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Abstract. Different ensemble-based data assimilation (DA)
approaches for palaeoclimate reconstructions have been re-
cently followed, but no systematic comparison among them
has been attempted. We compare an off-line and an on-line
ensemble-based method, with the testing period being the5

17th century, which led into the Maunder Minimum. We use
a low-resolution version of Max Planck Institute for Meteo-
rology’s model MPI-ESM, to assimilate the PAGES 2K con-
tinental temperature reconstructions. In the off-line approach
the ensemble for the entire simulation period is generated10

first and then the ensemble is used in combination with the
empirical information to produce the analysis. In contrast,
in the on-line approach the ensembles are generated sequen-
tially for sub-periods based on the analysis of previous sub-
periods. Both schemes perform better than the simulations15

without DA. The on-line method would be expected to per-
form better if the assimilation led to states of the slow com-
ponents of the climate system that are close to reality and
the system had sufficient memory to propagate this informa-
tion forward in time. In our comparison, which is based on20

analysing correlations and differences between the analysis
and the proxy-based reconstructions, we find similar skill for
both methods on the continental and hemispheric scales. This
indicates either a lack of control of the slow components in
our setup or a lack of skill in the information propagation25

on decadal timescales. Additional experiments are however
needed to check whether the conclusions reached in this par-
ticular setup are valid in other cases. Although the perfor-
mance of the two schemes is similar and the on-line method
is more difficult to implement, the temporal consistency of30

the analysis in the on-line method makes it in general prefer-
able.

1 Introduction

Reconstructing the climate of the past is crucial for quantify-
ing and understanding natural climatic change, which in turn35

is essential for detecting anthropogenic climate change, as
well as for the validation of climate models that are used to
provide future climate projections. As the instrumental me-
teorological records are too short to estimate low-frequency
variability, reconstructions based on climate proxy data or40

numerical simulations are used for this purpose. However,
both approaches are associated with substantial uncertain-
ties. In principle, the best state estimates can be expected by
employing data assimilation (DA) techniques, which sys-
tematically combine the empirical information from proxy45

data with the representation of the processes that govern
the climate system given by climate models. Although DA
is a very mature field in numerical weather prediction, the
specific problem in palaeoclimatology is different and the
methods cannot be directly transferred (e.g. Widmann et al.,50

2010; Hakim et al., 2013). DA is an emerging research
area and can be considered as one of the key challenges in
palaeoclimatology.

There are two types of proxy-based reconstructions, those55

for large-scale, e.g. continental or hemispheric averages
(e.g. Crowley and Lowery, 2000; Moberg et al., 2005; Mann
et al., 2008; Ljungqvist, 2010; PAGES 2K Consortium,
2013) and spatial field reconstructions (e.g. Briffa et al.,
1994; Luterbacher et al., 2004; Jones and Mann, 2004;60

Xoplaki et al., 2005; Mann et al., 2009). Proxy-based
estimates of climate variability contain considerable errors:
different proxies usually represent different seasons, dif-
ferent statistical methods used in the reconstructions lead
to different results, and non-climatic factors influence the65

proxies (e.g. Jansen et al., 2007; Jones and Mann, 2004).
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Moreover, the poor spatial coverage of the climate proxies
leads to errors in hemispheric or continental means and
even larger errors in full-field reconstructions. The climate
states provided by standard model simulations are spatially70

complete and provide an independent estimate which can
be checked for consistency with the proxies, on both large
and regional scales. However, the simulations also have
errors, e.g. systematic model biases and errors in the climate
forcings or in the response to them. Additionally, interannual75

to decadal temperature variations have a large random,
non-forced component and thus agreement of simulations
and observations is very unlikely on these timescales. The
forcings do not precisely determine the temporal evolution
of the climate, in particular on regional scales. Ensemble80

simulations are indispensable in order to better assess the
internal variability for periods within the last millennium
(Jungclaus et al., 2010).

Data assimilation combines the two previous methods to85

find estimates that are both consistent with the empirical
knowledge and with the dynamical understanding of the
climate system, providing complete spatial fields. It uses the
empirical data after the construction of the model to either
estimate, correct or select the system state (e.g. Hakim et al.,90

2013; Bronnimann et al., 2013), or to systematically improve
some model parameters (e.g. Annan et al., 2013). Here,
we consider the case of state estimation, where DA aims
to capture the real-world random, non-forced variability in
a simulation and to provide information for variables for95

which no empirical estimates exist.

