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Abstract

Several methods currently exist to quantitatively reconstruct palaeoclimatic variables
from fossil botanical data. Of these, pdf-based (probability density functions) methods
have proven valuable as they can be applied to a wide range of plants assemblages.
Most commonly applied to fossil pollen data, their performance, however, can be limited5

by the taxonomic resolution of the pollen data, as many species may belong to a given
pollen-type. Consequently, the climate information associated with different species
cannot sometimes not be precisely identified, resulting less accurate reconstructions.
This can become particularly problematic in regions of high biodiversity. In this paper,
we propose a novel pdf-based method that takes into account the different climatic10

requirements of each species constituting the broader pollen-type. Pdfs are fitted in
two successive steps, with parametric pdfs fitted first for each species, and then a
combination of those individual species pdfs into a broader single pdf to represent the
pollen-type as a unit. A climate value for the pollen assemblage is estimated from the
likelihood function obtained after the multiplication of the pollen-type pdfs, with each15

being weighted according to its pollen percentage.
To test the robustness of the method, we have applied the method to southern Africa

as a regional case study, and reconstructed a suite of climatic variables based on ex-
tensive botanical data derived from herbarium collections. The reconstructions proved
to be accurate for both temperature and precipitation. Predictable exceptions were ar-20

eas that experience conditions at the extremes of the regional climatic spectra. Impor-
tantly, the accuracy of the reconstructed values is independent from the vegetation type
where the method is applied or the number of species used.

The method used in this study is publicly available in a software package entitled
CREST (Climate REconstruction SofTware) and will provide the opportunity to recon-25

struct reliable quantitative estimates of climatic variables even in areas with high geo-
graphical and botanical diversity.
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1 Introduction

Reconstructing past climates, while being an important element in the global effort to
understand climate system dynamics and their potential future structure and charac-
teristics, is often limited to qualitative assessments of past conditions. This limits the
potential for comparisons with the general circulation model (GCM) simulations, and5

the integration of palaeoenvironmental information in modelling initiatives (Braconnot
et al., 2012). As a result, while inconsistencies exist both between GCM simulations,
and between the simulations and the fossil records, it is difficult to use the bulk of the
palaeo-data available to evaluate GCM simulations in an efficient and effective way.

Many techniques have been developed to quantitatively reconstruct past climates10

from palaeo-botanical data (Guiot et al., 1993; Huntley et al., 1995; Overpeck, 1985;
Kühl et al., 2002). They rely on the fundamental hypothesis that a causal relation-
ship exists between the modern distributions of plants and the associated climates
(Jackson and Williams, 2004 and references therein). These techniques can be di-
vided into two types: those based on plant assemblages (Modern Analogs Technique,15

MAT; Overpeck, 1985; Guiot, 1990, and Weighted Averaging Partial Least Square re-
gressions, WA-PLS; ter Braak and Juggins, 1993), and those based on plant distribu-
tions (Mutual Climatic Range, MCR; Atkinson et al., 1987; Sinka and Atkinson, 1999) or
probability density functions (pdfs; Kühl et al., 2002). MAT and WA-PLS are reported to
be more accurate, but they are limited in their applicability because of the potential lack20

of modern analogs for some fossil pollen assemblages (Jackson and Williams, 2004).
From that perspective, the flexibility of methods based on plant distribution become
more advantageous to expand the range and scope of “reconstructible” environments,
as they can be applied to any past assemblage providing that most species from that
palaeo-assemblage still exist.25

Conceptually, the pdf-based methods evolved from MCR techniques as a way to
model the strength of the relationship between plants and climate. In fact, MCR (which
considers a rectangular envelope defined by minimum and maximum values for a given
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climate variable) can be seen as the most simple pdf-based method. These methods
are based on the correlation between plants modern geographical distribution and cli-
mate gradients, with the climate value that is the most often found in the plant distri-
bution being its “optimum”. Among the approaches that have already been proposed
within the last decade (Kühl et al., 2002; Gebhardt et al., 2007; Truc et al., 2013),5

a recurrent issue concerns the assumptions made about the morphological character-
istics of the envelope (width, skewness, central tendencies). Kühl et al. (2002) fitted
a multidimensional gaussian surface that excluded both multimodality and asymmetry
that are however a common feature when dealing with botanical assemblages. Later,
Gebhardt et al. (2007) proposed to fit a mixture model (combination of several gaussian10

surfaces) to relax the constraints of a unimodal gaussian shape. Recently, Truc et al.
(2013) proposed the application of non-parametric pdfs to improve the fit between pdf
and data.

In addition to the issue of the shape, the accuracy of such models is also a function
of the taxonomic resolution at which pollen can be identified (usually family to generic15

level) and the number of species making up a given pollen-type. Pollen-types often be-
come climatically non-informative due to a saturation effect wherein too many species
result in the climatic information conveyed by each species being averaged and lost.

Contrary to the problem of the shape of the climate envelope, the problem of low
taxonomic resolution has rarely been discussed as its effects are usually not signifi-20

cant when plant diversity is relatively low. However, in areas where pollen-types can
comprise a high number of plant species (> 30), it becomes preponderant and can re-
sult in saturated pdfs. Truc et al. (2013) proposed a Species Selection Method (SSM)
that recursively alter the taxonomic composition of a pollen-type by taking into account
the co-existence with other pollen-types. In order to minimize pdf saturation, the SSM25

removes species that have climate requirements that are different from that of the as-
semblage.

