

¹ Answer to reviewer 2

²

³ We wish to thank you for the interesting and very detailed comments. It
⁴ would be our pleasure to make the modifications you addressed in detail and
⁵ implement them in the new version of the manuscript. In the revised version we
⁶ will try to cover all of the issues suggested by you. Here, we answer to the each
⁷ comment individually. Two Tables and 6 Figures are included in this answer.

⁸ **1.- Data and methods, Page 2688, line 2-... The paper uses the**
⁹ **ECHAM5/MPIOM and the GISS-E2-R simulations as part of the**
¹⁰ **PMIP3-CMIP5 experiments. While this is true for the GISS-E2-**
¹¹ **R runs, the forcing specifications of the ECHAM5/MPIOM do not**
¹² **comply with the PMIP3 specifications. This part should be rewritten**
¹³ **accordingly.**

¹⁴ **Line 19-20 'The forcings in the ... ECHAM5/MPIOM simu-**
¹⁵ **lations' This is nor strictly correct. At least the text should ex-**
¹⁶ **plain/discuss in which sense they are similar. For instance CO2 in**
¹⁷ **the ECHAM5/MPIOM is calculated interactively. For other forcings**
¹⁸ **it may be worth discussing the differences/similarities.**

¹⁹

²⁰ We have used the fully coupled Community Earth System Models (COS-

21 MOS) from Max Planck Institute for Meteorology coupled to the ocean model
22 MPIOM. In the IPCC WGI fifth Assessment Report the model is included in
23 Pre PMIP3/CMIP5 experiments as ECHAM5/MPIOM model. We draw your
24 attention to a phrase from [Jungclaus et al., 2010]: “*The experiments pre-*
25 *sented here are among the first ESM simulations that **comply** with the proto-*
26 *cols of the Paleo Modelling Intercomparison Project Phase 3 (PMIP-3, <https://pmip3.lsce.ipsl.fr>) and the upcomming Paleo carbon Model Intercom-*
27 *parison Project (PCMIP).*”

29 In the Millennium project [Jungclaus et al., 2010], an ensemble of five simula-
30 tions covering the time between 800 and 2005 AD have been calculated starting
31 from different ocean initial conditions. The model simulations have been forced
32 by: solar variability [Solanki et al., 2004] and [Krivova et al., 2007], volcanoes
33 [Crowley, 2008], land cover changes [Pongratz et al., 2008], orbital variations
34 [Bretagnon, 1988](, greenhouse gases [Fortuin, 1988] and [Marland, 2008], and
35 aerosols [Tanre, 1984]. A detailed description of the Millennium simulations is
36 documented in the paper from [Jungclaus et al., 2010].

37 As already cited in the paper, the forcings for the GISS model are also de-
38 scribed in the homepage of NASA. We summarize the forcings for GISS model
39 in Table 1. For more information about the forcings, we refer to the Table 5.A.1
40 of WG1 AR5 of the IPCC, 2013. Therefore, we change the sentence “The forc-
41 ings in the ... are similar” to “The forcings in the... are nearly similar”.

42

43 **2.- Section 3, Page 2690, line 1-8.**

44 **I like the approach of using model ensembles. However there are**
45 **some issues related to this approach that I think are worth discussing**

46 or at least being considered by the autors. The EOFs in Fig 1 are
47 indeed similar. However the model EOFs are obtained from ensemble
48 average fields in which the internal variability is canceled or dimin-
49 ished by averaging. Reality (i.e. MADA) is comparable in those
50 terms to only one realization of the system, i. e one model simula-
51 tion. If the MADA is compared to ensemble averages, the behavior of
52 each ensemble member may be an important issue to report. Addi-
53 tionally, the statistics obtained may be not only related to the model
54 behavior but also to the ensemble average itself. For instance, it
55 would be expected that a mode explains more variance if the en-
56 semble average is taken over a larger number of members (like in
57 the case of ECHAM/MPIOM for which the ensemble is larger than
58 GISS-E2-R) or that the pattern correlations are larger. I think it is
59 worth discussing the implications of using model ensembles in this
60 work relative to individual members and how this affects the results.