Attempts to assimilate proxy data into models include
different approaches, such as the selection of ensemble
members, forcing singular vectors, and pattern nudging100

(e.g. Widmann et al., 2010). Ensemble member selection
techniques, like the one implemented here, are based on the
selection of simulations from an ensemble that are closest to
the empirical evidence on climate. A general advantage of
these techniques is that they are easy and straightforward to105

implement, and they are the most frequently used methods
by the community. Goosse et al. (2006) were the first to use
this method for palaeoclimate research, employing a sim-
plified global 3-D climate model. An updated version was
employed by Goosse et al. (2010), using a more advanced 3-110

D Earth-System Model of Intermediate Complexity(EMIC),
along with a set of 56 proxy series derived from a com-
prehensive compilation of Mann et al. (2008). In the first
case, the best model analog was selected by comparing the
simulations with proxy-based temperature reconstructions115

after the completion of the simulations, an approach called
off-line DA. In the second case a new ensemble was gen-
erated at each step of the assimilation procedure, starting
from the best simulation selected for the previous period, an
approach called on-line DA. The revised method offered dy-120

namical consistency between best model analogs of different

periods, while the former benefited from its computational
simplicity. Both methods showed positive reconstruction
skill, particularly at the regional scale in areas with high
data coverage. The on-line method was also employed by125

Crespin et al. (2009) to analyse the fifteenth century Arctic
warming. The novelty of the current manuscript is the fo-
cus on the comparison of the on-line and off-line approaches.

In addition to the above methods, where a single simu-130

lation having the best fit to the data is chosen during the
assimilation (“degenerate particle filter”), another approach
employs weights for each member of the ensemble, calcu-
lated after the comparison with the proxies and generating
a probabilistic posterior distribution (“particle filter”). The135

technique was applied by Annan and Hargreaves (2012),
who performed off-line assimilation based on a simple
likelihood weighting algorithm, implementing thus all the
DA after the completion of the ensemble integration. In the
“particle filter” methods (both in the on-line and off-line140

techniques), more than one member proceeds to the next
assimilation step after the first filtering. The most unlikely
ensemble members (particles) are being discarded and the
highly likely particles are being copied proportionally to
their likelihood. The same “probabilistic posterior distri-145

butions” technique was used by Goosse et al. (2012). The
outcomes of the approach led to distributions with larger
overlaps with the proxy-based reconstruction. The method
has also been used by Mairesse et al. (2013) to reconstruct
the climate of the mid-Holocene (6 kyr BP).150

Other ensemble-based DA approaches include the use of
the Kalman filter and the explicit treatment of time-averaged
observations. The off-line approach of DA was advanced by
Bhend et al. (2012), through the assimilation of proxy data155

into a high-resolution general circulation model (GCM). The
ensemble square root filter (EnSRF), a variant of the ensem-
ble Kalman filter, was used to update the ensembles with
climate proxy information. The use of an atmosphere-only
GCM rather than a coupled atmosphere-ocean GCM left no160

possibility for information propagation on long timescales,
therefore the DA was performed off-line. In other words,
an on-line DA scheme would not have benefited the recon-
struction skill, apart from leading to temporal consistency
of the analysis. Dirren and Hakim (2005) examined the case165

where only time-averaged observations are available. Their
algorithm constitutes a natural extension of the ensemble
Kalman filter, and reduces to the ensemble Kalman filter in
the limit of zero time averaging (Dirren and Hakim, 2005).
Huntley and Hakim (2010) applied the new algorithm to170

test the method in a simple atmospheric model. Similarly,
Pendergrass et al. (2012) tested two idealized models,
which captured adequate climate variability related to the
palaeoproxies. In order to identify initial conditions, an
ensemble Kalman filter technique was applied to the two175

models. Another computationally inexpensive DA method,
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adapted for past climates, was presented by Steiger et al.
(2014), requiring only a static ensemble of climatologically
plausible states.

180

An advantage of the on-line compared to the off-line
ensemble-based DA methods is the temporal consistency
of the simulated states. The off-line approach on the other
hand is computationally less complicated and can also be
computationally cheaper if one uses simulations that already185

exist. The question we address in this paper is whether the
on-line reconstruction is closer to the proxy-based recon-
structions compared to the off-line version. This depends
on the memory of the slow components of the climate
system, such as the ocean. If these propagate the information190

contained in the assimilated proxy data forward in time
on decadal timescales, and this information is correct, the
on-line approach is expected to perform better. If, on the
other hand, the chaotic nature of the system dominates and
the predictability of the system is limited, or the simulated195

ocean states are unrealistic, the computationally easier off-
line method would be sufficient. The experiment design with
decadal assimilation is motivated by a number of reasons.
Firstly, since we aimed for a complete Northern Hemisphere
reconstruction, the 10-year resolution of the North American200

proxy reconstructions did not allow us to use annually
resolved proxy data for the assimilation. Additionally, the
annually resolved proxies include substantial noise, which
is cancelled out with the decadal averaging. Finally, in a
climate change context, the yearly changes are in general205

of less interest compared to the decadal variability. GCMs
exhibit up to decadal predictability in the North Atlantic
(e.g. Branstator et al., 2012; Hawkins and Sutton, 2009a)
and the ocean predictability can in turn lead to atmospheric
predictability. The extent of decadal predictability and the210

relevant mechanism behind are not yet clear and many
studies have recently been performed on these topics (e.g.
Hawkins and Sutton, 2009a, b; Keenlyside and Ba, 2010).