However, the SSM only removes species with optima at the extremes of climatic
gradients, leaving a certain number of climatically undifferentiated species around the
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median climate. We believe that the problems of the shape and the diversity are in
fact intimately related to the strategy used for fitting pdfs. A pollen-type is not a ho-
mogeneous ecological unit in the sense that many species with different climate re-
quirements can be classified in the same pollen-type. From this point of view, fitting
a density function directly to a pollen-type is questionable. On the basis that species5

are the ecological units that respond to climate gradients, we propose a two-step pro-
cedure to define the pdf of the pollen-types: (1) unimodal parametric pdfs are fitted for
the species (pdfsp) and (2) those parametric pdfsp are combined to produce the pdf of
the pollen-type (pdfpol). The pdfpol reflects the diversity that exists among its species by
considering independently each species. To reconstruct a climate value, we propose10

to combine the pdfpol with a weighted geometric mean. The multiplication of pdfpol en-
sures the conservation of the mutual climatic range.

To quantify the method’s capability to reconstruct different variables in different en-
vironments, we have reconstructed a set of modern climatic conditions (20 variables)
over a large area (3389 quarter-degree grid cells representing southern Africa). South-15

ern Africa – composed of South Africa, Botswana, Lesotho, Swaziland and Namibia
– is well-suited for run such a test as it is characterized by a strong heterogeneity in
terms of topography, geology and climate (Tyson, 1986; Partridge and Maud, 2000;
Chase and Meadows, 2007) leading ultimately to a great diversity of plant species
(Goldblatt and Manning, 2002). Statistical tests were performed on climate anomalies20

(1) to analyze where and why the model was reliable, and (2) to measure the effects of
parameters such as the type of variable, the number of taxa used and/or the vegetation
type.

The method presented here as been implemented in a software entitled CREST
(Climate REconstruction SofTware). With its simple interface, CREST is intended to25

make quantitative climate reconstructions an accessible goal for the wider community.
Our hope is that a proliferation of quantitative reconstructions of past climate condi-
tions will facilitate the consideration of palaeoenvironmental data in the assessment of
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GCM performance, and ultimately allow for an improved understanding of both past
and potential future climate change.

2 Methodology

The climate reconstruction method we propose is based on probability density func-
tions (pdfs). Schematically, a pdf represents the probability of a species to exist along5

a climate gradient and is a surrogate for the species realised niche (see for example
Kearney, 2006). The process of a pdf-based method can be divided into three succes-
sive steps: (i) quantifying the plant–climate relationship, in other words fitting the pdfs,
(ii) combining information from the different taxa, and finally (iii) extracting a climate
value from the resulting climate likelihood function. This method relies on a strong hy-10

pothesis: the invariance of the plant–climate relationship since the deposition of the
fossil assemblage.

2.1 Fitting of the pdfs

This step is crucial for each pdf-based method. Many different strategies have been
proposed (Kühl et al., 2002; Gebhardt et al., 2007; Truc et al., 2013) all of them fitting15

a pdf to the pollen-types identified in the fossil record. This strategy leads to a loss of
certain information because (1) individual signals are mixed and (2) rare species are
masked by the most extended ones.

Here we propose a two-step procedure to fit pdfs that better integrates the diversity
that can exist within some pollen-types. First, we fit a pdf to each species (noted psdsp),20

and secondly we combine the pdfsp into pdfpol. The latter considers more clearly the
pollen-type’s diversity.
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2.1.1 Creating pdfsp

Based on observations, we propose that distributions of climatic values where
a species is found – its niche – can be classified into two shapes: a log-normal shape
(Fig. 1a) or a normal shape (Fig. 1b) (Austin, 1987; Austin and Gaywood, 1994; Hirzel
and Le Lay, 2008). The normal shape is symmetric while the log-normal shape is5

markedly right-skewed (left-skewed distributions have been observed but are uncom-
mon). In addition, the log-normal function is null for negative values, which is of interest
when modelling, for example, rainfall amounts. Both curves are defined by two param-
eters: the mean xsp (Eq. 1) and the variance s2

x,sp (Eq. 2) of the species niche, with x

being the studied climatic gradient.10

Kühl et al. (2002) proposed to weight each climate observation according to its fre-
quency of occurrence. Climate values are never equally distributed in the studied area.
Consequently, to ensure homogeneity in the climate data, the rarest climate values are
upweighted and the most common values are downweighted (referred later as the cli-
mate abundance weighting). The climate values (a total of N) are sorted into J bins of15

equal width. A weight kj is defined for each bin as the ratio of N with the number of
pixels nj in the bin j .

xsp =
1∑
ki

N∑
i=1

kixi (1)

s2
x,sp =

1∑
ki

N∑
i=1

ki (xi −xsp)2 (2)
20

The shape and the position of the pdfsp along a gradient can be calculated with
Eqs. (3) and (4) representing the normal law and the log-normal law (Fig. 1b and a),
respectively.

631

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/10/625/2014/cpd-10-625-2014-print.pdf
http://www.clim-past-discuss.net/10/625/2014/cpd-10-625-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
10, 625–663, 2014

CREST

M. Chevalier et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

pdfsp(x) =
1√

2πs2
x,sp

exp

(
−

(x−xsp)2

s2
x,sp

)
(3)

pdfsp(x) =
1√

2πσ2x2
exp

(
−

(ln(x)−µ)2

2σ2

)
with


µ = ln(xsp)− 1

2 ln
(

1+
s2
x,sp

x
2
sp

)
σ2 = ln

(
1+

s2
x,sp

x
2
sp

) (4)

2.1.2 Creating pdfpol

To create the pdfpol, all the pdfsp are added with a weight determined by their geograph-5

ical extension (represented by the number of climate values ni , Eq. 5). Contrary to the
pdfsp that have an imposed shape, the shape of pdfpol is free, with no assumptions be-
ing made. A pdfpol can be multimodal when composed of two or more climatically sepa-
rated groups of species. This is necessary to take into account the diversity within each
pollen-type. Figure 1c and 1d highlights the advantage of that method: for instance, the10

climatic signals conveyed by the three species Tribulus cristatus, T. pterophorus and T.
zeyheri are not masked by the signals of the most extended one T. terrestris.

