et al., 2000). Russian 62 boreal forests, where the majority are located in Siberia, accounted for 14–20% of average annual global carbon 63 emissions from forest fires in 1998 (Conard et al., 2002). However, little is known about the emission, transport 64 and deposition of BC from Siberian forest fires to the Arctic. The characterization of Siberian fire plumes is 65 uncertain, due to currently undefined biomass fraction consumed, combustion efficiency, plume injection heights 66 and emission ratios (Paris et al., 2009). Models are sensitive to the conditions and types of fires, such as the 67 injection height of fire emissions (Turquety et al., 2007), and the lack of data about Siberian fires introduces 68 large potential errors in estimating the impact of boreal wildfires on the atmospheric composition (Conard et al., 69 2002).

70

Summer atmospheric conditions favour enhanced wet and dry BC deposition in the Arctic (Stohl, 2006).
Generoso et al. (2007) determined that the 2003 Russian fires contributed to approximately 40–56% of the total
BC mass deposited north of 75 °N. In fact, model results indicate that boreal forest fire sources, especially
Siberian fires, are the dominate summer-time source of BC reaching the Arctic, exceeding all contributions from
anthropogenic sources (Stohl, 2006). Siberian fires, and northern Eurasia sources in general, can reach the Arctic
more easily than emissions from other regions of similar latitude (Stohl, 2006; Stohl et al., 2006).

78 1.2 Biomass Burning Proxies

79 There are many potential indicators or proxies of past fire activity, such as altered products of plant combustion 80 (e.g. charcoal, BC), partially combusted biological material (e.g. fire scars in tree rings), or chemical markers 81 directly produced and volatilised during vegetation combustion (e.g. resin acids, polycyclic aromatic 82 hydrocarbons) (Conedera et al., 2009). Some proxies are specific as they are produced solely from biomass 83 burning, such as charcoal in sediment cores, but most others have multiple potential sources other than wildfires 84 (e.g., coal burning, volcanic eruptions or biogenic emissions). Ice cores from polar regions are widely used to 85 reconstruct detailed climate records over the past hundreds of thousands of years, and thus are powerful tools in 86 paleoclimate research. Examining forest fires in ice cores started with the pioneering work of Legrand et al. 87 (1992), which demonstrates that the concentration of ammonium and organic acids including light carboxylic 88 acids, significantly increase above background levels in Greenland ice layers during forest fire events. Among 89 possible light carboxylic acids, formate and oxalate are the most useful to trace fires in Greenland ice cores 90 (Jaffrezo et al., 1998; Legrand et al., 1992; Dibb et al., 1996; Kehrwald et al., 2012). The subsequent work of 91 Legrand and DeAngelis (1996) demonstrates that high latitude biomass burning episodes increase light weight 92 carboxylic acid concentrations by 20 - 30 % in Greenland ice. In addition to strong increases of ammonium, 93 formate and oxalate concentrations, Savarino and Legrand (1998) found slight increases of nitrate coincident 94 with fire events recorded in Greenland ice. However, lightweight carboxylic acids and major ions (potassium 95 (K^+) , ammonium (NH_4^+) and nitrate (NO_3^-)) are not specific for biomass burning since they can be emitted by multiple sources. K⁺ and NH₄⁺, for example, are also emitted from numerous other sources and thus must be 96 97 corrected accordingly in order to provide source-specific information (Savarino and Legrand, 1998). Of the 98 available ionic proxies, K^+ is less useful due to marine and terrestrial sources, even if corrected to remove these 99 contributions (e.g. non-sea-salt and non-crustal K^+) (Legrand and DeAngelis, 1996; Savarino and Legrand, 1998) 100 Statistical attempts to recognize forest fire signals from multiple ice core data sets use Empirical Orthogonal 101 Function (EOF) analysis or Principal Component Analysis (PCA), which identify chemical associations between 102 pyro-ion records and differentiate between sources and transport characteristics (Yalcin et al., 2006; Eichler et 103 al., 2011). NH_4^+ , NO_3^- , and organic acids in Greenland ice are often associated with biomass burning events, 104 where NO_3^- in particular tends to increase in samples with higher NH_4^+ concentrations (Fuhrer et al., 1996; 105 Whitlow et al., 1994; Savarino and Legrand, 1998). These indicators are a result of complex chemical reactions 106 that are not necessarily a direct reflection of variations in biomass burning, however, many high fire years are 107 identifiable by enhanced NH_4^+ concentration (Eichler et al., 2011).

The isotopic ratio of atmospheric gases, such as methane (CH₄) and carbon monoxide (CO) in Antarctic (Ferretti et al., 2005; Wang et al., 2010) and Arctic (Sapart et al., 2012) ice cores has also been used as fire proxy but such ratios are also not solely products of biomass burning (Fischer et al., 2008). The isotopic composition of methane (δ^{13} C of CH₄) in ice cores differentiates biogenic from pyrogenic sources (Sapart et al., 2012). Methane is stable in the atmosphere for longer than the atmospheric exchange time and therefore is globally distributed. Hence δ^{13} C of CH₄ variations are impacted by sources distributed all over the world (Blunier et al., 2007).

114

115 BC is emitted during incomplete combustion of fossil and biofuels in both naturally and anthropogenically 116 created fires (Preston and Schmidt, 2006; McConnell et al., 2007). BC is not a single chemical compound, 117 however, and lacks well-defined characteristics (Goldberg, 1985; Masiello, 2004). However, comparison BC 118 with vanillic acid, a lignin phenol tracer of conifer combustion (Simoneit, 2002), in an ice core from west central 119 Greenland allowed McConnell (2007) to separate out the contributions of biomass burning and fossil fuels to the 120 BC flux reaching Greenland. Other specific tracers for biomass burning, including levoglucosan (vegetation 121 fires) and p-hydroxybenzoic and dehydroabietic acids (conifer fires), have been analyzed in high and mid-122 latitude ice cores from the Kamchatka Peninsula, Northeast Asia (Kawamura et al., 2012) and from the Tibetan 123 Plateau (Yao et al., 2013).

124

125 Monosaccharide anhydrides are one of the few fire proxies that have specific sources (Gambaro et al., 2008; 126 Simoneit, 2002). Levoglucosan (1,6-anhydro- β -D-glucopyranose) is a monosaccharide anhydride released 127 during biomass burning when cellulose combustion occurs at temperatures >300°C (Gambaro et al., 2008; 128 Simoneit, 2002). As with BC and NH₄⁺, levoglucosan is injected into the atmosphere in convective smoke 129 plumes, deposited on glacier surfaces through wet and dry deposition, and preserved in the snow and ice 130 (Gambaro et al., 2008; Kehrwald et al., 2012; McConnell et al., 2007; Fuhrer and Legrand, 1997). Unlike 131 greenhouse gases, levoglucosan, NH₄⁺ and BC are not homogeneously distributed in the atmosphere as chemical 132 processing causes short lifetimes (on the order of days to weeks) (Hennigan et al., 2010; Fraser and Lakshmanan, 133 2000; Ramanathan and Carmichael, 2008; Fuhrer and Legrand, 1997) in addition to efficient deposition 134 processes from the atmosphere. Although levoglucosan is oxidized by OH radicals in the gas phase (Hennigan et 135 al., 2010) and in atmospheric water droplets (Hoffmann et al., 2010), its high concentration in biomass emissions 136 means that levoglucosan remains a strong potential tracer for fire activity even across remote distances (Fraser 137 and Lakshmanan, 2000; Holmes and Petrucci, 2006, 2007; Kehrwald et al., 2012).

138

139 Charcoal deposited both in non-polar ice and sediment cores can also help reconstruct past fire activity. The 140 Global Charcoal Database (GCD) compiles individual charcoal records from terrestrial and marine sediment 141 cores (Fig. S6) into global or regional reconstructions that provide a benchmark against which other biomass 142 burning records can be compared (Power et al., 2010; Marlon et al., 2008). The charcoal database covers all 143 climatic zones and all major biomes, but data for grasslands and dry shrublands, where low woody biomass 144 limits charcoal production, are limited due to a lack of suitable sampling sites (Marlon et al., 2008). These 145 vegetation types emit large quantities of levoglucosan when burned (linuma et al., 2007; Gao et al., 2003) 146 resulting in a possible offset between charcoal and levoglucosan data. Many charcoal sampling sites are located 147 in the US and Europe, and a limited number of GCD sites currently exist in northern Asia (Fig. S6). As 148 levoglucosan and BC can be transported hundreds to thousands of kilometers (Mochida et al., 2010), they 149 complement GCD reconstructions that record combustion within tens of km of the sampling sites, and provide 150 fire activity data for regions where charcoal records do not exist.

151

152 1.3 Aim of the Study

Here, we use a multi-proxy approach to reconstructing biomass burning in the northern high latitudes during the past 2000 years. Specifically, we report levoglucosan and ammonium concentrations in the upper part of the

155	deep North Greenland Eemian (NEEM) ice core as well as BC measured in the 410 m NEEM-2011-S1 core
156	(Fig. 1) which was collected adjacent to the deep core in 2011 (Sigl et al., 2013). We compare our results with
157	Northern Hemisphere fire records, climate conditions obtained from historical records and paleoarchives to
158	identify sources of and controls on fire emissions registered in NEEM. Our approach acknowledges the
159	weaknesses inherent in most fire proxies used in ice core studies and remedies this by integrating the results
160	from multiple fire proxies to identify the robust variations in past biomass burning during the past 2000 years.

162 **2.** Methods

163 2.1 Ice core sampling and analyses

164 The international North Greenland Eemian (NEEM) ice core drilling site (Fig. 1) is located in northwest Greenland (77.49 N; 51.2° W, 2480 masl, mean annual temperature -29 °C, accumulation 0.22 m ice equivalent 165 166 yr⁻¹). The deep NEEM ice core (Fig. 1) was drilled from 2008 to 2012 and reached a depth of 2540 m. Ice core 167 analyses were partly performed in the field and partly in the laboratories of the participating nations. Our 168 levoglucosan dataset consists of 273 samples from 4.95-602.25 m depth (1999 CE - 1036 BCE), where each 169 sample is a 1.10 m inner core section collected after being melted within the Continuous Flow Analysis (CFA) 170 (Kaufmann et al., 2008) system at the NEEM camp. Samples for levoglucosan determination were transported in 171 a frozen state from the field to Ca' Foscari University of Venice laboratory where they were stored in a -20 °C 172 cold room until analysis. We slightly modified the analytical procedure for determining levoglucosan 173 (Supplementary Information) using liquid chromatography / negative ion electrospray ionization - tandem mass 174 spectrometry (HPLC/(-)ESI-MS/MS) at picogram per milliliter reported by Gambaro et al. (2008) 175 (Supplementary Information). This analytical method has the advantage of allowing the direct determination of levoglucosan by introducing the melted sample and ${}^{13}C_6$ labeled internal standard into the HPLC instrument. 176 177 Preanalytical procedures (analyte extraction and purification) are avoided and sample contamination minimized. 178 NH_4^+ and the other major ions were measured by CFA on the deep NEEM core directly in the field during 179 season 2009 (Kaufmann et al., 2008). All the major ions are available at mm resolution, and we calculated 1.1 m 180 mean values in order to directly compare with levoglucosan.

181

The upper 1419 m of deep NEEM core d¹⁸O, volcanic fingerprints, Electrical Conductivity Measurement, Dielectrical Profiling, and impurity records can be matched to the NGRIP GICC05 extended time scale (Fig S7) (Wolff et al., 2010b; Rasmussen et al., 2013). Due to the ice compression and differences in Greenland snow accumulation, each 1.10 m sample covers 1 to 5 yr-long temporal periods. The temporal interval has an associated age error of ± 1 year from the top of the ice core to the depth of 294.25 m (698 CE) and from 338.25 m to 536.8 m (468 CE – 645 BCE). An error of ± 2 years exists from 295.35 m to 336.05 m depth (692 – 480 CE) and from 541.20 m to 602.25 m (671 - 1036 BCE). No official age model is currently available for the upper
section (0.00 - 19.80 m) of the NEEM ice core. The uppermost 20 m of the age scale was calculated using a
Herron-Langway firn densification model fit to the NEEM-NGRIP tie points for the 20-80 m long firn column
(Fig. S7) (Herron and Langway Jr, 1980).

192

193 Continuous flow analysis allows sub-seasonal reconstructions of BC in the NEEM-2001-S1 core (Sigl et al., 194 2013) and other Greenland ice cores (McConnell et al., 2007; McConnell and Edwards, 2008; McConnell, 195 2010). The NEEM-2011-S1 core was collected adjacent to the deep NEEM core (Fig. 1) in summer 2011 and the 196 410 m long core was transported to the Desert Research Institute in Reno, NV, USA. The core was cut into ~ 1.1 197 m long samples with cross section of ~ 0.033 m by 0.033 m. These longitudinal samples were analyzed in early 198 autumn 2011 using a well-established continuous ice core analytical system (McConnell, 2002; Banta et al., 199 2008) including determination of BC concentrations using methods described in McConnell et al. (2007) and 200 McConnell and Edwards (2008). Annual layer counting based on seasonal variations in a number of elements 201 and chemical species, constrained by the known volcanic markers in the deep NEEM and other ice cores, was 202 used to determine the age model with dating uncertainty of <1 year. (Sigl et al., 2013). BC was measured using a 203 continuous ice core melter system (McConnell and Edwards, 2008; McConnell et al., 2007) in the 410 m 204 NEEM-2011-S1 core collected adjacent to the deep NEEM core in 2011 (Fig. 1). We present 1921 BC 205 concentrations from the NEEM-2011-S1 cores, spanning the ages 78 - 1997 CE. A number of seasonally varying 206 elements and chemical species were used to count annual layers in the NEEM-2011-S1 core, resulting in 207 minimal dating uncertainty (Sigl et al., 2013) as for the deep NEEM core dating (Supplementary Information).

208

The BC and levoglucosan measurements were sampled at different resolutions. Because of the non-linearity of the ice depth – ice age relationship this means that the average depth of samples measured at different resolution will represent a NEEM-2011-S1 and deep NEEM ice cores have different sampling schemes, this difference means that BC samples and levoglucosan samples represent similar, but not equal, average age of the ice. BC is sampled at a higher resolution (sub-annual resolution) than the levoglucosan (one sample continuously covering 1.10 m of the deep NEEM ice core). In order to avoid temporal resolution loss and the introduction of errors, we chose not to calculate BC averages from NEEM-2011-S1 core over the same temporal interval covered by the deep NEEM core when seeking to compare pyro-proxies from the two cores, instead leaving them as annual BC concentrations.

