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Abstract

A recent coherent chronology has been built for 4 Antarctic ice cores and the NorthGRIP
(NGRIP) Greenland ice core (Antarctic Ice Core Chronology 2012, AICC2012) using a bayesian
approach for ice core dating (Datice). When building the AICC2012 chronology, and in order to
prevent any confusion with official ice cores chronology, the AICC2012 chronology for NGRIP5

was forced to fit exactly the GICC05 chronology based on layer counting. However, such a
strong tuning did not satisfy the hypothesis of independence of background parameters and
observations for the NGRIP core, as required by Datice. We present here the implementation
in Datice of a new type of markers that is better suited for constraints deduced from layer
counting: the markers of age–difference. Estimating the global error on chronology from such10

markers is not straightforward and implies some assumption on the correlation between indi-
vidual counting errors for each interval of age difference. We validate this new methodological
implementation by conducting twin experiments on the NGRIP ice core and performing several
sensitivity tests on sampling and correlation between counting errors to come up with some
guidelines when using such a method for future dating exercises. Finally, using this type of15

markers for NGRIP in a 5 cores dating exercise with Datice, we show that the new ice core
chronologies obtained with these markers do not differ by more than 410 years from AICC2012
for Antarctic ice cores and 150 years from GICC05 for NGRIP over the last 60 thousand years.

1 Introduction

The reference timescale for Greenland ice cores, GICC05, has been obtained by layer counting20

back to 60 ka (thousands of years before present, present being year 1950 all along our study;
Vinther et al., 2006; Rasmussen et al., 2006; Andersen et al., 2006; Svensson et al., 2008). This
chronology is absolute with an increasing associated uncertainty with depth, reaching more
than 2.6 ka at 60 ka. Because this chronology is based on annual layer counting, the duration of
events is rather precise, even for old ages, with an uncertainty of about 0–4 years for counting of25

20 annual layers. Since the layer counting is not independent from one interval to another, the
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final uncertainty on the GICC05 chronology cumulates the counting error (Maximum Counting
Error (MCE); Rasmussen et al., 2006).

This chronology has been used as a reference for many records of the North Atlantic region
(Austin et al., 2012; Walker et al., 2012; Austin and Hibbert, 2012; Davies et al., 2012; Blockley
et al., 2012b). It has also been used as a basis over the last 60 ka for the recent construction of5

the coherent Antarctic Ice Core Chronology (AICC2012) gathering one Greenland ice core
(NorthGRIP - NGRIP) and 4 Antarctic ice cores (EPICA Dome C - EDC, EPICA Dronning
Maud Land - EDML, Talos Dome ice core - TALDICE and Vostok) (Bazin et al., 2013; Veres
et al., 2013). For the construction of AICC2012 with the bayesian tool Datice (Lemieux-Dudon
et al., 2010), we have imposed a 1–sigma deviation for NGRIP of 50 years maximum. Even if10

such a constraint is artificially too strong compared to the true uncertainty of GICC05, it permits
to keep a coherency within 5 years between the NGRIP AICC2012 chronology and GICC05.

Still, the strong tie of AICC2012 to GICC05 had raised some technical problems when opti-
mizing the chronology with the bayesian tool Datice. Three glaciological parameters are indeed
optimized during this process: accumulation rate, ice thinning and lock–in depth (i.e. the depth15

at which air is trapped when snow is sufficiently compacted). The bayesian approach imposes
to start with first guess (background) scenarios for the three parameters. They are then modified
within their imposed variance range so that the final chronology fits the absolute and relative
age constraints for each ice core within error bars.

In practice, to force the NGRIP AICC2012 chronology to fit the GICC05 age scale, we had20

to use the modeled thinning function and accumulation rate adapted to the GICC05 chronology
(hereafter DJ–GICC05 scenarios; Vinther et al., 2006; Rasmussen et al., 2006; Andersen et al.,
2006; Svensson et al., 2008) as background thinning and accumulation rate scenarios in Datice.
In addition to absolute markers placed every 60 years with a maximum uncertainty of 50 years
for the NGRIP ice core, the variance associated with the background scenarios of this ice core25

were imposed to be very small to prevent any deviation from the GICC05 timescale.
Even if the uncertainty of the GICC05 timescale is well constrained, this is not true for the

DJ–GICC05 scenarios of thinning and accumulation. The thinning function is deduced from a
simple Dansgaard–Johnsen (DJ) ice flow model (Dansgaard and Johnsen, 1969; Andersen et al.,
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2006) that has been parameterized to obtain the best match between the modeled and observed
depth–age horizons in the ice cores. Then, the thinning function calculated with the DJ model is
used together with the observed annual layer thicknesses to produce an accumulation rate his-
tory. No uncertainty value is associated with the reconstructions of thinning and accumulation
rate in Greenland ice cores but thinning reconstructed from such 1D ice flow model are only a5

first approximation (Cutler et al., 1995; Parrenin et al., 2004, 2007).
Recently, studies combining air isotopic measurements (δ15N of N2) with firnification mod-

els have suggested that, both in NGRIP and NEEM, the accumulation rates reconstructed from
the GICC05 or ss09sea chronologies, through layer counting and the DJ flow model, were over-
estimated during the last glacial period (Huber et al., 2006; Guillevic et al., 2013; Kindler et al.,10

2014). Indeed, δ15N of N2 of air trapped in an ice core indicates the depth and the amplitude of
abrupt temperature changes in the gas phase through thermal fractionation. The depth difference
between the same abrupt temperature changes recorded in the ice phase through ice δ18O in-
crease/decrease and in the gas phase through a positive/negative δ15N peak is called delta–depth
(∆depth). Moreover, in the absence of any abrupt temperature change and convection at the top15

of the firn, the δ15N gives an indication of the past lock–in depth (LID) due to gravitational frac-
tionation. A firnification model including heat diffusion and mainly driven by temperature and
accumulation rate can reproduce long term and abrupt δ15N variations with depth for Greenland
ice cores. The same would not be true in Antarctica where a strong discrepancy between firnifi-
cation models and data is observed (Landais et al., 2006; Capron et al., 2013). Still, it has been20

shown that the δ15N profile is best reproduced when the ss09sea accumulation rate for NGRIP
is decreased by ∼ 20% over the period 20 to 60 ka (Kindler et al., 2014; Huber et al., 2006).

It thus appears that the way NGRIP was implemented in the Datice tool for the AICC2012
chronology is not optimal. In addition to GICC05 chronological uncertainties that were not
taken into account by construction, imposing the DJ–GICC05 accumulation rate and thinning25

scenarios with artificially reduced variances most probably led to incorrect output scenarios for
these glaciological parameters.

In this paper, we propose an improvement of Datice to better implement the chronologi-
cal uncertainties. We incorporate the possibility of integrating markers of age–difference and
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propose different way to transfer the counting error of each interval to the global chronology
uncertainty. This permits to relax the strong constraints on thinning and accumulation rate and
allow the NGRIP chronology to differ from GICC05 chronology within its error bars.

The outline of the manuscript is the following. In a first methodological section, we present
and validate the improvement made on the Datice tool in order to integrate the markers of age–5

difference with their uncertainties. Then, we discuss different ways to implement the counted
errors within the global chronological uncertainty. We also present some sensitivity experiments
with the modified Datice tool for optimizing the sampling strategy and correlation between
counted errors. Finally, we focus on how this new version of Datice modifies the NGRIP and
the 4 Antarctic ice cores chronologies compared to AICC2012.10

2 Implementation of constraints from counted layers in Datice

2.1 Methodology

The purpose of the following section is to describe the modifications implemented in Datice
(Lemieux-Dudon et al., 2009, 2010) to take account of an additional constraint : the markers of
age–difference. This type of marker enables one to constrain the duration over depth intervals15

along ice cores. This constraint is applied by feeding Datice with the beginning and end depths
of the interval, its duration, the duration uncertainty, and optionally the error correlation between
markers.