pdfpol(x) =
1∑√
nspi

spN∑
sp1

√
nspi

pdfspi
(x) (5)

2.2 Combination of the pdfpol to create the pdfvar15

We propose the combination of different pdfpol with a weighted geometrical mean
(Eq. 6). The multiplication of pdfpol ensures that the reconstructed climate value will
be in the mutual climate range of the taxa considered. In addition, since plants pol-
linate more when they live close to their climate optimum (Birks and Seppä, 2004;
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Jackson and Williams, 2004), the pdfpol are weighted according to a monotically in-
creasing function of their pollen percentage ωpol(t) (Eq. 7).

pdfvar(x,t) =

polN∏
pol1

pdfpoli
(x)ωpoli

(t)


(∑

ωpoli
(t)
)−1

(6)

Using pollen percentages ppol(t) to weight taxa is difficult because the pollination rate5

can vary substantially from one family to the other (Jackson and Williams, 2004). Kühl
et al. (2002) chose not to weight the different taxa, while Truc et al. (2013) chose to
rescale the percentages between 0 and 1, 1 corresponding to the highest percentage
observed for the pollen-type. This strategy is, however, very sensitive to outliers. We
propose instead to normalize the percentages by the mean of the percentages that are10

not null. For a given pollen-type, our weights have a correlation of 1 with those of Truc
et al. (2013). The difference lies in the relative weights between taxa.

ωpol(t) =
ppol(t)

mean(ppol(t))∀t,ppol(t)>0
(7)

2.3 Climate reconstruction15

The reconstructed climate corresponds to the abscissa x̂(t) of the optimum of pdfvar
(Eq. 8). pdfvar describes the likelihood of any climatic value to be the target value when
considering the presence of many pollen-types.

x̂(t) = argmax(pdfvar(x,t)) (8)
20

2.4 Error estimations

pdfvar provide access to the complete distribution of errors. They can be estimated at
different thresholds (noted α). The α% confidence interval (CI) is more appropriate
than a standard deviation because pdfvar are rarely symmetrical (Fig. 2).
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3 CREST software

We have implemented our method into a software package entitled CREST (Climate
REconstruction SofTware). CREST is an integrated multi-platform program developed
to facilitate climatic reconstructions. The advantage of CREST is the opportunity to
change easily a range of parameters (e.g. the shape of the pdfsp, how to use the5

pollen percentages, using the climate abundance weighting, which set of pollen-types
should be used, etc.). Since the optimal reconstruction of palaeoclimatic variables is
an iterative process (many runs are usually necessary to interpret the reconstructed
patterns) CREST can generate detailed outputs (both figures and text files) that offer
the possibility to have a detailed feedback on the reconstructed values. We believe10

that understanding which pollen-types are important and why is of prime importance
to ensure a reliable reconstruction. Many tools have been implemented to avoid the
common “statistical black box” criticism and render the process accessible for the wider
community.

4 Validation15

As a case study, we have used a modern botanical database to reconstruct a set of
contemporary climate values to highlight and explore the strengths and weaknesses of
the approach, and to quantifying its accuracy and robustness. Our study area, southern
Africa, is composed of five countries: South Africa, Namibia, Lesotho, Swaziland and
Botswana (from 17 to 34.5◦ S and from 12 to 32.5◦ E, Fig. 3), and is composed of 391320

quarter-degree grid cells. The region is particularly suited for our experiment because
the subcontinent is characterized by a strong heterogeneity in terms of topography,
geology and climate (Tyson, 1986; Partridge and Maud, 2000; Chase and Meadows,
2007) leading to the existence of many vegetation types with rapid changes over short
distances.25
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4.1 Climate system

Most of southern Africa is dominated by summer rainfall related to the seasonal dynam-
ics of the Intertropical Convergence Zone (ITCZ), and the advection of moist tropical
air masses off the Indian Ocean. Annual rainfall is highest along the eastern escarp-
ment (∼ 1200 mm yr−1; Hijmans et al., 2005; Mitchell and Jones, 2005) and decreases5

westward. Conversely, in the Cape region (southern tip of Africa), most of the rain
falls during the winter months as a result of frontal systems embedded in the southern
westerlies (Tyson, 1986) and can reach a total of more than 900 mm yr−1. A complex
mosaic of rainfall regimes are found at the boundary between those two systems: from
year-round rainfall along the south coast of South Africa (> 900 mm yr−1 distributed in10

more than 100 rain events per year) to the super arid Namib Desert (< 20 mm, < 10
rain events). The orographic effects of the Drakensberg escarpment and the Cape Fold
Belt are very marked, creating a strong rainshadow effect in their lee.

A strong west/cold to east/warm temperature gradient is also observed. The west
coast is cooled by the cold northward flowing Benguela current (upwelling zone)15

whereas the south and east coasts are warmed by the southward flowing Agulhas and
Mozambique currents, respectively. At a given latitude, the difference in temperature
between the two coasts can exceed 6◦ C. The greatest diurnal temperature ranges are
found in the interior, especially in the Kalahari and the Karoo region where the altitude
is greater than 1000 ma.s.l. in many areas (Hijmans et al., 2005).20

The study region currently supports four primary biomes: Deserts and Xeric Shrub-
lands (54.7 %), Montane Grasslands and Shrublands (16.8 %), Tropical and Subtropi-
cal Grasslands, Savannas and Shrublands (25.3 %) and Mediterranean Forests, Wood-
lands and Scrub (3.2 %) (Olson et al., 2001). The latter is better known as the Cape
Floristic Region, which is dominated by the Fynbos Biome. Each biome is divided into25

ecoregions (Fig. 3; Table 1), which will be used to describe the model’s properties.
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4.2 Data

We have extracted botanical data for all grid cells where at least one plant with more
than 25 pixels in its distribution had been recorded, leading to a total of 3389 “samples”
(Fig. 4). We have then selected 20 climatic variables of interest: 9 temperature-like and
11 moisture-like variables (Table 2). A total of 4969 species distributions have been5

used.