61

62 You have pointed to a very interesting issue. In a recently published paper
63 [[Polanski et al., 2014](#)] , we have presented the PC1 time-series of precipitation
64 and PDSI for each member of the ECHAM5/MPIOM simulations. There, we
65 mentioned that the EOF patterns for each member is very similar to the one
66 from MADA. However, the time expansions show a large variability. Using
67 Ensemble Mode Decomposition (EMD) method, we extracted the nonlinear
68 trends within the time-series (supplementary materials of [[Polanski et al., 2014](#)]).
69 Two out of five members showed very similar and coherent trends as in the
70 MADA.

71 By using a simple arithmetic averaging, we assign equal weight to each en-
72 semble and consider the systematic errors of the model. Our analysis shows
73 that for the ECHAM5/MPIOM ensemble, two of the members present a better
74 performance with respect to MADA. However, the results were biased towards
75 one of the individual members when using other methodologies than a simple
76 averaging. This may lead to over-tuning of the model ensemble average to the
77 reconstruction of mega-droughts. Tuning the ensemble average to PDSI from
78 proxies is not a good reason that the model will also perform better for other
79 variables.

80 On the other hand, using a single model simulation will rise the question
81 that, to what extend the agreements with the reconstructions are happened by
82 chance. The other issue is that the models do not use data assimilation and
83 the timings may be not accurate. The precise timing of the droughts is also
84 uncertain in the proxies. Here we decided to use as many realizations of the
85 climate as possible, instead of single member, in order to cover a larger space
86 of the possible solutions and reach a more accurate estimate of the climate.

87 According to [Kalnay et al., 1996], the ensemble average is more accurate
88 than a single deterministic climate simulation. [Lambert and Boer, 2001] con-
89 cluded that the mean climatological fields from ensemble average agree better
90 with observations than the fields produced by any single member or model. It
91 would be a hard task to identify the best performing model, as different simu-
92 lations present varying performance quality over different regions and climate
93 variables [Giorgi and Mearns, 2003, Krishnamurti et al., 1999, Krishnamurti
94 et al., 2000, Palmer et al., 2000]. The PC1 of PDSI from individual GISS-E2-R
95 model experiments were already presented in the answer to reviewer 1. The

96 trends for the two members of the GISS model are very similar. The Pearson
97 correlations between the trends is 0.61 (p -value < 0.01). As you mentioned, it
98 is very likely that the larger number of members in ECHAM5/MPIOM results
99 in a better pattern correlation with MADA. However, the GISS model performs
100 a coherent behavior in the time expansions of the EOF patterns.

101 **Section 3, Page 2690, line 14-21: It is also important to state**
102 **how mega-droughts are defined in this paper. I have not seen the**
103 **definition so far. There seems to be indeed some agreement in the**
104 **time evolution of the index in Fig 2, both if we consider the Pcs or**
105 **if the periods of 'active' and 'break' phases are considered. I would**
106 **suggest discussing this a bit more in detail. How good is this agree-**
107 **ment in terms of correlation, perhaps for high and low (multi-decadal)**
108 **timescales. How different is the agreement of the ensemble averages**
109 **relative to the individual members and how important is this for the**
110 **credibility that the coincidence is not by chance and arguably related**
111 **to external forcing?**

112

113 Thank you for pointing this out. We have investigated the same megadroughts
114 mentioned in the study of [Cook et al., 2010a]. The following phrase is added
115 to describe mega-droughts. “Megadroughts are defined as prolonged period of
116 dry conditions which last decades to centuries” [Cook et al., 2010b, Cook et al.,
117 2010a, Coats et al., 2013]. You asked about the correlation of PC1 time-series
118 of each member and if the averaging increases the correlation for high and low
119 time-scales. Neither proxies nor models are presenting the “truth”. We did not
120 aim to tune or fit the ensemble average to the reconstruction space. We tried

121 to find the probable agreements between these two spaces, namely proxies and
122 models. We want to explore how model and reconstructions are reproducing the
123 timing and patterns of possible mega-droughts which are historically recorded.
124 As indicated in the previous answer, the PC1 time-series for ECHAM5/MPIOM
125 are already presented in the paper of [Polanski et al., 2014]. Two out of five
126 ensembles showed significant correlation with MADA for longer time-scales.
127 However, averaging all members did not present significant correlation. On the
128 other hand, as mentioned in the paper of [Jungclaus et al., 2010], “the ensemble
129 simulations reproduce temperature evolutions consistent with the range of
130 reconstructions.”