Datice aims at obtaining the best age model scenario by formulating an optimization prob-
lem with a cost function that is accounted for by two main types of constraint: the paleo–20

observations Y and a first guess age model Xb (referred to as the prior or background). A
strong requirement is the independence between the background age model and the paleo–
observations, since the the cost function J is derived from the Bayes theorem:

J (X) =− log(P (Y |X)Pb(X)) (1)
25
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where P (Y |X) and Pb(X) are the likelihood and prior probability distribution Tarantola
(2005).

In practice, Datice is applied to several ice cores with large set of paleo–observations, to
calculate coherent chronologies for both the ice and gas phases. The chronologies are deduced
(Appendix A) from the scenarios of three glaciological parameters : (i) Tk the total thinning5

function, (ii) Ak the accumulation rate, and (iii) Ck the lock–in depth in ice equivalent (LIDIE).
To run a Datice simulation, paleo–observations and background parameters T bk(z), Abk(z) and
Cbk(z) must be provided to Datice with their respective uncertainties. The optimization of the
cost function J enables to refine the background by identifying correction functions τk(z),
αk(z) and γk(z) at each depth level zk, for each core indexed with k:10

Tk(z) = τk(z) ·T bk(z) (2)

Ak(z) = αk(z) ·Abk(z) (3)

Ck(z) = γk(z) ·Cbk(z) (4)

From a particular set of correction functions, one can deduce a particular age model. Here-15

after, we setX = (αk,τk,γk)T .
The Datice cost function formulation (equation 5) relies on the following important statisti-

cal assumptions. In the prior probability distribution of equation 1, the parameters Tk, Ak and
Ck are supposed to be independent and lognormally distributed, with medians set equal to the
background T bk(z), Abk(z) and Cbk(z). The prior probability distribution is further rewritten in20

terms of the correction functions (equations 2, 3 and 4), to which we apply the change of vari-
able X̃ = log(X) in order to transform lognormal into normal probability distributions (pdf;
Tarantola, 2005). Since observations of different types are supposed to be independent with ei-
ther normal or lognormal distributed errors, the likelihood of Appendix 1 is itself a product of
normal pdfs. Under these assumptions, the cost function J sums up quadratic terms (equation25

5).
Until now, observation Y could be of the following types: ice and gas age markers (ia and

ga), delta-depth markers (dd), or ice and gas stratigraphic links (is and gs) (Lemieux-Dudon
6
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et al., 2010; Buiron et al., 2011; Veres et al., 2013; Bazin et al., 2013). The application of the
markers of age–difference (ad) leads to an additional term in the cost function (equation 5), with
special care to preserve the Datice hypothesis of no error correlation between (i) observations
of different types, (ii) observation of different cores, or (iii) observation and background model
scenarios:5

J(X̃) =

N∑
k=1

(
X̃k− X̃b

k

)T
[B]−1

(
X̃k− X̃b

k

)
+

N∑
k=1

(
Y dd
k −hddk (X̃k)

)T
[Rdd

k ]−1
(
Y dd
k −hddk (X̃k)

)
+

N∑
k=1

(
Y ia
k −hiak (X̃k)

)T
[Ria

k ]−1
(
Y ia
k −hiak (X̃k)

)
+

N∑
k=1

(
Y ga
k −hgak (X̃k)

)T
[Rga

k ]−1
(
Y ga
k −hgak (X̃k)

)
+

N∑
k=1

(
Y is
k −hisk (X̃k)

)T
[Ris

k ]−1
(
Y is
k −hisk (X̃k)

)
+

N∑
k=1

(
Y gs
k −hgsk (X̃k)

)T
[Rgs

k ]−1
(
Y gs
k −hgsk (X̃k)

)
+

N∑
k=1

(
Y ad
k −hadk (X̃k)

)T
[Rad

k ]−1
(
Y ad
k −hadk (X̃k)

)
(5)

In equation 5, the first term measures how far is the current age model X̃ from the back-
ground scenarios X̃b. The six following terms are related to the observation constraint, and
measure the distance between the observations Y and the current age model X̃ . Importantly,
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to map the current age model X̃ to the observation Y , we must introduce the non linear ob-
servation operators h. The background and observations uncertainties provided to Datice are
stored in the background and observation error covariance matrices B and R (Appendix D1).
The cost function terms are weighted according to the uncertainties specified in the B and R
matrices. The cost function reaches a minimum value for a specific set of correction functions5

X̃a (equations 2, 3 and 4). At this minimum, a trade-off is reached between the background and
observation constraints. The new age scales, hereafter called analysed chronologies are then
deduced from the correction functions X̃a (Appendix A). By propagating the errors stored in
the B and R matrices, Datice estimates the error associated with the age solution (Appendix
D2). We refer to this error as the analysed error. Both the analysed age scales and analysed10

errors are highly sensitive to the errors specified in the B and R error covariance matrices.
In this article, we wish to design Datice simulations with markers of age–difference derived

from the GICC05 counted layer chronology. In section 2.3, we especially investigate how to set
the observation error covariance matrix Rad associated with these markers:

Rad
ij = ρadij σ

ad
i σ

ad
j (6)15

where Rad
ij accounts for the error covariance between the ith and jth pair of markers Y ad

i and
Y ad
j , which are applied in the Datice system. σadi and σadj are their standard deviations and ρadij

their error correlation coefficient.

2.2 Validation of Datice developments: twin experiments20

In this section, we construct twin experiments in order to test the extension of the Datice tool
with markers of age–difference. Twin experiments enable one to test any data assimilation sys-
tem. It consists first in the construction of some synthetic data and background by applying
random perturbations of known statistical distribution to a given model scenario. The unper-
turbed model scenario is refereed as the "truth". The aim of this validation method is to rebuild25

the truth by running the data assimilation system on the perturbed data and background.
8
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In our case, we have designed 51 experiments where Datice is run with only the NGRIP ice
core. The GICC05 age scale is considered as the truth. The only observation included in Datice
for these experiments are the markers of age–difference. The ice chronology construction will
thus be constrained on one hand by the perturbed annual layer counting from GICC05, and on
the other hand by the thinning and accumulation rate scenarios with associated uncertainties.5

Each twin experiment inputs are prepared using the following method. First, we sample mark-
ers of age–difference from the GICC05 age scale every 100 years and we derive their associated
errors based on the MCE with the assumption of full correlation (i.e. the counting errors for each
annual layer within the 100 years interval are cumulated, see section 2.3). For this experiment,
the markers Y ad,t represent the "truth" (superscript t) as extracted from the reference model10

age GICC05. These "true" markers are then perturbed within their uncertainty range through
random normal perturbations constructed in each twin experiment, according to Rad the obser-
vation error covariance matrix (see section 2.1), to provide the makers of age–difference Y ad

that will be effectively applied in the simulations:

Y ad = Y ad,t + δad with δad ∼N
(

0,Rad
)

(7)15

We then construct the 51 background scenarios symmetrically. We apply some random log-
normal perturbations to the GICC05 thinning function T ti and accumulation rate Ati at each
depth level zi (with index i running from 1 at the top of the core to N at the bottom), which can
be arranged in the two following vectors:20

δα = (δα1 , . . . , δ
α
i , . . . , δ

α
N ) (8)

δτ = (δτ1 , . . . , δ
τ
i , . . . , δ

τ
N ) (9)

These vectors are applied as multiplicative factors on the true model scenarios (superscript t)
to give the perturbed backgrounds (superscript b, equations 10 and 11).25

9
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T bi = δτi T
t
i (10)

Abi = δαi A
t
i (11)

The logarithm of vectors δτ and δα are distributed with a multivariate normal probability
density function of zero mean and covariances set by the background error covariance matrices5

Bτ and Bα:

log(δτ )∼N (0,Bτ ) (12)

log(δα)∼N (0,Bα) (13)

where Bα and Bτ are the first two diagonal and decorrelated blocks of matrix B introduced10

in equation 5 of section 2.1.
For all twin experiments, the Bα and Bτ matrices are constructed accordingly to Bazin et al.

