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Abstract

Holocene Eastern Mediterranean Sea sediments contain an organic-rich sapropel S1 layer that
was formed in oxygen-depleted waters. The spatial distribution of this layer revealed that
during S1 deposition deep waters were anoxic below 1,800 m in water depth. However,
whether this boundary permanently existed from early to mid-Holocene has not been
examined yet. To answer this question, a multi-proxy approach was applied to a core retrieved
close to the 1,800 m boundary (at 1,780 m). We measured the bulk sediment elemental
composition, the stable isotopic composition of the planktonic foraminifer Globigerinoides
ruber, and the abundance of benthic foraminifera since the last deglaciation. The result
indicates that authigenic U and Mo accumulation began around 13-12 cal ka BP, in concert
with surface water freshening estimated from the G. ruber §'°0 record. The onset of
bottom/pore water oxygen depletion occurred prior to S1 deposition inferred from barium
enrichment. In the middle of the S1 deposition period reduced authigenic V, Fe and As
contents and Br/Cl ratio indicated short-term bottom water re-oxygenation. A sharp Mn peak

and maximal abundance for benthic foraminifera marked a total recovery for circulation at
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approximately 7 cal ka B.P. Based on our results and existing data, we suggest that S1
formation within the upper 1,780 m of the Eastern Mediterranean Sea was preconditioned by
reduced ventilation, resulting from excess fresh water inputs due to insolation changes under
deglacial conditions, that initiated between 15 and 12 ka within the upper 1,780 m. Short-term
re-oxygenation in the Levantine Basin is estimated to have affected bottom water at least as
deep as 1,780 m in response to cooling and/or reduction of fresh water inputs. We tentatively
propose that complete ventilation recovery at the S1 termination was depth-dependent with
earlier oxygenation within the upper 1,780 m. Our results provide new constraints of vertical

water column structure in the eastern Mediterranean Sea since the last deglaciation.

1. Introduction

The Mediterranean Sea is located in a transition zone between subpolar depression and
subtropical high pressure and is known to be sensitive to on-going and past climate change
(Bethoux and Gentili, 1999; Roether et al., 1996). Holocene sediments obtained from the
eastern Mediterranean Sea often contain the most recent organic-rich sapropel deposit, S1
(10.8 £ 0.4 to 6.1 = 0.5 cal ka B.P., De Lange et al., 2008), that formed due to a drastic
decrease in labile organic matter decomposition (Moodley et al., 2005). Reduced oxygen
supply to bottom waters has been suggested to be a precondition for sapropel formation
although increased biological productivity further promoted S1 deposition (Bianchi et al.,
2006; Myers et al., 1998; Rohling, 1994; Stratford et al., 2000).

Surface water density decreases due to excess fresh water inputs have played a pivotal
role in reducing Mediterranean Sea thermohaline circulation during sapropel formation
(Myers et al., 1998; Rohling, 1994; Stratford et al., 2000). By reinforcing Nile River
discharge toward the Levantine Sea (Emeis et al., 2003; Kallel et al., 1997; Revel et al., 2010;

Rohling, 1994; Rossignol-Strick et al., 1982), high summer insolation at minimum precession
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is known to have had a fundamental impact (Kutzbach et al.,, 2014; Rohling, 1994 and
references therein; Ziegler et al., 2010). In parallel, due to an active Mediterranean storm
track, reduced boreal winter insolation could have favoured winter precipitation over the
Mediterranean Sea region (Kutzbach et al., 2014; Magny et al., 2013; Meijer and Tuenter,
2007; Rohling, 1994). The influence of a third freshwater source, Black Sea outflow, has been
estimated to be minor, since the time of Black and Mediterranean Sea connection (9 to 8 cal
ka B.P., Soulet et al., 2011; Vidal et al., 2010) had occurred later than the onset of Sl
deposition. Deglacial conditions were not compulsory for sapropel deposition (Rohling, 1994)
even if sea-level rise and consequent incursion of deglacial fresh Atlantic water towards the
eastern Mediterranean Sea have possibly contributed to surface water density decrease from
14.5 ka (Rohling et al., 2015).

In addition to orbitally driven insolation changes in a precession cycle, Mediterranean
Sea bottom water oxygenation records indicate centennial to millennial variability (Abu-Zied
et al., 2008; Casford et al., 2003; De Rijk et al., 1999; Hennekam et al., 2014; Kuhnt et al.,
2007; Rohling et al., 1997; Schmiedl et al., 2010). One of the most prominent changes
occurred around 8 cal ka B.P., mainly affecting shallow water masses (Rohling et al., 2015) at
water depths < 1500 m in the South Aegean Sea (ex. sites SL123 and LC-21, Figure 1a and b)
and < 1200 m in the Adriatic Sea (ex. MD90-917, not shown in figure; Siani et al., 2013).
Both internal processes such as winter cooling in the northern high latitudes (Schmiedl et al.,
2010) and solar activity (Hennekam et al., 2014; Rohling et al., 2002) have been proposed to
produce centennial to millennial variability in the eastern Mediterranean Sea.

The spatiotemporal distribution of S1 deposition in the eastern Mediterranean Sea
could provide further insight into the water column structure during Holocene. A compilation
study revealed a presence of anoxic boundary at about 1,800 m in water depth (De Lange et

al., 2008). However, the stability of this boundary from early to mid-Holocene is poorly
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known. Regional-scale modelling studies allowed an examination of the physical and
biogeochemical processes behind S1 formation (Adloff, 2011; Adloff et al., 2011; Bianchi et
al., 2006; Grimm, 2012; Meijer and Tuenter, 2007) but proxy reconstructions that can be
compared with simulations are still scarce for the Holocene. This is because, under low
oxygen conditions, conventional approaches such as benthic foraminiferal 8'°C measurements
suffer from epibenthic foraminifera paucity (Jorissen, 1999). Bulk sediment geochemistry
provides complementary information when post-depositional elemental redistribution is
carefully considered (Calvert and Fontugne, 2001; Reitz et al., 2006; Thomson et al., 1995;
Thomson et al., 1999; van Santvoort et al., 1996).

