

1 Millennial meridional dynamics of Indo-Pacific Warm Pool

2 during the last termination

3

4 **Li Lo¹, Chuan-Chou Shen^{1,*}, Kuo-Yen Wei¹, George S. Burr^{1,2}, Horng-
5 Sheng Mii³, Min-Te Chen⁴, Shih-Yu Lee⁵, Meng-Chieh Tsai¹**

6 ¹High-Precision Mass Spectrometry and Environment Change Laboratory
7 (HISPEC), Department of Geosciences, National Taiwan University, Taipei
8 10617, Taiwan ROC

9 ²NSF-Arizona Accelerator Mass Spectrometry Facility, Department of Physics,
10 University of Arizona, Tucson, AZ 85721, USA

11 ³Department of Earth Sciences, National Taiwan Normal University, Taipei
12 11677, Taiwan ROC

13 ⁴Institute of Applied Geosciences, National Taiwan Ocean University, Keelung
14 20224, Taiwan ROC

15 ⁵Research Center for Environmental Changes, Academia Sinica, Taipei
16 11529, Taiwan ROC

17

18 Revised to *Climate of the Past*

19 2014.11.23

20

21 *Corresponding Author: Chuan-Chou Shen

22 Email: river@ntu.edu.tw; Tel: 886-2-3366-5878; Fax: 886-2-3365-1917

23

24

25

26

27 **Abstract**

28 To develop an in-depth understanding of the natural dynamics of the Indo-
29 Pacific Warm Pool (IPWP) during the last deglaciation, stacked North- (N-)
30 and South-IPWP (S-IPWP) thermal and hydrological records over the past 23-
31 10.5 thousand years (ka) were built using planktonic foraminiferal
32 geochemistry data from a new core, MD05-2925 (9.3°S, 151.5°E, water depth
33 1661 m) in the Solomon Sea and eleven previous sites. Ice-volume corrected
34 seawater $\delta^{18}\text{O}$ ($\delta^{18}\text{O}_{\text{SW-IVC}}$) stacks show that S-IPWP $\delta^{18}\text{O}_{\text{SW-IVC}}$ values are
35 indistinguishable from their northern counterpart through glacial time. The N-
36 IPWP SST stacked record features an increasing trend of $0.5 \text{ }^{\circ}\text{C ka}^{-1}$ since 18
37 ka. Its S-IPWP counterpart shows an earlier onset of temperature increase at
38 19 ka and a strong teleconnection to high-latitude climate in the Southern
39 Hemisphere. Meridional SST gradients between N- and S-IPWP were 1 to 1.5
40 $^{\circ}\text{C}$ during the Bølling/Allerød period and $< 0.5 \text{ }^{\circ}\text{C}$ during both Heinrich event 1
41 and the Younger Dryas due to a warmer S-IPWP. A warm S-IPWP during the
42 cold events may possibly weaken the southern hemispheric branch of the
43 Hadley Cell and reduce precipitation in the Asian Monsoon region.

44 **1. Introduction**

45 The Indo-Pacific Warm Pool (IPWP) is the largest warm water mass in the
46 world, with an annual average sea surface temperature (SST) greater than 28
47 °C (Yan et al., 1992). Vigorous regional atmosphere circulation transports
48 latent heat and water moisture from the IPWP to the middle and high latitudes
49 (Yan et al., 1992). For the past five decades, the IPWP has experienced
50 surface water freshening and a westward shift in precipitation, resulting in
51 regional drought in East Africa and storm track changes in East Australia
52 (Cravatte et al., 2009; Williams and Funk, 2011). Since the early 2000s,
53 intensive paleoclimatological studies have been conducted to understand
54 long-term thermal and hydrological changes in the IPWP, associated with
55 glacial/interglacial (G/IG) cycles, and to constrain the relationship between
56 warm pool thermal and hydrological fluctuations to high latitude ice sheet and
57 greenhouse gas concentrations during the late Pleistocene (e.g., Lea et al.,
58 2000; Stott et al., 2002; Visser et al., 2003; Rosenthal et al., 2003; Stott et al.,
59 2004; de Garidel-Thoron et al., 2005; Steinke et al., 2006; Levi et al., 2007;
60 Xu et al., 2008; Linsley et al., 2010; Bollett et al., 2011; Mohtadi et al., 2014).