4.2.1 Botanical data

Botanical data were extracted from a series of databases held by the South African Na-
tional Biodiversity Institute (SANBI, 2003; Rutherford et al., 2003, 2012). The data from
these sources, which are derived mainly from herbarium collections and documented10

observations, are available as “presence” within a particular 0.25◦ ×0.25◦ grid square.
We have used this resolution for our analyses, upscaling more precisely located data
to this common resolution.

In this study, we only consider species with at least 25 occurrences leading to a num-
ber of species (nesp) available per pixel between 1 and 1371 (median= 47). This strong15

heterogeneity is mainly due to both the range of environments found in our study area
(Fig. 3) and the strong difference that exists between the different countries (Fig. 4),
with South Africa providing by far the most extensive dataset.

4.2.2 Climatic data

To define pdfs, the species distributions have to be associated with climate data.20

We have used a subset of the climatic variables from WORLDCLIM1.4 (Hijmans
et al., 2005), which, along with monthly precipitation and temperature data, provides
a dataset of 19 bioclimatic variables that are considered important elements in study-
ing the eco-physiological tolerance of plants species. These data were then upscaled
to match the resolution of the botanical data (0.25◦×0.25◦, quarter-degree). Additional25
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variables of interest have also been derived from WORLDCLIM’s data, including the
soil water content (SWC; Trabucco and Zomer, 2010) for both summer and winter, the
mean annual aridity (Trabucco and Zomer, 2009) and the percentage of winter rainfall
(WRP). WRP and WORLDCLIM’s Precipitation Seasonality variable are similar as they
measure the distribution of rainfall across the year. Summer and winter rainfalls are5

not differentiated by WORLDCLIM’s Precipitation Seasonality, however. As this distinc-
tion is important for understanding past climate changes over southern Africa, we have
created WRP to try to consider this major difference in our reconstructions.

We have also used two variables from the CRU 2.10 time series (Mitchell and Jones,
2005): the number of frost and wet days during the year. Those data (0.5◦ ×0.5◦ grid10

cells) were downscaled to meet our resolution.
The description of all variables as well as their original reference is summarized in

Table 2.

5 Results

5.1 Accuracy of the model15

We have measured the climate anomalies δ(v ,s) for each sample s and each variable
v between the reconstructed climate Recon(v ,s) and the instrumental value Instru(v ,s)
according to Eq. (9). A positive/negative anomaly is equivalent to an under/over-
estimation of the targeted climate.

δ(v ,s) = Instru(v ,s) − Recon(v ,s) (9)20

The dispersion of the anomalies for each variable has been compiled in Table 3.
The distributions of anomalies are all centered around 0, meaning that the model is
not subject to undue bias. Nevertheless, a major dichotomy can be observed between
the two types of variables: for the temperature-like variables, the median is positive for25

eight out of nine variables (general under-estimation) while for moisture-like variables
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the opposite is observed, with negative medians for eight out of eleven variables (gen-
eral over-estimation). The different percentiles we have calculated give insight about
the dispersion of the reconstructed values as well as do the histograms in Fig. 9. The
skewness is most often negative (for 14 variables), meaning that when errors are neg-
ative (over-estimation) their absolute value is higher than when they are positive (755

and 95 % percentiles respectively higher than the 25 and 5 %).
The Root Mean Square Deviation (RMSD(v); Eq. 10) is an index that reflects the

mean error of a model but it has the inconvenient to be sensitive to outliers. It allows,
however, for a good evaluation of the performance of the model. All the values are
compiled in Table 3.10

RMSD(v) =

√√√√ 1
N

N∑
s=1

δ(v ,s)2 (10)

The amplitude of δ(v ,s) and RMSD(v) are functions of the variable range. Direct
comparisons between variables cannot be performed – except for those with a similar
range of variation such as, for example, Tmean Ann, Tmean Cold Q and Tmean Warm15

Q. To remove this discrepancy, we have normalized our RMSDs by the observed stan-
dard deviation of the instrumental values (NRMSD(v); Eq. 11). NRMSDs are lower for
moisture like-variables whilst they exhibit the highest anomalies (in units of NRMSD;
Figs. 6 and 7). Four variables present a high NRMSD: Mean Diurnal Range (0.75),
Temp Ann Range (0.72), Prec seasonality (0.70) or Temp seasonality (0.68). The cli-20

matic signal of these four variables does not seem to be well captured by the botanical
data, and plant distribution are apparently not directly driven by those variables. They
represent annual climatic variability, and a range of climatic scenarios could result in
the same values. For example, the variable Prec Seasonality takes identical values for
seasonal rainfalls whether they occur mainly in winter or summer. This major differ-25

ence is incorporated in WRP that has been reconstructed with a much better accuracy
(NRMSD= 0.44).
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NRMSD(v) =
RMSD(v)
σInstru(v)

(11)

5.2 Geographical analysis of the errors

Generally, southern African climates are accurately reconstructed by CREST. The
anomalies that do exist are not randomly dispersed throughout the study area. On5

the contrary, regions of enhanced or diminished error are observed for each variable
(Figs. 5 and 6). On these figures the anomaly has been normalized by the RMSD
(Eq. 12) to make all the maps comparable. In addition, only the absolute value is con-
sidered. This observation is validated with the measure of the spatial autocorrelation of
the anomalies with Moran’s I (Moran, 1950) (Table 3). To compute this index a neigh-10

borhood matrix of weights has to be defined. We have considered that the neighbors of
a grid cell are only the 8 grid cells directly adjacent to it. All the values are between 0.31
(Prec Ann) and 0.70 (Prec Seasonality) while under the null hypothesis (no spatial au-
tocorrelation) the expected value for Moran’s I is −3.95×10−4 (variance of 8.25×10−5).
Moran’s I is normally distributed, so that our results demonstrate that the anomalies are15

spatially clustered: in some areas the model performed very well while it failed in some
others.