In this study, we investigated bottom water oxygenation conditions using a core
MDO04-2722 (33°06°N, 33°30’E, 1,780 m water depth, Figure 1) by analyzing major, minor
and trace elemental concentrations within bulk sediments obtained from XRF (X-Ray
Fluorescence) scanning and ICP-MS measurements. Stable isotopic analyses of the surface
dwelling planktonic foraminifer Globigerinoides ruber (white) and benthic foraminiferal
abundance were also conducted. Based on twelve '*C dates of G. ruber, we established well-
dated high-resolution records to provide a bottom water ventilation history for the deep

eastern Mediterranean Sea associated with S1 deposition.

2. Modern Mediterranean circulation and the study area

Present-day Mediterranean Sea thermohaline circulation is characterized by an anti-
estuary pattern (Tomczak and Godfrey, 1994). Atlantic surface water enters the surface
western and eastern Mediterranean Sea by passing through the Gibraltar and Siculo-Tunisian
Straits, respectively. Through excess evaporation, the salinity of surface water continues to
increase, forming Modified Atlantic Water (MAW). In the Levantine Sea (Figure 1a), MAW

flows along the African coast off the Nile River then around Cyprus (Pinardi and Masetti,
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2000). Between Cyprus and Rhodes, MAW is cooled by cold winter winds and can be
transformed into Levantine Intermediate Water (LIW, 14°C, salinity of 38.7, with a potential
density anomaly o, = 29.05 kg/m’, Figure 1b) (Tomczak and Godfrey, 1994). The water mass
occupies 200-500 m in the Levantine Sea and consists of the major water mass flowing back
toward the western Mediterranean Sea through the Siculo-Tunisian Strait (Tomczak and
Godfrey, 1994). Deep water found in the eastern Mediterranean Sea is an admixture
consisting of LIW and Adriatic Sea surface water cooled by winter Bora winds (Tomczak and
Godfrey, 1994). This Eastern Mediterranean Deep Water (EMDW, 13°C, salinity of 38.6, 0,=
29.19 kg/m’, Figure 1b) is less saline but colder and denser than LIW, bathing below 600 m
in the eastern basin (Tomczak and Godfrey, 1994). In addition to the Adriatic Sea, deepwater
formation was observed in the Aegean Sea in the 90s due to increased salinity (Roether et al.,
1996). Activity in the zone as the site of deepwater formation is poorly known for the
Holocene.

At the location of core MD04-2722, surface water corresponds to the MAW and the

bottom water mass is estimated to be EMDW (Figure 1b).

3. Materials and methods
3.1. Materials

Core MDO04-2722 (33°06°N, 33°30’E, 1,780 m water depth, total core length of 36.96
m) was collected in the south of Cyprus in the eastern Levantine Sea (Figure 1a) during the
VANIL cruise (R/V Marion Dufresne) conducted in 2004. In this study, we investigated the
first 2.5 m of sediments that covers the past 23.6 cal ka B.P. (Section 4). The sediment is
composed of a mixture of biogenic and fine terrigenous fractions (E. Ducassou, personal
communication, 2014). The first 48 cm of the sediments is homogeneous and presents

bioturbated hemipelagic mud facies. In the 48 to 62 cm interval, the core is brown with
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typical oxidized sediments. The boundary surrounding 62 cm is not completely horizontal due
to sediment heterogeneity and/or coring processes. From 62 to 118 cm, sediments are dark
green with an oily aspect and do not contain visible laminations. The interval from 118 to 250
cm consists of bioturbated hemipelagic mud facies. The colour of sediments is represented in
grayscale values (Figure 2).

The core was sampled at every 2 cm interval for G. ruber (white) for stable isotope
analysis. Benthic foraminiferal abundance was studied at a 2 cm interval for the first 134 cm
and with 2 to 10 cm resolution for the deeper part. XRF scanning was performed every 5 mm
over the depths studied. The bulk sediment elemental composition was determined at a 2 cm

interval for 40 to 160 cm, and at a 4 to 20 cm interval for other depth ranges.

3.2. Analytical methods

All analyses were performed at CEREGE. High-resolution, non-destructive elemental
analyses were performed using an XRF core scanner (ITRAX, Cox Analytical Systems). The
relative abundance of S, Cl, Fe, Ti, V, Ca, Mn, and Br was measured under different
conditions. For Mn, V and Br measurements, a Mo tube was used as the X-ray source at 30
kV and 40 mA with 20 seconds of counting. For other elements, a Cr tube was used at 30 kV
and 30 mA with 20 seconds of counting. From the high-resolution optical image obtained by
ITRAX, a grayscale profile was extracted using ImagelJ software (http://imagej.nih.gov/ij/).

To determine the concentrations of Al, Ca, Ti, Fe, Mn, Ba, Mo, U, V, As, Sb, Ni, Co,
Cu and Li in bulk sediments, well-homogenized, freeze-dried sediments (30 mg) were totally
dissolved in a mixture of ultrapure acids (1.7 ml of 15 M HNOs3, 1.3 ml of 22M HF and 0.1
ml of HCIO,). Obtained solutions were diluted and analyzed by an ICP-MS (Agilent 7500ce).
The accuracy of measurements was estimated using analyses of geostandards MAG-1 (marine

mud) and GSD12 (river sediment) that were subjected to the same digestion protocol as
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samples. The analytical uncertainty was less than 5% and blank levels for the digestion
procedure were lower than 2% of the mean measured concentration for all of the analyzed
elements.

Calcite tests of G. ruber (white) were picked from the 250-355 pum size-fraction.
Foraminiferal 8'°0 and 8> C measurements were performed on a mass spectrometer (Finnigan
Delta Advantage) equipped with a carbonate device. The measured isotopic values were
normalized against NBS19. Mean external reproducibility was better than 0.05%o.