61 Stacked IPWP SST and seawater oxygen isotope ($\delta^{18}\text{O}_{\text{SW}}$) records from
62 the last glacial to the Holocene clearly show a close link between the IPWP
63 SST, the Asian-Australian Monsoon (AAM) system, and sea level (Stott et al.,
64 2004; Oppo et al., 2009; Linsley et al., 2010). However, a complicated ocean-
65 island configuration and regional topography hinder the fidelity of using these
66 records to describe past climate changes in detail (Griffiths et al., 2009;
67 Mohtadi et al., 2011). In particular, little is known about the meridional

68 thermal-hydrological dynamics between the N-IPWP and S-IPWP during the
69 last termination.

70 Here we present new oceanic proxy-inferred SST and ice volume-corrected
71 surface seawater oxygen isotope $\delta^{18}\text{O}$ ($\delta^{18}\text{O}_{\text{SW-IVC}}$) records from the Solomon
72 Sea, Papua New Guinea (PNG) for the past 23-10.5 thousand years ago (ka,
73 before 1950 AD, hereafter). New SST and $\delta^{18}\text{O}_{\text{SW-IVC}}$ stacked records since
74 the last termination are built for both the N- and S-IPWP to understand
75 regional thermal-hydrological changes and interhemispheric teleconnections.

76

77 **2. Material and Methods**

78 Site MD05-2925 (9.3°S , 151.5°E , water depth 1661 m) is located at the
79 northern slope of the Woodlark Basin in the Solomon Sea, which is the
80 passage of surface and subsurface water masses between low- and middle-
81 latitude South Pacific Ocean gyre and cross equatorial currents (Grenier et al.,
82 2011; Melet et al., 2011) (Fig. 1). The seasonal precipitation in this region (Fig.
83 1) is dominated by the AAM system, coupled with the intertropical
84 convergence zone (ITCZ) (Shiau et al., 2012, and references therein). Tests
85 of single species planktonic foraminifera, *Globigerinoides sacculifer* ($> 500 \mu\text{m}$,
86 total amount of 2-6 mg), at 13 selected depths were picked for accelerator
87 mass spectrometry (AMS) ^{14}C dating. The AMS dates were calibrated using
88 the CALIB 6.0.1 program (Stuiver et al., 2010, Table 1; Reimer et al., 2009) to
89 reconstruct an age model for a time interval from 23 to 10.5 ka.

90 Forty to sixty individuals of the planktonic foraminifera *Globigerinoides*
91 *ruber* (white, s.s., 250-300 μm) were picked under the microscope. For Mg/Ca
92 measurements, 20-30 individuals were gently crushed and transported into a

93 1.5 mL Teflon vial. The cleaning procedure was as follows: (1) foraminiferal
94 fragments were immersed in ethanol, (2) a 0.45 mL aliquot of 3% H₂O₂, (3)
95 NH₄Cl (0.45 mL, 1.0 N), (4) NH₂OH (0.45 mL, 0.01 N), and then (5) dilute
96 nitric acid (1 mL, 0.005 N). A sector field inductive coupled plasma mass
97 spectrometer (SF-ICP-MS), Thermo Electron Element II, housed at the High-
98 Precision Spectrometry and Environment Change Laboratory (HISPEC),
99 Department of Geosciences, National Taiwan University, was used to
100 determine trace element/Ca ratios following the methodology developed by
101 Shen et al. (2007). The detailed cleaning procedure and methodology are
102 available in Lo et al. (2014). Two-year 1-sigma reproducibility of Mg/Ca
103 analyses is $\pm 0.21\%$ (Lo et al., 2014). We used a composite Mg/Ca-SST
104 equation by Anand et al. (2003) to calculate SSTs.

105 For oxygen stable isotope analysis, 7-10 individuals were immersed in
106 methanol, ultrasonicated for 10 seconds, and then rinsed with deionized water
107 5 times. Samples were immersed afterward in a hyperchloride sodium (NaOCl)
108 for 24 hours, and then analyzed with an isotopic ratio mass spectrometer
109 (IRMS), Micromass IsoPrime, housed in the National Taiwan Normal
110 University. Long-term 1-sigma precision is better than $\pm 0.05\%$ (N = 701, Lo et
111 al., 2013) with respect to Vienna Pee Dee Belemnite (VPDB).