δnorm(v ,s) =

∣∣∣∣ δ(v ,s)

RMSD(v)

∣∣∣∣ (12)

Four areas present a group of outliers for several variables: (1) the Namibian coast20

(for temperatures and precipitations), (2) the high mountains of Lesotho (for tempera-
tures), (3) the Eastern part of the Great Escarpment (precipitations) and (4) the south-
ern coast of South Africa (precipitations) (Figs. 5 and 6).
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5.3 Factors impacting the reconstructions

Errors being spatially clustered, we have looked for factors that could explain this con-
centration. There is no clear linear relation between the anomalies absolute values and
nesp. The slopes of the linear models we fitted were statistically significant at the 5 %

threshold but the R2 were always low (3.3 % of variance explained in average, Table 4).5

The models can, however, be biased by the uneven distribution of nesp; half of the grid
cells were reconstructed with 47 or less species while some others were reconstructed
with more than 1000 (Fig. 4). Some of our clusters of errors are found in mountainous
regions, and we have hypothesized that the errors may arise from a mix of low alti-
tude plants with high altitude plants, with the anomalies observed being proportional to10

the degree of mixing. Thus, we have calculated the intra-pixel variation of altitude (the
standard deviation of all the 30 arc-second altitude values in each quarter-degree grid
cell, later called ∆Alt). We fitted linear model to explain the anomalies as a function of
nesp and ∆Alt. However, the gain of explained variance was relatively small (+0.9 % in
average). These results indicate that the anomalies are not a result of the number of15

species used.
We also considered the impact of vegetation type on the anomalies. We used Ol-

son et al. (2001) classification to assign a biome and an ecoregion to each grid cell
(Fig. 3). We used an ordination technique called Between-Groups PCAs (Thioulouse
et al., 1997) to reveal the differences that may exist between vegetation types. With all20

the variables considered in the same analysis, we measured if the type of vegetation
impacted the reconstructions. At the biome level (7 levels; Fig. 7), the between-groups
variance only explained 9 % of the total variance, meaning that more than 90 % of the
variance was not explained by the differences between the biomes. The length of the
boxes on Fig. 7 highlights that there is more variance within each group than between25

them.
The Between-Groups PCA ran on the ecoregions explains 25 % of the total variance

but this is low relative to the number of levels (25). Again, more variance remained
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within the groups than between them. Figure 8 summarises the mean dispersion of
errors within each ecoregion. Some ecoregions appears to concentrate outliers, but
these are always composed of 25 or less samples (low geographical extension and/or
low amount of botanical data). Thus, despite the high diversity that exists in southern
Africa, we were not able to demonstrate that the type of vegetation (forests, grasslands,5

savannas, etc.) had any effect on the quality of the reconstructions.
Finally, the only factor that explains a significant part of the dispersion is the distance

of the targeted value from the most represented value of the variable over the study
area (Table 4). We fitted linear models to explain the anomalies as a function of the
targeted value (Fig. 9). All were significant (pvalue < 0.001) with positive slopes. A no-10

ticeable difference between temperature-like (R2 = 42 % in average) and moisture-like
variables (R2 = 22 % in average) is observed. In others words, these results mean that
values that lie far from the most represented climate exhibit the highest anomalies (on
the left and/or right-hand side(s) on the x axes in Fig. 9). As three different phases
were identifiable in the dispersion of the anomalies along their climate gradient in most15

cases, we also tried to fit a linear model with third-order polynomial of the targeted
climate but the increase in explained variance was not sufficient to accept this model
(+4.9 % in average).

6 Discussion

Our results indicate that the pdf-based method employed by CREST is robust (Ta-20

ble 3, Figs. 5 and 6), even if some differences exist between variables. The variables
that were best reconstructed were those that have a direct impact on the physiology
of plants, and thus strongly constrain their distribution (e.g. TmeanWetQ, Frost Days,
PrecDryQ or PrecWetQ) (referred to as direct gradients by Guisan and Zimmermann,
2000). The impact of other variables such as Mean Diurnal Range or Temp Season-25

ality is less direct, leading to a loss of reproducibility. In the semi-arid to arid envi-
ronments of southern Africa, precipitation and/or water availability strongly constrain
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plants distributions. It is thus not surprising to get lower NRMSDs for moisture-related
variables. This distinction between direct and indirect gradients is crucial when per-
forming long-term climate reconstructions. In general, we can conclude that variables
that influence directly plant distributions will have a greater chance of being accurately
reconstructed.5

The method performed well regardless of vegetation type. We were not able to show
any differences in accuracy between the different biomes and/or ecoregions providing
that the distribution of the biome and/or ecoregion was sufficiently spatially extensive.
Based on these results, we have found that the method works best for vegetation types
represented by at least ∼ 25 to 50 quarter-degree grid cells (estimation based on Fig. 8)10

in order to adequately determine the plant–climate relationship.
While our expectation was that a high number of species would result in more pre-

cise reconstructions, we were not able to observe any relationship between anomalies
and the number of species. Anomalies do decrease when the number of species be-
gins to increase (from 1 to ∼ 20–30), but then the tendency is reversed, and the large15

anomalies were observed in samples with the largest number of species. This may be
related to a saturation problem, wherein more is not necessarily better. As we used
a presence/absence weighting strategy, species far from their climate optimum have
the same importance as those living in their optimal climate. The increase in the num-
ber of species could increase these marginal elements, biasing the reconstructions.20

The role of the number of taxa on the accuracy is not yet fully understood and is the
subject of ongoing studies.