Benthic foraminifera abundance was determined by counting all existing calcareous
specimens in the >150 um size fraction and dividing the number by the corresponding dry
bulk sediment weight. Since the benthic foraminiferal abundance became very high in
sediments below 134 cm, total benthic foraminiferal numbers were only counted for the first

132 cm. Dominant benthic foraminiferal species were identified for the studied interval.

4. Chronology

Chronology of core MD04-2722 is based on twelve AMS '*C ages performed at the
ARTEMIS facility (Gif-sur-Yvette, France) on G. ruber (white) obtained from the >150 um
size fraction. Conventional radiocarbon ages were converted into calendar ages based on
MARINE13 (Reimer et al., 2013) using the '*C calibration software CALIB 7.0.1 (Stuiver
and Reimer, 1986-2013) (Table 1). The calibration integrates a marine '*C reservoir age of
400 years that agrees well with Mediterranean Sea surface water radiocarbon reservoir age of
390 + 85 years (Siani et al., 2000; Siani et al., 2001).

The estimated mean sedimentation rate was 12 cm/ka. According to the age model, the
typical temporal resolution for XRF measurements (5 mm), stable isotopes (2 cm), and ICP-
MS measurements (2 to 10 cm) is approximately 40 years, 170 years, and 170 to 800 years,

respectively.
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5. Results

For the studied interval, the Al and Ca concentrations in bulk sediments ranged
between 4.4 and 6.9% and between 10 and 17%, respectively (not shown in the figure). Based
on the assumption that the Al concentration in the detrital fraction was 8.0% (upper
continental crust; McLennan, 2001) and that all Ca was in the form of CaCOs, we roughly
estimated that the two major components in the bulk sediments were detrital (55 to 86%) and
carbonate (25 to 42%) fractions. Considering the high proportion for the detrital component,
enrichment of the analyzed elements was evaluated using normalization against Al. By taking
into account the difficulty of precisely analyzing Al due to the attenuation of the XRF signal

by pore water (Tjallingii et al., 2007), a Ti normalization was used for the XRF results .

5.1. Evaluation of the S1 layer

In core MDO04-2722, the preserved S1 layer was visually recognized as the dark color
between 60 and 120 cm with the slightly lighter colour interval from 80 to 100 cm shown in
the grayscale profile (Figure 2). High-resolution variability in organic matter content was
shown by a Br/Cl ratio profile obtained from a XRF scan (Figure 2). Although Br XRF
intensity and Br/Cl ratio presented very similar variability (not shown in figure), we used the
Br/Cl XRF intensity ratio to better illustrate changes in the organic matter content (Cartapanis
et al., 2014) since Br is incorporated in marine organic matter but also exists in pore water
(Cartapanis et al., 2011; Ziegler et al., 2008). High Br/Cl ratio values were found in the 55 to
120 cm interval and a clear decrease existed between 60 and 110 cm (Figure 2). Below 120
cm, the Br/Cl ratio was low and comparable to the core-top value (Figure 2).

Barium enrichment has often been used to localize initial sapropel layers, since it is

associated with biogenic barite (BaSOy) that is an export production proxy resistant to post-
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depositional oxidation (Calvert and Fontugne, 2001; De Lange et al., 2008; Thomson et al.,
1995; Thomson et al., 1999; van Santvoort et al., 1996). Both the Ba concentration and Ba/Al
ratio in core MDO04-2722 displayed a similar convex-shaped peak from 55 to 120 cm,
consistent with the high Br/Cl ratio interval (Figure 2). The depth range of high Ba and
organic matter content at 55 to 120 cm corresponded to 6.8 to 10.4 cal ka B.P. (Table 1). This
time span is, in general, in agreement with the previously estimated S1 deposition period of
6.1 £0.5 to 10.8 = 0.4 cal ka B.P. (De Lange et al., 2008).

Close to the upper end of the Ba/Al ratio peak, prominent Mn enrichment was found at
56 to 60 cm (6.8 to 7.0 cal ka B.P.) for both the Mn/Al and Mn/Ti ratio profiles (Figure 2).
The peak shape of Mn/Al and Mn/Ti ratios was slightly different around 62 cm, possibly due
to different sampling resolutions (1 cm for the Mn/Al ratio and 5 mm for Mn/Ti ratio) and the
irregular brown-coloured boundary at approximately 62 cm (see section 3.1). As the Mn peak
1s mainly associated with the precipitation of Mn oxides under improved oxygenation, it often
marks the end of S1 (Reitz et al., 2006). Taken together, we defined the S1 layer of core
MDO04-2722 at 55 to 120 cm (the dark gray band in Figure 2).

The number of benthic foraminifera gradually increased from the core-top to 56 cm
and reached a maximum value at 56 to 58 cm, with the Mn peak (Figure 2). Between 55 and
142 cm, benthic foraminiferal abundance displayed a concave shape (Figure 2). In the S1
layer, the sediment was void of benthic foraminifera at 104 cm (9.2 cal ka B.P.) and 108 cm
(9.4 cal ka B.P.). Below 142 cm (12.6 cal ka B.P.), benthic foraminiferal abundance was
higher than for the upper part. Major species identified within the studied interval included
Gyroidina spp., Cibicidoides pachyderma, Hoeglundina elegans, Cibicidoides wuellestorfi,
Uvigerina spp., Bolivina spatulata, and Globobulimina spp. (not shown in the figure). The

first appearance of Globobulimina spp., indicators of low oxygen content (Jorissen et al.,
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1995) is at 138 cm (12.2 cal ka B.P.). A detailed faunal assemblage will be provided

elsewhere.