112 To extract seawater $\delta^{18}\text{O}$ ($\delta^{18}\text{O}_{\text{SW}}$) values, we used a cultural based
113 equation, SST = 16.5 - 4.8 \times ($\delta^{18}\text{O}_{\text{C}} - \delta^{18}\text{O}_{\text{SW}}$) (Bemis et al., 1998) and a
114 constant offset of 0.27‰ between carbonate VPDB and Vienna Standard
115 Ocean Water (VSMOW) scales. Ice volume corrected $\delta^{18}\text{O}_{\text{SW}}$ ($\delta^{18}\text{O}_{\text{SW-IVC}}$) was
116 calculated using the method proposed by Waelbroeck et al. (2002).

117 The empirical orthogonal function (EOF) analysis of a modern SST dataset
118 (1950-2004 AD, Reynolds et al., 2002) for a sector from 20°S – 20°N, and
119 100°E- 180°E was conducted (Fig. 2) to determine the boundary between N-
120 and S-IPWP. With an equatorial border, the EOF1 factor (83.4%) clearly
121 resolved different SST variation groups. The EOF2 factor shows minor (9.7%)
122 but significant inter-annual zonal (ENSO) control on the SST patterns. EOF
123 results show that the geographic equator is also the thermal equator between
124 N-IPWP and S-IPWP (Fig. 2).

125 To build a stacked N- and S-IPWP record, we followed the suggestions by
126 Leduc et al. (2010) and considered three criteria for this dataset: (1) sites with
127 locations from 12°N to 15°S, which is the main IPWP range (Yan et al., 1992;
128 Gagan et al., 2004), and (2) usage of specific proxies, Mg/Ca-derived SST
129 and $\delta^{18}\text{O}_\text{C}$ records of planktonic foraminifera, *G. ruber* (white, s.s.). Records
130 from 12 sites were selected, including this study (Table 2). We adopted the
131 published age model for sites ODP806, MD97-2140, MD97-2141, MD98-2162,
132 MD98-2170, MD98-2176, and MD98-2181. For records with available original
133 radiocarbon ages from sites, including MD01-2378, MD01-2390, MD98-2165,
134 and MD06-3067, we recalculated the age models using the CALIB 6.0.1
135 program. The sea level change effect on $\delta^{18}\text{O}_\text{sw}$ was also corrected. We
136 divided the total data into 400-yr windows and calculated the mean and
137 standard error of the mean for each time window.

138

139 **3. Results and Discussion**

140 **3.1 Geochemical proxy data at site MD05-2925**

141 Planktonic foraminiferal geochemical proxy data for site MD05-2925 are
142 shown in Figure 3. *G. ruber* $\delta^{18}\text{O}_\text{C}$ varies from -1.0 to -2.3‰ and shows no
143 significant millennial timescale variations. Mg/Ca ratios feature stable glacial
144 values of \sim 3.5 mmol/mol and rapid increasing transitions of 0.5-1.0 mmol/mol
145 at \sim 18.5, 16.5, 14.5, and 12.8 ka. The glacial-interglacial variation of
146 calculated seawater $\delta^{18}\text{O}_\text{sw}$ changes is \sim 1‰. Two abrupt decreases of 0.6-
147 0.8‰ are observed at 14.6 and 11.8 ka.

148

149 **3.2 Solomon SST and $\delta^{18}\text{O}_\text{sw-ivc}$ records during the last termination**

150 Mg/Ca SST records of the planktonic foraminifera *G. ruber* reveal a stable
151 glacial thermal condition during the period 23.0-18.5 ka, with a variation <1 °C
152 and a glacial-interglacial difference of \sim 3 °C between the last glacial maximum
153 (LGM) and the end of the Younger Dryas (YD) in the Solomon Sea (Fig. 4A).
154 This record is characterized by (i) the end of glacial conditions at 18.5 ka, and
155 (ii) rapid SST increases of 1-2 °C at 18.5-18.0, 17.0-16.0, 15.0-14.5, and 13.0-
156 12.5 ka.