- 218
- 219 2.2 Statistics

220 One of the first challenges to understanding that levoglucosan reflects variations in fire activity is to assess its relationship with transport variability. Dust and Ca^{2+} concentrations can be used as crustal particulate tracers in 221 222 ice cores, provide clues into the relative strength of their source regions, transport variability and transport 223 strength (Fischer et al., 2007; Obrien et al., 1995; Wolff et al., 2010a). The Holocene contribution of sea salts to total Greenland Ca^{2+} ice concentrations is estimated to be in the order of 10% (Fischer et al., 2007). In order to 224 225 keep the data as close to its original form as possible, and therefore to avoid including possible error due to data 226 transformation, we use Ca^{2+} as a dust tracer without correcting for sea salt contribution. Then, we studied links 227 between levoglucosan, ammonium and major ions by performing Pearson and Spearman correlations 228 (Supplementary Information).

229

230 2.3 Short- to long-term fire variation

For short-term analysis, we consider *megafires* as levoglucosan peaks with a Z-score ≥ 1 [Z-score = $(x_i - \bar{x})/2$ 231 σ)], corresponding to a concentration ≥ 245 pg mL⁻¹ (Table 1, Figure S5). Multi-decadal fire activity was 232 233 extracted from the levoglucosan and BC concentration profiles by analyzing smoothed data after removing 234 spikes above a fixed threshold (Supplementary Information). We tested different approaches in order to 235 determine multi-decadal fire activity from levoglucosan concentrations. The challenge was to find a suitable 236 statistical tool capable of identifying temporal trends that are not overly affected by the high peaks of anomalous 237 events. The Global Charcoal Database archives hundreds of sedimentary records of fire (Power et al., 2010). 238 Regional and global synthesis allows the examination of broad-scale patterns in paleofire activity (Marlon et al., 239 2013). In order to compare levoglucosan data with decadal to centennial trends in other paleoclimate records, we

240	first applied the same standardized statistical procedures as was used to analyze the Global Charcoal Database
241	(Marlon et al., 2008; Power et al., 2008). We modified this method for the NEEM data as it is from a single site
242	(unlike the GCD) and incorporating any outlying values results in artifacts in the LOWESS smoothing. A
243	common approach to isolate the influence of spikes is to fix a threshold and separately study those values. We
244	differ from the GCD procedure in our treatment of individual spikes, as these strongly affect multi-decadal
245	trends, even when using a LOWESS regression model.
246	In summary, to highlight long-term fire changes we followed the following procedure (details are included in the
247	Supplementary Information):

- Removing spikes above the fixed threshold $3rd_Q + 1.5 \times IR$
- Z-score transformation
- LOWESS (Locally Weighted Scatterplot Smoothing) model

252 **3** Results

253 Pearson and Spearman correlations (Supplementary Information) demonstrate that, of the possible biomass 254 burning-related products measured in the deep NEEM core, levoglucosan concentrations only slightly correlate with ammonium (p-value < 10^{-6} , with $\alpha = 0.05$). No correlation is noted between levoglucosan and crustal 255 256 marker Ca²⁺ or dust (p-values > 0.45, with $\alpha = 0.05$). Analysis of preliminary measurements of other crustal 257 markers (i.e. Ti and Ba) in the deep NEEM ice core also show a lack of correlation with levoglucosan (Gabrieli, 258 J., personal communication, 2014). A similar correlation analysis of BC and other elements and chemical species 259 (data not shown) measured in the NEEM-2011-S1 core indicates that during pre-industrial periods BC concentrations generally do not correlate with crustal particulate tracers but do with NH_4^+ and NO_3^- (J.R. 260 261 McConnell, Personal Communication, 2014).

262

Megafires (levoglucosan peaks with Z-scores > 1) are observed at 1973, 1789, 1704, 1620, 1039, 976, 922, 628, 342 CE and at 199, 274, 330, 392 and 540 BCE (Fig. 2 and Table 1). Distinct levoglucosan spikes are also synchronous with major peaks in the BC record (BC Z-scores > 3) at 1704, 922, 628 and 342 CE and minor peaks (with BC Z-scores > 1) at 1973, 1789, 1620 and 976 CE, respectively. The levoglucosan peak at 342 CE (Z-score = 10.9) also occurs in the BC data, where the Z-score is 19.0 (Table 1).

268

Strong fluctuations in the temporal profile dominate the record from decadal to centennial perspectives. Relative maxima in the levoglucosan profile are evident between 1000 - 1300 CE and 1500 - 1700 CE, and with a lesser extent around 500 CE and 100 CE, while the lowest fire activity is evident around 700 - 900 CE and with a lesser extent around 1300 - 1500 and 1700 - 1800 CE (Fig. 3A). Smoothed BC concentration is high from 100 CE to 700 CE, and after an abrupt decrease it offers the lowest values between 700 CE and 900 CE. Between 1000 - 1600 CE and 1600 - 1800 CE the BC profile show a relative maximum and minimum, respectively, while the absolute maximum in BC concentration peaks around 1900 CE.

277 4 Discussion and Interpretation

278 4.1 Biomass burning tracers in the NEEM ice core

279 4.1.1 Major ions transport and deposition on the Greenland ice-sheet

280 Dust, major ions and levoglucosan may not have the same source regions and/or transport history, but comparing 281 these proxies may provide insight into common or differing air masses affecting the NEEM site. Increased wind 282 speeds result in greater dust concentrations and larger particles in ice cores (Ruth et al., 2003; Fischer et al., 283 2007). Stronger winds may be expected to also increase levoglucosan concentrations, as the increased wind 284 strength could transport more efficiently air plumes and thus more biomass burning products. However, the lack of correlation between Ca^{2+} , dust and levoglucosan suggests that levoglucosan variability is not dominated by 285 286 changes in transport or in changes in wind strength. This evidence differs from Kawamura et al.'s (2012) 287 conclusion, which speculated that enhanced atmospheric transport rather than an increase in fire activity may 288 affect levoglucosan concentrations.

289

290 Ammonium has multiple anthropogenic and natural sources, mainly emissions from soil and vegetation and thus, 291 background ammonium values in polar ice are strongly linked to biogenic emissions and temperature changes 292 (Fuhrer et al., 1993; Fuhrer et al., 1996; Legrand et al., 1992; Fuhrer and Legrand, 1997). Basing NEEM fire 293 reconstructions only on ammonium concentrations that are not corrected for the natural variability and volcanic 294 eruptions could potentially overestimate major fire events, however, comparing various fire proxies from the 295 same core supplements biomass burning interpretations. The literature uses Principal Component Analysis for 296 pyro-reconstructions (Yalcin et al., 2006; Eichler et al., 2011). Incorporating as many fire proxies as possible 297 within the same ice core allows a more robust reconstruction of past burning, but eigenvectors incorporate other 298 chemical species that, even if they are fire-related compounds, are not fire tracers (NO_3^- , H_2O_2). We therefore 299 compare individual fire tracers in NEEM rather than using Principal Component Analysis as a biomass burning 300 reconstruction.

301

302 4.1.2 Extreme fire events

Levoglucosan data exhibit high variability (Fig. 2) due to the absence of background atmospheric levoglucosan values. Levoglucosan is only injected into the atmosphere during biomass burning events; no continuous emission processes exist. Individual levoglucosan spikes are therefore likely generated either by short "megafires" or by localized fire events rather than by long-term increases in fire activity (Fig. 2 and S5 in the Supplement). Furthermore, the mean accumulation rate in north central Greenland can be considered constant over the past 3000 years (Andersen et al., 2006), so we present levoglucosan and BC concentrations rather than fluxes.

310

311 Many levoglucosan spikes correspond with documented fire activity in Greenland or in other Northern 312 Hemisphere ice cores, and are generally supported by the other pyro-proxies measured in the NEEM ice core 313 (Table 1). The majority of fire events inferred from the NEEM ice core were simultaneously recorded by 314 levoglucosan and BC. NH_4^+ spikes replicate many of the levoglucosan spikes (8 of the 14 levoglucosan spikes 315 with Z-score >1). Only the 1039 CE levoglucosan peak is not duplicated by any of the other proxies (Table 1). 316 The peak at 342 CE contains by far the highest concentrations of both levoglucosan and BC present in our 317 datasets, and corresponds to the largest fire event in the past 2000 years recorded by several charcoal records in 318 the Northern U.S. and Canadian Rockies (Brunelle et al., 2005; Hallett et al., 2003). The 1973 CE fire event is 319 synchronous (within the age model error) and probably related to an anomalous heat wave and severe droughts 320 in 1972 CE in Russia (Dronin and Bellinger, 2005; Golubev and Dronin, 2004). Thousands of Russian firemen, 321 soldiers and farmers were mobilized to suppress a fire raging for several weeks in August 1972 in a bog-land 322 east of Moscow (The Palm Beach Post, Aug. 09 1972; The New York Times, Aug. 09 1972, New York), and 323 during the same week more than 1000 km² of forest burned in Central Alaska (The Milwaukee Journal, Aug. 09 324 1972).

325

We cannot exclude the possibility that local phenomena in Greenland, rather than extensive events, may be responsible for some of the large levoglucosan spikes. Several levoglucosan spikes were recorded in a relatively brief period between ~ 920 and 1110 CE. This period coincides with the foundation of Viking settlements in 329 Greenland beginning in 982 CE in southwest Greenland, relatively close to the NEEM site. Historical records 330 show that Greenland Viking settlements burned vast quantities of wood for extracting iron from bogs for tool 331 production and these local, not necessarily extensive, fires may account for the levoglucosan peaks during this 332 time period (Diamond, 2005). Future trace metal analyses of the NEEM ice core can help demonstrate if 333 relatively local metal production may have caused these levoglucosan peaks.

334

335 Other ice core records provide comparisons of fire events that allow an examination of the spatial extent of past 336 short-lived fire activity. A prominent 1617 - 1622 CE levoglucosan peak coincides with high fire activity 337 inferred from oxalic acid analyses recorded in the Greenland Site J ice core (Kawamura et al., 2001), even if this 338 event is not recorded in ice core from other locations in Greenland (e.g. Savarino and Legrand, 1998). No 339 historical documentation is available for the 1787 - 1791 CE peak but contemporaneous fire signatures are 340 reported in Greenland (GISP2, 20D) and Canadian ice cores (Eclipse Icefield and Mt. Logan) (Yalcin et al., 341 2006; Whitlow et al., 1994). The strongest fire activity recorded in the Ushkovsky (Kamchatka) ice core occurs 342 in 1705, 1759, 1883, 1915, 1949 and 1972 CE (Kawamura et al., 2012). Megaevents are present as both 343 levoglucosan and BC peaks in NEEM in 1704 and 1973 CE and as a BC peak in 1914.5 and 1947.5 CE (Fig. 2).

344

345 *4.1.3* Decadal to centennial fire activity variability

The NEEM levoglucosan centennial scale maximum (1500 - 1700 CE, Fig. 3A), the highest of the past two millennia, coincides with data from the Belukha ice core, Siberia (Eichler et al., 2011), that documents a period of increased fire activity between 1550 - 1700 CE where 1600 - 1680 CE records the highest forest fire activity over the last 750 years (Fig. 3D). High fire activity between 1500 - 1600 CE was also inferred from formate and ammonium analyses on the EUROCORE, Greenland ice core, when "high frequency and low intensity of fires" were synchronous with dry climate conditions (Savarino and Legrand, 1998).

352

353 Due to multiple anthropogenic BC sources after the Industrial Revolution, we cannot directly compare BC and
 354 levoglucosan after 1850 CE but we can compare BC between NEEM and other Arctic sites and use our data to

discriminate fire, volcanic or anthropogenic emissions. The maximum BC concentration (16 ng g⁻¹) in the entire 355 356 Greenland D4 ice core occurred in 1908 CE (McConnell et al., 2007). The second-highest BC peak (15 ng g⁻¹) 357 over the past millennium in the NEEM-2011-S1 is dated to 1909.5 CE (Fig. 2B). This timing is relatively 358 coincident with the Tunguska Event, a bolide impact in western Siberia occurring in June 1908. An ammonium 359 spike in 1910 CE in the GISP2 ice core (Taylor et al., 1996) was attributed to large conflagrations in the northern 360 United States and southern Canada, supported by a synchronous extremely limited growth of regional trees 361 (drought proxy) in the Northwestern Ontario (St. George et al., 2009). The highest ammonium peak in a Summit, 362 Greenland ice core spanning 1908-1989 CE occurs in 1908 CE and is synchronous with increases in formate, 363 oxalate, glycolate and BC within the same core. Legrand et al. (1995) ascribe this event to North American 364 forest fires rather than the Tunguska event. However, ammonium may be producted by a Haber-like process 365 (Melott et al., 2010). High pressure and temperature conditions generated by the Tungusta comet entering the 366 atmosphere, in principle could have allowed atmospheric nitrogen and hydrogen from the comet ice to react, 367 thereby accounting for both the ammonium and nitrate enhancements in some Greenland ice cores (Melott et al., 368 2010). The absence of levoglucosan and ammonium spikes in the NEEM (northern Greenland) ice core or 369 vanillic acid peaks, a source-specific tracer for conifers (Simoneit, 2002), in the D4 (central Greenland) ice core during this same time period, supports the hypothesis that BC, NH_4^+ and NO_3^+ peaks may not be caused by forest 370 371 fires during 1908 CE. In addition, comparisons of BC and toxic heavy metals in the ACT2 core from southern 372 Greenland (McConnell and Edwards, 2008), as well as BC and non-sea-salt sulfur in the D4 ice core from 373 central Greenland (McConnell et al., 2007), indicate that >80% of the BC during this period is associated with 374 industrial emissions (primarily coal burning). The D4 site demonstrates a gradual rise in BC concentrations after 375 1850 CE and a rapid increase after 1888 CE, before beginning a gradual decline through the late 1940s followed 376 by a clear drop in 1952 CE (McConnell et al., 2007). This trend is generally confirmed by BC in the NEEM-377 2011-S1 ice core, where BC shows a peak that slowly increases from ~ 1750 CE, followed by a sharp 378 enhancement during the late 1800s (Fig. 3C).