131 But in the case of GISS model, as the two ensemble members are used for
132 analysis, which are coherent based on the first Principle Component of PDSI,
133 the averaging shows a higher correlation with MADA compared to ECHAM5.
134 Note that the differences in ECHAM5 members are rising from different initial
135 conditions of oceans and not the forcings. Here we plot the time-series for GISS-
136 E2-R in Figure S1 with their correlations for the filtered time-series. To follow
137 the same methodology in [Polanski et al., 2014], we take the period of 1400
138 to 1860 (Little Ice Age) for Pearson correlations. The numbers in parenthesis
139 indicate the Pearson correlations with MADA.

140 **Why do the 5 historical mega-droughts not coincide with the min-
141 ima in both series, or at least in the MADA (red) line?**

142 We indicated that the PC1 of PDSI, can capture droughts which show the
143 dipole pattern between India and arid central Asia (the droughts which present
144 patterns like the EOF1 of PDSI). The EOF analysis is a linear method for
145 dimensionality reduction [Hannachi and Turner, 2013]. Therefor, it can not

¹⁴⁶ capture all the possible drought patterns in the data-set. It is still a mystery
¹⁴⁷ if all the megadroughts are caused by monsoon failure, oceans, volcano, local
¹⁴⁸ effects or a nonlinear mixture of all. Figure 2 is showing the evolution of the
¹⁴⁹ dipole pattern throughout the past millennium. This pattern is also captured in
¹⁵⁰ observational PDSI of recent decades, but all the megadroughts may not follow
¹⁵¹ this pattern. Therefore the time-series from proxy and models must not show
¹⁵² minima at the same time.

¹⁵³ **Discussion of Fig 3: What is the meaning of dots? Fig3 caption**
¹⁵⁴ **indicates that dots stand for grid points that agree with MADA. Can**
¹⁵⁵ **you be more specific? How can it be that some gridpoints in c are in**
¹⁵⁶ **blue (positive) while in MADA are in brown (negative) and still have**
¹⁵⁷ **a dot indicating agreement?**

¹⁵⁸ The dots indicate both proxy and model show similar sign in PDSI. We have
¹⁵⁹ checked Figure 3.c and the code again and again but we found no dot that is
¹⁶⁰ placed on a grid with no agreement! For making it more clearer we plot Figure
¹⁶¹ 3.c again in this answer as Figure S2. Plus values are in green and minus in
¹⁶² brown.

¹⁶³ **Fig 3c indicates a different pattern to that of MADA (Fig 3a) and**
¹⁶⁴ **GISS (Fig 3b). This is discussed in the text. How can it be that in**
¹⁶⁵ **Fig 2 MADA and ECHAM5 seem to be in phase while GISS is not?**
¹⁶⁶ **Similarly for the following Fig4-Fig7 panels. The comments on the**
¹⁶⁷ **reconstructed droughts and their importance are welcome, although**
¹⁶⁸ **I would suggest discussing their consistency with Fig 2 in terms of**
¹⁶⁹ **the PC and the 'active' and 'break' phases.**

¹⁷⁰ As discussed in the previous comment, the time-series in figure 2 will mostly

171 capture droughts with patterns like figure 1. Figures 3-7 are showing the com-
172 posites of PDSI over drought periods mentioned by [Cook et al., 2010a] which
173 originate from historical records. Figure 3.c presents a broad dry pattern over
174 central Asia and wet pattern over East India which has similarities with Figure
175 1.b. PC1 time-series of ECHAM5 are negative but very near to zero and agree-
176 ments with MADA are mostly due to wet spells. Figure 4 for example is showing
177 the clear dipole pattern between India and Central Asia in MADA, GISS and
178 ECHAM5. The time-series of all data-sets (Figure 2) also indicate a clear drop
179 within this period. We will revise the text to make the interpretations clearer.

180 **MCA analysis, Figs. 8, 9 Section 4.1, Page 2692** I think this dis-
181 cussion is also interesting, but it should also be improved at various
182 levels. For instance, the correlations of the PDSI series are reported
183 to be significant. The relation with GISS is indeed suggestive. It
184 would be good to indicate significance in table 1 as an alternative to
185 the largest value in each row. Are correlations calculated over annual
186 values or low pass filtered values?. This should be indicated, also if
187 autocorrelation has been taken into account and, if not, I suggest it
188 should be.