(2013) with adapted values (see Table 3 and Appendix B).
Figure 1 shows the large spread of the resulting perturbed background age scales (dashed

lines) and a superimposition of the corresponding analysed age scales (orange lines). Figure 215

shows the difference between the set of analysed chronologies minus GICC05 (upper panel)
and the error of the analysed chronologies, σa, the a posteriori standard deviation as calculated
by Datice (lower panel). Histograms of the background and analysed chronologies are shown
on Figure 3 for the 1800m depth level.

One can observe that the perturbed background age scales spread toward larger values when20

older than GICC05, which confirms the expected disymmetry of their probability distribution.
In the Datice system, the calculation of the analysed error σa is based on the assumption of
normally distributed errors, which may be a strong assumption. However the set of analysed
chronologies rather constitutes a symmetric distribution centered on GICC05 (a larger number
of samples might help to refine this analysis). Taking as a reference the output chronology error25

σa at 1800 m, 96% of the samples are inside a±2σa envelop (see histogram of Figure 3), which
gives confidence in the estimate of the analysed error.

10
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Finer diagnostics confirm the reliability of the Datice methodological developments. On the
basis of ensemble of analyses conducted on ensemble of perturbed background and observa-
tions, several levels of a posteriori diagnostics can be applied on data assimilation system as
investigated in Desroziers et al. (2009). The construction of the twin experiments appropriately
relies on an ensemble of both perturbed background and observations. It consequently enables5

one to verify the level one of these diagnostics. It states that for weakly non linear observation
operators h (see equation 5, section 2.1), when both the B and R matrices are calibrated, av-
eraging the values of the cost function at the optimum (when Xa optimum is reached) must be
equal to the number of observations p:

E
[
J
(
X̃a
)]

= p (14)10

In our set of twin experiments, we apply 633 markers of age–difference. The average of our
cost function at optimum X̃a over our 51 twin experiments gives 626. This is a quite fair result
that validates our methodological development.

One should note that we have applied perfectly calibrated background and observation error15

covariance matrices. Indeed, the background and observation errors specified in the cost func-
tion are exactly the B and R matrices that have been used to produce synthetic background
and observation data on the basis of the true scenario. In a more complex experiment, the B
and R matrices are usually misspecified because the background and observation errors, ε̃b and
εo, are usually poorly known since the truth itself is the unknown X̃t (see Appendix D1). In20

such cases, the a posteriori diagnostics are applied to calibrate the error covariance matrices.
In future work we wish to conduct such calibration on Datice experiments involving several ice
cores.

2.3 Implementing layer counting error (MCE)

Layer counting consists in identifying annual cycles on the basis of annual layer proxies recorded25

along the core. The identification of annual cycles is subjected to errors. In order to deal with

11
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uncertain annual layers and to derive a counting error estimate, GICC05 adopted the following
statistical approach. If the ith annual cycle is identified as certain, the layer is counted as a full
year with a zero error. Otherwise, for an uncertain ith annual cycle, the layer counts for half a
year plus or minus half a year. For each annual cycle numbered with index i from top to 60 ka,
one can introduce the two following variables ni and σi in order to record the counting of layers5

and its error:

ni±σi = 1± 0yrs For a certain layer (15)

ni±σi = 0.5± 0.5yrs For an uncertain layer (16)

From the above layer counting data, one can infer duration measures along the core by sum-10

ming up the ni cycles. For instance between depths zq and zp, delimiting the start and the end
of the qth and pth annual cycles respectively, the duration Yzq ,zp in years writes:

Yzq ,zp =

p∑
i=q

ni (17)

The official GICC05 age scale provides the counting data and error cumulated over time15

windows of 20 years. The GICC05 error estimate is called the Maximum Counting Error or
MCE. It sums up the error of the individual cycles (i.e., σi) over the corresponding time window.
The official file records these data for the successive depths interval [zq,zp] back to 60 ka:

Y 20yrs
zq ,zp =

q+19∑
i=q

ni = 20yrs (18)

MCE20yrs
zq ,zp =

q+19∑
i=q

σi (19)20

12
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For our experiments, our objective is to apply the GICC05 measure of duration Y 20yrs
zq ,zp as

markers of age–difference in Datice simulations. Two questions arise at this stage:

– Over which time window should we sample the GICC05 makers of age–difference?

– How should we infer the associated error?

None of these questions are trivial ones. They are closely interlinked through the existence of5

error correlation between annual layers and the assumptions inherent to the MCE construction.
One way to better understand the MCE is to reformulate the GICC05 counting process with

two normal probability density functions (pdf): (i) the pdf of annual cycles identified as certain
with a 1–year mean and a variance that tends to zero (ii) the pdf of annual cycles identified as
uncertain with a mean and standard deviation both set to half a year. This formalism is ques-10

tionable and some issues are addressed in Appendix C1. Under this formalism, the calculation
of the error Σzq ,zp on any counting measure Yzq ,zp is well-documented, and the role played by
the error correlation between annual cycles ni and nj becomes quite clear. If ρij records such
correlation, the Σzq ,zp error writes:

Σzq ,zp
2 =

p∑
i=q

σi
2 + 2

p∑
i=q

p∑
j=q,j>i

ρijσiσj (20)15

The Σzq ,zp error reaches a minimum value in the case of a null error correlation between any
pair of cycles (i.e., ρij = 0):

Min
[(

Σzq ,zp

)2]
=

p∑
i=q

σi
2 (21)

20

On the contrary, the error reaches a maximum value when the error correlation between
annual cycles is maximum (i.e., ρij = 1):

13
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Max
[(

Σzq ,zp

)2]
=

p∑
i=q

σi
2 + 2

p∑
i=q

p∑
j>1,j=q

σiσj =

 p∑
i=q

σi

2

(22)

The MCE formulation shown in equation 19 is explained by equation 22. It assumes a full
error correlation between any pair of measured annual cycles regardless of their respective po-
sition along the core. The terminology is well-chosen since the MCE error is an upper estimate5

of the error regarding the value of the correlation coefficient (but not regarding the assumptions
on the error σi).

The MCE calculation of GICC05 results at each depth level in the sum of the MCE of every
duration interval from the top to the considered depth level. Still, the authors have acknowledged
that the assumption of full correlation of counting errors along the ice core is not correct and10

stated that "recognizing that the counting errors in reality are neither uncorrelated nor fully
correlated, we adopt the simple and conservative approach, summing up the uncertainties as if
they were correlated" (Rasmussen et al., 2006). Consequently, the 1-sigma uncertainty of the
GICC05 ice core is considered as half the MCE.