In this paper, we compare two ensemble-based DA ap-215

proaches, an off-line and an on-line method, to reconstruct
the climate for the period 1600-1700 AD. This is a period
for which many proxy studies and model simulations exist,
and which is interesting due to the large temperature varia-
tions exhibited in the transition to the prolonged cold period220

of the Maunder Minimum (about 1645 AD to 1715 AD).
We employ ensemble simulations with the Max Planck In-
stitute for Meteorology’s General Circulation Model MPI-
ESM, and specifically a low-resolution version of the MPI
CMIP5 model. The proxy temperature reconstructions of the225

PAGES 2K project are used in our assimilation (PAGES 2K
Consortium, 2013). The structure of the paper is as follows:
In section 2, we review the model characteristics and the
proxy datasets used, and give the details of our methodology.
Section 3 gives the results of the validation of the off-line230

and the on-line DA approaches and a comparison of them,

discusses their limitations and includes a significance test of
the results. Finally, in section 4, we summarize, draw conclu-
sions and discuss the benefits of each approach.

2 Experimental Design235

2.1 Model Simulations

We used the Max Planck Institute for Meteorology Earth
System Model (MPI-ESM), comprising of the general
circulation models ECHAM6 (Stevens et al., 2013) for the
atmosphere and MPIOM (Marsland et al., 2003) for the240

ocean. ECHAM6 was run at T31 horizontal resolution (3.75◦

× 3.75◦), with 31 vertical levels, resolving the atmosphere
up to 10 hPa. MPIOM was run at a horizontal resolution of
3.0◦ (GR30) and 40 vertical levels. The OASIS3 coupler was
used to couple the ocean and the atmosphere daily without245

flux corrections. The land surface model was JSBACH
(Raddatz et al., 2007) and no ocean biogeochemistry model
was employed. The model is a low-resolution version of the
model used for the Coupled Model Intercomparison Project
Phase 5 (CMIP5) simulations.250

The simulations described here are based on a simulation
covering the last millennium (850-1849 AD) following the
“past1000” protocol of the Paleo Model Intercomparison
Project Phase 3 (Schmidt et al., 2011). Prescribed external255

forcing factors are reconstructed variations of total solar
irradiance (Vieira et al., 2011), volcanic aerosols (Crowley
and Unterman, 2012), concentrations of the most important
greenhouse gases (Schmidt et al., 2011), and anthropogenic
land-cover changes (Pongratz et al., 2008). The past1000260

simulation has been started after a 700-year long spin-up
with constant 850 AD boundary conditions.

The high computational cost restricted us to running 10
ensemble members for each experiment. This choice is con-265

sistent with Bhend et al. (2012) who found that ensembles
of size 10 or more can be successful in finding a simulation
moderately close to the proxies, and that considerable skill in
regions close to the assimilated data can be found for ensem-
bles of 15 members or more, while larger sizes are needed270

for areas further away. The ensemble members have been
generated by slightly varying values of an atmospheric diffu-
sion parameter. The method leads to a fast divergence of the
different simulations and an adequate ensemble spread, not
only in surface variables like the 2m or sea-surface tempera-275

ture, but also in deeper ocean variables, such as the AMOC -
Atlantic meridional overturning circulation. Figure 1 shows
the AMOC time-series of the ensemble spread at 26.5◦, for
the first 100 days after the initialisation of the ensemble in
year 1600 AD, illustrating the fast growth of the ensemble280

spread in ocean variables. The selected ensemble genera-
tion method does not directly introduce any disturbance in



4 Matsikaris et al.: On-line and Off-line data assimilation

the ocean, which may limit the capability of the assimilation
scheme. For this reason, a different way of generating ensem-
bles was also tested, namely the lagged-ocean initialization285

method, generating the ensemble members by using differ-
ent ocean initial conditions, based on different dates close
to the original starting date of the generation. The similarity
in the output of the two methods however, and the fact that
the lagged-ocean initialization is more complicated, led us to290

choose the atmosphere-only disturbance.

2.2 Proxy Datasets

For our assimilation procedure, we used the “2k Network”
of the IGBP Past Global Changes (PAGES) proxy datasets.
The PAGES project used a global set of proxy records and295

produced temperature reconstructions for seven continental-
scale regions (PAGES 2K Consortium, 2013). The dataset
covers different periods during the last millennium for
each continent, and specifically the years 167-2005 AD
for Antarctica, 1-2000 AD for the Arctic, 800-1989 AD300

for Asia, 1001-2001 AD for Australasia, 1-2003 AD for
Europe, 480-1974 AD for North America and 857-1995 AD
for South America. It has been produced by nine regional
working groups, who identified the best proxy climate
records for the temperature reconstruction within their305

region, using criteria they had established a priori.

Here, we assimilate the reconstructions for the period
1600 AD to 1700 AD, which led into the Maunder Mini-
mum. The Maunder minimum (1645 AD to 1715 AD) was310

characterized by a large reduction in the number of sunspots
and hence a reduction in solar radiation, and corresponds
to the middle part of the Little Ice Age. Volcanic forcing
likely had a role in this cooling as well. The PAGES 2K
reconstructions exhibit a cooling in all the continents except315

Antarctica for this period, being in agreement with previous
studies.