5.2. Indicators of dry/wet conditions

The major detrital fraction in the study area originated from the Nile River particles
and Saharan dust (Krom et al., 1999). Ti/Al values have been used as an indicator of the
relative proportion of Nile River particles to Saharan dust (Wehausen and Brumsack, 2000;
Ziegler et al., 2010). In general, due to greater inputs of Al-rich river particles as compared to
the contribution of Ti-rich dust inputs (Wehausen and Brumsack, 2000; Ziegler et al., 2010),
the Ti/Al ratios of sediments far from the coastal zones in the eastern Mediterranean Sea were
lower under wet conditions. Ti/Al values in core MD04-2722 varied from 0.07 to 0.09 g/g for
the upper 250 cm with lower values between 35 and 230 cm (5.4 to 22.1 cal ka B.P.) (Figure
2).

In addition to Ti/Al ratios, G. ruber 8'°O values reflect wet/dry conditions and also
cool/warm surface water temperatures and continental ice volume. The isotopic values of core
MDO04-2722 ranged between -1.4%o and 3.5%o0 with minimum and maximum values at 112 cm
(9.6 cal ka B.P.) and 220 cm (21.3 cal ka B.P.), respectively (Figure 2). The interval for low

G. ruber 8'*0 values roughly agreed with the low Ti/Al interval (Figure 2).

5.2. Redox sensitive elements

Due to pyrite formation under reducing conditions, the sulphur content of bulk
sediments is high in sapropel layers (Passier et al., 1996; Rohling, 1994). Considering that
sulphur also exists in pore water in the form of the sulphate ion, we used the S/Cl ratio in core
MDO04-2722 to extract a signal closely related to pyrite even if S XRF intensity and S/CI

presented virtually identical profiles (not shown in figure). S/CI values in core MD04-2722
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indicated variability similar to the Ba/Al ratio (Figure 3) but enrichment below the S1 layer at
120 to 150 cm (the darkest gray band in Figure 3). This enrichment can be explained by
downward sulphidisation (see section 6.1). The downward sulphidisation could account for
high values for the S/CI, Ni/Al, As/Al and Fe/Al ratios below the S1 layer (Figure 3) since As
and Ni (and also Co and Cu) are often adsorbed and/or incorporated in pyrite (Large et al.,
2014).

In general, high sedimentary Ni, Co and Cu concentrations are produced by enhanced
productivity via the transfer of these elements due to the organic matter flux and fixation in
sediments under reducing environments (Cartapanis et al., 2011; Nameroff et al., 2002). Ni/Al
values in core MD04-2722 were higher inside and below the S1 layer (Figure 3). The Co/Al
and Cu/Al ratios indicated variability comparable to the Ni/Al ratio (not shown in the figure).

A remarkable feature of the As/Al and Fe/Al profiles was strong depletion centred at
82 to 84 cm (around 8 cal ka B.P. inside the light gray band in Figure 3). Depletion was also
observed for the V/Al profile with a wider depth range between 80 and 110 cm (7.9 to 9.5 cal
ka B.P.) (Figure 3).

The U, Mo and Sb content of core MD04-2722 indicated a clear peak centred at the
interval of the high Ba/Al ratio but a detailed structure was specific to each element (Figure
3). The U/Al profile indicated a smooth convex shape between 60 and 148 cm (7.0 to 13.2 cal
ka B.P.), with a small negative spike at 84 cm (8.2 cal ka B.P., inside the light gray band in
Figure 3). The main peak for the Mo/Al and Sb/Al ratios ranged between 70 and 138 cm (7.6
to 12.2 cal ka B.P.), and 50 and 138 c¢cm (6.3 to 12.2 cal ka B.P.), respectively (Figure 3). The
Mo/Al and Sb/Al ratios indicated a sharp peak from 56 to 60 cm where the benthic
foraminiferal number (Figure 2) and the Mn content were at a maximum (the orange band in
Figure 3). In addition to the Mo/Al and Sb/Al ratios, the Li/Al ratios of core MD04-2722

presented a peak synchronous with the high Mn content (Figure 3).
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6. Discussion

Redox-sensitive elements and benthic foraminiferal abundance in core MD04-2722
can be used as an indicator of bottom/pore water conditions which, in turn, are modulated by
bottom water ventilation and biological productivity, whereas the Ti/Al ratio and G. ruber
8'%0 records reflect wet/dry conditions. In the following discussion, we first describe the
geochemical meaning of the different elemental ratios that can be used to infer Mediterranean
Sea ventilation. We then propose deepwater conditions for the onset, during and at the

termination of S1 deposition by combining the whole obtained data.

6.1. Geochemical meaning of elemental ratios

During sapropel deposition, sulphate reduction occurred, and HS™ excess for pyrite
precipitation migrated downwards whereas pore water Fe*" existing below sapropel layer
moved upwards, leading to pyrite precipitation (Passier et al., 1996). The process is called
downward sulphidisation and impacts the distribution of trace elements such as Ni, Co, As
and Cu associated with pyrite (Passier et al., 1996). Hence, the enrichment of Ni, Co and Cu
below the S1 interval may not signify an increase in biological productivity prior to Sl
deposition. Considering the difficulty in interpreting peaks below the S1 layer, here, we do
not discuss them further.

Due to insoluble chemical speciation in reducing environments, authigenic U and Mo
accumulate under suboxic and anoxic conditions, respectively (Algeo and Maynard, 2004;
Klinkhammer and Palmer, 1991; Tribovillard et al., 2006). The accumulation of these
elements does not necessarily indicate that the bottom water was permanently highly depleted
in oxygen. Enrichment could reflect suboxic/anoxic pore water conditions related to slow

ventilation and/or high organic rain. Taking this fact into account, we carefully evaluated
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potential circulation changes by combining the U/Al and Mo/Al profiles of core MD04-2722
(Figure 3) with results from previous studies (see section 6.2).