Other studies (Kühl et al., 2002; Truc et al., 2013; Scott et al., 2003) have shown
that selecting a subset of the recorded taxa was sometimes more appropriate when
attempting to capture a given climate signal. In order to improve the quality of the25

reconstructed variables, consideration should be given to reconstructing each variable
with a different subset of the total of the available species list. Reducing this list to
a shorter list of responsive species reduces the noise and consequently leads to better
reconstructions. These choices are always subjective, however, and should be done
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through a consideration of the ecology of the given species (and its known or inferred
sensitivity to certain climate variables), and/or an examination of the derived pdfs (flat
and multimodal pdfs may indicate insensitivity to a given climate variable). The process
of selection is thus not straightforward, and while it may improve reconstructions, care
needs to be taken to avoid undue bias in the results. CREST provides a range of5

outputs that indicate the sensitivity of different taxa to given climatic parameters, and
allow the user to assess the data being considered, and make informed choices in the
selection of such subsets.

When plotted on a map (Figs. 5 and 6), the anomalies appear to be spatially clus-
tered. Those patches of large anomalies can be explained by the position of the local10

climate along the climate gradients (Fig. 9) and are a direct consequence of the hy-
potheses underlying the model. The method is correlative, and consequently it is bi-
ased towards the best represented climate values. In most cases, lowest/highest values
along the studied climate gradient have few occurrences even if there are exceptions.
For example, low rainfall amounts are common in southern Africa, and as a result they15

are well represented and the signal easily captured by the model.
To offset the impact of the climate distribution’s heterogeneity, we upweighted rare

climate values as proposed by Kühl et al. (2002) and Truc et al. (2013). This method
shifts pdfs optima towards the rarest climate values. The climate abundance weighting
did decrease the errors for the extreme climates but also increased them for the most20

common. The global impact is nevertheless positive since it decreased the RMSDs for
all the variables. It also reduced the clustering of errors. Despite its advantages, the
strategy has one major drawback in that artificial geographical limits must be selected
(e.g. mountain ranges or country borders; Kühl et al., 2002) to compute the weights.
A finite number of grid cells must be selected and sorted into bins. Any change in the25

boundaries would affect – potentially drastically – the weights, and thus the reconstruc-
tions.

Even with the climate abundance weighting, it is apparent that reconstructing the
rarest climates is extremely complicated with models such as those described here.
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This is why, for example, the Cape region is poorly reconstructed for the precipitation-
like variables but not for the temperature-like variables. The temperature of the area is
common in southern Africa – so its signal is well captured – but it is an outlier in terms
of quantity and seasonality of rainfall. Other areas of notable climatic rarity in south-
ern Africa include: (1) the eastern portion of the Great Escarpment (high precipitation),5

(2) the high mountains of Lesotho where temperatures are very low and precipita-
tion is high, (3) the thin coastal band along the southern coast of South Africa where
moist forests can develop as a result of significant aseasonal rainfall, and (4) along the
Namibian coast (stable temperature and extremely low precipitation). All these areas
lie at an extreme of one or several climatic gradients, giving raise to clusters of high10

anomalies. It should be stated that the notion of “extreme” is relative to the study area.
The value of reconstructing quantitatively long-term climate variations from fossil bio-

logical proxies is evident. Nonetheless, the limitations of the statistical methods applied
should be considered. Salonen et al. (2013) have shown – using a weighted-averaging
(WA) regression – that the accuracy of quantitative reconstructions based on fossil15

biological proxies relied strongly on the calibration dataset. By selecting randomly gen-
erated calibration datasets, they were able to show that for a given site their method
(1) produced different climate reconstructions in terms of values and/or amplitudes for
each calibration dataset but that (2) the reconstructed patterns were all very similar.

We believe that a similar effect could be acting in our model with pdfsp being biased20

by the modern climatic space. Climatic space varies over time, and some elements of
certain past climate regimes may not be found and/or accessible to some species in
the modern climatic space (Veloz et al., 2012). Depending on the location of the site
vis-à-vis the climatic space, the potential to estimate the amplitude of climate change
varies. As shown schematically on Fig. 10, samples located in the mean climate space25

have greater potential to “move” in several directions and with greater amplitude than
samples that are already at the margin of the climatic space. In the latter case, the
exact amplitude of change may be underestimated, but the overall trends and direction
of change may still be accurate. It is expected that even under a different climate, the
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relative position of the different taxa along a climatic gradient would stay the same, so
that the replacement in the past of a taxon by another that currently lives in colder envi-
ronments will effectively indicate colder conditions with – possibly large – uncertainties
regarding the amplitude of change (Veloz et al., 2012).

7 Conclusions5

The pdf-based method we have presented in this paper provides robust results across
a range of climates and vegetation types. We have demonstrated that the accuracy
does not vary significantly as a function of vegetation type or the number of species
considered, and it is thus a useful tool for reconstructing climates in many regions
and biomes. The accuracy of the reconstructions is, however, strongly impacted by the10

climate variable being reconstructed (direct or indirect gradients) and primarily by the
position of the targeted climate on the climate gradient of the study area. To ensure
a robust reconstruction, one should:

1. select climate variables that directly impact the distribution of the species, and,
inversely, use only species whose distributions are significantly defined by the15

climatic variable;

2. work with samples collected in widespread vegetation types to fit the most reliable
pdfs;

3. define a climatically coherent study area to take advantage of the climate abun-
dance weighting.20

The results presented in this paper highlight our current understanding of the poten-
tial and limitations of CREST for reconstructing climates from botanical data. Recent
work has shown the potential of the models upon which CREST has been based, par-
ticularly in regards to long-term climate reconstructions (Truc et al., 2013). Our goal with
CREST is to make these techniques more accessible to the wider scientific community25
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and it is our hope that this tool will be applied to study other areas where long-term
climate variations still need to be quantitatively described.