379

380 Biomass burning was the major source of BC to central Greenland before 1850 CE, as revealed by the close

correlation between BC and vanillic acid, an organic combustion marker released by coniferous trees
(McConnell et al., 2007). After 1850 CE, the influence of industrial emissions, particularly coal, as a source of
BC is clear through comparisons to non-sea-salt sulfur (McConnell et al., 2007) and industrial heavy metals such
as lead, thallium, cadmium in the southern Greenland ACT2 core (McConnell and Edwards, 2008). The NEEM2011-S1 BC record contains its highest concentrations from 1850 CE to the present, reflecting the input of these
new sources.

387

388 The levoglucosan profile contains moderately high mean values during the 1900s, but other centennial-scale 389 peaks, such as that centered ~ 1600 CE have higher concentrations (Fig. 2A). Black carbon has an average 390 atmospheric lifetime of a few days to one week (Ramanathan and Carmichael, 2008; Bauer et al., 2013; 391 McConnell et al., 2007). The diverse range of BC emission sources and the different atmospheric lifetime of 392 levoglucosan may result in BC representing a separate emission source area than the levoglucosan record. 393 Levoglucosan yield is variable and strongly depends on combustion temperature, biomass composition and 394 flame conditions (Gao et al., 2003; Oros and Simoneit, 2001a, b; Weimer et al., 2008). Thus, levoglucosan can 395 not be used to characterize and quantify BC in environmental samples (Kuo et al., 2008). In addition, different 396 temporal resolution for BC and levoglucosan records may result in differences after removing spikes and 397 applying LOWESS smoothing. Levoglucosan can only be produced by cellulose pyrolysis, thus the different 398 pattern between the records post-1850 CE mainly reflects the differences between biomass burning and 399 industrial activity.

400

401

4.2 *Comparison with other pyro-reconstructions*

The high latitude northern hemisphere HLNH > 55° GCD composite curve registers a global long-term decline in fire activity from 0 - 1750 CE (Marlon et al., 2008). A decreasing amount of ammonium originating from biomass burning is also deposited in the GRIP ice core (Fuhrer et al., 1996) but this trend is not clearly supported by levoglucosan data during the past two millennia (Fig. 3B). The prominent levoglucosan minimum between 700 and 900 CE coincides with a minimum in the BC profile and HLNH > 55° GCD (Fig. 3). The HLNH > 55° GCD and levoglucosan data differ near 1600 CE when the HLNH > 55° GCD demonstrates a modest increase in fire activity, while the smoothed NEEM levoglucosan strongly peaks (Fig. 3B). This period of decadal-scale increased biomass burning is seen in both the levoglucosan and BC records in the NEEM ice cores, including individual levoglucosan peaks with Z-scores up to 2.8 (Table 1). We infer that the 1500 - 1700 CE maximum in fire activity is due to increased Eurasian boreal forest fires (Figure 3), which are probably underrepresented in the GCD, reflecting the bias in the geographical distribution of GCD sites. Over 50 high latitude North American sites exist yet Siberia only has less than 10 lake cores > 60°N which span a distance of over 7000 km.

414

Sapart et al. (2012) argue that changes in the δ^{13} C of CH₄ record cannot be explained without biomass burning 415 416 variability. Methane isotopic variations during the past two millennia (Fig. 3F) correlate with anthropogenic 417 activities, which have contributed to the methane budget before industrial times (Sapart et al., 2012). Methane 418 emissions may be linked to early industrial activity including copper and lead smelting but levoglucosan is not 419 released during coal combustion needed for early industrial activities. Despite the differences in sources and their geographical distribution, the NEEM δ^{13} C of CH₄ isotopic record contains similar features to the 420 421 levoglucosan data (Fig. 3F). High δ^{13} C values between 800 - 1200 CE, and to a lesser extent from 100 BCE until 422 200 CE, corresponds with increased levoglucosan and BC concentrations. The pronounced levoglucosan peak centered on ~ 1600 CE only partially overlaps with the pyrogenic methane record, where δ^{13} C peaks in the 1400s 423 424 to 1500s.

425

426 4.3 Source of NEEM fire products

427 4.3.1 Fuel Loads and Circulation Patterns

Stable oxygen isotope (δ^{18} O) data demonstrate that the circulation pattern of air masses reaching the Greenland ice sheet did not significantly change over the last 10,000 years (Vinther et al., 2006). We therefore assume that the atmospheric transport of biomass burning plumes should not have significantly changed during the past two millennia. The isotopic composition of dust in ice cores helps determine the geographic origin of particulate matter reaching Greenland. Holocene mineral dust in the NGRIP (North Greenland Ice core Project) ice core has 433 an Asian origin with the Gobi and Taklimakan deserts as the best source candidates (Bory et al., 2003; Bory et 434 al., 2002; Lupker et al., 2010). These studies argue that North America and North Africa are not potential dust 435 sources, as both regions have higher K/C ratios and higher smectite contents than dust extracted from NGRIP. 436 Although mineral dust and biomass burning products are subject to different transportation styles and 437 atmospheric interactions, these dust studies demonstrate the influence of Asian sources on material transported 438 to the Greenland ice sheet. The Gobi and Taklimakan deserts have very little vegetation and so likely are not 439 biomass burning sources, but these deserts border boreal forest regions that may be important biomass burning 440 sources during major fire events, as discussed throughout this section (Table 2).

441

442 Earth's boreal forests cover 9-12 million km² (Fig. 1), extending across Scandinavia, Russia and North America 443 (NA), representing approximately 10% of Earth land cover and one third of the total global forested area (Zhang 444 et al., 2003; Canadian Forest Canadian Forest Service, 2005). Boreal forest forms a green belt just below the 445 Arctic Circle (55° to 70°N) interrupted only by the Pacific and Atlantic Oceans, and thus forms the major fuel 446 source for fire emissions reaching the Greenland ice sheet. We consider both coniferous and deciduous forests at 447 \geq 55° N as boreal forests (Fig. 1). Russian forests alone represent ~25% of global terrestrial biomass (Zhang et 448 al., 2003). Two thirds of boreal forests are located within the 17 million km² of the Russian Federation (Zhang et 449 al., 2003). Russian boreal forests have a high fire risk due to accumulated organic matter with slow 450 decomposition rates and boreal regions have low precipitation during the summer fire season (Damoah et al., 451 2004). Canadian boreal forests comprise about one third of the NH circumpolar boreal forest (Canadian Forest 452 Service, 2005).

453

Arctic snow samples across the Greenland ice sheet and associated back-trajectories from a single year highlight the importance of Russian boreal forests as a biomass burning source and suggest that 55% of modern BC reaching the Greenland ice sheet originates from Russian biomass burning, while 40% is from North America, and only ~ 5% is from anthropogenic emissions (Hegg et al., 2009). A 44-year record of 10 day isobaric backtrajectories reaching Summit, Greenland (Kahl et al., 1997), indicates that more summer (fire season) trajectories 459 originate over North America (46 % at 500 hPa and 85 % at 700 hPa) than from Eastern Asia (20 % at 500 hPa 460 and 6% at 700 hPa) or from Europe and Western Asia (only 6 % at 500 hPa). The pressure of 500 hPa 461 corresponds to $\sim 5-6$ km as and is typical of mid-stratospheric circulation, while 700 hPa is closer to the 462 altitude of the Summit camp. A model intercomparison demonstrates that North America and Europe each 463 contribute 40% of the total anthropogenic BC deposited on Greenland (Shindell et al., 2008). These models only 464 investigate anthropogenic sources and explicitly state that biogenic Siberian emissions are not included in their 465 estimates. Back trajectory modeling demonstrates the lack of correlation between BC and the specific coniferous 466 fire marker vanillic acid measured in the Greenland D4 ice core. This lack may result from the majority of BC 467 arriving to Greenland between 1850 to 1950 CE having a North American anthropogenic source, and from 1951 468 CE to the present having an Asian industrial source, separate from any fire activity (McConnell et al., 2007). 469 Therefore, any analysis of Greenland BC from 1850 CE onward should not be considered a purely biomass 470 burning indicator, and the sources for BC and fire emissions may substantially differ.

471

472 4.3.2 Levoglucosan Sources

473 Back-trajectory and model analyses suggest that North American and Siberian forests are the dominant sources 474 of biomass burning aerosols. A first-order approximation of aerosol concentrations along a trajectory is function 475 of time where aerosol concentrations decrease exponentially with transport time (Fischer et al., 2007; Hansson, 476 1994). North America is likely the most important contributor due to the proximity to the NEEM location and 477 the shorter routes travelled by aerosols reaching Greenland with respect to Siberian-Eurasian forests, but 478 previous studies also demonstrate that air masses originating in Asia reach Greenland after a few days. 479 Levoglucosan and BC atmospheric lifetimes are on the order of days to less than two weeks (Fraser and 480 Lakshmanan, 2000; Hennigan et al., 2010), suggesting that these back-trajectory and model analyses include all 481 possible levoglucosan and BC source regions. Asia has generally been ignored as a biomass burning aerosol 482 source for Greenland due in part to the days required for air mass travel time compared to the aerosol 483 atmospheric lifetimes. Atmospheric aerosol scavenging and seasonal circulation changes where more air masses 484 originating from Asia pass over Greenland during the winter months (Kahl et al., 1997) limit the quantity of boreal Asian biomass burning products incorporated into the Greenland ice sheet. However, the back trajectory analyses do demonstrate that although Asia is a lesser source, it is a possible aerosol source. Back-trajectories demonstrate that although many air masses originating from Siberia do have to travel eastward to reach Greenland, others have a north-west trajectory that substantially shortens the necessary travel distance (Kahl et al., 1997).

490

491 The correspondence of the major NEEM levoglucosan peaks with periods of extreme droughts in northern 492 central Asia (Table 2) suggests that Asia may be an important fire source during major fire events while North 493 America may be a more important source for background fire activity. Boreal wildfires can generate sufficient 494 sensible heat during the combustion process to initiate deep convection and inject particles into the upper 495 troposphere and lower stratosphere resulting in longer atmospheric lifetimes and more efficient transport of 496 biomass burning aerosols (Damoah et al., 2004; Trentmann et al., 2006; Dentener et al., 2006; Hodzic et al., 497 2007). Regional droughts result in large amounts of available deadwood as fuel resulting in intense fires capable 498 of generating deep convection (van Mantgem et al., 2009; Westerling et al., 2006; Trentmann et al., 2006; 499 Hodzic et al., 2007). The correspondence between regional droughts and increased fire activity is present in 500 multiple northern and central Asian proxies (Table 2). The Ushkovsky (Kawamura et al., 2012) and Belukha 501 (Eichler et al., 2011) ice cores both contain up to multi-decadal periods of increased fire activity that are similar 502 to peaks in the NEEM ice core suggesting that these sites may receive a contribution from Siberian fire activity 503 (Fig. 3). Our work suggests that Siberia is an important source of burning signatures inferred in Arctic ice fields 504 during extreme fire events.

505

506 4.4 Climatic and Anthropogenic Influences on Decadal to Centennial Changes in Fire Activity

507 Fire frequency and intensity depend on regional climatic and environmental influences, where vegetation type, 508 temperature and precipitation are the most important factors. Vegetation distribution impacts levoglucosan 509 emission factors (the amount per kg of burnt fuel) and combustion characteristics (smoldering versus flaming 510 fires) (Simoneit et al., 1999; Engling et al., 2006). Large-scale variations in vegetation types likely do not cause 511 the observed centennial oscillations, but may affect fire signatures over millennial timescales. Instead, elevated 512 surface air temperatures and sustained drought affect fuel flammability and lead to increased global fire activity 513 over seasonal to centennial timescales (Daniau et al., 2012).

514

515 4.4.1 Temperature

516 Temperature anomalies during the past 2000 years are not globally synchronous. The regional pattern of the 517 Medieval Warm Period (MWP) results in differing times of maximum warming by region. Global temperature 518 anomalies were highest between 950 - 1250 CE (Mann et al., 2009), whereas northern hemisphere (and 519 especially Russian) temperatures were elevated between 1000 - 1300 CE (Crowley and Lowery, 2000; Hiller et 520 al., 2001) or 1000 - 1100 CE (Moberg et al., 2005). Such temperature anomalies correlate with increased fire 521 activity in paleofire reconstructions inferred from various environmental archives including the Eclipse Icefield 522 in the Yukon, Canada (1240 - 1410 CE) (Yalcin et al., 2006), Eurocore (1200 - 1350 CE) (Savarino and 523 Legrand, 1998) and GISP2 ice cores (1200 - 1600 CE) (Taylor et al., 1996), and in the HLNH > 55° GCD 524 between 1000 - 1400 CE (Marlon et al., 2008).

525

526 The Little Ice Age (LIA) is characterized by relatively cold conditions between 1580 and 1880 CE (Pages 2k, 527 2013) but varies regionally between 1400 - 1700 CE (Mann et al., 2009), 1580 - 1720 CE (Christiansen and 528 Ljungqvist, 2012) or 1350 - 1850 CE (Wanner et al., 2008). Low fire activity is observed in Eurocore (Summit, 529 Greenland) (Savarino and Legrand, 1998) from 1600 - 1850 CE and in the global NH curve (based on GCD 530 syntheses) centered around 1750 CE (Marlon et al., 2008). Comparisons of the levoglucosan profile with a high-531 latitude northern hemisphere terrestrial temperature anomaly record (Mann et al., 2008) suggests a 532 correspondence between temperature and fire activity observed in the deep NEEM ice core, except during the 533 levoglucosan maximum centered around 1600 CE (Fig. 3E). Fire activity inferred from the deep NEEM ice core is consistent with the MWP and LIA climatic conditions, with high values between the 11th and 13th century and 534 with low decadal-scale levoglucosan concentrations in the 18th century, after removing the individual spikes 535 536 attributed to mega-events.