In the middle of the S1 unit, the sediment colour was lighter and the sedimentary
organic matter (Br/Cl ratio) and redox sensitive element (Fe/Al, As/Al and V/Al ratios) were
lower (light gray band in Figures 2 and 3). The observed change could be explained by the
injection of dissolved oxygen into the water column via re-ventilation. The oxidation of
organic matter within the water column and on the sea floor can reduce sedimentary Br/Cl
values. The pyrite in sediments can be oxidized to iron oxides and/or to hydroxides when it is
in contact with dissolved oxygen (Chandra and Gerson, 2011). If these oxides and/or
hydroxides are again reduced in sediments, Fe and As associated with pyrite would be
released to pore water. Vanadium accumulation in anoxic sediments commonly takes place
via diffusion across the sediment/water interface and the release of this element occurs when
Mn is reduced (Nameroft et al., 2002). We investigate this issue in section 6.3.

The origin of the Mn peak at the end of S1 has been extensively discussed in previous
studies (Reitz et al., 2006; Thomson et al., 1995; Thomson et al., 1999; van Santvoort et al.,
1996). Core MD04-2722 only contains one Mn peak at the end of the S1 unit (Figure 2) and
the Mo/Al, Sb/Al and Li/Al ratios synchronously increase with Mn (Figure 3). Since Mo
(Shimmield and Price, 1986; Tribovillard et al., 2006), As (Cutter et al., 2001 and references
therein) and Li (Reitz et al., 2006) can be scavenged by Mn oxides, the peaks observed for
core MD04-2722 were likely produced from water column oxygenation at the S1 termination
(section 6.4).

The following discussion focuses on the state of bottom water circulation in the deep
eastern Mediterranean Sea during the following periods: (i) the onset of S1 deposition, (ii)
oxygenation event(s) in the middle of the S1 unit, and (iii) the termination of S1 deposition.

We are aware that, due to diagenetic processes and post-despositional diffusion that can
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modify boundary positions, precise timing for ventilation changes is difficult to obtain from a
single proxy profile. Considering the fact that distribution of each element is determined by
element-specific processes, we interpret and discuss the timing of ventilation changes when

several proxy reconstructions indicate consistent changes.

6.2. Conditions of bottom water circulation prior to S1 deposition

In core MD04-2722, U/Al and Mo/Al ratios began to increase from 13 cal ka B.P.
(148 cm) to 12 cal ka B.P. (138 cm, Figures 3 and 4). This time span corresponds also to the
beginning of decrease in benthic foraminiferal number (12.2 cal ka B.P., 138 cm; Figures 2
and 4) that was high in well-oxygenated glacial bottom waters. Two major factors affecting
benthic foraminiferal assemblage are food supply and water oxygenation (Jorissen et al.,
1995). Since the Ba/Al change indicates increasing trend of export production just before the
S1 deposition (Figure 2), it is logical to assume that the observed reduction of benthic
foraminiferal number was related to oxygen depletion. Therefore, the result can be interpreted
as the onset of oxygen depletion for bottom and/or pore waters at 1,780 m in water depth
started prior to S1 deposition. Since surface water freshening has been considered to be the
main factor affecting Mediterranean Sea thermohaline circulation (De Lange et al., 2008;
Emeis et al., 2000; Rohling, 1994), we examine timing for the onset of wet conditions,
changes in surface hydrology, and deepwater circulation using records obtained from core
MDO04-2722.

Decreases for the Ti/Al ratio and G. ruber 80 in core MD04-2722 began prior to S1
deposition (Figure 4). To better illustrate surface water salinity changes in the Levantine Sea,
the G. ruber 8'*0 record is combined with sea surface temperature (SST) reconstruction that
is based on planktonic foraminiferal assemblages obtained from a vicinity site (core MD84-

632, 32°28°N, 34°13°E; Essallami et al., 2007; Figure 1a). The present-day bottom water d"%0
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value (Pierre, 1999) is then subtracted so that the local §'°O,, anomaly can be calculated
(Figure 4). A marked decrease in the 8'°0,, anomaly began at approximately 12 cal ka B.P.
(Figure 4). Variability mainly stems from the core MD04-2722 G. ruber 8'*0 record, not on
temperature because the major feature is maintained when another SST record from a nearby
site is applied (Castafieda et al., 2010). We note here that the large amplitude of seawater 8'*0
anomaly change of 2.7%o from 20.1 to 9.6 cal ka B.P. cannot be explained by global §'*0
change related to continental ice volume (Waelbroeck et al., 2002). Another record of G.
ruber 880 from a close site (core MD84-641; 33°02'N; 32°28'E, 1,375m water depth)
(Fontugne and Calvert, 1992) indicates a very similar variability to the core MD04-2722
record, attesting that the G. ruber 8'°0 variability represents regional hydrological changes.

The §'°0y, anomaly and Ti/Al records indicate the beginning of a fresher and wetter
period at approximately 12 and 15 cal ka B.P., respectively, comparable with the inception of
the African humid period at 12.5 cal ka B.P. (Adkins et al., 2006; deMenocal et al., 2000) and
increased Nile River discharge (Revel et al., 2014) in response to insolation changes (Laskar
et al., 2004) (Figure 4). Our result is consistent with the hypothesis that Nile River discharge
was one of the main fresh water sources for the Levantine Sea (Rossignol-Strick et al., 1982).
Indeed, the influence of Nile River discharge was estimated to have spread as far as Cyprus
(Almogi-Labin et al., 2009) (Figure 1a).

Spatial extension of weakly ventilated waters can be evaluated by comparing with
previously reported records from the eastern Mediterranean Sea. Based on the U-Th dating of
authigenic carbonates formed in reducing environments, the start of suboxic bottom water
conditions was estimated to be 12 cal ka B.P. on the Nile River deep-fan at 1,160 m in water
depth (“buildups”; Bayon et al., 2013) (Figures lab and 4). Based on decreasing benthic
foraminiferal 8'°C values that began at 15 cal ka B.P (Figure 4), weaker ventilation has also

been estimated for a water depth of approximately 700 m in the south Aegean Sea (site
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SL123) and for a water depth of approximately 900 m in the southeast Levantine Sea (site
SL112) (Kuhnt et al., 2007; Schmiedl et al., 2010) (Figure 1ab). It is worth noting that the
decreasing trend of foraminiferal benthic 8"°C values does not necessarily mean complete
shutdown of ventilation. The 8"°C values (Figure 4) were still comparable with the late
Holocene values, and both benthic foraminiferal assemblage and trace elements (Figure 5) did
not indicate strong anoxic conditions before S1 interval. We thus propose reduced
intermediate/deepwater formation and consequently restricted extension of well-oxygenated
water mass(es) for this period. Productivity change is estimated to have a second role because
it would be more local/regional, reflecting coastlines, local nutrient supplies such as riverine
inputs, and the topography of lands that impact wind regimes.