189 This point was also asked by reviewer 1, we have added the significance level.
190 The correlation of GISS PDSI with Temperature is also corrected (0.52 instead
191 of 0.19). In the section Data and methods we indicated that the time-series are
192 smoothed using a 31-yr filter. We will add the sentence to the caption of the
193 figures. Autocorrelation has also been taken into account.

194 **Additionally, after reading Section 3 where the synchronicity be-**
195 **tween Asian drought in reconstructions and simulations is discussed**

196 (Fig 2), I think it may be interesting to include in this analysis the re-
197 constructed pdsi in order to link it to changes in simulated SST. This
198 is based on the argument in the previous section that reconstructed
199 and simulated PDSI are related.

200 We tried to make the most direct comparison in the model space since the
201 modeled PDSI is responding to SSTs from the model. Model and proxy have
202 agreements in longer time-scales (smoothed time-series) and MCA captures the
203 maximum variances within the coupled data-set. The MCA part is inspired from
204 the previous study done by [Dai, 2013] who investigated the coupled patterns
205 from CMIP5 simulations for the present and the future.

206 **I think that another issue that is relevant for this work is to, once**
207 **again, illustrate or report on the behavior of individual simulations.**
208 **How does this influence on the reported explained variances (lines**
209 **9-10)?.** Also, the time series in figures 8 and 9 suggest an influence of
210 external forcing (volcanic) in the mid 15th and early 19th century. I
211 recommend this should be discussed and would likely be more evident
212 in the ensemble average than in the individual simulations.

213 Thank you for the advice. We report the behavior of individual simulations
214 in Table 2. We have used the motivation you gave to plot the figures again with
215 superimposed volcanic forcing. Figure S3 and S4 are showing the MCA anal-
216 ysis for ECHAM5 and GISS model with volcanic forcing (W/m²) from [Mann
217 et al., 1999] superimposed on the right axis. As you already suggested, the
218 volcanic forcing has an influential effect on the coupled atmosphere-ocean pat-
219 terns for both ensemble average of the models. The Square Covariance Fraction
220 (SCF) has not changed largely for ensemble average but the correlations show

221 an interesting improvement especially for GISS model.

222 **Regimes, Section 4.2**

223 **Page 2693: regarding the different explained variances in both mod-**
224 **els, this is noteworthy and deserves some more comments, for instance**
225 **in relation to the variance explained by the individual ensemble mem-**
226 **bers and the effect that averaging over a different ensemble size may**
227 **have on the result.**

228 The averaging has small influence on the explained variances in the EOF
229 analysis of ensemble means.

230 **Concerning the analysis performed later with ECHAM5/MPIOM**
231 **and GISS-E2-R I can think of several issues that I would like the**
232 **authors to discuss about or consider:**

233 **The discussion about the distribution of the two regimes in Fig 10**
234 **and Fig 13 is interesting. In Section 4.2.1 the authors describe the**
235 **spatial variability of both regimes. I think the figure and discussion**
236 **would gain from showing the precipitation patters associated to this**
237 **regime, perhaps also the PDSI from the model. Also the distribution**
238 **of associated PDSI events to each regime can perhaps be shown if**
239 **the authors consider it of use. It makes more sense to me to trace**
240 **the actual behavior of these variables from the available model runs,**
241 **that in fact show differences between them, than rather argue only**
242 **from the literature based on different analysis by other authors.**

243 That is a great suggestion! The selection of OLR, as a proxy for convection,
244 had two reasons: 1- it is a very good indicator for monsoon activity as the
245 monsoon is mostly caused by convective rainfall. 2- previous studies already

246 found an existence of bimodality and regime behavior in OLR from observations
247 and reanalysis data (ref. [Turner and Hannachi, 2010]). Here we are searching
248 for potential dynamical drivers of moisture changes in the model space. 850
249 hPa wind is also selected as an indicator of moisture transport into the monsoon
250 region.

251 As suggested by you, we show the composite patterns of PDSI for each
252 regime in Figure S.5 and S.6. The PDSI regimes in ECHAM5 are more different
253 resembling the active and passive monsoon phases. This was predictable as the
254 bimodality in the PDF estimates of OLR is more clearer in the ECHAM5 than
255 GISS.

256 **Regarding the use of pdfs of the regimes for the individual simu-**
257 **lations and for the ensemble averages: I have reservations here about**
258 **the use of these pdfs for the ensemble averages. First I would sug-**
259 **gest to argue and discuss the changes from the individual ensemble**
260 **members to the ensemble average.**

261 As you suggested a discussion will be added to the final version about the
262 PDFs of ensemble average and individual members.