CREST is freely accessible on simple demand to the authors and/or on www.(domain
as yet undefined).com.
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Table 1. Description of the seven southern African biomes, with their respective ecoregions
(Olson et al., 2001), the countries in which they are found, and the number of grid cells recon-
structed for each ecoregion.

Biome Ecoregion Countries Grid Cells

Deserts and Xeric Kalahari xeric savanna Botswana, Namibia, South Africa 656
Shrublands (yellow) Kaokoveld desert Namibia 25

Nama Karoo Namibia, South Africa 513
Namib desert Namibia 75
Namibian savanna woodlands Namibia 240
Succulent Karoo Namibia, South Africa 151

Flooded Grasslands Etosha Pan halophytics Namibia 10
and Savannas (blue) Zambezian flooded grasslands Botswana, Namibia 35

Zambezian halophytics Botswana 25

Mangroves (white) Southern Africa mangroves South Africa 1

Mediterranean Forests, Albany thickets South Africa 29
Woodlands and Scrub Lowland fynbos and renosterveld South Africa 53
(purple) Montane fynbos and renosterveld South Africa 75

Montane Grasslands Highveld grasslands Lesotho, South Africa 272
and Shrublands (brown) Drakensberg alti-montane grasslands and woodlands Lesotho, South Africa 19

Drakensberg montane grasslands, woodlands and forests Lesotho, South Africa, Swaziland 306
Maputaland–Pondoland bushland and thickets South Africa 29

Tropical and Subtropical Angolan Mopane woodlands Namibia 101
Grasslands, Savannas Kalahari Acacia–Baikiaea woodlands Botswana, Namibia, South Africa 300
and Shrublands (green) Southern Africa bushveld South Africa, Botswana 204

Zambezian and Mopane woodlands Botswana, Swaziland, South Africa, Namibia 128
Zambezian Baikiaea woodlands Botswana, Namibia 99

Tropical and Subtropical Knysna–Amatole montane forests South Africa 1
Moist Broadleaf Forests KwaZulu–Cape coastal forest mosaic South Africa 20
(grey) Maputaland coastal forest mosaic South Africa, Swaziland 22
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Table 2. List of the 20 climate variables reconstructed for southern Africa (name, description
and original reference).

Variable’s name Description Reference

Temperature Tmean ann Mean annual temperature Hijmans et al. (2005)
Mean Diurnal Range Mean of monthly (max temp – min temp) Hijmans et al. (2005)
Temp seasonality Standard deviation of the annual temperature (*100) Hijmans et al. (2005)
Temp ann range Annual range of temperature (max – min) Hijmans et al. (2005)
Tmean Wet Q Mean temperature of the wettest quarter Hijmans et al. (2005)
Tmean Dry Q Mean temperature of the driest quarter Hijmans et al. (2005)
Tmean Warm Q Mean temperature of the warmest quarter Hijmans et al. (2005)
Tmean Cold Q Mean temperatures of the coldest quarter Hijmans et al. (2005)
Frost days Number of frost days per year Mitchell and Jones (2005)

Moisture Prec ann Annual precipitations Hijmans et al. (2005)
Prec seasonality Coefficient of variation of annual precipitations Hijmans et al. (2005)
Prec Wet Q Precipitations of the wettest quarter Hijmans et al. (2005)
Prec Dry Q Precipitations of the driest quarter Hijmans et al. (2005)
Prec Warm Q Precipitations of the warmest quarter Hijmans et al. (2005)
Prec Cold Q Precipitations of the coldest quarter Hijmans et al. (2005)
SWC Winter Soil water content during winter Trabucco and Zomer (2010)
SWC Summer Soil water content during summer Trabucco and Zomer (2010)
Aridity Mean annual aridity index (*1000) Trabucco and Zomer (2009)
WRP Percentage of winter rainfall derived from Hijmans et al. (2005)
Wet days Number of rain days per year Mitchell and Jones (2005)
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Table 3. Summary of the dispersion of the anomalies of each variable.

5 % 25 % 50 % 75 % 95 % Skewness RMSD NRMSD Moran’s I

Temperature Tmean ann −1.87 −0.22 0.62 1.37 2.65 −0.111 1.51 0.56 0.551
Mean Diurnal Range −2.63 −0.15 0.51 1.09 2.16 −1.568 1.58 0.75 0.663
Temp seasonality −1324.63 −294.97 77.49 345.97 765.66 −1.206 662.29 0.68 0.653
Temp ann range −6.07 −0.83 0.7 1.9 4.06 −1.42 3.25 0.72 0.639
Tmean Wet Q −2.23 −0.29 0.71 1.61 3.36 0.455 1.99 0.56 0.524
Tmean Dry Q −3.33 −0.76 0.24 1.33 3.02 −0.552 2.03 0.55 0.505
Tmean Warm Q −2.74 −0.34 0.61 1.44 2.63 −0.576 1.69 0.65 0.635
Tmean Cold Q −1.75 −0.22 0.6 1.51 3.24 0.392 1.7 0.55 0.528
Frost days −22.16 −9.37 −3.43 2.7 16.32 −0.157 12.7 0.52 0.501

Moisture Prec ann −243.67 −96.34 −39.21 0.14 81.11 −1.711 125.67 0.56 0.31
Prec seasonality −10.96 −0.1 5.8 17.89 36.02 1.02 17.83 0.7 0.696
Prec Wet Q −102.53 −41.41 −14.3 9.26 59.73 −0.505 56.33 0.52 0.42
Prec Dry Q −24.01 −10.51 −5.38 −0.27 13.19 1.046 14.42 0.57 0.566
Prec Warm Q −143.6 −54.28 −18.97 0.66 41.49 −1.13 68.3 0.63 0.469
Prec Cold Q −26.65 −9.27 −4.24 −0.19 12.55 0.954 19.51 0.48 0.447
SWC Winter −53.89 −22.03 −11.89 −2.51 15.5 −0.975 26.87 0.63 0.481
SWC Summer −49.24 −22.47 −9.82 −1.52 17.97 −0.89 25.77 0.51 0.323
Aridity −1718.68 −740.92 −354.43 −62.4 687.15 −0.592 929.24 0.53 0.341
WRP −12.84 −5.1 −1.75 0.47 4.46 −2.055 7.31 0.44 0.332
Wet days −22.31 −10.69 −5.68 0.13 10.74 −0.883 12.16 0.5 0.437
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Table 4. Percentages of variance (R2) explained for the different factors we tested in this study.