The techniques followed by the majority of the groups
were either the “composite plus scale” (CPS) approach320

for the adjustment of the mean and variance of a predictor
composite to an instrumental target (e.g. Mann et al.,
2008, 2009), or regression-based techniques for the predic-
tors, including principal component pre-filters or distance
weighting (PAGES 2K Consortium, 2013). The dataset of325

individual proxies consists of 511 time series that include
ice cores, tree rings, pollen, speleothems, corals, lake and
marine sediments as well as historical documents of changes
in biological or physical processes. The reconstructions
have annual resolution, apart from North America, which is330

resolved in ten- and thirty-year periods.

2.3 Selection of the best ensemble members

We simulated the period 1600-1700 A.D using the standard
forcings for this period. The initial conditions were taken335

as the last day of the year 1599 AD from a transient forced
simulation starting in 850 AD. We performed ensemble
experiments of 100-year duration. In the off-line experiment,
in the first year (1600 AD), the ten ensemble members
used slightly different values of an atmospheric diffusion340

parameter. For each member, the simulation period was
divided into 10-year intervals, and the decadal means of the
2m temperature were calculated for each of the Northern
Hemisphere continents. Using a root mean square (RMS)
error-based cost function, the model outputs were compared345

to the proxy-based continental temperature reconstructions,
averaged over the respective 10-year periods. The ensemble
member that minimized the cost function in each decade
was selected as the best simulation for that period. The
same process was followed for all the decades within the350

analysis period, so that in the end we obtained the analysis,
by merging the best members of each decade.

The selection of the “optimal” simulation of the ensemble
for each decade of the simulation period was done after the355

calculation of the following cost function:

CF (t) =

√√√√ k∑
i=1

(
T i
mod(t)−T i

prx(t)
)2

(1)

where i are the Northern Hemisphere continents, namely
the Arctic, Asia, Europe and North America, T i

mod(t) is the
standardized modelled decadal mean of the temperatures360

in each Northern Hemisphere continent and T i
prx(t) is the

standardized proxy-based reconstruction for the decadal
mean of the temperatures in each Northern Hemisphere
continent. The algorithm filters out the ensemble members
that are considered poor representations of the actual state,365

by throwing away the ones that are less consistent with
the proxies and promoting the best fitting member. We
include only the data of the Northern Hemisphere in the cost
function, in an effort to reduce the degrees of freedom of the
system and make it easier to find good analogues with our370

small ensemble size. Moreover, the Southern Hemisphere is
affected by bigger uncertainties and is reconstructed by less
dense proxy networks.

The reason for basing the cost function on standardized375

simulated and proxy-based temperatures is to remove
systematic biases in means and variances between the model
and the proxy-based reconstructions, and to ensure that
continental temperatures with differing variance contribute
equally to the analysis. The standardized model and proxy380

time-series were calculated by subtracting the 850-1850
AD means of the model output and the proxies from the
1600-1700 A.D raw model output and proxies respectively,
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and dividing by the respective standard deviations, based
on the decadal averages for the 850-1850 AD period.385

The datasets were not weighted according to the size of
the different regions, as we consider all continents to be
equally important. We also decided against weighting on
the base of the errors of the proxy datasets, as the different
methods followed by each of the PAGES 2K groups make390

the errors not directly comparable. Moreover, the errors of
the continental reconstructions are of similar order and thus
error weighting would only have a small effect.

In the on-line experiment, a ten-member ensemble was395

generated for the first year of the analysis period, by intro-
ducing small perturbations in the atmospheric diffusion field.
Simulations with 10-year duration were run. Using the same
cost function as the one used in the off-line experiment, the
temperature decadal means of the model outputs were com-400

pared to the PAGES 2K continental proxy reconstructions.
In contrast to the off-line method, the selected member for
that period, i.e. the one that minimized the cost function, was
used as the initial condition for the subsequent simulation. A
new ensemble consisting of 10 members was performed for405

the second decade, starting from the previous best member’s
final conditions and having slightly varying values of the
atmospheric diffusivity parameter in the different members.
The same procedure was repeated until the year 1700 AD.

410

The comparison of the two experiments is based on the
proximity to the proxy-based reconstructions. We note
however that it is not the aim of DA to exactly reproduce the
assimilated empirical information, since these have errors.
Ideally, a validation of different DA methods would be415

based on a comparison with the true and spatially complete
temperature field, but as this is not available, a validation
based on proximity to the assimilated information is a useful
first step to investigate whether the on-line and off-line
approaches perform differently.420

Having a good chance to find a close analogue of an atmo-
spheric state requires a large number of ensemble members,
if the state space has a high dimension. Van Den Dool (1994)
showed that to find an accurate analogue for daily data over a425

large area, such as the Northern Hemisphere, one needs daily
data from a period of about 1030 years. According to Van
Den Dool (1994), using a shorter library, like the current li-
braries of only 10-100 years of data, analogues can be found
only in just 2 or 3 degrees of freedom (e.g. Bretherton et al.,430

1999). In our case, by using only the continental averages
of the Northern Hemisphere as targets for the assimilation
process, we have a low number of degrees of freedom for
our cost function (less than 3). This makes the detection of
a good analogue much more likely with our small ensemble435

size of 10 members.