The net increase in fresh water inputs reinforced vertical salinity gradients in the
Eastern Mediterranean Sea, which in turn shoaled the pycnocline at a depth shallower than the
euphotic layer, allowing the development of a deep chlorophyll maximum relative to present
day in the easternmost Mediterranean Sea (Castradori, 1993; Grelaud et al., 2012; Rohling,
1994). A shoaling pycnocline and a greater nutrient supply due to Nile River discharge (Herut
et al., 2000) could have contributed to enhanced biological productivity. Considering the time
required for circulation reorganization, the gradual consumption of existing dissolved oxygen
in the water column by organic decomposition, and the improvement of sedimentary organic
matter preservation under oxygen-depleted conditions (Hartnett et al., 1998), it is not
surprising that a net increase in the Br/Cl ratio in core MD04-2722 appeared later than the
onset of slow bottom water circulation (Figures 2 and 3).

Recent regional-scale modelling studies have proposed that initial glacial conditions
were a key parameter for forming S1 deposition (Adloff, 2011; Grimm, 2012). Sensitivity
experiments indicate that fresh water contributions and increased productivity are not

sufficient for attaining the observed bottom water oxygen depletion (Adloff, 2011; Grimm,

16



400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

2012). Only a simulation that considered initial glacial conditions succeeded in maintaining
oxygen-depletion for several thousand years that were comparable to S1 duration (Grimm,
2012). The inception of weaker ventilation during the glacial-interglacial transition, as

proposed in this study, is in line with these recent simulations.

6.3. Re-ventilation in the middle of the S1 period

The lighter colour of the sediment and the clear decrease in the Br/Cl (Figure 2),
As/Al, Fe/Al and V/Al ratios (Figure 3) in core MD04-2722 indicate temporally improved
oxygenation in the water column and in pore water in the middle of the S1 period. Since the
Ba/Al ratio did not show clear diminution at this interval (Figure 2), biological productivity
was not responsible for the change. Improved oxygenation seems to be related to an active re-
ventilation that promoted organic matter degradation in the water column and post-
depositional oxidation (Thomson et al., 1999). To examine the variability in detail, we
combine highly resolved Br/Cl, Fe/Ti and V/Ti records with Fe/Al, As/Al and V/Al ratios
(Figure 5). The major decline in the Fe/Al, Fe/T1 and As/Al ratios is centred at 8.4 to 8.2 cal
ka B.P., whereas minimal Br/Cl, V/Al and V/Ti ratios extended between 9.5 to 7.9 ca ka B.P.
(Figure 5). A longer depletion period for the Br/Cl, V/Al and V/Ti ratios can be explained by
continuous organic matter oxidation with oxygen penetrated into sediments as well as the
subsequent reduction of Mn oxides (see section 6.1).

Our results indicate that re-ventilation event(s) affected bottom water located at the
upper limit of the anoxic layer at 1,800 m (De Lange et al., 2008). By combining the results
of core MD04-2722 with previously reported high-resolution records, we examine the spatial
coverage of re-oxygenation. In addition to shallow Adriatic Sea (MD90-917, 41°17'N, 17°37'
E, 1,010 m, not shown in the figure; Siani et al., 2013) and shallow south Aegean Sea (sites

LC-21 and SL123 < 1500 m; Fig. 1), benthic foraminiferal assemblage indicates re-ventilation
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in the Levantine Sea at water depths ranging from 900 m (site SL112, Fig. 1; Schmiedl et al.,
2010) to 2,300 m (site LC-31, Fig. 1; Abu-Zied et al., 2008; Schmiedl et al., 2010). We
propose two hypotheses about re-ventilation depths. Firstly, the re-ventilation affected water
column down to 2,300 m. The second possibility is the re-ventilation was limited to water
depths shallower than 1,800 m taking into account the fact that core LC-31 contains a small
slump confirmed by AMS "“C dates inside of the S1 layer (Abu-Zied et al., 2008). In any
case, the large spatial distribution of the S1 interruption at least as deep as 1,780 m suggests a
basin-wide reorganization for ventilation.

Cores presenting the S1 interruption are currently bathed in well-oxygenated EMDW
(Figures 1b and 5). At present, the formation of EMDW is controlled by the winter cooling of
surface water in the Adriatic Sea and occasionally in the Aegean Sea (Roether et al., 1996), as
well as by the salinity of LIW (section 2). Holocene surface water winter cooling in the
Aegean Sea has been demonstrated to occur with atmospheric circulation changes in relation
to the winter and spring Siberian High at 9.5 to 9.1 and 8.8 to 7.8 ka (Kotthoff et al., 2008;
Marino et al., 2009; Mayewski et al., 1997), and for the 8.2 ka event (Pross et al., 2009)
recorded in Greenland ice cores (Alley and Aglstsdoéttir, 2005). Due to the cold air flux from
polar regions, surface water in convection zones could be cooled during winter, leading to the
activation of deep water formation in the Aegean (Schmiedl et al., 2010) and/or the Adriatic
(Siani et al., 2013) Seas. A numerical simulation has indicated that a surface eastern
Mediterranean Sea cooling of 2-3 °C could trigger deep convection in the Adriatic Sea and
intermediate water formation in the Aegean Seas, leading to oxygenation for the upper 1,250
m water masses of the eastern Mediterranean Sea (Myers and Rohling, 2000)

On the other hand, reconstructed Nile River discharge (Figure 4) presented a high-
frequency variability and a decline around 8 cal ka B.P. (Blanchet et al., 2014; Revel et al.,

2014) . Planktonic foraminiferal Ba/Ca ratios indicate the fluctuation in Nile River discharge
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at 8.4-8.2 cal kyr B.P. (Weldeab et al., 2014). Reduced Nile River discharge could have led to
a salinity rise for LIW that mixed with surface Adriatic Sea water, contributing to the
activation of EMDW formation. Thus, both temperature and salinity effects could be factors
for re-ventilation in the eastern Mediterranean Sea (Figure 6) in relation to northern high
latitude and tropical/subtropical climate conditions.