nesp nesp*∆Alt biomes ecoregions clim poly(clim,3)

Tmean ann 2.13 14.44 14.68 24.19 48.76 49.85
Mean Diurnal Range 1.01 11.34 6.36 41.17 60.00 63.96
Temp seasonality 1.29 6.83 5.80 42.78 39.73 51.36
Temp ann range 0.02 9.62 8.40 45.13 43.89 53.06
Tmean Wet Q 0.77 9.02 4.57 20.25 26.74 28.90
Tmean Dry Q 1.95 6.35 11.01 21.63 29.01 29.42
Tmean Warm Q 0.45 18.91 9.79 33.28 50.81 50.90
Tmean Cold Q 1.63 4.00 7.97 23.86 44.56 46.06
Frost days 1.96 2.42 4.22 15.18 37.17 38.95

Prec ann 6.19 6.26 6.07 14.38 5.14 10.21
Prec seasonality 13.44 15.69 17.74 45.77 59.48 63.43
Prec Wet Q 1.24 5.47 1.80 15.74 9.42 13.74
Prec Dry Q 8.49 9.58 18.70 28.79 49.33 53.42
Prec Warm Q 4.03 4.10 10.98 20.67 4.69 12.22
Prec Cold Q 6.82 7.65 10.42 16.40 28.83 38.39
SWC Winter 1.19 1.65 14.48 24.41 20.39 23.82
SWC Summer 2.98 3.74 3.06 13.34 8.05 18.50
Aridity 4.68 5.62 7.99 16.76 18.31 28.85
WRP 4.18 4.52 6.51 16.63 8.23 12.06
Wet days 2.09 2.92 10.43 19.51 24.65 28.39

Mean 3.33 7.51 9.05 24.99 30.86 35.77
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Fig. 1. Fitting of the pdfs is exemplified for two variables (Prec Dry Q and Tmean Ann) and the
pollen type Tribulus, which is composed of four species in our database. Four pdfsp are then
fitted for each variable (A and B), and combined to create the pdfpol (C and D). The dashed
lines on (C) and (D) are the pdfs obtained by Truc et al. (2013). The difference between the
two methods is more marked for Prec Dry Q where (i) the pdfpol is null for negative precipitation
values (more realistic) and (ii) the optimum is more marked and reflects the optima of the
different species.
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Fig. 2. Calculation of a CI exemplified with a right-skewed pdfvar. More values are rejected on
the right-hand side of the climate gradient. The grey areas cover an area representing α%.
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Fig. 3. Distribution of the different biomes and ecoregions in southern Africa (Olson et al.,
2001). “Mediterranean Forests, Woodlands and Scrub” is in purple, “Deserts and Xeric Shrub-
lands” in yellow, “Montane Grasslands and Shrublands” in brown, “Tropical and Subtropical
Grasslands, Savannas and Shrublands” in green, “Flooded Grasslands and Savannas” in blue
and “Tropical and Subtropical Moist Broadleaf Forests” in grey. Mangroves also exist along the
southeastern coast of South Africa and are represented in white. The dashed white lines delin-
eates the different rainfall zones as defined by Chase and Meadows (2007): the Winter Rainfall
Zone (WRZ; > 66 % winter rain), the Summer Rainfall Zone (SRZ; < 33 % of winter rain) and
the Year-round Rainfall Zone (YRZ) in between.
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Fig. 4. Distribution of the number of species per grid cell. The greener the grid cell is, the more
species are available to reconstruct climate. No botanical information is available in the black
grid cells. Species records are most abundant in South Africa, Swaziland and Lesotho.
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Fig. 5. Geographical distributions of the normalized anomalies of the reconstructions of
temperature-like variables (Eq. 12). The scale is identical for all the maps, in units of RMSD. No
vegetation information was available from the black pixels.
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Fig. 6. Geographical distributions of the normalized anomalies of the reconstructions of
moisture-like variables (Eq. 12). The scale is identical for all the maps, in units of RMSD. No
vegetation information was available from the black pixels.
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Fig. 7. Boxplots representing the dispersion of the normalized anomalies (Eq. 12) for each
biome. There is more dispersion within each biome (length of the boxes) than between, con-
firming the results of the Between-Groups PCA (90 % of variance not explained by the groups).
The colors correspond to the gradient selected in Fig. 3.
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Fig. 8. Boxplots representing the dispersion of the normalized anomalies (Eq. 12) for each
ecoregion. There is globally more dispersion within each ecroregion (length of the boxes) than
between, confirming the results of the Between-Groups PCA (75 % of variance not explained
by the groups). The colors match those of Fig. 3.
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line represents the linear model fitted, with its associated R2.
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Fig. 10. Scatterplot representing a 2-D-projection of the climatic space of southern Africa for
the 2 variables Tmean Ann and Prec Ann. In green and red are the modern positions of two
fictious paleoarchives. Those two points represent two very different situations relative to the
climatic space: well-represented (green) vs. rare (red) climate. Reconstructing climate changes
for the green paleoarchive should be more accurate because it can “move” in several directions
around its modern climate. On the contrary, the only major direction the red sample can move
to, is towards warmer and drier conditions. Colder temperatures should be “reconstructible” but
with an amplitude that may not reflect actual variability.
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