3 Results

The performance of the two schemes was assessed by com-
puting the correlation and the root-mean-square (RMS) error
for each Northern Hemisphere (NH) continent between the440

simulated and the proxy-based reconstructions of the 2m air
temperatures. We also investigated whether there exists in-
formation propagation on decadal timescales in the model,
by comparing the standard deviation of the ensembles during
the sub-periods in the on-line and off-line cases. An addi-445

tional significance test to evaluate the role of the sampling
effects that may affect many of the aspects discussed in the
study was also conducted.

3.1 Comparison of the two DA schemes

Despite the fact that the cost function for the selection450

of the best members was based on standardized data, we
demonstrate the performance of the two schemes using
the non-standardized, but unbiased model output (absolute
anomalies). This is because the latter represents the actual
assimilated temperatures that come out of the model, which455

can be compared with other studies. Starting with the off-line
DA scheme, the validation shows a clear improvement of the
simulated reconstruction for the period under consideration,
presenting higher correlations between model and proxies
for all the continents of the Northern Hemisphere and lower460

root mean square errors for the analysis compared to the
individual members. The on-line DA scheme was also
successful, improving the skill of the analysis time-series
compared to the individual members. However, the scheme
presented very similar correlations between the DA analysis465

and the proxy-based reconstructions with the ones found
with the off-line approach, and no major improvements to
the RMS errors, both on the continental and hemispheric
scales.

470

Figure 2 shows the Northern Hemisphere continents’
decadal mean temperature anomalies w.r.t. the 850-1850
AD mean for the 17th century, for the on-line and off-line
ensemble members, the on-line and off-line DA analysis
and the proxy-based reconstructions. The figure displays the475

ensemble spreads as shadings, but a more detailed investi-
gation shows that the DA analysis for all the NH continents
is closer to the proxies than any of the individual ensemble
members, in both schemes. This result is not trivial, as the
cost function only minimizes the RMS error with respect to480

all NH continents. Even better agreement is exhibited by the
direct average of the four Northern Hemisphere continents
and the Northern Hemisphere mean for both DA schemes,
as illustrated in Figure 3. The direct average of the four
NH continental temperatures in the simulations makes use485

of the same sea-land masks and seasonal representativity
as the ones employed by the proxy reconstructions. Hence,
it is directly comparable to the proxy datasets, which are
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only available as continental means. The NH mean on the
other hand is the true spatial average temperature of the490

whole Northern Hemisphere. We show this time-series as it
is the usual mean temperature given in most climate studies,
despite the fact that in our comparison it not the direct
equivalent of the proxy-based reconstructions (the proxy
time-series in the two cases are the same).495

The correlations in the off-line experiment between the
analysis and the proxies are relatively high for all the NH
continents (0.56 for the Arctic, 0.78 for Asia, 0.79 for
Europe and 0.89 for North America). Since the cost function500

includes all the NH continents, the correlation is maximum
for the Northern Hemisphere direct average (0.94), while the
correlation for the Northern Hemisphere mean is also high
(0.92). These values are much higher than the correlations
of the individual members with the proxies, and also higher505

than the correlation of the ensemble mean with the proxies
(0.73 for the NH direct average). The ensemble mean has
a higher ratio of forced to random variability and thus a
higher correlation with the proxy-based reconstructions than
the individual members, but because of the fact that the510

random components of the individual members partly cancel
each other, the total variance of the ensemble mean is much
lower than the individual members. Similarly, the validation
of the absolute anomalies in the on-line experiment reveal
high correlations between analysis and proxies for all the515

NH continents (0.79 for the Arctic, 0.76 for Asia, 0.79 for
Europe and 0.81 for North America). The correlation is
again the maximum for the Northern Hemisphere direct
average (0.93), and the Northern Hemisphere mean (0.92).
The above values are again higher than the correlations of520

any individual member with the proxies, as well as higher
than the correlation of the ensemble mean with the proxies
(0.67).

The RMS error of the simulated time-series for each525

continent provides a quantification of the local agreement
between the model and the proxy-based reconstructions.
It is calculated based on the decadal mean differences of
the model and the proxy time-series for each continent.
Figure 4 shows the RMS errors for the individual members,530

the ensemble mean and the analysis of the four Northern
Hemisphere continents in the two DA schemes. In both
experiments, the RMS errors are either minimal or among
the lowest for the analysis compared to all other members.
The result is even more evident when considering the RMS535

errors for the direct average and the mean of the Northern
Hemisphere (Figure 5). The fact that the RMS error of
the ensemble mean is lower than the error of most of the
individual members in the two experiments, might either
indicate the influence of forcings, or can be simply due540

to the lower variance of the ensemble mean compared to
the individual members, which might bring it closer to the
proxies. However, a better estimate can be obtained from

the DA analysis, which indicates that some of the internal
variability has been successfully captured by the assimilation545

schemes. The RMS errors between the analysis and the
proxies in the on-line DA scheme are 0.18 for the Arctic,
0.21 for Asia, 0.16 for Europe and 0.18 for North America.
The RMS error for the direct average of the four Northern
Hemisphere continents is 0.12, insignificantly different to550

the off-line one (0.11).