538 4.4.2 Precipitation

539 Ice core, tree-ring proxy records and archival evidences document extensive north-central Asian droughts concurrent with the strongest centennial-scale levoglucosan concentrations during the 16th and 17th centuries 540 541 including two strong events (1593 - 1603 CE and 1617 - 1622 CE) (Fig. 2, Table 1 and 2). The Siberian 542 Belukha ice core identifies a period of exceptionally high forest-fire activity between 1600 - 1680 CE, following 543 a drought period during 1540 - 1600 CE, which is coincident with elevated NEEM levoglucosan concentrations 544 (Eichler et al., 2011). This period coincides with the Late Ming Weak Monsoon Period (1580 - 1640 CE) (Zhang 545 et al., 2008), which has been invoked as contributing to the decline of the Ming Dynasty. Two central and 546 northern Asian droughts (1586 - 1589 CE and 1638 - 1641 CE) were the most extreme of the past 5 centuries 547 (Shen et al., 2007), yet occurred during relatively cold periods (Li et al., 2009; Cook et al., 2010; Yang et al., 548 2002; Tan et al., 2003) and covered much of central Asia (Fang et al., 2010). The 1586 - 1589 CE drought 549 resulted in the desiccation of Lake Taihu (the third largest freshwater lake in China) and the even more spatially 550 extensive 1638 - 1641 CE drought event resulted in no outflow of the Yellow River (Shen et al., 2007). 551 Levoglucosan and BC concentrations from the NEEM ice core contain outlying peaks in 1702 - 1706 CE and 552 1787 - 1791 CE, during a period of low centennial-scale fire activity. Paleoclimate reconstructions report 553 extensive drought conditions in China and Mongolia throughout these periods (Table 2). A high-resolution 554 determination of continental dust in the Dve-3 Greenland ice core Sr. Nd and Hf isotopic composition from 1786 555 - 1793 CE determine that the majority of the samples have an Asian origin (Lupker et al., 2010). A network of 556 tree-ring chronologies and historical documents (Grove, 1998; Cook et al., 2010) and the Dasuopu ice core 557 (Thompson et al., 2000) demonstrate that the 1790 - 1796 CE drought was the most intense arid period of the last 558 millennium.

559

560 Major droughts in Asia are associated with summer monsoon failures, and their multi-annual nature suggests that 561 the droughts may have continued to occur through the winter (Table 2). The Siberian High is a seasonal high-562 pressure system from approximately 70° to 120° E and 45° to 60° N that is the dominant control on northern 563 Asian winter and spring climate (Gong and Ho, 2002; Panagiotopoulos et al., 2005; Sorrel et al., 2007). A 564 stronger winter Siberian High generally results in decreased precipitation and temperatures in the area covered 565 by the high pressure system (Panagiotopoulos et al., 2005; Sorrel et al., 2007; Chen et al., 2010). An enhanced 566 Siberian High during 1330 - 1750 CE is consistent with Aral Sea dust records demonstrating decreased 567 temperatures and a regional drought including decreased Mediterranean precipitation arriving to western Central 568 Asia (Huang et al., 2011; Sorrel et al., 2007) and with increased $nssK^+$ in the GISP2 ice core (Meeker and 569 Mayewski, 2002). Summer Asian monsoon activity correlates with solar variability (Zhang et al., 2008). The 570 northern and central Asian megadroughts coincide with periods of decreased sunspot activity (Weng, 571 2012). Low sunspot activity may increase the strength of the Siberian High (Weng, 2012) and therefore result in 572 decreased precipitation. We suggest that Siberian fire activity is closely related to precipitation changes, where 573 extreme biomass burning peaks are synchronous with precipitation anomalies, independently supporting GISS 574 GCM model results (Pechony and Shindell, 2010).

575

576 North American droughts may have also affected fire activity archived in the NEEM ice cores. Elevated aridity 577 and megadroughts during the MWP (900 - 1300 CE), coincident with levoglucosan peaks, affected large areas of 578 North America and were more prolonged than any 20th century droughts (Cook et al., 2004; Stahle et al., 2000). Dry conditions during the 16th century were also inferred in the Canadian Prairie Provinces (St. George et al., 579 580 2009) and in western North America (Stahle et al., 2000). In particular, tree rings from southern Manitoba, 581 Canada, record the lowest growth in 1595 CE (St. George et al., 2009), when a strong fire event is recorded by 582 levoglucosan and ammonium in a 2.20 m NEEM sample dated 1593 - 1603 CE, and by a BC spike in the 583 NEEM-2011-S1 in 1594.5 CE. Levoglucosan spikes in 1704 and 1789 CE are also synchronous with drought 584 periods in the North America, inferred by tree-ring analysis. 1790s was the driest decade in Southwestern 585 Canada (Sauchyn and Skinner, 2001; Sauchyn and Beaudoin, 1998; Wolfe et al., 2001), as in Southern Alberta 586 (Case and Macdonald, 1995). However, St. George et al. (2009) indicate that tree growth was low in 1790s due 587 to dry conditions across the Canadian prairies. The same authors observed a "prolonged absence of wet years

around 1700" on the eastern side of the Canadian prairies, where this "notable" dry event lasted between 1688
and 1715 CE when tree growth was generally below the mean (St. George et al., 2009).

590

591 4.4.3 Human impact on boreal fire activity

592 Climate may be more important than anthropogenic activity in influencing high latitude boreal fires in areas 593 responsible for levoglucosan emissions reaching the Greenland ice sheet even after 1750 CE (Marlon et al., 594 2008). Linkages between humans and fire regimes are intricate, where increasing population does not necessarily 595 result in enhanced fire activity (Archibald et al., 2009; Prentice, 2010). Marlon et al. (2008) argue that 596 population growth and land-cover conversion rates, along with increases in global temperatures, are the main factors for the sharp increase in global biomass burning from 1750 CE to the late 19th century. However, Marlon 597 598 et al. (2008) and Prentice (2010) assert that the expansion of agriculture and fire suppression since the early 599 twentieth century resulted in decreased global fire activity, where current biomass burning rates may be lower 600 than over the past 2000 years. These results are supported by South Pole ice core carbon monoxide isotopic data 601 that also record a downturn in global fire activity from the late 1800s to present (Wang et al., 2010). Pyrogenic 602 methane isotopic data (Ferretti et al., 2005; Mischler et al., 2009), which show relatively high values in the first 603 millennium CE, do not support the prominent maximum of an anthropogenic peak at \sim 1900 CE in the HLNH >604 55° GCD curve (Marlon et al., 2008) and inferred from CO isotopic measurements (Wang et al., 2010), and 605 instead demonstrate that pyrogenic methane sources are still increasing with higher rates than during the last 2 606 millennia. Emissions modeling does not agree with methane isotopes data, and suggests that higher-than-present 607 levels of pre-industrial biomass burning are implausible (van der Werf et al., 2013). Levoglucosan 608 concentrations are relatively high during the past century, but other higher multi-decadal maxima are present in 609 our dataset (Fig. S5). The number of post-1950 CE samples in our data set is limited, and so the levoglucosan analyses in the past decades are not sufficient to clearly assess the 20th century downturn in fire activity. 610 611 Levoglucosan data do not show the evident anthropogenic peak started from 1750 CE as inferred from the GCD synthesis, as the NEEM levoglucosan profile contains low concentrations until the beginning of the 20th century, 612 613 followed by a modest concentration increase. No significant increase in fire activity during the past 300 yr is 614 even observed on the Altai region, Southern Siberia (Eichler et al., 2011).

615

The differences between the GCD, δ^{13} C of CH₄, and levoglucosan in NEEM may be related to differing 616 617 initiation times of extensive industrial and agricultural activity in boreal forest source regions. As previously 618 discussed, Russian and Canadian boreal forests are likely the principal sources of levoglucosan reaching the 619 Greenland ice sheet. Population growth and major anthropogenic land clearing in these regions only significantly 620 increased during the past century (Kawamura et al., 2012). The former Soviet Union experienced the highest 621 forest clearing rates and eastward cropland expansion into southern Siberia between 1940 and 1960 CE, while 622 the high Canadian land clearing rates occurred in the prairie provinces between 1900 and 1920 CE (Ramankutty 623 and Foley, 1999). NEEM levoglucosan peaks during the same time interval as these land-clearing estimates. 624 Canadian ice cores also show peak biomass burning from 1920 - 1940 CE (Yalcin et al., 2006) and 1930 - 1980 625 CE (Whitlow et al., 1994).

626

The dense GCD sampling in North America and Europe may affect the high latitude Northern Hemisphere charcoal synthesis. The conclusion that land-use and fire management practices decreased global fire activity since the early twenty century (Marlon et al., 2008) may be more appropriate for temperate North America and Europe than for boreal regions. NEEM levoglucosan concentrations may instead reflect the boreal source region land-clearance that was occurring even when anthropogenic land use and fire suppression were dominant in other parts of the Northern Hemisphere.

634 5 Conclusion

635 Levoglucosan, NH₄⁺ and BC analyses in the NEEM ice cores provide a specific record of past biomass burning. 636 Each biomass burning marker has a set of intrinsic strengths and limitations, and so a combination of fire proxies 637 results in a more robust reconstruction. The NEEM records and connections with back trajectories and other 638 paleoclimate studies suggest North American/Canadian fires are the main sources of pyrogenic aerosols 639 transported to the site in particular during the preindustrial period. However, Siberian forests may be an essential 640 aspect of boreal fire reconstructions that have not vet been appropriately evaluated. Temperature may be the 641 controlling factor of boreal fire activity on centennial time scales. On multi-decadal or shorter timescales, however, boreal fires are mainly influenced by precipitation. NEEM levoglucosan, NH₄⁺ and BC concentrations 642 643 suggest the major drought centered on 1640 CE may have been more extensive than inferred from local 644 paleoclimate reconstructions, and that this event dominates boreal fire activity over the past 2000 years.

645

646 Our results demonstrate the greatest amount of decadal-scale fire activity during the mid-1600s. We conclude 647 that the 1500 - 1700 CE maximum in fire activity is due to increased boreal forest fires, caused by extensive dry 648 conditions in the Asian region. Fires are concurrent with known extensive droughts and monsoon failures, and 649 levoglucosan concentrations are greater than during the last 150 years when anthropogenic land-clearing rates 650 were the highest in history. This evidence suggests that climate variability has influenced boreal forest fires more 651 than anthropogenic activity over the past millennia in the boreal regions that supply biomass burning related 652 species to Greenland. However, climate change and anthropogenic activity may increase future boreal fire 653 activity, and have the potential to exceed the fire activity during the mid-1600s. Warmer, drier summers and 654 increased deadwood availability due to past fire suppression, as well as insect outbreaks (Kurz et al., 2008; 655 Wolken et al., 2011), and increased tree mortality from drought (van Mantgem et al., 2009) may amplify current 656 and future fires. Increasing forest mortality in a warming climate (Anderegg et al., 2013) results in greater fuel 657 availability with the potential to intensify future boreal fire activity.

6 Acknowledgments

660 NEEM is directed and organized by the Center of Ice and Climate at the Niels Bohr Institute and US NSF, 661 Office of Polar Programs. The research leading to these results has received funding from the European Union's 662 Seventh Framework programme (FP7/2007-2013) under grant agreement no. 243908, "Past4Future. Climate 663 change - Learning from the past climate", and is Past4Future contribution no. 70. The research leading to these 664 results has received funding from the European Union's Seventh Framework programme ("Ideas" Specific 665 Programme, ERC Advanced Grant) under grant agreement no 267696 "EARLYhumanIMPACT". This is 666 EarlyHumanImpact contribution no. 10. US NSF grant 0909541 supported collection and analysis of the NEEM-667 2011-S1 core. We acknowledge the substantial efforts of the NEEM logistics, drilling, and science trench teams 668 for their substantial efforts during the collection of the NEEM-2011-S1 core, as well as the entire DRI ice core 669 analytical team for their efforts in analyzing the core. Financial support of the Swiss National Science 670 Foundation is acknowledged (Simon Schupbach). JRM was supported by a United States National Science 671 Foundation Postdoctoral Fellowship (EAR-0948288). We thank PAGES (Past Global Changes) for supporting 672 the paleofire studies development. We also acknowledge Elga (High Wycombe, U.K.) for providing ultrapure 673 water. We thank A. Eichler for the use of their data extracted from (Eichler et al., 2011), and O. Pechony and D. 674 Shindell for the use of their data extracted from (Pechony and Shindell, 2010). We also thank Thomas Blunier 675 and Jerome Chappellaz for the use of their high-resolution NEEM methane data.