263 **Second, I would like the authors to discuss the meaning of the**
264 **regimes obtained from the ensemble average. The model is expected**
265 **to produce very different states for a given time step in different sim-**
266 **ulations due to internal variability. What is in this case the meaning**
267 **of the regime state for a given time step of the ensemble average?. I**
268 **think discussing this a bit more and why the probability of regime 2**
269 **diminishes is pertinent.**

270 When using a single member to calculate the histograms, the distance be-

271 tween the two peaks are larger as can be seen in figure 10 and 13. By mixing
272 the simulations, the product would be a better estimate of the mean state, thus
273 the PDF tends to a normal distribution with a slight shoulder over the regime
274 in positive values. In ECHAM5 simulations the regime 1 (left) is more frequent
275 and therefore the average PDF shows a peak near this center. For GISS, as a
276 result of less numbers of members, the ensemble average presents a peak near
277 zero. This could be clearly seen in regime 1 of PDSI with near neutral drought
278 conditions (PDSI = 0) for most of the region (Figure S.6.a).

279 **The patterns in Figures 13 and 15 are vaguely described and**
280 **not discussed. I suggest the authors argue about the differences and**
281 **similarities in the results obtained from both models. Are these the**
282 **correct events (5 historical megadroughts) to consider? (recall the**
283 **low agreement of the minima in Figs 2,8,9 with model series).**

284 Recalling figure 2 of the manuscript, both models capture at least 4 out of 5
285 mega-droughts in terms of sign of the PC1 of PDSI (brown shadings). Knowing
286 that the PC1 of PDSI presents monsoon failure, the composites of OLR and
287 850 hPa wind should present patterns similar to break regime of monsoon. By
288 averaging for such a long period (84 years), the systematic model error is reduced
289 and the patterns show similarities with the break phase. The 850 hPa wind
290 pattern of GISS for example, presents a clear reduction of moisture transport
291 into India especially for the Somali Jet.

292 **I think conclusions and abstract should be rethought in view of**
293 **the previous points. I would advise including in the conclusions**
294 **some cross section discussion about the results obtained in each sec-**
295 **tion and how they complement each other. Also, how the agree-**

296 **ment/disagreement between reconstructed and simulated drought is**
297 **affected by model issues (e.g. ensemble averages vs ensemble mem-**
298 **bers and the benefits of using two ensembles) and how it may be**
299 **traced to external forcing in different models. The different/similar**
300 **results obtained by the two models should be discussed.**

301 We agree and try to implement this suggestion to make the conclusion co-
302 herent by adding cross section discussions.

303 Regarding the minor comments, we will implement all suggestions in the
304 final version of manuscript.

305 **References**

306 [Bretagnon, 1988] Bretagnon, P., F. G. (1988). Planetary theories in rectangu-
307 lar and spherical variables - vsop 87 solutions. *Astronomy and Astrophysics*,
308 202:309–315.

309 [Coats et al., 2013] Coats, S., Smerdon, J. E., Seager, R., Cook, B. I., and
310 Gonzlez-Rouco, J. F. (2013). Megadroughts in southwestern north america
311 in echo-g millennial simulations and their comparison to proxy drought re-
312 constructions*. *J. Climate*, 26(19):7635–7649.

313 [Cook et al., 2010a] Cook, E. R., Anchukaitis, K. J., Buckley, B. M., DArrigo,
314 R. D., Jacoby, G. C., and Wright, W. E. (2010a). Asian monsoon failure and
315 megadrought during the last millennium. *Science*, 328(5977):486–489.

316 [Cook et al., 2010b] Cook, E. R., Seager, R., Heim, R. R., Vose, R. S., Herwei-
317 jer, C., and Woodhouse, C. (2010b). Megadroughts in north america: placing

318 ipcc projections of hydroclimatic change in a long-term palaeoclimate context.

319 *J. Quaternary Sci.*, 25(1):48–61.

320 [Crowley, 2008] Crowley, T.J., Z. G. V. B. U. R. K. K. C.-D. J. C. J. (2008).

321 Volcanism and the little ice age.

322 [Dai, 2013] Dai, A. (2013). Increasing drought under global warming in obser-

323 vations and models. *Nature Clim. Change*, 3(1):52–58.