The assessment of the performance of the two DA
schemes using the standardized data produced very similar
correlations and RMS errors to the ones found when using555

the absolute anomalies as presented above. For the Southern
Hemisphere, it is more meaningful to assess the performance
of the method using the standardized data, as the RMS error
only has a meaning with this approach. Not using the stan-
dardized outputs in this case would result in non-comparable560

scales because of the different standard deviations between
model and proxies. In contrast to the good skill of the
two schemes in the Northern Hemisphere, the agreement
between the analysis for the Southern Hemisphere (SH) and
the proxy-based reconstructions is not good, as expected565

from the fact that SH data are not included in the cost
function.

The construction of our cost function on the basis of
decadal mean temperatures of the NH, means that the anal-570

ysis is not expected to be more skilful than the individual
members when considering the hundred-year average. The
absolute differences between simulated and reconstructed
17th century average temperatures, for the on-line and off-
line ensemble members, the on-line and off-line ensemble575

means and the two analyses are presented in Figure 6, and
indeed do not exhibit the best agreement between the anal-
ysis and the proxy-based reconstructions in all the regions,
although this is the case in some continents.

3.2 Random sampling effects580

Sampling effects may affect many of the aspects discussed in
the study due to the limited ensemble size and the relatively
short time period analysed. Therefore, sampling uncertainty
should be more thoroughly addressed where possible. We
applied a resampling method to illustrate the distribution of585

the skill metrics (correlation and RMS error) when randomly
sampling a best model in the off-line method.

Initially, we calculated the correlations between model
and proxy-based reconstructions for the NH direct average590

for 100 random analyses in the off-line experiment, after
randomly selecting one member as the best for each of the
10 decades. The mean correlation of the randomly sampled
distribution with the proxies was 0.48 (with a standard
deviation of 0.21), ranging between negative values and 0.8.595

These correlations are very low compared to the value of
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0.94 from the off-line DA analysis. For the NH mean, the
mean correlation of the randomly sampled analyses was
0.63 (with a standard deviation of 0.15). It is noteworthy that
the correlations from the random analyses are not centred600

around zero, due to the presence of the forcings.

The same resampling experiment was performed for the
RMS error of the NH direct average. The mean RMS error
was 0.62 (with a standard deviation of 0.13), ranging be-605

tween 0.3 and 0.95. On the other hand, the RMS error found
for the off-line DA analysis was only 0.11, falling well out-
side the above range. Similarly, for the NH mean, the mean
RMS error of the random analyses was 0.51 (with a standard
deviation of 0.10). The above results reveal that the DA anal-610

ysis performs much better and is clearly outside the range of
the randomly sampled distribution. The skill of the DA anal-
ysis is significantly different from the skill obtained from the
random sampling.

3.3 Discussion615

As previously noted, both DA schemes perform better than
the simulations without DA, but there is not much difference
in performance between them. In seven out of the 10 decades
of the testing period, a lower cost function for the best
member and the ensemble mean is found when using the620

on-line method, but the differences to the off-line approach
are very small (Table 1). The respective ensemble mean
(EM) cost functions are also shown in the table and are
substantially larger than in the DA cases. Tables 2 and 3
summarise the Northern Hemisphere correlations and RMS625

errors respectively, between simulations and proxy-based
reconstructions for the analysis and the ensemble mean of
the two data assimilation schemes. The correlations and the
RMS errors, on the continental scale and the hemispheric
averages of the NH, are very close to each other. None630

of the two analyses can be deemed as better in following
the proxy-based reconstruction. The similarity of the two
analyses can also be seen in Figure 7, which shows the 2m
mean temperature for the two analyses (anomalies w.r.t.
the 1961-90 AD mean) and the 500hPa geopotential height635

(anomalies w.r.t. the 1961-90 AD mean) for the decade
1640-49 AD. Similar patterns can be seen, e.g. cool Barents
Sea and warm NW Atlantic.

There are three potential reasons for the fact that the640

on-line method does not perform better than the off-line
method: i) there might be no information propagation on
decadal timescales in the model, ii) the simulated informa-
tion propagation might be not skilful, i.e. different from
reality, or iii) the ocean initial conditions used at the start645

of each decade in the on-line DA might be not sufficiently
close to reality. A possible insufficient control of the ocean
state would affect only the on-line method, as the off-line
method is an a posteriori selection for which the ocean state

is irrelevant.650

While it is difficult and beyond the scope of this study to
test whether the second and the third factor contribute to the
similarity of skill of the two DA methods, we have assessed
in a simple way whether there is any information propaga-655

tion during the decadal sub-periods used in our DA. In the
on-line assimilation all ensemble members are initialized
with the same ocean state at the beginning of each decade.
Therefore, if there is information propagation, one would
expect less spread in the on-line ensemble than in the off-line660

one. We tested this by calculating the standard deviation of
the ensemble spreads for the on-line and off-line methods for
the different continents. The results are shown in table 4. For
the NH direct average, we computed the standard deviation
of the ensemble spreads for the whole period (for every665

year of the simulation period), as well as for the last year of
each decade, and then computed the mean of these standard
deviations. The standard deviations were 0.25 for the on-line
compared to 0.30 for the off-line ensemble in the yearly test,
and 0.28 compared to 0.31 respectively for the final year test.670