During the interruption period, vertical density gradient was attenuated, leading to
partial mixing between old dense glacial waters and overlaying lighter waters. Once cooling
and/or reduced fresh water input finished, the stagnant ventilation mode came back, which
suggests that the density barrier was still too strong to shift to the present-day circulation
mode. If the duration of cooling/less fresh water inputs, the size of this forcing and the
spatiotemporal S1 interruption are quantified, interruption can provide information regarding

the sensitivity of eastern Mediterranean thermohaline circulation.

6.4. Total ventilation recovery at the S1 termination

Mn/Al, Mn/Ti, Mo/Al, Li/Al and Sb/Al ratios (Figure 3), as well as the benthic
foraminiferal abundance of core MD04-2722 (Figure 2), indicated a synchronous increase at
7.0 cal ka B.P. (60 cm) to 6.8 cal ka B.P. (56 cm), suggesting oxygenation in the water
column at the core location. The age range for the increase was slightly earlier than the basin-
wide S1 termination of 6.1 = 0.5 cal ka B.P. that was estimated using the cores from water
depths down to 3400 m (De Lange et al., 2008) although, considering the dating uncertainty,
the difference was subtle. If the age difference is real, the S1 termination may be
characterized by depth-dependant ventilation recovery with earlier oxygenation at depths
shallower than 1,800 m. Based on previous observations, we suggest this possibility. At first,
benthic ecosystem recovery at the S1 termination was depth-dependent, with a prior recovery

at shallower depths in the eastern Mediterranean Sea (Schmiedl et al., 2010). The second
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point is the possible existence of dense deep water. Modelling studies have indicated that the
deep water mass was much denser than that of shallower waters because they contained saline
glacial (Grimm, 2012; Myers et al., 1998) (Figure 6). If the increase in surface water density
did not exceed the density of this dense water below, ventilation would affect only lighter
water masses at shallower depths.

Ventilation recovery can be explained both by the reduction of riverine fresh water
inputs and surface water cooling. A 9,000-yr-long transient model with insolation and
atmospheric greenhouse gas forcing simulated a gradual precipitation decline over eastern
Africa from the early to late Holocene (Renssen et al., 2006). Reconstructed Nile River
discharge (Blanchet et al., 2014; Revel et al., 2014; Weldeab et al., 2014) displayed a
decreasing trend from the early to mid-Holocene (Figure 4). Approximately 3°C of the SST
decrease during April-May was recorded in the south Adriatic between 7.1 and 6.9 cal ka BP
(Siani et al., 2013). In the south Aegean Sea during winter, an approximate 2 to 3 °C in
surface water cooling was observed from 7.5 to 7.0 cal ka B.P. (Marino et al., 2009). Once
surface water density within the deep/intermediate water formation zones exceeded the
threshold value, water convection could restart. The onset of these cooling records is
consistent with our estimation for total ventilation recovery at water depths shallower than
1,800 m from 7.0 to 6.8 cal ka B.P.

Considering the subtle density difference between the present LIW and EMDW
(section 2) and distinct climate background between the present and the moment of Sl
termination, it is unattainable to precisely identify physical mechanisms of total ventilation
recovery. Nonetheless, if ventilation recovery was water depth dependent, the S1 termination
contrasted with re-ventilation event(s) during the S1 period, affecting waters below the
critical depth of 1,800 m in the Levantine Sea (Figures 5 and 6). The finding provides new

constraints for vertical structure within the eastern Mediterranean Sea during S1 deposition.
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Conclusions

We analyzed the bulk sediment elemental composition, the 8'°O of Globigerinoides
ruber and the abundance of benthic foraminifera since the last deglaciation within core
MDO04-2722 obtained from the Levantine Sea. Water depth at the core location was close to
the estimated anoxic layer upper limit for the most recent sapropel S1 depostion, 1,800 m, and
rendered the site highly sensitive to past circulation changes. By combining our new results
with previous studies, some fundamental features for ventilation in the eastern Mediterranean
Sea were identified.

Bulk sediment Ti/Al ratios and the surface water 8'*0 anomaly calculated from the G.
ruber 8'°0 obtained from core MD04-2722 indicated that a wet period and fresher surface
water appeared at the core site around 15 to 12 cal ka B.P. The enrichment of Mo and U, as
well as benthic foraminiferal density indicated that surface hydrological changes were
transferred to bottom water, leading to the reduction of intermediate/deep water formation and
consequent restricted expansion of oxygenated that began prior to S1 deposition. Our results
are consistent with previous reconstructions and regional-scale simulations, and support the
idea that reduced oxygen supply due to slow ventilation was a precondition of S1 formation.