677 References

- Anderegg, W. R. L., Kane, J. M., and Anderegg, L. D. L.: Consequences of widespread tree Mortality triggered by drought and temperature stress, Nat. Clim. Chang., 3, 30-36, 2013.
- Andersen, K. K., Ditlevsen, P. D., Rasmussen, S. O., Clausen, H. B., Vinther, B. M., Johnsen, S. J., and Steffensen, J. P.:
 Retrieving a common accumulation record from Greenland ice cores for the past 1800 years, J. Geophys. Res.-Atmos., 111, D15106, doi:10.1029/2005jd006765, 2006.
- Andreev, A. A., Pierau, R., Kalugin, I. A., Daryin, A. V., Smolyaninova, L. G., and Diekmann, B.: Environmental changes
 in the northern Altai during the last millennium documented in Lake Teletskoye pollen record, Quat. Res., 67, 394-399,
 10.1016/j.yqres.2006.11.004, 2007.
- Archibald, S., Roy, D. P., van Wilgen, B. W., and Scholes, R. J.: What limits fire? An examination of drivers of burnt area
 in Southern Africa, Glob. Change Biol., 15, 613-630, 10.1111/j.1365-2486.2008.01754.x, 2009.
- Banta, J. R., McConnell, J. R., Edwards, R., and Engelbrecht, J. P.: Delineation of carbonate dust, aluminous dust, and sea
 salt deposition in a Greenland glaciochemical array using positive matrix factorization, Geochem. Geophys. Geosyst., 9,
 Q07013, 10.1029/2007gc001908, 2008.
- Bauer, S. E., Bausch, A., Nazarenko, L., Tsigaridis, K., Xu, B. Q., Edwards, R., Bisiaux, M., and McConnell, J.: Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100, J. Geophys. Res.-Atmos., 118, 7948-7961, 10.1002/jgrd.50612, 2013.
- Blunier, T., Spahni, R., Barnola, J. M., Chappellaz, J., Loulergue, L., and Schwander, J.: Synchronization of ice core records via atmospheric gases, Clim. Past., 3, 325-330, 2007.
- Bory, A. J. M., Biscaye, P. E., Svensson, A., and Grousset, F. E.: Seasonal variability in the origin of recent atmospheric
 mineral dust at NorthGRIP, Greenland, Earth Planet. Sci. Lett., 196, 123-134, 10.1016/s0012-821x(01)00609-4, 2002.
- Bory, A. J. M., Biscaye, P. E., Piotrowski, A. M., and Steffensen, J. P.: Regional variability of ice core dust composition and provenance in Greenland, Geochem. Geophys. Geosyst., 4, 1107, 10.1029/2003gc000627, 2003.
- Bowman, D., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D'Antonio, C. M., DeFries, R. S.,
 Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A.,
 Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., van der Werf, G. R., and Pyne, S. J.: Fire in the Earth System,
 Science, 324, 481-484, 10.1126/science.1163886, 2009.
- Brunelle, A., Whitlock, C., Bartlein, P., and Kipfmueller, K.: Holocene fire and vegetation along environmental gradients in the Northern Rocky Mountains, Quat. Sci. Rev., 24, 2281-2300, 10.1016/j.quascirev.2005.11.010, 2005.
- 707 Canadian Forest Service: The State of Canada's Forests 2004-2005: The boreal forest, Ottawa, 2005.
- Case, R. A., and Macdonald, G. M.: A DENDROCLIMATIC RECONSTRUCTION OF ANNUAL PRECIPITATION ON
 THE WESTERN CANADIAN PRAIRIES SINCE AD 1505 FROM PINUS-FLEXILIS JAMES, Quat. Res., 44, 267 275, 10.1006/qres.1995.1071, 1995.
- Chen, F., Yuan, Y. J., Wen, W. S., Yu, S. L., Fan, Z., Zhang, R. B., Zhang, T. W., and Shang, H. M.: Tree-ring-based reconstruction of precipitation in the Changling Mountains, China, since A.D.1691, Int. J. Biometeorol., 56, 765-774, 10.1007/s00484-011-0431-8, 2012.
- Chen, H. F., Song, S. R., Lee, T. Q., Lowemark, L., Chi, Z. Q., Wang, Y., and Hong, E.: A multiproxy lake record from Inner Mongolia displays a late Holocene teleconnection between Central Asian and North Atlantic climates, Quat. Int., 227, 170-182, 10.1016/j.quaint.2010.03.005, 2010.
- Christiansen, B., and Ljungqvist, F. C.: The extra-tropical Northern Hemisphere temperature in the last two millennia:
 reconstructions of low-frequency variability, Clim. Past., 8, 765-786, 10.5194/cp-8-765-2012, 2012.
- Chu, G., Sun, Q., Wang, X., and Sun, J.: Snow anomaly events from historical documents in eastern China during the past two millennia and implication for low-frequency variability of AO/NAO and PDO, Geophys. Res. Lett., 35, L14806, 10.1029/2008gl034475, 2008.
- Conard, S. G., Sukhinin, A. I., Stocks, B. J., Cahoon, D. R., Davidenko, E. P., and Ivanova, G. A.: Determining effects of
 area burned and fire severity on carbon cycling and emissions in Siberia, Clim. Change, 55, 197-211,
 10.1023/a:1020207710195, 2002.
- Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A. F., and Krebs, P.: Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation, Quat. Sci. Rev., 28, 555-576, 10.1016/j.quascirev.2008.11.005, 2009.
- Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M., and Stahle, D. W.: Long-term aridity changes in the western
 United States, Science, 306, 1015-1018, 10.1126/science.1102586, 2004.

- Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D'Arrigo, R. D., Jacoby, G. C., and Wright, W. E.: Asian Monsoon Failure
 and Megadrought During the Last Millennium, Science, 328, 486-489, 10.1126/science.1185188, 2010.
- 732 Crowley, T. J., and Lowery, T. S.: How warm was the medieval warm period?, Ambio, 29, 51-54, 10.1639/0044-733 7447(2000)029[0051:hwwtmw]2.0.co;2, 2000.
- Damoah, R., Spichtinger, N., Forster, C., James, P., Mattis, I., Wandinger, U., Beirle, S., Wagner, T., and Stohl, A.: Around the world in 17 days hemispheric-scale transport of forest fire smoke from Russia in May 2003, Atmos. Chem. Phys., 4, 1311-1321, 2004.
- Daniau, A. L., Harrison, S. P., and Bartlein, P. J.: Fire regimes during the Last Glacial, Quat. Sci. Rev., 29, 2918-2930, 10.1016/j.quascirev.2009.11.008, 2010.
- 739 Daniau, A. L., Bartlein, P. J., Harrison, S. P., Prentice, I. C., Brewer, S., Friedlingstein, P., Harrison-Prentice, T. I., Inoue, J., 740 Izumi, K., Marlon, J. R., Mooney, S., Power, M. J., Stevenson, J., Tinner, W., Andrič, M., Atanassova, J., Behling, H., 741 Black, M., Blarquez, O., Brown, K. J., Carcaillet, C., Colhoun, E. A., Colombaroli, D., Davis, B. A. S., D'Costa, D., 742 Dodson, J., Dupont, L., Eshetu, Z., Gavin, D. G., Genries, A., Haberle, S., Hallett, D. J., Hope, G., Horn, S. P., Kassa, T. 743 G., Katamura, F., Kennedy, L. M., Kershaw, P., Krivonogov, S., Long, C., Magri, D., Marinova, E., McKenzie, G. M., 744 Moreno, P. I., Moss, P., Neumann, F. H., Norström, E., Paitre, C., Rius, D., Roberts, N., Robinson, G. S., Sasaki, N., 745 Scott, L., Takahara, H., Terwilliger, V., Thevenon, F., Turner, R., Valsecchi, V. G., Vannière, B., Walsh, M., Williams, 746 N., and Zhang, Y.: Predictability of biomass burning in response to climate changes, Glob. Biogeochem. Cycle, 26, 747 GB4007, 10.1029/2011GB004249, 2012.
- Davi, N., Jacoby, G., Fang, K., Li, J., D'Arrigo, R., Baatarbileg, N., and Robinson, D.: Reconstructing drought variability for Mongolia based on a large-scale tree ring network: 1520-1993, J. Geophys. Res.-Atmos., 115, D22103, 10.1029/2010jd013907, 2010.
- de Groot, W. J., Cantin, A. S., Flannigan, M. D., Soja, A. J., Gowman, L. M., and Newbery, A.: A comparison of Canadian and Russian boreal forest fire regimes, For. Ecol. Manage., 294, 23-34, 10.1016/j.foreco.2012.07.033, 2013.
- Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A.,
 Marelli, L., Penner, J. E., Putaud, J. P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of
 primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys.,
 6, 4321-4344, 2006.
- 757 Diamond, J. M.: Collapse: How Societies Choose to Fail Or Succeed, Viking, New York, 2005.
- Dibb, J. E., Talbot, R. W., Whitlow, S. I., Shipham, M. C., Winterle, J., McConnell, J., and Bales, R.: Biomass burning signatures in the atmosphere and snow at Summit, Greenland: An event on 5 August 1994, Atmos. Environ., 30, 553-561, 1996.
- Dronin, N. M., and Bellinger, E. G.: Climate Dependence and Food Problems in Russia, 1900-1990: The Interaction of
 Climate and Agricultural Policy and Their Effect on Food Problems, Central European University Press, Budepest,
 Hungary, 2005.
- Eichler, A., Tinner, W., Brusch, S., Olivier, S., Papina, T., and Schwikowski, M.: An ice-core based history of Siberian forest fires since AD 1250, Quat. Sci. Rev., 30, 1027-1034, 10.1016/j.quascirev.2011.02.007, 2011.
- Find Engling, G., Carrico, C. M., Kreldenweis, S. M., Collett, J. L., Day, D. E., Malm, W. C., Lincoln, E., Hao, W. M., Iinuma,
 Y., and Herrmann, H.: Determination of levoglucosan in biomass combustion aerosol by high-performance anionexchange chromatography with pulsed amperometric detection, Atmos. Environ., 40, S299-S311,
 10.1016/j.atmosenv.2005.12.069, 2006.
- Fang, K. Y., Davi, N., Gou, X. H., Chen, F. H., Cook, E., Li, J. B., and D'Arrigo, R.: Spatial drought reconstructions for central High Asia based on tree rings, Clim. Dyn., 35, 941-951, 10.1007/s00382-009-0739-9, 2010.
- Fang, K. Y., Gou, X., Chen, F., Frank, D., Liu, C., Li, J., and Kazmer, M.: Precipitation variability during the past 400 years
 in the Xiaolong Mountain (central China) inferred from tree rings, Clim. Dyn., 39, 1697-1707, 10.1007/s00382-0121371-7, 2012.
- FAO: Fire management: Global assessment 2006, Food and Agriculture Organization of the United Nations, Rome, 2007.
- Feng, S., Hu, Q., and Oglesby, R. J.: Influence of Atlantic sea surface temperatures on persistent drought in North America, Clim. Dyn., 37, 569-586, 10.1007/s00382-010-0835-x, 2011.
- Ferretti, D. F., Miller, J. B., White, J. W. C., Etheridge, D. M., Lassey, K. R., Lowe, D. C., Meure, C. M. M., Dreier, M. F.,
 Trudinger, C. M., van Ommen, T. D., and Langenfelds, R. L.: Unexpected changes to the global methane budget over
 the past 2000 years, Science, 309, 1714-1717, 10.1126/science.1115193, 2005.
- Fischer, H., Siggaard-Andersen, M. L., Ruth, U., Rothlisberger, R., and Wolff, E.: Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: Sources, transport, and deposition, Rev. Geophys., 45, RG1002, 10.1029/2005rg000192, 2007.
- Fischer, H., Behrens, M., Bock, M., Richter, U., Schmitt, J., Loulergue, L., Chappellaz, J., Spahni, R., Blunier, T.,
 Leuenberger, M., and Stocker, T. F.: Changing boreal methane sources and constant biomass burning during the last
 termination, Nature, 452, 864-867, 10.1038/nature06825, 2008.

Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate forcing and response from black
 carbon in snow, J. Geophys. Res.-Atmos., 112, 10.1029/2006jd008003, 2007.

Fraser, M. P., and Lakshmanan, K.: Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols, Environ. Sci. Technol., 34, 4560-4564, 10.1021/es9912291, 2000.

- Fuhrer, K., Neftel, A., Anklin, M., and Maggi, V.: continuous measurements of hydrogen-peroxide, formaldehyde, calcium
 and ammonium concentrations along the new grip ice core from summit, central greenland, Atmospheric Environment
 Part a-General Topics, 27, 1873-1880, 10.1016/0960-1686(93)90292-7, 1993.
- Fuhrer, K., Neftel, A., Anklin, M., Staffelbach, T., and Legrand, M.: High-resolution ammonium ice core record covering a complete glacial-interglacial cycle, J. Geophys. Res.-Atmos., 101, 4147-4164, 1996.
- Fuhrer, K., and Legrand, M.: Continental biogenic species in the Greenland Ice Core Project ice core: Tracing back the
 biomass history of the North American continent, J. Geophys. Res.-Oceans, 102, 26735-26745, 1997.
- Gambaro, A., Zangrando, R., Gabrielli, P., Barbante, C., and Cescon, P.: Direct determination of levoglucosan at the picogram per milliliter level in Antarctic ice by high-performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry, Anal. Chem., 80, 1649-1655, 10.1021/ac701655x, 2008.
- Gao, S., Hegg, D. A., Hobbs, P. V., Kirchstetter, T. W., Magi, B. I., and Sadilek, M.: Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution, J. Geophys. Res.-Atmos., 108, 8491, 10.1029/2002jd002324, 2003.
- B04 Generoso, S., Bey, I., Attie, J. L., and Breon, F. M.: A satellite- and model-based assessment of the 2003 Russian fires:
 B05 Impact on the Arctic region, J. Geophys. Res.-Atmos., 112, 10.1029/2006jd008344, 2007.
- 806 Goldberg, E. D.: Black carbon in the environment: properties and distribution, J. Wiley, New York, 1985.
- Golubev, G., and Dronin, N. M.: Geography of Droughts and Food Problems in Russia (1900-2000). Report of the
 International Project on Global Environmental Change and Its Threat to Food and Water Security in Russia. Department
 of Geography, Moscow State University, Moscow, Russia, 2004.
- Gong, D. Y., and Ho, C. H.: The Siberian High and climate change over middle to high latitude Asia, Theor. Appl.
 Climatol., 72, 1-9, 10.1007/s007040200008, 2002.
- 812 Grove, R. H.: Global impact of the 1789-93 El Nino, Nature, 393, 318-319, 10.1038/30636, 1998.
- Hallett, D. J., Lepofsky, D. S., Mathewes, R. W., and Lertzman, K. P.: 11 000 years of fire history and climate in the mountain hemlock rain forests of southwestern British Columbia based on sedimentary charcoal, Can. J. For. Res.-Rev.
 Can. Rech. For., 33, 292-312, 10.1139/x02-177, 2003.
- Hansen, J., and Nazarenko, L.: Soot climate forcing via snow and ice albedos, Proc. Natl. Acad. Sci. U. S. A., 101, 423-428, 10.1073/pnas.2237157100, 2004.
- Hansson, M. E.: The renland ice core a Northern-Hemisphere record of aerosol composition over 120,000 years, Tellus
 Ser. B-Chem. Phys. Meteorol., 46, 390-418, 10.1034/j.1600-0889.1994.t01-4-00005.x, 1994.
- Hegg, D. A., Warren, S. G., Grenfell, T. C., Doherty, S. J., Larson, T. V., and Clarke, A. D.: Source Attribution of Black
 Carbon in Arctic Snow, Environ. Sci. Technol., 43, 4016-4021, 10.1021/es803623f, 2009.
- Hennigan, C. J., Sullivan, A. P., Collett, J. L., and Robinson, A. L.: Levoglucosan stability in biomass burning particles
 exposed to hydroxyl radicals, Geophys. Res. Lett., 37, L09806, 10.1029/2010gl043088, 2010.
- Herron, M. M., and Langway Jr, C. C.: Firn densification: an empirical model, J. Glaciol., 25, 373-385, 1980.
- Hiller, A., Boettger, T., and Kremenetski, C.: Mediaeval climatic warming recorded by radiocarbon dated alpine tree-line
 shift on the Kola Peninsula, Russia, Holocene, 11, 491-497, 10.1191/095968301678302931, 2001.
- Hodzic, A., Madronich, S., Bohn, B., Massie, S., Menut, L., and Wiedinmyer, C.: Wildfire particulate matter in Europe during summer 2003: meso-scale modeling of smoke emissions, transport and radiative effects, Atmos. Chem. Phys., 7, 4043-4064, 2007.
- Hoffmann, D., Tilgner, A., Iinuma, Y., and Herrmann, H.: Atmospheric Stability of Levoglucosan: A Detailed Laboratory and Modeling Study, Environ. Sci. Technol., 44, 694-699, 10.1021/es902476f, 2010.
- Holmes, B. J., and Petrucci, G. A.: Water-soluble oligomer formation from acid-catalyzed reactions of levoglucosan in proxies of atmospheric aqueous aerosols, Environ. Sci. Technol., 40, 4983-4989, 10.1021/es060646c, 2006.
- Holmes, B. J., and Petrucci, G. A.: Oligomerization of levoglucosan by Fenton chemistry in proxies of biomass burning
 aerosols, J. Atmos. Chem., 58, 151-166, 10.1007/s10874-007-9084-8, 2007.
- Huang, X. T., Oberhansli, H., von Suchodoletz, H., and Sorrel, P.: Dust deposition in the Aral Sea: implications for changes
 in atmospheric circulation in central Asia during the past 2000 years, Quat. Sci. Rev., 30, 3661-3674,
 10.1016/j.quascirev.2011.09.011, 2011.
- 839 Iinuma, Y., Bruggemann, E., Gnauk, T., Muller, K., Andreae, M. O., Helas, G., Parmar, R., and Herrmann, H.: Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat, J. Geophys. Res.-Atmos., 112, D08209, 10.1029/2006jd007120, 2007.