324 [Fortuin, 1988] Fortuin, J.P.F., K. H. (1988). An ozone climatology based on

325 ozonesonde and satellite measurements. *Journal of Geophysical Research:*

326 *Atmospheres*, 103:31709–31734.

327 [Gao et al., 2013] Gao, Y., Cuo, L., and Zhang, Y. (2013). Changes in moisture

328 flux over the tibetan plateau during 19792011 and possible mechanisms. *J.*

329 *Climate*, 27(5):1876–1893.

330 [Giorgi and Mearns, 2003] Giorgi, F. and Mearns, L. O. (2003). Probability

331 of regional climate change based on the reliability ensemble averaging (rea)

332 method. *Geophys. Res. Lett.*, 30(12):1629–.

333 [Hannachi and Turner, 2013] Hannachi, A. and Turner, A. (2013). Isomap non-

334 linear dimensionality reduction and bimodality of asian monsoon convection.

335 *Geophys. Res. Lett.*, 40(8):1653–1658.

336 [Jungclaus et al., 2010] Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick,

337 C. H., Brovkin, V., Six, K., Segschneider, J., Giorgetta, M. A., Crowley,

338 T. J., Pongratz, J., Krivova, N. A., Vieira, L. E., Solanki, S. K., Klocke, D.,

339 Botzet, M., Esch, M., Gayler, V., Haak, H., Raddatz, T. J., Roeckner, E.,

340 Schnur, R., Widmann, H., Claussen, M., Stevens, B., and Marotzke, J. (2010).

341 Climate and carbon-cycle variability over the last millennium. *Climate of the*
342 *Past*, 6(5):723–737.

343 [Kalnay et al., 1996] Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W.,
344 Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu,
345 Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W.,
346 Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph,
347 D. (1996). The ncep/ncar 40-year reanalysis project. *Bull. Amer. Meteor.*
348 *Soc.*, 77(3):437–471.

349 [Kaplan et al., 2010] Kaplan, J. O., Krumhardt, K. M., Ellis, E. C., Ruddiman,
350 W. F., Lemmen, C., and Klein Goldewijk, K. (2010). Holocene carbon emis-
351 sions as a result of anthropogenic land cover change. *The Holocene*, pages –.

352 [Krishnamurti et al., 1999] Krishnamurti, T. N., Kishtawal, C. M., LaRow,
353 T. E., Bachiochi, D. R., Zhang, Z., Williford, C. E., Gadgil, S., and Surendran,
354 S. (1999). Improved weather and seasonal climate forecasts from multimodel
355 superensemble. *Science*, 285(5433):1548–1550.

356 [Krishnamurti et al., 2000] Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z.,
357 LaRow, T., Bachiochi, D., Williford, E., Gadgil, S., and Surendran, S. (2000).
358 Multimodel ensemble forecasts for weather and seasonal climate. *J. Climate*,
359 13(23):4196–4216.

360 [Krivova et al., 2007] Krivova, N. A., Balmaceda, L., and Solanki, S. K. (2007).
361 Reconstruction of solar total irradiance since 1700 from the surface magnetic
362 flux. *A&A*, 467(1):335–346.

363 [Lambert and Boer, 2001] Lambert, S. J. and Boer, G. J. (2001). Cmip1 eval-
364 uation and intercomparison of coupled climate models. 17(2-3):83–106–.

365 [Mann et al., 1999] Mann, M. E., Bradley, R. S., and Hughes, M. K. (1999).
366 Northern hemisphere temperatures during the past millennium: Inferences,
367 uncertainties, and limitations. *Geophysical Research Letters*, 26(6):759–762.

368 [Marland, 2008] Marland, G., B. T. A. R. (2008). Global, regional, and national
369 fossil fuel co₂ emissions. In *A Compendium of Data on Global Change*. Oak
370 Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn.,
371 U.S.A.

372 [Palmer et al., 2000] Palmer, T. N., Brankovi, ., and Richardson, D. S. (2000).
373 A probability and decision-model analysis of provost seasonal multi-model
374 ensemble integrations. *Q.J.R. Meteorol. Soc.*, 126(567):2013–2033.

375 [Polanski et al., 2014] Polanski, S., Fallah, B., Befort, D. J., Prasad, S., and
376 Cubasch, U. (2014). Regional moisture change over india during the past
377 millennium: A comparison of multi-proxy reconstructions and climate model
378 simulations. *Global and Planetary Change*, 122(0):176–185.