The MCE formulation assumes error correlation on an "infinite range" along the core (ρij15

does not decrease with the distance between the measured cycles). In reality, the error correla-
tion does not have an infinite range. Moreover, as depicted in Appendix C2, the errors associated
with age markers may be linked to the sampling rates and we discuss briefly below the possible
implications for choosing a sampling rate of 20 or 40 years. While for the 20 years sampling, we
may straightforwardly implement the 20yrs-window markers (Y 20yrs

zq ,zp ) and errors (MCE20yrs
zq ,zp )20

from GICC05, different extreme views can be proposed for a 40 years sampling:

1. Either we believe that the full error correlation assessed over the 20yrs time-window be-
tween annual layers cuts-off. Then, no correlation exists between the annual cycles in-
cluded in the two separated but adjacent depth intervals [zq,zp] and [zp,zm]. Under this
assumption, the theory shows that we must sum up the squared 20yrs MCE errors:25

14
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MCE40yrs
zp,zm =

√(
MCE20yrs

zq ,zp

)2
+
(

MCE20yrs
zp,zm

)2
(23)

2. On the opposite, we believe that the full error correlation assessed over the 20yrs time-
window between annual layers extends over the 40yrs time-window (which means over
the depth interval [zq,zm] = [zq,zp]∪ [zp,zm]). In that case the theory shows that we must5

sum up the 20yrs MCE errors:

MCE40yrs
zp,zm = MCE20yrs

zq ,zp + MCE20yrs
zp,zm (24)

From this simple illustration, it follows that markers of age–difference and errors sampled
on GICC05 at different rates (i.e., 40-60-80-100 years...), derived by summing-up the GICC0510

20yrs-window MCE error must be understood as very distinct inputs and different simulation
outputs must be expected. This is not fully satisfactory for the age scale construction and as-
sociated error estimates since we do not want to give so much weight to the rather arbitrary
choice of the sampling rate. In order to separate the problems of error correlation and sampling
in our approach, we have thus included the possibility in the Datice approach to apply error15

correlation on a finite interval and avoid abrupt cut-off of error correlation between adjacent
intervals. This development should permit to sample the markers at a 40 years step and apply
error correlations beyond the 40yrs-window interval. Indeed, we expect that the value of the
error correlation may change along the core, for instance with the climatic periods and changes
in annual layers thickness.20

For this formulation of error correlation on a finite range, the correlation coefficients ρadij
of the observation error covariance matrix Rad (equation 6) are set according to a correlation
function f that smoothly decreases with the distance between two markers of age–difference
Y ad
i and Y ad

j :

ρadij = f
(
|zadi − zadj |

)
(25)25
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The shape of the function f is chosen as the product of a gaussian and a triangular function:

f
(
|zadi − zadj |

)
= exp

−
(
zadi − zadj

)2
2Lad

2

(1−
|zadi − zadj |

2Lad

)
(26)

where Lad must be set in meters in order to adjust the width of the f function and therefore
the scope of the error correlation. The larger Lad is, the more correlation between markers of5

age–difference.
With this new formulation of the error correlation, we can explore how both sampling and

error correlation independently affect the final chronology and provide some guidelines for
future dating exercises.

2.4 Tests and optimization of the Datice system to apply the GICC05 markers of age–10

difference

In the following section, we extract several sets of markers of age–difference from GICC05,
with different sampling and/or different assumptions regarding the associated error. We con-
duct multiple Datice simulations with these inputs in order to investigate the sensitivity of the
solution to the markers sampling and errors.15

In this respect, we designed several experiments ran on the NGRIP core alone, with only
markers of age–difference as constraints. Details on the background settings are provided in
Table 3. Still, it should be noted that in these experiments we kept the 1 m resolution used in
multi–cores experiments such as AICC2012. On such a depth grid, the annual layer thickness
drops below 0.05 meter per year at some depth level so that the number of years in a 1 meter20

layer becomes larger than 20 years. Datice cannot handle markers of age–difference that are
sampled below the depth grid resolution. This technical issue render impossible to apply the
GICC05 20yrs-window markers and MCE errors directly. For that reason, we propose an adap-
tive sampling ranging between 40 and 140 years back to 60 ka, which is designed to prevent the
markers to be sampled below the 1 m resolution.25
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2.4.1 Sampling influence

To study the influence of sampling we run three experiments with markers sampled at three
uniform rates (100, 200 and 300 years) as well as the experiment with an adaptive sampling
between 40 to 140 yrs. The associated errors for the 3 uniform sampling are derived from the
20yrs-window MCE data under the assumption of full error correlation between annual cycles5

over the length of the interval, hereafter AddMCE assumption. For the experiment with the
adaptive sampling, we test errors derived in the full correlation assumption as well as errors
with abrupt cut-off of correlations beyond 20yrs-windows, hereafter SqrAddMCE assumption.
The terminology AddMCE and AddSqrMCE refers to equations 24 and 23, where in the former
case the MCE errors are added, while in the latter case the squared MCE errors are added. Table10

1 summarizes the experiment configurations.
Figures 4 and 5 show the different NGRIP simulations. As expected and discussed in section

2.3, the age solutions and their associated errors are sensitive to the sampling. In the compari-
son of the four experiments ran in the AddMCE assumption, we better reproduce the GICC05
details with finer sampling rates, e.g., 40yrs vs 200yrs (5). Still, finer sampling of the mark-15

ers of age–difference is not directly the reason for the better agreement with GICC05. Indeed,
as error correlations are cumulative in the AddMCE assumption, the observation error largely
increases with the length of the marker sampling window. Consequently, the strength of the
marker constraint reduces, which deteriorates the convergence toward GICC05. The observa-
tion error impact is also illustrated in Figure 4 when comparing the two adaptive sampling20

simulations. The simulation run with the assumption of abrupt correlation cut-off beyond 20
years (SqrAddMCE) better converge toward GICC05 with a smaller associated error. Again,
different observation errors are obtained under the different assumptions of error correlation.
The SqrAddMCE assumption strongly reduces the observation error at any depth along the core
with respect to the full correlation assumption.25

Option SqrAddMCE may therefore be a way to relax the dependence of the analysed error to
the sampling. However, as mentioned above, the abrupt correlation cut-off may be questioned.
At the junction of two markers of age–difference, neighboring annual cycles from either sides
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does not share any error correlation while each of them correlates with much further layers (as
long as these layers are included in the marker time window). We actually rather expect error
correlations to smoothly decrease with the distance between annual cycles.

We have demonstrated the sensitivity of the solution to the sampling and to the MCE error
assumptions applied to derive the observation error. Both issues were however not fully decou-5

pled in this first illustration. We thus investigate in the next section possible ways to study the
error correlation independently from the sampling.

2.4.2 Influence of error correlation

In this section, we apply different correlation coefficients between markers of age–difference
as implemented in Datice (equations 6 and 25). This methodological implementation enables10

one to study the influence of error correlation independently of the sampling. In the follow-
ing experiments, we investigate two correlation configurations: (i) correlation coefficients with
infinite depths range along the core, hereafter InfiniteRangeCorr, (ii) correlation coefficient
smoothly decreasing with the distance between markers, hereafter FiniteRangeCorr.

In this set of experiments, the level of observation error is largely increased for large correla-15

tion coefficient values. To operate with configurations where the minimization and solution are
still strongly driven by the constraint of the markers of age difference, the background errors
have been exaggerated (Table 3). In such configuration, the analysed error should tend toward
the observation error (Appendix E1):

σb� σo =⇒ σa ∼ σo (27)20

where σb, σo and σa are the background, the observation and the analysed errors, respectively.