- IPCC: Climate Change 2013: The Scientific Basis. Contribution of Working Group I to the Fifth Assessment Report of the
 Intergovern- mental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J.
 Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)], 2013.
- Jacobson, M. Z.: The short-term cooling but long-term global warming due to biomass burning, J. Clim., 17, 2909-2926,
 10.1175/1520-0442(2004)017<2909:tscblg>2.0.co;2, 2004.
- Jaffrezo, J. L., Davidson, C. I., Kuhns, H. D., Bergin, M. H., Hillamo, R., Maenhaut, W., Kahl, J. W., and Harris, J. M.:
 Biomass burning signatures in the atmosphere of central Greenland, J. Geophys. Res.-Atmos., 103, 31067-31078, 1998.
- Kahl, J. D. W., Martinez, D. A., Kuhns, H., Davidson, C. I., Jaffrezo, J. L., and Harris, J. M.: Air mass trajectories to
 Summit, Greenland: A 44-year climatology and some episodic events, J. Geophys. Res.-Oceans, 102, 26861-26875, 10.1029/97jc00296, 1997.
- Kaplan, J. O., Krumhardt, K. M., Ellis, E. C., Ruddiman, W. F., Lemmen, C., and Goldewijk, K. K.: Holocene carbon emissions as a result of anthropogenic land cover change, Holocene, 21, 775-791, 10.1177/0959683610386983, 2011.
- Kaufmann, P. R., Federer, U., Hutterli, M. A., Bigler, M., Schupbach, S., Ruth, U., Schmitt, J., and Stocker, T. F.: An Improved Continuous Flow Analysis System for High-Resolution Field Measurements on Ice Cores, Environ. Sci. Technol., 42, 8044-8050, 10.1021/es8007722, 2008.
- Kawamura, K., Yokoyama, K., Fujii, Y., and Watanabe, O.: A Greenland ice core record of low molecular weight dicarboxylic acids, ketocarboxylic acids, and alpha-dicarbonyls: A trend from Little Ice Age to the present (1540 to 1989 AD), J. Geophys. Res.-Atmos., 106, 1331-1345, 2001.
- Kawamura, K., Izawa, Y., Mochida, M., and Shiraiwa, T.: Ice core records of biomass burning tracers (levoglucosan and dehydroabietic, vanillic and p-hydroxybenzoic acids) and total organic carbon for past 300 years in the Kamchatka Peninsula, Northeast Asia, Geochim. Cosmochim. Acta, 99, 317 329, 10.1016/j.gca.2012.08.006, 2012.
- Kehrwald, N., Zangrando, R., Gabrielli, P., Jaffrezo, J. L., Boutron, C., Barbante, C., and Gambaro, A.: Levoglucosan as a
 specific marker of fire events in Greenland snow, Tellus Ser. B-Chem. Phys. Meteorol., 64, 18196, 10.3402/tellusb.v64i0.18196, 2012.
- Kuo, L. J., Herbert, B. E., and Louchouarn, P.: Can levoglucosan be used to characterize and quantify char/charcoal black
 carbon in environmental media?, Org. Geochem., 39, 1466-1478, 10.1016/j.orggeochem.2008.04.026, 2008.
- Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C., and Neilson, E. T.: Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncerain, Proc. Natl. Acad. Sci. U. S. A., 105, 1551-1555, 10.1073/pnas.0708133105, 2008.
- Lavoue, D., Liousse, C., Cachier, H., Stocks, B. J., and Goldammer, J. G.: Modeling of carbonaceous particles emitted by
 boreal and temperate wildfires at northern latitudes, J. Geophys. Res.-Atmos., 105, 26871-26890,
 10.1029/2000jd900180, 2000.
- Legrand, M., Deangelis, M., Staffelbach, T., Neftel, A., and Stauffer, B.: Large perturbation of ammonium and organic acids content in the Summit-Greenland ice core Fingerprint from forest-fires, Geophys. Res. Lett., 19, 473-475, 1992.
- Legrand, M., Angelis, M., Cachier, H., and Gaudichet, A.: Boreal Biomass Burning Over the Last 80 Years Recorded in a
 Summit-Greenland Ice Core, in: Ice Core Studies of Global Biogeochemical Cycles, edited by: Delmas, R., NATO ASI
 Series, Springer Berlin Heidelberg, 347-360, 1995.
- Legrand, M., and DeAngelis, M.: Light carboxylic acids in Greenland ice: A record of past forest fires and vegetation
 emissions from the boreal zone, J. Geophys. Res.-Atmos., 101, 4129-4145, 1996.
- Li, J. B., Cook, E. R., Chen, F. H., Davi, N., D'Arrigo, R., Gou, X. H., Wright, W. E., Fang, K. Y., Jin, L. Y., Shi, J. F., and
 Yang, T.: Summer monsoon moisture variability over China and Mongolia during the past four centuries, Geophys. Res.
 Lett., 36, L22705, 10.1029/2009gl041162, 2009.
- Liu, Y., Shi, J. F., Shishov, V., Vaganov, E., Yang, Y. K., Cai, Q. F., Sun, J. Y., Wang, L., and Djanseitov, I.:
 Reconstruction of May-July precipitation in the north Helan Mountain, Inner Mongolia since AD 1726 from tree-ring late-wood widths, Chin. Sci. Bull., 49, 405-409, 10.1007/BF02900325, 2004.
- Liu, Y., Tian, H., Song, H. M., and Liang, J. M.: Tree ring precipitation reconstruction in the Chifeng-Weichang region,
 China, and East Asian summer monsoon variation since AD 1777, J. Geophys. Res.-Atmos., 115, D06103,
 10.1029/2009jd012330, 2010.
- Lupker, M., Aciego, S. M., Bourdon, B., Schwander, J., and Stocker, T. F.: Isotopic tracing (Sr, Nd, U and Hf) of continental and marine aerosols in an 18th century section of the Dye-3 ice core (Greenland), Earth Planet. Sci. Lett., 295, 277-286, 10.1016/j.epsl.2010.04.010, 2010.
- Mann, M. E., Zhang, Z. H., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., and Ni, F. B.: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia, Proc. Natl. Acad. Sci. U. S. A., 105, 13252-13257, 10.1073/pnas.0805721105, 2008.
- Mann, M. E., Zhang, Z. H., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., and Ni,
 F. B.: Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly, Science, 326,
 1256, 1200, 10, 1126 (aritime at 177202, 2000)

- Marlon, J. R., Bartlein, P. J., Carcaillet, C., Gavin, D. G., Harrison, S. P., Higuera, P. E., Joos, F., Power, M. J., and Prentice, I. C.: Climate and human influences on global biomass burning over the past two millennia, Nat. Geosci., 1, 697-702, 10.1038/ngeo313, 2008.
- Marlon, J. R., Bartlein, P. J., Gavin, D. G., Long, C. J., Anderson, R. S., Briles, C. E., Brown, K. J., Colombaroli, D.,
 Hallett, D. J., Power, M. J., Scharf, E. A., and Walsh, M. K.: Long-term perspective on wildfires in the western USA,
 Proc. Natl. Acad. Sci. U. S. A., 109, E535-E543, 10.1073/pnas.1112839109, 2012.
- Marlon, J. R., Bartlein, P. J., Daniau, A. L., Harrison, S. P., Maezumi, S. Y., Power, M. J., Tinner, W., and Vanniere, B.:
 Global biomass burning: a synthesis and review of Holocene paleofire records and their controls, Quat. Sci. Rev., 65, 525, 10.1016/j.quascirev.2012.11.029, 2013.
- 908 Masiello, C. A.: New directions in black carbon organic geochemistry, Mar. Chem., 92, 201-213, 10.1016/j.marchem.2004.06.043, 2004.
- 910 McConnell, J. R.: Continuous ice-core chemical analyses using inductively Coupled Plasma Mass Spectrometry, 911 Environmental Science & Technology, 36, 7-11, 10.1021/es011088z, 2002.
- McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E. S., Banta, J. R., Pasteris, D. R.,
 Carter, M. M., and Kahl, J. D. W.: 20th-century industrial black carbon emissions altered arctic climate forcing, Science,
 317, 1381-1384, 10.1126/science.1144856, 2007.
- McConnell, J. R., and Edwards, R.: Coal burning leaves toxic heavy metal legacy in the Arctic, Proc. Natl. Acad. Sci. U. S.
 A., 105, 12140-12144, 10.1073/pnas.0803564105, 2008.
- 917 McConnell, J. R.: New Directions: Historical black carbon and other ice core aerosol records in the Arctic for GCM 918 evaluation, Atmos. Environ., 44, 2665-2666, 10.1016/j.atmosenv.2010.04.004, 2010.
- McWethy, D. B., Whitlock, C., Wilmshurst, J. M., McGlone, M. S., and Li, X.: Rapid deforestation of South Islands, New Zealands, by early Polynesian fires, Holocene, 19, 883-897, 10.1177/0959683609336563, 2009.
- Meeker, L. D., and Mayewski, P. A.: A 1400-year high-resolution record of atmospheric circulation over the North Atlantic
 and Asia, Holocene, 12, 257-266, 10.1191/0959683602hl542ft, 2002.
- Melott, A. L., Thomas, B. C., Dreschhoff, G., and Johnson, C. K.: Cometary airbursts and atmospheric chemistry: Tunguska and a candidate Younger Dryas event, Geology, 38, 355-358, 10.1130/g30508.1, 2010.
- Mischler, J. A., Sowers, T. A., Alley, R. B., Battle, M., McConnell, J. R., Mitchell, L., Popp, T., Sofen, E., and Spencer, M. K.: Carbon and hydrogen isotopic composition of methane over the last 1000 years, Glob. Biogeochem. Cycle, 23, GB4024, 10.1029/2009gb003460, 2009.
- Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., and Karlen, W.: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data, Nature, 433, 613-617, 10.1038/nature03265, 2005.
- Mochida, M., Kawamura, K., Fu, P. Q., and Takemura, T.: Seasonal variation of levoglucosan in aerosols over the western
 North Pacific and its assessment as a biomass-burning tracer, Atmos. Environ., 44, 3511-3518,
 10.1016/j.atmosenv.2010.06.017, 2010.
- Obrien, S. R., Mayewski, P. A., Meeker, L. D., Meese, D. A., Twickler, M. S., and Whitlow, S. I.: Complexity of holocene climate as reconstructed from a greenland ice core, Science, 270, 1962-1964, 10.1126/science.270.5244.1962, 1995.
- Oros, D. R., and Simoneit, B. R. T.: Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 2. Deciduous trees, Appl. Geochem., 16, 1545-1565, 10.1016/s0883-2927(01)00022-1, 2001a.
- Oros, D. R., and Simoneit, B. R. T.: Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 1. Temperate climate conifers, Appl. Geochem., 16, 1513-1544, 10.1016/s0883-2927(01)00021-x, 2001b.
- Pages 2k: Continental-scale temperature variability during the past two millennia, Nat. Geosci., 6, 339-346,
 10.1038/ngeo1797, <u>http://www.nature.com/ngeo/journal/v6/n5/abs/ngeo1797.html</u>
 supplementary-information, 2013.
- Panagiotopoulos, F., Shahgedanova, M., Hannachi, A., and Stephenson, D. B.: Observed trends and teleconnections of the
 Siberian high: A recently declining center of action, J. Clim., 18, 1411-1422, 10.1175/jcli3352.1, 2005.
- Paris, J. D., Stohl, A., Nedelec, P., Arshinov, M. Y., Panchenko, M. V., Shmargunov, V. P., Law, K. S., Belan, B. D., and
 Ciais, P.: Wildfire smoke in the Siberian Arctic in summer: source characterization and plume evolution from airborne
 measurements, Atmos. Chem. Phys., 9, 9315-9327, 2009.
- Pechony, O., and Shindell, D. T.: Driving forces of global wildfires over the past millennium and the forthcoming century,
 Proc. Natl. Acad. Sci. U. S. A., 107, 19167-19170, 10.1073/pnas.1003669107, 2010.
- Pederson, N., Jacoby, G. C., D'Arrigo, R. D., Cook, E. R., Buckley, B. M., Dugarjav, C., and Mijiddorj, R.:
 Hydrometeorological reconstructions for northeastern Mongolia derived from tree rings: 1651-1995, J. Clim., 14, 872-881, 10.1175/1520-0442(2001)014<0872:hrfnmd>2.0.co;2, 2001.