Decreased Br/Cl, Fe/Al, Fe/Ti, V/Al, V/Ti and As/Al ratios indicated that temporal re-
oxygenation event(s) occurred during the middle of the S1 period. Improved oxygenation was
produced by active re-ventilation rather than reduced biological productivity and affected
water depths at least as deep as 1,800 m in the Levantine Basin. Winter cooling in the Aegean
and Adriatic Seas in relation to northern high latitude conditions and salinity increases related
to reduced Nile River discharge contributed to the temporal reactivation of thermohaline

circulation in the eastern Mediterranean Sea.
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From the concomitant peak of Mn, Mo, Sb, and Li, and the increased abundance of
benthic foraminifera, a total recovery in ventilation at the core MD04-2722 site was estimated
to have occurred at 7.0 to 6.8 cal ka B.P. We tentatively propose a depth-dependent S1
termination with an earlier ventilation at water depths shallower than 1,800 m. This study
provides new constraints for the eastern Mediterranean Sea bottom water circulation since the

last deglaciation that could be examined by future modelling studies.
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Figure captions

Figure 1. The core location map. (a) The core MD04-2722 (33°06°N, 33°30’E, 1,780 m water
depth) location on the bathymetry map. Site locations of the records discussed in the text are
as follows: MD84-632 (32°28.2°N, 34°13.2’E) (Essallami et al., 2007); MD84-641 (33°02'N;
32°28'E) (Fontugne and Calvert, 1992); SL123 (35°45.3’N, 27°33.3’E, 728 m water depth);
SL112 (32°44.5°N, 34°39.0’E, 892 m water depth) (Kuhnt et al., 2007); LC-21 (35°39.7°N,
26°35.0’E, 1,520 m water depth); LC-31 (34°59.8°’N, 31°09.8’E, 2,300 m water depth)

(Schmiedl et al., 2010); “buildups” (32°22°N, 31°42’E, 1,160 m water depth) (Bayon et al.,
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2013). (b) The present-day density anomaly transect along the dashed blue line at 34.5-35.5N
in Figure 1a. The seawater temperature and salinity are from WOAO09 (Antonov et al., 2010;
Locarnini et al., 2010). The dashed white line indicates the upper limit of the permanent
anoxic layer during S1 deposition at 1,800 m (see the text for detail). Figures were generated

using the Ocean Data View software (Schlitzer, 2009).

Figure 2. Characterization of the S1 interval recorded in core MD04-2722. Grayscale value,
bulk elemental composition, benthic foraminiferal abundance (number of tests per unit of
weight for dry bulk sediment), G. ruber §'°0 as a function of depth in core (cm). The S1 layer
(55 to 120 cm) is shown with a dark gray band, the interval of low grayscale values (80 to 100
cm) with a light gray band, and the interval of Mn enrichment (56 to 60 cm) with an orange

band. Triangles indicate the depth levels dated by AMS '“C (see Table 1 for details).

Figure 3. The elemental concentrations and the element/Al ratios for the bulk sediment of
MDO04-2722 as a function of depth in core, together with the S/C1 XRF intensity. Dark and
light gray bands indicate the S1 layer determined from Ba enrichment (55 cm to 120 cm) and
the interval of low grayscale values (80 to 100 cm), respectively. The darkest gray band and
the orange band indicate the interval affected by downward sulphidisation (Passier et al.,

1996) (120 to 150 cm) and Mn enrichment (56 to 60 cm), respectively.

Figure 4. The last 23 ka variability of proxies for ventilation (U/Al, Mo/Al and benthic
foraminiferal density) and wet/fresh conditions (Ti/Al and seawater 8'°0 anomaly) based on
core MD04-2722 results as compared with previous studies. The surface water 8'*0 anomaly
was calculated by combining the G. ruber 80O record from core MD04-2722 with the SST

reconstruction (see text for detail). Suboxic conditions on the Nile deep-fan were estimated to
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have lasted for 12 to 7 ka B.P. at the “buildups” location (Figure 1 a and 1b) (Bayon et al.,
2013). Benthic foraminiferal '"°C records were based on the epibenthic foraminifer species
Planulina ariminensis (Kuhnt et al., 2007; Schmiedl et al., 2010). Changes in Nile River
discharge are shown with the log-scale Fe/Ca ratio for core MS27PT located close to the
Rosetta mouth of the Nile River (Revel et al., 2014). The precession parameter is from Laskar
et al. (2004). The blue zone indicates the African Humid Period (AHP, 12.5 to 5.5 cal ka
B.P.) based on Adkins et al. (2006) and deMenocal et al. (2000). The gray band indicates the
S1 period from 10.4 to 6.8 cal ka B.P estimated for core MD04-2722. The dashed line
presents the possible onset for weaker ventilation at 15 cal ka B.P. in the eastern

Mediterranean Sea. LGM = Last Glacial Maximum.

Figure 5. Re-oxygenation in the middle of the S1 interval as inferred from the bulk
geochemistry (Br/Cl, Fe/Al, Fe/Ti, As/Al, V/Al and V/Ti ratios) in core MD04-2722 and the
benthic foraminiferal oxygen index obtained at sites LC-31 and SL123 (Schmiedl et al., 2010)
(Figure 1ab). Dark and light gray bands indicate the S1 unit (10.4 to 6.8 cal ka B.P.) and the

interval of low grayscale values (9.0 to 7.9 cal ka B.P.) in core MD04-2722, respectively.

Figure 6. Schematic ventilation patterns in the eastern Mediterranean Sea at present, Sl

interruption and 15-12 ka intervals.
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875  Table 1. Radiocarbon ages for core MD04-2722

Depth in core ~ AMS sample n° “Cage= lo Cal. age*  95.4 % (20) cal age ranges

(cm) (yr BP) (yr BP) (yr BP)

2 SacA26352 3765 + 30 3700 3604 - 3812
20 SacA26353 4400 + 30 4551 4433 - 4678
48 SacA31590 5760 + 40 6188 6061 - 6277
64 SacA26354 6790 £ 30 7318 7249 - 7396
80 SacA31591 7485 + 45 7945 7835 - 8042
112 SacA26355 8980 + 35 9629 9525 - 9763
136 SacA26356 10680 + 40 12048 11843 - 12292
150 SacA26357 11925 + 40 13377 13275 - 13483
176 SacA26358 13675 + 45 15955 15762 - 16130
192 SacA26359 15170 £ 50 17964 17793 - 18139
220 SacA26360 18030 + 60 21313 21040 - 21555
250 SacA26361 20000 = 70 23611 23354 - 23878

876  * Median probability
877
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