In a first set of simulations, we investigate the InfiniteRangeCorr option. The correlation co-
efficient ρadij (equation 25) is set to constant values ranging from 0.2 to 0.8. Such configuration
implies identical error correlations between markers separated by a large or a small distance as
the MCE formulation does for the GICC05 chronology. Actually, the MCE formulation implies25

a correlation coefficient of 1 all along the ice core. In the Datice approach, it is technically
18
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impossible to attribute a value of 1 to ρadij due to the Rad matrix inversion in the cost function
formulation (equation 5). As a consequence, the Datice experiment run with a correlation coef-
ficient of 0.8 is the closest analog to the MCE formulation and we expect the analysed error to
closely approach the MCE.

Figure 6 show a comparison of the background and analysed chronologies with the reference5

chronology GICC05 as well as the Datice analysed errors and the MCE. As expected, the anal-
ysed errors tend toward the MCE for higher correlation coefficients. The full convergence to the
MCE error values is however hampered since more error correlation between markers progres-
sively rules out the hypothesis of equation 27: when the observation error becomes too large, the
analysed error is also driven by the background error (equation E11). Analysed chronologies10

also show some predictable behavior. When the correlation coefficient increases, the confidence
in the markers of age–difference decreases and the analysed chronologies stay close to the back-
ground chronologies. At last, the reconstructed chronologies show an increasing bias relatively
to GICC05 with increasing correlation coefficient. In the 0.8 correlation coefficient case, the
bias is close to 40 years at 1900 m, and reaches 90 years at 2000 m. At shallower depths, the15

bias strongly decreases (a few years at 500 m). This can be explained by the lesser amount of
uncertain layers, which are the only layers contributing to the error correlation (layers identified
as certain have a zero σi error and do no contribute to covariance of errors in equation 20).

We test hereafter the FiniteRangeCorr experiment with the finite depth range correlation
coefficient. We ran simulations with five different type of sampling: (i) four uniform sampling20

rates (300, 200, 100 and 80 years) and (ii) the adaptive sampling 40–140yrs. The markers er-
rors are systematically derived under the AddMCE assumption. An error correlation is applied
between markers (equation 25), and for all experiments we have set the correlation length Lad

to 300 years (equation 26).
Figure 7 shows a comparison between background, analysed chronologies and GICC05 as25

well as analysed errors. We clearly observe that there is a good fit to GICC05 with a better re-
semblance for the highest sampling rate, as expected and already observed in previous sections.
Importantly, despite the different sampling rates, the analysed errors show very similar values
contrary to tests presented in the previous section. This is due to the fact that the analysed er-
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ror is mainly influenced by the correlation coefficient on a finite length, which inter–correlates
more efficiently markers sampled on short time-windows.

Summarizing, the tests presented in the two previous sections suggest some guidelines for
future constructions of chronology using the markers of age–difference. The central problem is
the definition of the error associated with annual layer counting and how this error is correlated5

with other layers errors. We have seen that making different assumptions on the error correlation
lead to significant difference in the final chronology and associated error. In simulations with
Datice applied to several ice cores including NGRIP, if the objective is to preserve the NGRIP
age scale, our recommendations are: (i) sample the markers of age–difference over small time
windows (e.g. 100 years or apply an adaptive sampling rate), (ii) use a small uncertainty for10

the observations (this is directly linked to a large or short range of correlation between layer
counting errors), or (iii) increase the NGRIP overall background error.

3 Application to 5 sites experiments and comparison with AICC2012

After having validated the new developments for the implementation of markers of age–difference
and possible error correlation, we show a first application of the new Datice tool to a 5 ice core15

experiment (NGRIP, EDC, EDML, Vostok, Taldice).
An important condition to use Datice properly is to respect the independence between the

age constraints and the background scenarios. This was not the case when building AICC2012
for the NGRIP ice core. Here, the new development of Datice allows one to use scenarios
for background accumulation rate and thinning function independent from the age constraints20

deduced from GICC05 for NGRIP. In this application, the thinning function is the same as for
AICC2012, obtained from the 1D–DJ glaciological model adapted to NGRIP (Andersen et al.,
2006). However, we have largely increased its associated variance to make it comparable to
the ones associated with the background thinning function of the other cores implemented in
Datice. For the accumulation rate, we use the ss09sea accumulation rate based on variations of25

water isotopes (Johnsen et al., 2001). An accumulation rate scenario is deduced from the water
isotope profile corrected for the isotopic composition of seawater (e.g. Lorius et al., 1985). Then,
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the relationship between the accumulation rate and the δ18O profile is adjusted in order for the
1D–DJ ice flow model to match observed depth–age horizons. The formulation and coefficients
of the variance of NGRIP background accumulation rate are the same as in AICC2012 and
comparable to other ice cores. The LIDIE background scenario in AICC2012 was built from a
firnification model (Goujon et al., 2003) whose input parameters (temperature and accumulation5

rate) were roughly adjusted to be coherent with the mean δ15N values measured over the NGRIP
ice core. It was thus independent from GICC05 and has been kept unchanged for our study.

Concerning the age constraint, the absolute age markers deduced from GICC05 were replaced
by markers of age–difference. The markers of age–difference are obtained from the GICC05
chronology with adaptive length of intervals between 40 and 140 years with the AddMCE as-10

sumption (full correlation between annual cycles) and a correlation length of 300 years. In order
to constrain the relative gas chronology vs the ice chronology, we use information derived from
δ15N of air trapped in ice bubbles. New δ15N data on the NGRIP ice core have been pub-
lished since the AICC2012 chronology (Kindler et al., 2014). In particular, these data permit
to identify depths of rapid temperature increases associated with the beginning of Greenland15

Interstadials (GI) 1 to 7 in the gas phase. The depth differences between peaks of δ18Oice and
δ15N of a concomitant event recorded in the ice and the gas phases are thus used as delta–
depth (∆depth) constraints. With the new set of data from Kindler et al. (2014), we were thus
able to deduce new ∆depth markers that were not available for the construction of AICC2012
(Table 2). Their uncertainties depend on the resolution of measurements and the difference of20

∆depth estimates. Indeed, the ∆depth can be estimated from the difference between mid-slopes
of δ18Oice and δ15N increases or from the difference between the maxima of δ15N and δ18Oice.

Figure 8 compares this new Datice chronology (NGRIP-free) to AICC2012 for the 5 sites
between 35 ka and 48 ka. We strengthen that the NGRIP-free chronology discussed here should
not be taken as a new official chronology. It is only a test for our methodological development.25

Moreover, the AICC2012 chronology has the strong advantage of being in exact agreement with
the GICC05 chronology and hence to facilitate the multi-archives comparison taking GICC05 as
reference as already made in many studies (INTIMATE project: Blockley et al., 2012a). When
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looking at the NGRIP ice records, the final NGRIP-free chronology does not differ from the
GICC05 or AICC2012 chronologies by more than 150 years over the last 60 ka (Figure 8).