- Power, M. J., Marlon, J., Ortiz, N., Bartlein, P. J., Harrison, S. P., Mayle, F. E., Ballouche, A., Bradshaw, R. H. W.,
 Carcaillet, C., Cordova, C., Mooney, S., Moreno, P. I., Prentice, I. C., Thonicke, K., Tinner, W., Whitlock, C., Zhang,
- 956 Y., Zhao, Y., Ali, A. A., Anderson, R. S., Beer, R., Behling, H., Briles, C., Brown, K. J., Brunelle, A., Bush, M., Camill,
- P., Chu, G. Q., Clark, J., Colombaroli, D., Connor, S., Daniau, A. L., Daniels, M., Dodson, J., Doughty, E., Edwards, M.
 E., Finsinger, W., Foster, D., Frechette, J., Gaillard, M. J., Gavin, D. G., Gobet, E., Haberle, S., Hallett, D. J., Higuera,
- 958 E., Finsinger, W., Foster, D., Frechette, J., Gaillard, M. J., Gavin, D. G., Gobet, E., Haberle, S., Hallett, D. J., Higuera,
 959 P., Hope, G., Horn, S., Inoue, J., Kaltenrieder, P., Kennedy, L., Kong, Z. C., Larsen, C., Long, C. J., Lynch, J., Lynch, E.
- 960 A., McGlone, M., Meeks, S., Mensing, S., Meyer, G., Minckley, T., Mohr, J., Nelson, D. M., New, J., Newnham, R.,
- 961 Noti, R., Oswald, W., Pierce, J., Richard, P. J. H., Rowe, C., Goni, M. F. S., Shuman, B. N., Takahara, H., Toney, J.,
- 962 Turney, C., Urrego-Sanchez, D. H., Umbanhowar, C., Vandergoes, M., Vanniere, B., Vescovi, E., Walsh, M., Wang, X.,
- Williams, N., Wilmshurst, J., and Zhang, J. H.: Changes in fire regimes since the Last Glacial Maximum: an assessment
- based on a global synthesis and analysis of charcoal data, Clim. Dyn., 30, 887-907, 10.1007/s00382-007-0334-x, 2008.
- 965 Power, M. J., Marlon, J. R., Bartlein, P. J., and Harrison, S. P.: Fire history and the Global Charcoal Database: A new tool 966 for hypothesis testing and data exploration, Paleogeogr. Paleoclimatol. Paleoecol., 291. 52-59. 967 10.1016/j.palaeo.2009.09.014, 2010.
- 968 Prentice, I. C.: The Burning Issue, Science, 330, 1636-1637, 10.1126/science.1199809, 2010.
- Preston, C. M., and Schmidt, M. W. I.: Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions, Biogeosciences, 3, 397-420, 2006.
- 971 Pyne, S. J.: The fires this time, and next, Science, 294, 1005-1006, 10.1126/science.1064989, 2001.
- Quinn, P. K., Bates, T. S., Baum, E., Doubleday, N., Fiore, A. M., Flanner, M., Fridlind, A., Garrett, T. J., Koch, D.,
 Menon, S., Shindell, D., Stohl, A., and Warren, S. G.: Short-lived pollutants in the Arctic: their climate impact and
 possible mitigation strategies, Atmos. Chem. Phys., 8, 1723-1735, 10.5194/acp-8-1723-2008, 2008.
- Ramanathan, V., and Carmichael, G.: Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221-227, 10.1038/ngeo156, 2008.
- Ramankutty, N., and Foley, J. A.: Estimating historical changes in global land cover: Croplands from 1700 to 1992, Glob.
 Biogeochem. Cycle, 13, 997-1027, 10.1029/1999gb900046, 1999.
- Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G., Pfister, G., Mack, M. C., Treseder, K. K.,
 Welp, L. R., Chapin, F. S., Harden, J. W., Goulden, M. L., Lyons, E., Neff, J. C., Schuur, E. A. G., and Zender, C. S.:
 The impact of boreal forest fire on climate warming, Science, 314, 1130-1132, 10.1126/science.1132075, 2006.
- Rasmussen, S. O., Abbott, P., Blunier, T., Bourne, A., Brook, E., Buchardt, S. L., Buizert, C., Chappellaz, J., Clausen, H.
 B., Cook, E., Dahl-Jensen, D., Davies, S., Guillevic, M., Kipfstuhl, S., Laepple, T., Seierstad, I. K., Severinghaus, J. P.,
 Steffensen, J. P., Stowasser, C., Svensson, A., Vallelonga, P., Vinther, B. M., Wilhelms, F., and Winstrup, M.: A first
 chronology for the NEEM ice core, Clim. Past Discuss., 9, 2967-3013, 10.5194/cpd-9-2967-2013, 2013.
- Ruddiman, W. F.: The anthropogenic greenhouse era began thousands of years ago, Clim. Change, 61, 261-293, 10.1023/B:CLIM.0000004577.17928.fa, 2003.
- Running, S. W.: Is global warming causing more, larger wildfires?, Science, 313, 927-928, 10.1126/science.1130370, 2006.
- Ruth, U., Wagenbach, D., Steffensen, J. P., and Bigler, M.: Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period, J. Geophys. Res.-Atmos., 108, 10.1029/2002jd002376, 2003.
- Sapart, C. J., Monteil, G., Prokopiou, M., van de Wal, R. S. W., Kaplan, J. O., Sperlich, P., Krumhardt, K. M., van der
 Veen, C., Houweling, S., Krol, M. C., Blunier, T., Sowers, T., Martinerie, P., Witrant, E., Dahl-Jensen, D., and
 Rockmann, T.: Natural and anthropogenic variations in methane sources during the past two millennia, Nature, 490, 85-
- 99588,http://www.nature.com/nature/journal/v490/n7418/abs/nature11461.html -996supplementary-information, 2012.
- Sauchyn, D. J., and Beaudoin, A. B.: Recent environmental change in the southwestern Canadian Plains, Can. Geogr. Geogr. Can., 42, 337-353, 10.1111/j.1541-0064.1998.tb01350.x, 1998.
- Sauchyn, D. J., and Skinner, W. R.: A Proxy Record of Drought Severity for the Southwestern Canadian Plains, Canadian Water Resources Journal, 26, 253-272, 10.4296/cwrj2602253, 2001.
- Savarino, J., and Legrand, M.: High northern latitude forest fires and vegetation emissions over the last millennium inferred
 from the chemistry of a central Greenland ice core, J. Geophys. Res.-Atmos., 103, 8267-8279, 1998.
- 1003 Shen, C., Wang, W.-C., Hao, Z., and Gong, W.: Exceptional drought events over eastern China during the last five centuries, Clim. Change, 85, 453-471, 10.1007/s10584-007-9283-y, 2007.
- Shindell, D. T., Chin, M., Dentener, F., Doherty, R. M., Faluvegi, G., Fiore, A. M., Hess, P., Koch, D. M., MacKenzie, I. A., Sanderson, M. G., Schulz, M. G., Schulz, M., Stevenson, D. S., Teich, H., Textor, C., Wild, O., Bergmann, D. J., Bey, I., Bian, H., Cuvelier, C., Duncan, B. N., Folberth, G., Horowitz, L. W., Jonson, J., Kaminski, J. W., Marmer, E., Park, R., Pringle, K. J., Schroeder, S., Szopa, S., Takemura, T., Zeng, G., Keating, T. J., and Zuber, A.: A multi-model assessment of pollution transport to the Arctic, Atmos. Chem. Phys., 8, 5353-5372, 10.5194/acp-8-5353-2008, 2008.

- Sigl, M., McConnell, J. R., Layman, L., Maselli, O., McGwire, K., Pasteris, D., Dahl-Jensen, D., Steffensen, J. P., Vinther, B., Edwards, R., Mulvaney, R., and Kipfstuhl, S.: A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years, J. Geophys. Res.-Atmos., 118, 1151-1169, 10.1029/2012jd018603, 2013.
- Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F., and Cass, G. R.:
 Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles, Atmos. Environ., 33, 173-182, 1999.
- Simoneit, B. R. T.: Biomass burning A review of organic tracers for smoke from incomplete combustion, Appl. Geochem.,
 17, 129-162, 2002.
- Sorrel, P., Oberhansli, H., Boroffka, N., Nourgaliev, D., Dulski, P., and Rohl, U.: Control of wind strength and frequency in the Aral Sea basin during the late Holocene, Quat. Res., 67, 371-382, 10.1016/j.yqres.2006.12.003, 2007.
- St. George, S. S., Meko, D. M., Girardin, M. P., MacDonald, G. M., Nielsen, E., Pederson, G. T., Sauchyn, D. J., Tardif, J. C., and Watson, E.: The Tree-Ring Record of Drought on the Canadian Prairies, J. Clim., 22, 689-710, 10222
- Stahle, D. W., Cook, E. R., Cleaveland, M. K., Therrell, M. D., Meko, D. M., Grissino-Mayer, H. D., Watson, E., and Luckman, B. H.: Tree-ring data document 16th century megadrought over North America, Eos, Transactions American Geophysical Union, 81, 121-125, 10.1029/00e000076, 2000.
- 1026 Stohl, A.: Characteristics of atmospheric transport into the Arctic troposphere, J. Geophys. Res.-Atmos., 111, 1027 10.1029/2005jd006888, 2006.
- Stohl, A., Andrews, E., Burkhart, J. F., Forster, C., Herber, A., Hoch, S. W., Kowal, D., Lunder, C., Mefford, T., Ogren, J. A., Sharma, S., Spichtinger, N., Stebel, K., Stone, R., Strom, J., Torseth, K., Wehrli, C., and Yttri, K. E.: Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004, J. Geophys. Res.-Atmos., 111, 10.1029/2006jd007216, 2006.
- Tan, M., Liu, T. S., Hou, J. Z., Qin, X. G., Zhang, H. C., and Li, T. Y.: Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature, Geophys. Res. Lett., 30, 1617, 10.1029/2003gl017352, 2003.
- Taylor, K. C., Mayewski, P. A., Twickler, M. S., and Whitlow, S. I.: Biomass burning recorded in the GISP2 ice core: A record from eastern Canada?, Holocene, 6, 1-6, 1996.
- 1037 The Milwaukee Journal: Alaska, Russia battle blazes, Milwaukee, Wisconsin, Aug. 09 1972.
- 1038 The New York Times: Smoke shrouds Moskow as peat-bog fire rages, Aug. 09 1972, New York.
- 1039 The Palm Beach Post: Thousands fight Russia Peat fire, Aug. 09 1972.
- Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., and Lin, P. N.: A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores, Science, 289, 1916-1919, 10.1126/science.289.5486.1916, 2000.
- Trentmann, J., Luderer, G., Winterrath, T., Fromm, M. D., Servranckx, R., Textor, C., Herzog, M., Graf, H. F., and
 Andreae, M. O.: Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part I):
 reference simulation, Atmos. Chem. Phys., 6, 5247-5260, 2006.
- Turquety, S., Logan, J. A., Jacob, D. J., Hudman, R. C., Leung, F. Y., Heald, C. L., Yantosca, R. M., Wu, S. L., Emmons, L. K., Edwards, D. P., and Sachse, G. W.: Inventory of boreal fire emissions for North America in 2004: Importance of peat burning and pyroconvective injection, J. Geophys. Res.-Atmos., 112, 10.1029/2006jd007281, 2007.
- van der Werf, G. R., Randerson, J. T., Collatz, G. J., Giglio, L., Kasibhatla, P. S., Arellano, A. F., Olsen, S. C., and
 Kasischke, E. S.: Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period,
 Science, 303, 73-76, 10.1126/science.1090753, 2004.
- van der Werf, G. R., Peters, W., van Leeuwen, T. T., and Giglio, L.: What could have caused pre-industrial biomass burning
 emissions to exceed current rates?, Clim. Past, 9, 289-306, 10.5194/cp-9-289-2013, 2013.
- van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., Daniels, L. D., Franklin, J. F., Fule, P. Z., Harmon, M. E., Larson, A. J., Smith, J. M., Taylor, A. H., and Veblen, T. T.: Widespread Increase of Tree Mortality Rates in the Western United States, Science, 323, 521-524, 10.1126/science.1165000, 2009.
- Vinther, B. M., Clausen, H. B., Johnsen, S. J., Rasmussen, S. O., Andersen, K. K., Buchardt, S. L., Dahl-Jensen, D., Seierstad, I. K., Siggaard-Andersen, M. L., Steffensen, J. P., Svensson, A., Olsen, J., and Heinemeier, J.: A synchronized dating of three Greenland ice cores throughout the Holocene, J. Geophys. Res.-Atmos., 111, D13102, 10.1029/2005jd006921, 2006.
- Wang, Z., Chappellaz, J., Park, K., and Mak, J. E.: Large Variations in Southern Hemisphere Biomass Burning During the
 Last 650 Years, Science, 330, 1663-1666, 10.1126/science.1197257, 2010.
- Wang, Z.-h., Chen, Z.-y., Kou, Y., and Chen, Y.: Dry/Wet climate change since 960 A. D. in taihu drainage basin of China, Chin. Geograph.Sc., 11, 343-349, 10.1007/s11769-001-0050-0, 2001.
- Wanner, H., Beer, J., Butikofer, J., Crowley, T. J., Cubasch, U., Fluckiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J.
 O., Kuttel, M., Muller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., and Widmann, M.:

- 1067 Mid- to Late Holocene climate change: an overview, Quat. Sci. Rev., 27, 1791-1828, 10.1016/j.quascirev.2008.06.013, 2008.
- Ward, D. S., Kloster, S., Mahowald, N. M., Rogers, B. M., Randerson, J. T., and Hess, P. G.: The changing radiative forcing of fires: global model estimates for past, present and future, Atmos. Chem. Phys., 12, 10857-10886, 10.5194/acp-12-10857-2012, 2012.
- Weimer, S., Alfarra, M. R., Schreiber, D., Mohr, M., Prévôt, A. S. H., and Baltensperger, U.: Organic aerosol mass spectral signatures from wood-burning emissions: Influence of burning conditions and wood type, Journal of Geophysical Research: Atmospheres, 113, D10304, 10.1029/2007jd009309, 2008.
- 1075 Weng, H. Y.: Impacts of multi-scale solar activity on climate. Part I: Atmospheric circulation patterns and climate extremes,
 1076 Adv. Atmos. Sci., 29, 867-886, 10.1007/s00376-012-1238-1, 2012.
- Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming and earlier spring increase western US forest wildfire activity, Science, 313, 940-943, 10.1126/science.1128834, 2006.
- Whitlow, S., Mayewski, P., Dibb, J., Holdsworth, G., and Twickler, M.: An ice-core-based record of biomass burning in the arctic and sub-arctic, 1750-1980, Tellus Ser. B-Chem. Phys. Meteorol., 46, 234-242, 1994.
- Wolfe, S. A., Huntley, D. J., David, P. P., Ollerhead, J., Sauchyn, D. J., and MacDonald, G. M.: Late 18th century droughtinduced sand dune activity, Great Sand Hills, Saskatchewan, Can. J. Earth Sci., 38, 105-117, 10.1139/cjes-38-1-105, 2001.
- Wolff, E. W., Barbante, C., Becagli, S., Bigler, M., Boutron, C. F., Castellano, E., de Angelis, M., Federer, U., Fischer, H.,
 Fundel, F., Hansson, M., Hutterli, M., Jonsell, U., Karlin, T., Kaufmann, P., Lambert, F., Littot, G. C., Mulvaney, R.,
 Rothlisberger, R., Ruth, U., Severi, M., Siggaard-Andersen, M. L., Sime, L. C., Steffensen, J. P., Stocker, T. F.,
 Traversi, R., Twarloh, B., Udisti, R., Wagenbach, D., and Wegner, A.: Changes in environment over the last 800,000
 years from chemical analysis of the EPICA Dome C ice core, Quat. Sci. Rev., 29, 285-295,
 1089
- Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O., and Svensson, A.: Millennial-scale variability during the last glacial: The ice core record, Quat. Sci. Rev., 29, 2828-2838, 10.1016/j.quascirev.2009.10.013, 2010b.
 Wolken, J. M., Hollingsworth, T. N., Rupp, T. S., Chapin, F. S., Trainor, S. F., Barrett, T. M., Sullivan, P. F., McGuire, A.
 - Wolken, J. M., Hollingsworth, T. N., Rupp, T. S., Chapin, F. S., Trainor, S. F., Barrett, T. M., Sullivan, P. F., McGuire, A. D., Euskirchen, E. S., Hennon, P. E., Beever, E. A., Conn, J. S., Crone, L. K., D'Amore, D. V., Fresco, N., Hanley, T. A., Kielland, K., Kruse, J. J., Patterson, T., Schuur, E. A. G., Verbyla, D. L., and Yarie, J.: Evidence and implications of recent and projected climate change in Alaska's forest ecosystems, Ecosphere, 2, art124, 10.1890/es11-00288.1, 2011.
- Wooster, M. J., and Zhang, Y. H.: Boreal forest fires burn less intensely in Russia than in North America, Geophys. Res.
 Lett., 31, 10.1029/2004gl020805, 2004.
- Yalcin, K., Wake, C. R., Kreutz, K. J., and Whitlow, S. I.: A 1000-yr record of forest fire activity from Eclipse Icefield,
 Yukon, Canada, Holocene, 16, 200-209, 10.1191/0959683606hl920rp, 2006.
- Yang, B., Braeuning, A., Johnson, K. R., and Shi, Y. F.: General characteristics of temperature variation in China during the last two millennia, Geophys. Res. Lett., 29, 1324, 10.1029/2001gl014485, 2002.
- Yang, B., Brauning, A., Zhang, Z., Dong, Z., and Esper, J.: Dust storm frequency and its relation to climate changes in Northern China during the past 1000 years, Atmos. Environ., 41, 9288-9299, 10.1016/j.atmosenv.2007.09.025, 2007.
- Yao, P., Schwab, V. F., Roth, V., Xu, B., Yao, T., and Gleixner, G.: Levoglucosan concentrations in ice-core samples from the Tibetan Plateau determined by reverse-phase high-performance liquid chromatography-mass spectrometry, J. Glaciol., 59, 599-608, 2013.
- Zhang, P. Z., Cheng, H., Edwards, R. L., Chen, F. H., Wang, Y. J., Yang, X. L., Liu, J., Tan, M., Wang, X. F., Liu, J. H.,
 An, C. L., Dai, Z. B., Zhou, J., Zhang, D. Z., Jia, J. H., Jin, L. Y., and Johnson, K. R.: A Test of Climate, Sun, and
 Culture Relationships from an 1810-Year Chinese Cave Record, Science, 322, 940-942, 10.1126/science.1163965, 2008.
- Zhang, Y. H., Wooster, M. J., Tutubalina, O., and Perry, G. L. W.: Monthly burned area and forest fire carbon emission estimates for the Russian Federation from SPOT VGT, Remote Sens. Environ., 87, 1-15, 10.1016/s0034-4257(03)00141-x, 2003.
- 1113

1094

1095

Fig. 1. NEEM camp position and representation of boreal vegetation and land cover between 50° and 90° N.
Modified from the European Commission Global Land Cover 2000 database and based on the work of
cartographer Hugo Alhenius UNEP/GRIP-Arendal (Alhenius, 2003).

Fig. 2. A: Levoglucosan concentration profile measured in the deep NEEM core including the dates of megafires
coincident between levoglucosan, black carbon, and ammonium; B: black carbon concentration profile measured
in the NEEM-2011-S1 ice core; C: ammonium concentration profile in the deep NEEM ice core.

1128

Fig. 3. LOWESS smoothing with SPAN parameter (f) 0.1 (light blue) and 0.2 (dark blue) of levoglucosan Zscores without peaks above the threshold $3rd_Q + 1.5 \times IR$ (A); High Latitude (above 55° N) Northern Hemisphere (HLNH) Z-scores of charcoal influx (200-yr LOWESS smoothing) as reported in Marlon *et al.* (2008) (red) and smoothed levoglucosan with f = 0.1 as in A (dashed line) (B); LOWESS smoothing with f = 0.1 of Black Carbon Z-scores without peaks above the threshold $3rd_Q + 1.5 \times IR$ (black) and smoothed levoglucosan (dashed line)(C); Siberian forest fire reconstruction (Eichler et al., 2011) (purple) and smoothed

- 1135 levoglucosan (dashed line) (D); LOWESS smoothing with f = 0.1 of Northern Hemisphere land temperature
- 1136 (Mann et al., 2008) and smoothed levoglucosan (dashed line) (E); pyrogenic CH₄ emissions inferred from the
- deep NEEM core (Sapart et al., 2012) (light brown) and smoothed levoglucosan (dashed line) (F). The yellow
- 1138 vertical bar indicates the period of strongest fire activity.
- 1139

LEVOGLUCOSAN					BLACK CARBON			AMMONIUM		
Samp (yr	le Age CE)	Average age (yr CE)	[levoglucosan] (pg mL ⁻¹)	Z-score ¹	Z-score ²	Age (yr CE)	[BC] (ng g ⁻¹)	Z-score ²	$[NH_4^+]$ (ng g ⁻¹)	Z-score ²
1975	1972	1973	301	1.37	1.45	1972.5	6.73	1.68	13.77	1.16
1791	1787	1789	612	3.39	3.56	1789.5	5.81	1.26		
1706	1702	1704	336	1.59	1.69	1703.5	10.02	3.15	13.75	1.16
						1702.5	5.85	1.28		
1622	1617	1620	521	2.80	2.94	1619.5	6.35	1.51		
1603 ³	1593 ³	1598 ³	170^{3}	0.51 ³	0.55 ³	1594.5	5.29	1.03	14.98 ³	1.39 ³
1319	1313	1316	193	0.66	0.71					
1177	1171	1174	201	0.71	0.77	1170.5	5.80	1.26		
1112	1106	1109	229	0.90	0.96					
1041	1036	1039	393	1.96	2.07					
979	973	976	245	1.00	1.06	974.5	5.38	1.07		
924	919	922	483	2.55	2.69	922.5	18.85	7.11	21.93	2.71
745	739	742	208	0.76	0.81	739.5	12.02	4.05	13.01	1.02
631	625	628	391	1.95	2.06	630.5	11.58	3.85	26.07	3.50
562	556	559	192	0.65	0.70	559.5	9.35	2.85	15.07	1.41
451	446	449	188	0.63	0.68	446.5	8.47	2.46		
345	339	342	1767	10.92	11.42	345.5	6.26	1.46	15.83	1.55
						340.5	45.32	18.98		
225	219	222	170	0.51	0.56	224.5	8.23	2.35	16.02	1.59
						223.5	7.22	1.90		
						221.5	6.69	1.66		
-196	-202	-199	349	1.68	1.78	na	na	na	26.44	3.57
-271	-277	-274	401	2.02	2.13	na	na	na	22.08	2.74
-327	-333	-330	382	1.89	2.00	na	na	na		
-389	-396	-392	1445	8.82	9.23	na	na	na		
-524	-531	-527	192	0.65	0.70	na	na	na	21.56	2.64
-537	-543	-540	266	1.14	1.21	na	na	na	12.97	1.01
-584	-590	-587	185	0.61	0.66	na	na	na		

Table 1. Major levoglucosan peaks (with levoglucosan concentrations above the threshold $3^{rd} Q + 1.5 IR$) and1142their correspondence with other biomass burning proxies. Samples in bold have levoglucosan concentrations1143above the mean plus one standard deviation. The NH₄⁺ samples have the same ages as the levoglucosan samples.1144Blank spaces demonstrate the absence of high values (Z-scores > 1), *na* if no values were available.

1145 ¹ Mean and standard deviation calculated for the entire levoglucosan dataset (1036 BCE - 1999 CE).

- 1146 ² Mean and standard deviation calculated for the common period (87 1992 CE) of the BC, levoglucosan and
- ammonium dataset in order to compare datasets covering different temporal periods.
- 1148 ³ Levoglucosan has been analyzed in a 4-bag sample (1593 1603 CE); ammonium value is referred to a 2-bag
- 1149 sample (1598 1603 CE).
- 1150

AGE ^a	AGE ^a LOCATION		REFERENCE	COMMENT
1171-1177	NEEM ice core	NEEM ice core levoglucosan this work		strong event ¹
1170	1170 Taihu Drainage Basin China, Eastern Cost		(Wang et al., 2001)	abrupt dry/wet climate change
1160-1290	Northern China (reconstruction based on different paleoclimate archives)	flood/drought index	(Yang et al., 2007) and ref. therein	max frequency of dust storm
1313-1319	NEEM ice core	levoglucosan	this work	strong event ¹
1320-1370	Northern China (reconstruction based on different paleoclimate archives)	flood/drought index	(Yang et al., 2007) and ref. therein	high dust fall frequency
1330s	Dasuopu ice core, Himalaya (India and Asia as source regions)	δ^{18} O, dust, Cl ⁻	(Thompson et al., 2000)	monsoon failure
1593-1603	NEEM ice core	levoglucosan	this work	strong event ¹
1617-1622	NEEM ice core	levoglucosan	this work	megaevent ²
1578-1582 1600-1644	Mongolia	tree-ring	(Davi et al., 2010)	2 nd and 1 st in order of severity since 1520
1590s-1600s	Central High Asia	tree-ring	(Fang et al., 2010)	
1590s	Dasuopu ice core, Himalaya (India and Asia as source regions)	δ^{18} O, dust, Cl ⁻	(Thompson et al., 2000)	monsoon failure
exceptional events: 1586-1589; 1638-1641 decadal time scale: 1590s	Eastern China	drought/flood proxy data	(Shen et al., 2007)	most severe events (exceptional) of past 5 centuries
1618-1635	Taihu Drainage Basin China, Eastern Cost	historical climatic records	(Wang et al., 2001)	abrupt change to dry period
1702-1706	NEEM ice core	levoglucosan	this work	megaevent ²
1694-1705	Changling Mountains, North-central China	tree-ring	(Feng et al., 2011)	coincident with Maunder Minimum ³
1787-1791	NEEM ice core	levoglucosan	this work	megaevent ²
1795-1823	Changling Mountains, north-central China	tree-ring	(Chen et al., 2012)	coincides with Dalton Minimum ³
1790-1799	North Helan Mountain, inner Mongolia	tree-ring	(Liu et al., 2004)	
1791-1795	Northeastern Mongolia	tree-ring	(Pederson et al., 2001)	
1779-1806	Chiefeng-Weichang region, China	tree-ring	(Liu et al., 2010)	
1790-1796	Dasuopu ice core, Himalaya (India and Asia as source regions)	δ^{18} O, dust, Cl ⁻	(Thompson et al., 2000)	monsoon failures "exceptionally large from a perspective of the last 1000 yr"
1789-1793	India	archival evidences of drought	(Grove, 1998)	

PERIOD ^b	PERIOD ^b LOCATION		REFERENCE	COMMENT
1500 - 1700	1500 - 1700 NEEM ice core		this work	multi-decadal analysis
centennial scale: 16 th , 17 th century	Eastern China	drought/flood proxy data	(Shen et al., 2007)	
1610-1710	Northern China (reconstruction based on different paleoclimate archives)	flood/drought index	(Yang et al., 2007) and references therein	high dust fall frequency
1540-1600	Siberian Altai (Southern Siberia)	ice core pollen data and dust	(Eichler et al., 2011)	extremely dry period followed by high fire activity
1414-1560	Lake Teletskoye, Republic of Altai (Russian Federation)	sediment core pollen data	(Andreev et al., 2007)	
1450-1600	Eastern China	historical documents	(Chu et al., 2008)	negative snow anomaly events
1400-1550	East Juyanhai Lake Inner Mongolia	sedimentology and geochemical parameters	(Chen et al., 2010)	extremely arid conditions
1630s-1640s	Xiaolong Mountain, central China	tree-ring	(Fang et al., 2012)	one of most severe droughts of the past 400 yr
1630s-1640s	China and Mongolia	tree-ring	(Li et al., 2009)	
1640s	Dasuopu ice core, Himalaya (India and Asia as source regions)	δ^{18} O, dust, Cl ⁻	(Thompson et al., 2000)	monsoon failure
1640s-1650s	Central High Asia	tree-ring	(Fang et al., 2010)	most severe megadrought

Table 2. Asian droughts recorded in various proxies with strong fire events (a) and with centennial fire activity
 in the 16th and 17th century inferred from levoglucosan analysis (b). Generally drought is recorded in tree-rings
 as a sustained narrowness of growth rings.

1155 ¹ This event represents levoglucosan concentration above the threshold $3^{rd} Q + 1.5$ IR. Where $3^{rd} Q$ is the third 1156 quartile and IR is the interquartile range calculates as the difference between the third quartile and the first

- 1157 quartile. This peak was removed from the long-trend analysis.
- 1158 ² This event represents levoglucosan concentration above the mean plus one standard deviation.

1159 ³ As noted by Chen (2012), the drying of the late 1600s to early 1700s, and the drying of the late 1700s to early

1160 1800s, seen in the precipitation reconstructions, coincides with periods of low solar irradiance, the Dalton

1161 Minimum and the Maunder Minimum, respectively.