For the NH mean, the differences were a bit smaller. The
standard deviations were 0.19 for the on-line compared to
0.23 for the off-line in the yearly test, and 0.22 compared to
0.23 respectively for the final year test. All the results show
that the members are slightly closer together in the on-line675

experiment, a fact which is also in agreement with Figures
2 and 3. It can also be noted that the all-year ensemble
spread for the on-line method is consistently smaller than
the respective last year spread. The different spreads in
the two DA approaches is evidence for the influence of680

the initialisation during the entire decadal assimilation
time-step. The smaller spread in the on-line ensemble
compared to the off-line one, which starts from different
ocean initial states, is a hint for information propagation.
However, we note that it is not clear from this analy-685

sis whether the information propagation is strong enough
to lead to substantially higher skill of the on-line DA method.

As mentioned above the question whether the information
propagation in the coupled GCM used here is realistic is690

difficult to answer and is linked to the question whether
such models have skill in decadal predictions. The question
whether the ocean state at the beginning of each assimilation
decade is close enough to reality to be useful for bringing
the ensemble members during the decadal assimilation cycle695

closer to reality can also not be answered here. Reasons
why the ocean state might be unrealistic include a too
small ensemble size, errors in the assimilated, proxy-based
temperature reconstructions, and lack of control over the
ocean states by assimilation of atmospheric variables.700

Due to the specific choices of the approach and due to
the wide range of alternative choices, the study is only a
first step in the characterization of the interest of the on-line



8 Matsikaris et al.: On-line and Off-line data assimilation

versus off-line approach. The differences between the two705

approaches may be specific to the target selected for the
evaluation of the performance, the period investigated,
the variable assimilated, the number of members in the
ensemble, the frequency of assimilation, the assimilation
method, and many other factors. A different setup could pro-710

duce different conclusions that could prove the on-line DA
scheme more skilful than the off-line one. Reasons for which
the on-line DA is not better than the off-line DA in following
the proxy-based reconstructions in our setup but could be
more skilful in a different setup could be various. Firstly, the715

insufficient control of the ocean state could be due to the
small ensemble size. If the ensemble size is too small to find
a member that is close to the true climatic state, there will be
no added skill by propagating this misleading information
forward in time. A second reason for the initial state of the720

ocean not being accurately enough determined throughout
the on-line assimilation could be that the selection of the
best member was based on the atmospheric temperature
state. A correct atmospheric state cannot guarantee that
the ocean state is also determined correctly. A differently725

defined cost function, considering for example the global or
direct average of the PAGES 2K continental reconstructions
or different timescales could also change the performance of
the two schemes. Another aspect that could have influenced
our approaches is the proxy datasets. The use of proxies730

with the minimum possible noise would give a better chance
to the on-line approach to capture the true climatic state, as
they would represent the true climate better and the correct
information would be propagated when applying the on-line
approach, whereas the off-line one would not be benefited735

to the same extent, as it is an a posteriori selection. Finally,
the use of a full particle filter rather than a degenerate one
might produce a bigger ensemble spread for the ocean,
giving again a better possibility to the on-line DA scheme to
capture the true ocean state more closely.740

4 Conclusions

Two main approaches have so far been employed to recon-
struct the past climate: empirical and dynamical methods.
Direct assimilation of proxy-based reconstructions into745

climate model simulations addresses some of the weak-
nesses of the two methods. Here, we have compared two
ensemble-based DA schemes, an off-line and an on-line one,
with the test case corresponding to the climate of the pe-
riod leading into the Maunder Minimum, i.e. 1600-1700 AD.750

The two DA schemes outperform the simulations without
DA. The correlations between simulations and proxy-based
reconstructions for the analyses of the DA schemes were
higher than the correlations of the individual members,755

whilst the RMS errors were lower. The RMS errors of the

ensemble means were lower than the errors of most of the
individual members either due to the influence of forcings,
or simply due to the lower variance of the ensemble mean
compared to the individual members, but the DA analyses760

perform better, implying that some of the internal variability
has been successfully captured by the DA. No big difference
was found between the two approaches. The majority of
the cost functions for the best member and the ensemble
mean of the on-line DA method were found to be slightly765

lower than the ones of the off-line DA method, but the
correlations and the RMS errors, at both the continental and
the hemispheric level were very close to each other. The
results suggest that there is either no skilful information
propagation on the decadal timescales, i.e. no substantial770

predictability that could give the on-line DA an advantage
over the off-line DA, or that the ocean states that are used
at the beginning of each decade for generating the on-line
ensembles are not sufficiently close to reality, and thus even
if there was skilful predictability in the real and in the model775

world, the on-line DA could not benefit from it.

These results raise the question of which approach
should be preferred in the future. In some cases, since the
reconstruction skill of the on-line approach is not improved780

compared to the off-line equivalent, it would appear nat-
ural to use the less complicated off-line approach to DA,
especially when computationally less expensive alternatives
of off-line DA schemes can be used, for example when
employing simulations that already exist. The temporal785

consistency of the simulation is eliminated in these cases
though, which does not happen in the on-line approach.
In the majority of the cases, and especially in the cases
where the computational cost of the two methods is equal,
the on-line approach should be preferred, as a result of the790

temporally consistent states that it provides.