379 [Pongratz et al., 2008] Pongratz, J., Reick, C., Raddatz, T., and Claussen, M.
380 (2008). A reconstruction of global agricultural areas and land cover for the
381 last millennium. *Global Biogeochem. Cycles*, 22(3):GB3018–.

382 [Solanki et al., 2004] Solanki, S. K., Usoskin, I. G., Kromer, B., Schussler, M.,
383 and Beer, J. (2004). Unusual activity of the sun during recent decades com-
384 pared to the previous 11,000 years. *Nature*, 431(7012):1084–1087.

385 [Steinhilber et al., 2009] Steinhilber, F., Beer, J., and Frhlich, C. (2009). Total
386 solar irradiance during the holocene. *Geophys. Res. Lett.*, 36(19):L19704–.

387 [Tanre, 1984] Tanre, D., G. J. F. S. J. M. (1984). *Aerosols and Their Climatic*
388 *Effects*, chapter First results of the introduction of an advanced aerosolradia-
389 tion interaction in the ECMWF low resolution global model, pages 133–177.
390 Deepak Publishing.

391 [Turner and Hannachi, 2010] Turner, A. G. and Hannachi, A. (2010). Is there
392 regime behavior in monsoon convection in the late 20th century? *Geophysical*
393 *Research Letters*, 37:L16706.

394 [Vieira and Solanki, 2010] Vieira, L. E. A. and Solanki, S. K. (2010). Evolution
395 of the solar magnetic flux on time scales of years to millenia. *A&A*, 509:–.

Figure 1: (S.1) Smoothed PC1 trends of PDSI for GISS and MADA. The numbers in parenthesis are correlation coefficients. Black solid line is the ensemble average.

Figure 2: (S.2) Khmer Empire megadrought. **Note** that in MADA some grids are missing in the north-east of the domain.

Figure 3: (S.3) MCA for ECHAM5/MPIOM.

Figure 4: (S.4) MCA for GISS-E2-R.

Figure 5: (S.5) PDSI composites for the two regimes from ECHAM5/MPIOM.

Figure 6: (S.6) PDSI composites for the two regimes from GISS-E2-R.

1	Solar: SBF, Volcanic: CEA, LULC: PEA, GHG transient, orbital
2	Solar: SBF, Volcanic: GRA, LULC: PEA, GHG transient, orbital
3	Solar: SBF, Volcanic: None, LULC: PEA, GHG transient, orbital
4	Solar: VK, Volcanic: CEA, LULC: PEA, GHG transient, orbital
5	Solar: VK, Volcanic: GRA, LULC: KK10, GHG transient, orbital
6	Solar: VK, Volcanic: None, LULC: PEA, GHG transient, orbital
7	Solar: VK, Volcanic: CEA, LULC: KK10, GHG transient, orbital
8	Solar: VK, Volcanic: GRA, LULC: PEA, GHG transient, orbital

Table 1: forcings used for GISS-E2-R simulations from <http://data.giss.nasa.gov/modelE/ar5/>. SBF = [Steinhilber et al., 2009]; VK = [Vieira and Solanki, 2010]; CEA= [Gao et al., 2013]; GRA = [Crowley, 2008]; PEA = [Pongratz et al., 2008]; KK10 = [Kaplan et al., 2010].

MCA1 of	Niño 3.4	Niño 1 + 2	Niño 4	NHT
SST of mil0010	0.68	0.39	0.71	0.49
PDSI of mil0010	0.24	NS	0.22	0.14
SST of mil0012	0.63	0.39	0.63	0.33
PDSI of mil0012	0.21	NS	0.20	NS
SST of mil0013	0.70	0.54	0.69	0.43
PDSI of mil0013	0.19	NS	0.25	NS
SST of mil0014	0.28	0.25	0.30	0.15
PDSI of mil0014	NS	0.13	NS	NS
SST of mil0015	0.61	0.57	0.64	0.41
PDSI of mil0015	NS	0.14	0.13	-0.21
SST of r1i1p121	0.49	0.51	0.55	0.25
PDSI of r1i1p121	0.28	0.35	0.33	NS
SST of r1i1p124	0.45	0.41	0.53	0.22
PDSI of r1i1p124	0.36	0.38	0.34	0.12

Table 2: Correlations of MCA timeseries and climate indices. All the coefficients are significant with $p - value < 0.01$. NS stands for Not Significant.