The Antarctic chronologies are not much modified compared to the AICC2012 chronologies.
They all differ by less than 410 years from AICC2012 (Figure 8), which is well within the uncer-
tainties of these chronologies (400–1000 years over this period). The small differences between5

the NGRIP-free and AICC2012 chronologies mean that the relationship between Greenland
and Antarctic climate discussed with AICC2012 for the millennial scale variability of the last
glacial period stays valid on NGRIP-free (Veres et al., 2013). We observe a classical seesaw
pattern with Antarctic temperature increasing during the Greenland stadials, with a faster and
shorter increase at EDML than at EDC (Figure 8).10

4 Conclusions

The bayesian tool Datice used for the construction of coherent ice cores chronology has been
improved and now enables one to consider the duration of events as dating constraints. This
development is more coherent with the building of chronologies based on layer counting where
the absolute error, defined as the Maximum Counting Error, increases with depth because of a15

cumulative effect. To account for the fact that the counted errors on each interval are neither
fully correlated nor uncorrelated, we have also introduced the possibility to adjust correlation
between age–difference errors. There is no unique way to define the correlation between er-
rors of age–difference and future dating exercises may propose different correlation coefficients
for layer counting performed at different periods (glacial vs interglacial times). We have thus20

presented here some sensitivity tests for the sampling and correlation of errors associated with
markers of age–difference. These tests lead to general guidelines for future dating exercises
including layer counting as absolute age constraints. For example, to best respect an ice core
chronology based on layer counting, we would favor a high frequency sampling of markers
of age–difference with a finite depth range correlation. Finally, the comparison of AICC201225

with the chronology obtained over 5 polar sites using the improved Datice tool incorporat-
ing markers of age–difference and associated correlation of errors shows differences of less
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than 410 years over the last 60 ka, well within the uncertainties associated with the AICC2012
chronology. Huge efforts in annual layer counting were produced in the recent years for ice core
chronologies, in particular for the Western Antarctic WAIS ice core (Members, 2013). Future
dating exercises should thus benefit from the methodological development and validation of the
bayesian tool presented in this study.5

Appendix A: Datice age models

The Datice age models are derived from three key ice core quantities: the total thinning function
T (z), the accumulation rate A(z) and the LIDIE C(z). They allow to estimate the ice age
chronology Ψ(z) as follows:

Ψ(z) =

z∫
0

D(z′)

T (z′) ·A(z′)
dz′ (A1)10

with D(z) being the relative density of the snow/ice material.
The gas chronology χ(z), is defined using ∆depth data, which measures the in–situ depth

difference between ice and gas of the same age. The gas age is further calculated as the ice age
of the layer situated at the depth (z−∆depth).

∆depth(z) = C(z) ·T (z) (A2)15

χ(z) = Ψ(z−∆depth(z)) (A3)

A background age scenario T b(z), Ab(z) and Cb(z) as well as age constraints are required
to run Datice. To optimize the gas and ice age scales, the specification of the background and
age constraints uncertainties are further needed. Depending on the confidence assigned to the20

background and to the markers, Datice will modify more or less the initial background scenario.
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Appendix B: Error specification in the Datice experiments

B1 Background variances changing with depth

Here we remind the formulations used to define the thinning function, accumulation rate and
the LIDIE variances, since several coefficients were corrected in this study.

The standard deviation of the thinning function is defined as:5

σT (z) = cT1 + cT2 ·
z∫
D(z)

T (z)
dz+ cT3 ·

σA,loc
σmaxA,loc

(B1)

where cT1 , cT2 and cT3 are user defined constant parameters (cT2 equals c · 0.1/H where H
is the maximum depth of the input and c a user defined constant), T (z) is the thinning func-
tion, D(z) the relative density, σA,loc the local standard deviation of accumulation and σmaxA,loc

the maximum standard deviation of accumulation. The last term was implemented in order to10

increase the thinning variance during large climatic transitions since it has been suggested that
the mechanical properties of ice can be modified in these periods. For the purpose of the tests
performed in this study, we have corrected the cT2 value (from 0.000016 to 0.000064) that was
used for NGRIP when building AICC2012. This correction permits to have a coherent parame-
terization of the thinning variance for the 5 ice cores. Moreover, we have reduced the cT1 values15

from 0.01 to 0.00001 in order to be closer to the 0 variance hypothesis at the surface for all
sites. We have also divided by 2 the cT3 values for all five sites. The other coefficients have the
same values as used to build AICC2012 (SOM Bazin et al., 2013).

The standard deviation for the accumulation rate is:

σA(z) = σb,A ·
|A0−A |
|A0−A |max

·
(

1 + cA1

z

zmax

)
(B2)20

with σb,A being a reference standard deviation, A0 is the mean Holocene accumulation rate,
cA1 is a constant parameter. The variance associated with the accumulation rate scenario thus
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increases when the background accumulation rate strongly deviates from the Holocene value.
The reason for such a parameterization is that the reconstruction of accumulation rate from
water isotopes through the exponential law is semi-empirical and its extrapolation far from the
present-day conditions may be problematic.

5

In order to avoid too small variances, a threshold value, σm, is implemented for each ice core.
When σA is smaller than σm, then σA is recalculated as:

σA = σm ·
(

1 + cA1

z

zmax

)
(B3)

where σm represents the minimum values, defined by user.
We have kept the same values for all Antarctic sites for the σb,A. For NGRIP, we have in-10

creased its value from 0.8 to 0.9, and increased the minimum value from 0.15 to 0.2.
The formulation for the LIDIE standard deviation is:

σL(z) =
σb,L
σb,A

· σA(z)

1 +
mA,loc

mmax
A,loc

(B4)

with mA,loc being the local mean accumulation rate and mmax
A,loc its maximum value over the

length of the core, σb,L is a reference standard deviation. In this case, the variance on the LIDIE15

increases with the variance on the accumulation rate, i.e. with the deviation from present–day
conditions. This is justified by the fact that we do not have a standardized way to link LIDIE to
accumulation rate and/or temperature (firnification model or δ15N based estimate). In section 3
we have reduced the value of the σb,L coefficient from 0.6 to 0.3 as well as the minimum value
possible (from 0.1 to 0.05) for NGRIP. This means that we have more confidence in our back-20

ground LIDIE scenario than when building the AICC2012 chronology. The other coefficients
have the same values as used to build AICC2012 (SOM Bazin et al., 2013).
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Appendix C: GICC05 and MCE statistical assumptions

C1 Statistical assumptions to handle the annual layer counting variables

In the objective of better handling the MCE data, we make gaussian assumptions and reformu-
late the GICC05 layer counting with two probability density functions (pdf):

– The duration of an annual cycle identified as certain is normally distributed with a one5

year average and a zero standard deviation.

– The duration of an annual cycle identified as uncertain is normally distributed with a
mean and a standard deviation set both to half a year.

The counting variables ni and σi are statistical parameters of the gaussian distribution, which
is to say the mean and standard deviation.10

It must be noted that such formulation may be questioned: i) the annual layer counting as a
discrete underlying nature and one might rather prefer to introduce discrete random variables to
handle it, ii) the gaussian pdf applies to continuous random variables ranging from−∞ to +∞,
which if far from being the case, iii) gaussian assumption based theorems are tricky to apply in
the zero-variance limit assessed for annual layer identified as certain15

C2 Sampling markers of age–difference and amount of error correlation accounted for:
general case

Sampling markers of age–difference from the GICC05 layer counted chronology may lead to
different amount of error correlation between individual measure of annual cycles. Let us first
sample the markers on a T -time window and get the two constraints, Y T

zq ,zp and Y T
zp,zm , which20

measures the annual cycles in years in the two neighbouring depth intervals [zq,zp] and [zp,zm]
along the core. The errors ΣT

zq ,zp et ΣT
zp,zm associated with each marker writes:
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(
ΣT
zq ,zp

)2
=

p∑
i=q

σi
2 + 2

p∑
i=q

p∑
j=q,j>i

ρijσiσj (C1)

(
ΣT
zp,zm

)2
=

m∑
i=p+1

σi
2 + 2

m∑
i=p+1

m∑
j=p+1,j>i

ρijσiσj (C2)

(C3)

If we double now the sampling rate, we get 2T -time window markers with the single marker5

Y 2T
zq ,zm , which measures the annual cycles in years over the depth interval [zq,zm], instead of

the two constraints Y T
zq ,zp and Y T

zp,zm .