Yet, we cannot be sure through these experiments whether
a different setup could produce a better agreement for the
on-line DA. Validation is only done with respect to the prox-795

imity to the proxy-based reconstructions, which is only a first
step. We do not validate against the unknown true climate, as
this would require pseudoproxy studies, which are beyond
the scope of this paper. A differently defined cost function or
different performance measures could also alter the compar-800

ison. Special care must be taken to make sure that the initial
state of the ocean is being captured correctly throughout the
on-line assimilation. A future direction for our work would
be to test different setups, by employing the full rather than
the degenerate particle filter, or by defining the cost function805

based on one- or thirty-year means instead of decadal means,
in order to check whether ocean memory on those timescales
leads to different results and maybe improvements to the on-
line approach. More tests could be carried out by enhancing
the ensemble size for both approaches or by using different810

proxy datasets.
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Figure 1. 26.5◦ AMOC time-series of the ensemble spread for the
first 100 days after the initialisation of the ensemble in year 1600
AD, measured in Sverdrups (1 Sv = 106 m3s−1).
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Table 1. Best cost functions for the off-line and the on-line DA schemes, for the decades 1 (1600-1609) to 10 (1690-1699). The respective
ensemble mean (EM) cost functions are also shown.

Decade Off-line Best On-line Best Off-line EM On-line EM
1 1.47 1.47 2.53 2.53
2 1.44 1.55 1.96 2.00
3 0.51 0.45 1.31 0.86
4 1.71 2.10 2.39 2.49
5 0.72 0.60 1.57 1.14
6 1.04 0.50 1.65 0.95
7 0.53 0.49 1.22 0.97
8 0.62 0.38 1.66 1.62
9 1.72 0.66 2.28 2.21

10 1.46 1.45 1.97 1.93

Table 2. Northern Hemisphere correlations between simulations and proxy-based reconstructions for the analysis and the ensemble mean of
the two data assimilation schemes.

Arctic Asia Europe N. America NH dir. aver.
Off-line DA analysis 0.56 0.78 0.79 0.89 0.94
On-line DA analysis 0.79 0.76 0.79 0.81 0.93

Off-line DA EM 0.32 0.55 0.58 0.66 0.73
On-line DA EM 0.07 0.67 0.38 0.64 0.67

Table 3. Northern Hemisphere RMS errors between simulations and proxy-based reconstructions for the analysis and the ensemble mean of
the two data assimilation schemes.

Arctic Asia Europe N. America NH dir. aver.
Off-line DA analysis 0.24 0.19 0.18 0.13 0.11
On-line DA analysis 0.18 0.21 0.16 0.18 0.12

Off-line DA EM 0.23 0.19 0.24 0.18 0.12
On-line DA EM 0.22 0.21 0.24 0.19 0.11

Table 4. Standard deviations of the ensemble spreads for the Northern Hemisphere of the two data assimilation schemes, calculated for all
the years and for the last year of each decade.

Arctic Asia Europe N. America NH dir. aver.
Off-line all years 0.48 0.28 0.50 0.41 0.30
On-line all years 0.42 0.28 0.46 0.37 0.25
Off-line last year 0.49 0.32 0.49 0.40 0.31
On-line last year 0.47 0.30 0.49 0.38 0.28
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Figure 2. Continental decadal mean temperature anomalies w.r.t. the 850-1850 AD mean in the Northern Hemisphere for the 17th century,
for the on-line (red shading) and off-line (blue shading) ensemble members, the on-line (red line) and off-line DA analysis (blue line) and
the proxy-based reconstructions (black line).
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Figure 3. Direct average of the four Northern Hemisphere continental temperatures (anomalies w.r.t. the 850-1850 AD mean) and NH mean
for the 17th century, for the on-line (red shading) and off-line (blue shading) ensemble members, the on-line (red line) and off-line DA
analysis (blue line) and the proxy-based reconstructions (black line).
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Figure 4. RMS errors for the four Northern Hemisphere continents
for the 17th century, for the on-line (red dots) and off-line (blue
dots) ensemble members, the on-line (green dots) and off-line (cyan
dots) ensemble means, and the two analyses (black dots).

Figure 5. RMS errors for the direct average and the mean of the
Northern Hemisphere for the 17th century, for the on-line (red dots)
and off-line (blue dots) ensemble members, the on-line (green dots)
and off-line (cyan dots) ensemble means, and the two analyses
(black dots).
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Figure 6. Absolute differences between simulated and recon-
structed 17th century average temperatures, for the on-line (red
dots) and off-line (blue dots) ensemble members, the on-line (green
dots) and off-line (cyan dots) ensemble means, and the two analyses
(black dots).

Figure 7. Analyses of the on-line and off-line DA methods for the
2m mean temperature (anomalies w.r.t. the 1961-90 AD mean) and
500hPa geopotential height (anomalies w.r.t. the 1961-90 AD mean)
of the decade 1640-49 AD.