Y 2T
zq ,zm = Y T

zq ,zp +Y T
zp,zm (C4)

The error Σ2T
zq ,zm associated with 2T -time window marker Y 2T

zq ,zm now writes:10

(
Σ2T
zq ,zm

)2
=

m∑
i=q

σi
2 + 2

m∑
i=q

m∑
j=q,j>i

ρijσiσj (C5)

Rearranging equation C5 in terms of the errors ΣT
zq ,zp et ΣT

zp,zm gives:
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(
Σ2T
zq ,zm

)2
=

p∑
i=q

σi
2 + 2

p∑
i=q

p∑
j=q,j>i

ρijσiσj

+

m∑
i=p+1

σi
2 + 2

m∑
i=p+1

m∑
j=p+1,j>i

ρijσiσj

+ 2

p∑
i=q

m∑
j=p+1

ρijσiσj

=
(
ΣT
q,p

)2
+
(
ΣT
p+1,m

)2
+ 2

p∑
i=q

m∑
j=p+1

ρijσiσj (C6)
5

In equation C6, the red term corresponds to a part of the error accounted for in the 2T -window
marker Y 2T

zq ,zm that will never be accounted for in the case of the T -window markers Y T
zq ,zp and

Y T
zp,zm . It corresponds to error correlations between annual layers i and j that are separated by

the longest distance as they are located in the [zq,zp] depth interval for the first layer, and in
the next interval [zp,zm] for the second. The longer range correlation can only be accounted for10

with the larger sampling rate. This point is illustrated with Figure 9.
It is worth it to note, that equation C6 simplifies further in only two cases regarding the ρij

correlation coefficients of the term highlighted in red:

– when the correlation coefficients are identically null, we get the sum of the squared errors:

(
Σ2T
zq ,zm

)2
=
(
ΣT
q,p

)2
+
(
ΣT
p+1,m

)2
(C7)15

– when the correlation coefficient are identically set to 1, we get the squared sum of the
errors:
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(
Σ2T
zq ,zm

)2
=
(
ΣT
q,p + ΣT

p+1,m

)2
(C8)

Appendix D: The Datice data assimilation system

D1 Background and observation error covariance matrices

The background and observation errors ε̃b and εo are measures of the background and observa-5

tion distance to X̃t, which records the true but unknown model. In the Datice system X̃t are
the true correction functions to apply to accumulation, thinning and LIDIE (after exponential
transformation). Errors ε̃b and εo writes by definition:

ε̃b = X̃b− X̃t (D1)

εo = Y o−h
(
X̃t
)

(D2)10

where vectors X̃b, Y o store the background and observation data, and where h is the ob-
servation operator that maps the model space to the observation space. The background and
observation error covariance matrices B and R matrices are defined as:

B = E
[
ε̃bε̃b

T
]

(D3)15

R = E
[
εoεoT

]
(D4)

where E [•] is the expected value operator, and T is the transpose operator.

D2 Analysed error covariance matrix

The analysed error ε̃a (random variable) is defined as follows:20
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ε̃a = X̃a− X̃t (D5)

where X̃t records the true (but unknown) correction functions (i.e., the correction that would
provide the exact true scenario of thinning, accumulation and LIDIE). The analysed error co-
variance matrix P̃a is given by:5

Pa = E
[
ε̃a ε̃aT

]
(D6)

Appendix E: Analysed chronology and analysed errors

The ice age scale changes according to the correction function values X̃ = (α̃(z), τ̃ (z))T as
follows:10

Ψ
(
X̃
)

=

z∫
z=0

exp(−τ(z′)) exp(−α(z′))

T b(z′)Ab(z′)
D(z′)dz′ (E1)

The optimized ice age is calculated by applying in equation E1 the optimized correction
functions obtained after minimization of the cost function (equation 5):

X̃a = (α̃a(z), τ̃ a(z), γ̃a(z))T (E2)

This gives the analysed chronology:15

Ψa (z) = Ψ
(
X̃a
)

=

z∫
z=0

exp(−τ̃a(z′)) exp(−α̃a(z′))
T b(z′)Ab(z′)

D(z′)dz′ (E3)
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To approximate the a posteriori error of the analysed chronology, the covariances of errors of
X̃a are required. These covariances of errors are recorded in Pa the analysed error covariance
matrix, which can be approximated:

1

Pa
∼ 1

B
+

1

HTRH
(E4)

5

where B and R are the background and observation error covariance matrices respectively
D1, and where H is the tangent linear observation operator (linearization of h at X̃a.

Datice calculates the components of Pa at each depth level on the basis of equation E4.
Importantly, Pa operates a balance between the background and observation errors. The Pa

error covariance propagates to the analysed chronology Ψa
(
X̃a
)

. If we designate by Ea the a10

posteriori error of the analysed chronology, the corresponding analysed error covariance matrix
Λa is by definition:

Ea = Ψ
(
X̃a
)
−Ψ

(
X̃t
)

(E5)

Λa = E
[
EaEaT

]
(E6)

15

Our purpose is to show how matrix Λa depends on matrix Pa, then on the error matrices B
and R. We recall the steps to show this link, as first described in Lemieux-Dudon et al. (2009).
One can first linearize the age scale of equation E1 around X̃a (D5):

Ψ
(
X̃t
)

= Ψ
(
X̃a
)
− ε̃aT ·

[
∂Ψ

∂X̃

∣∣∣∣
X̃a

]
+ ◦(‖ε̃a‖) (E7)

Inserting equation E7 in equation E5 enables one to approximate the a posteriori error Ea:20

Ea ∼ ε̃aT ·
[
∂Ψ

∂X̃

∣∣∣∣
X̃a

]
(E8)
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Importantly, the later approximation is valid if ε̃a are sufficiently small perturbations, i.e., the
correction functions X̃a must be close to the true scenario X̃t. Under this strong assumption,
equation E8 leads to:

EaEaT ∼
[
∂Ψ

∂X̃

∣∣∣∣
X̃a

]T
ε̃aε̃aT

[
∂Ψ

∂X̃

∣∣∣∣
X̃a

]
(E9)

5

And finally, from equation E9, one can approximate the error matrix of the ice age Λa by
applying the expected value operator to equations E9 and by using equation D6:

Λa =∼
[
∂Ψ

∂X̃

∣∣∣∣
X̃a

]T
Pa

[
∂Ψ

∂X̃

∣∣∣∣
X̃a

]
(E10)

Datice applies equation E10 to approximate the covariances of errors of the analysed chronol-10

ogy. This approximation especially requires that the optimum correction functions X̃a obtained
after minimization of the cost function remain sufficiently close to the true scenario X̃t. On the
assumption of normally distributed errors, matrix Λa provides the standard deviation of the
analysed age scale. The process to calculate the analysed error of the gas age scale is similar
but relies on equation (A2).15

E1 Balance between background and observation error and impact on the analysis

The variances of errors of the analysed chronology cumulate the error covariances recorded
in matrix Pa (equation E10). The age solution and its error are therefore largely determined
by the balance between observation and background errors (equation E4). To fix ideas, instead
of matrices Pa, R and B, let us suppose we deal with the scalars σa, σo and σb. With such20

simplification, equation E4 writes:

1

σa2
=

1

σb2
+

1

σo2
(E11)
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According to the ratio bewteen observation and background errors, there are two extreme
configurations:

– if σo� σb, the minimization and the solution are strongly constrained by the observation
and the analysed error tends to be the observation error:

σa ∼ σo (E12)5

– to the opposite, if σb� σo, the background scenario dominates and the solution resembles
the background. The analysed error tends to the background error:

σa ∼ σb (E13)
10

Intermediate background to observation error ratio leads to intermediate analysed solution
and error. In the special case of equal amount of errors in observation and background, i.e.,
σ = σo ∼ σb the analysed error writes:

σa ∼
σ√
2

(E14)
15
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Figure 1. Twin experiments: background (dashed blue lines) and analysed (orange lines) chronologies
of the 51 twim experiments. The GICC05 chronology is represented by the dashed black line for com-
parison.
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Figure 2. Analysed chronologies of the 51 twin experiments. Top: Comparison of the analysed chronolo-
gies with GICC05. Bottom: analysed errors of the 51 twin experiments (red). The dashed black line rep-
resents the Maximum Counting Error associated with GICC05 and considered in GICC05 as equivalent
to a 2–sigma uncertainty.
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Figure 3. Histograms of the 51 twin experiments for the background (blue) and analysed (red) chronolo-
gies at depth 1800 m for NGRIP ice core.
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Figure 4. Sensitivity of the age and error solution to the age–difference markers sampling and to the MCE
error assumptions. The difference between analysed chronologies and GICC05 age scale are shown on
the top panel. Analysed errors and MCE are plotted on the bottom panel. The simulations settings are:
(i) three different uniform sampling rates (300, 200 and 100 years) and (ii) one adaptive sampling rate
ranging from 40 to 140 years. The markers errors are derived under the AddMCE assumption (full
correlation between annual cycles), except for the 40-140yrs_SqrAddMCE simulation that is ran under
the SqrAddMCE assumption (correlation cut-off above 20 years).
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Figure 5. Sensitivity of the age solution to the age–difference markers sampling. The simulations settings
are: (i) three different uniform sampling rates (plain blue lines: 300, 200 and 100 years) and (ii) one adap-
tive rate ranging from 40 to 140 years (dashed colored lines). The markers errors are derived under the
AddMCE assumption (full correlation between annual cycles), except the 40-140yrs_SqrAddMCE sim-
ulation that is ran under the SqrAddMCE assumption (correlation cut-off above 20 years). The curves
represent the difference between the different analysed and background chronologies. The difference
GICC05–background is displayed for comparison (dashed black line).

42



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Figure 6. Sensitivity of the solution to correlation coefficient values applied between markers of age–
difference (Infinite depths range case). Top panel: GICC05 minus background chronology (black dashed
line), Difference between analysed and background chronologies (blue to pink lines). Bottom panel:
MCE error (black dashed line), analysed errors (blue to pink lines) The markers of age–difference are
sampled every 100 years on GICC05, and correlation coefficients range from 0.8 to 0.2. The MCE error
assumption is AddMCE (full error correlation between cycles).
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Figure 7. Sensitivity of the solution to correlation coefficient values applied between markers of age–
difference (Finite depths range case). Top panel: GICC05 minus background chronology (black dashed
line) and difference between analysed and background chronologies. Bottom panel: MCE error (black
dashed line), analysed errors (blue to pink lines) The markers of age–difference are correlated through
a correlation function (gaussian times triangle), the correlation length is 300 years. Uniform marker
sampling at 80, 100, 200 and 300 years rates are shown with the blue to pink lines. The adaptive sampling
rate (40-140yrs) is shown in brown. The MCE error assumption is AddMCE (full error correlation
between cycles).
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Figure 8. Comparison of NGRIP δ18O (NorthGRIP Community Members, 2004), TALDICE δ18O
(Stenni et al., 2011), EDML δ18O (EPICA Community Members, 2006, 2010), Vostok δD (Petit et al.,
1999) and EDC δD (Jouzel et al., 2007) water isotopes on different coherent chronologies (AICC2012
in dark blue and NGRIP-free in light blue). The differences between the NGRIP-free and AICC2012
chronologies for each sites are represented by the black lines.
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Figure 9. The error covariance matrix R associated with a measure of duration Y 2T
zq,zm sampled at a 2T

years rate on a layer counted chronology, e.g GICC05. The matrix stores error information related to
the measures of annual cycles on the depths interval [zq,zm]. The diagonal elements record the error
variances σi2 associated with each identified annual cycle, while the non–diagonal elements store the
error covariances, with especially the error correlation coefficient ρij between pairs of annual layers i et
j. The error Σ2T

zq,zm associated with marker Y 2T
zq,zm takes into account the whole error correlations stored

in the R matrix. If the measures of duration are rather sampled at the T sampling rate (i.e., half the
previous rate), the marker of age–difference Y 2T

zq,zm splits into two markers: (i) Y T
zq,zp (in blue) and (ii)

Y T
zp,zm (in brown). The error ΣT

zq,zp associated with Y T
zq,zp will only account for the correlation of the

upper diagonal block of R (dashed blue line around block). Symmetrically, the error ΣT
zp,zm associated

with Y T
zp,zm will only account for the correlation of the lower diagonal blocks of R (dashed brown line

around block). Error correlations of the non-diagonal blocks of R between annual layers i ∈ [zq,zp] and
j ∈ [zp,zm] are only accounted for in the total error with the 2T sampling rate.
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Table 1. Summary of the simulation configurations

Name MCE error assumption Sampling Correlation coefficient

300yrs_AddMCE AddMCE 300yrs None
200yrs_AddMCE AddMCE 200yrs None
100yrs_AddMCE AddMCE 100yrs None
40-140yrs_AddMCE AddMCE Adaptative None
40-140yrs_SqrAddMCE SqrAddMCE Adaptative None
CorrCoeff_40-140yrs_AddMCE AddMCE Adaptative Lad =300yrs
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Table 2. New ∆depth markers of NGRIP deduced from the data of Kindler et al. (2014)

depth (m) ∆depth (m) σ (m) Event

1490.2 25.07 2.5 Holocene
1520.5 21.84 2.5
1574.4 23.51 2.5
1603.0 26.42 2.5 D-O 1
1792.7 25.07 2.5 D-O 2
1868.1 22.62 2.5 D-O 3
1888.4 21.87 2.5 D-O 4
1950.6 21.32 2 D-O 5
1972.6 20.42 2 D-O 6
2007.8 19.22 2 D-O 7
2099.9 17.77 2 D-O 8
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Table 3. Summary of the simulation configurations

Experiment Variance
profile Ab T b Cb Objective

Twin
experiments
(2.2)

Changing
with depth
Bazin et al.
(2013)

- σb of thinning
divided by 3 -

Avoid
correction on
the thinning in
experiment
with ice age
only

Sensitivity to
sampling and
MCE (2.4.1)

Constant
with depth

σb = 0.8
triangular ρb
function
2500yrs
width

σb = 0.5
triangular ρb
function 60m
width

- Simplify the
experiment

Correlation
between
markers
(2.4.2)

Constant
with depth

σb = 3.2
triangular ρb
function
2500yrs
width

σb = 2
triangular ρb
function 60m
width

-

Reinforce the
marker
constraints :
σb� σo
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