157 The onset of deglacial SST increases in this region is consistent with the
158 timing of thermal changes in the Southern Ocean as inferred from Antarctic
159 ice core δD records (Stenni et al., 2003) (Fig. 4A). This agreement indicates a
160 strong climatic teleconnection between low- and high-latitude realms in the
161 Southern Hemisphere (SH), as well as change of greenhouse gas
162 concentrations (Mothadi et al., 2014). There are significant SST increases of
163 1-2 °C during Heinrich event (H1) and the YD. Previous studies from the
164 Eastern Equatorial and South Pacific reveal a mechanism characterized by
165 early warming of South Pacific subtropical mode water (Pahnke et al., 2003;

166 Lamy et al., 2004; Pena et al., 2008). This warm signal is transported along a
167 gyre to the east equatorial Pacific (EEP) and eventually to the west Pacific
168 through ocean tunneling (Pena et al., 2008; Qu et al., 2013, Fig. 4A). Our new
169 SST record is similar to those in the EEP (Pena et al., 2008) and eastern
170 Indian Ocean records (Xu et al., 2008; Mothadi et al., 2014) for both
171 termination timing (within dating error) and significant warming during the H1
172 and YD events. There is a slightly warming (<1 °C) interval at 14.5-13.5 ka
173 during the B/A period (Fig. 4A). The warming could be attributed to a possible
174 mixing with the warm N-IPWP surface water.

175 The Solomon Sea $\delta^{18}\text{O}_{\text{SW-IVC}}$ record is given in Figure 4B. It varies from -
176 0.5 to 0.1‰ during 23.0-10.5 ka. A relatively stable condition with 1-sigma
177 variability of 0.1‰ occurred from 23.0 to 16.0 ka. Two significant positive
178 excursions with 0.2-0.5‰ enrichments in $\delta^{18}\text{O}$ are observed in the intervals
179 16.8-15.0, and 13.8-11.8 ka. Two stable periods with low $\delta^{18}\text{O}_{\text{SW-IVC}}$ of -0.4‰
180 occurred between 15.0-13.0 ka and after 11.8 ka.

181 The dramatic $\delta^{18}\text{O}_{\text{SW-IVC}}$ increases during H1 and the YD likely resulted
182 from a weakening and/or southward shift of the ITCZ (Chiang and Bitz, 2005;
183 Broccoli et al., 2006), and local evaporation may also play a role. Agreement
184 of $\delta^{18}\text{O}$ sequences of Greenland NGRIP ice core and the Solomon Sea
185 $\delta^{18}\text{O}_{\text{SW-IVC}}$ indicates an imprint from high latitude Northern Hemisphere (NH)
186 during the last termination period (Shakun and Carlson, 2010) (Fig. 4B).

187

188 **3.3 Millennial timescale variations of N- and S-IPWP SST stacks**

189 Both N- and S-IPWP stacked SSTs show the same difference of ~3 °C
190 between the last glacial and interglacial states (Fig. 5A). N-IPWP stacked SST

191 values increased steadily since 18 ka through the termination at a rate of 0.5
192 °C/kyr. Millennial timescale variability is absent in this record, which is similar
193 to Linsley et al. (2010) and Stott et al. (2002). Although the resolution of ODP
194 806 and MD97-2140 are less than our request to solve millennial-timescale
195 event, there is no significant difference with/without their records in our N-
196 IPWP stacks (not shown).

197 The onset of the termination at ~19 ka in the S-IPWP stack is consistent
198 with temperature increases in Antarctica (Stenni et al., 2003), and occur about
199 1 kyr earlier than in the N-IPWP stack (Fig. 5A). This timing is synchronous
200 with EEP (Pena et al., 2008) and non-upwelling region eastern Indian Ocean
201 (Xu et al., 2008; Mothadi et al., 2014) SST records. Thus, our MD05-2925 and
202 S-IPWP stacked SST may not severely controlled by the equatorial upwelling
203 intensity. Instead of that, S-IPWP stacked SST represents broad SH
204 equatorial region thermal conditions under upwelling/non-upwelling, E-W
205 equatorial and even in the different ocean basin (Indian/Pacific Ocean). The
206 S-IPWP stacked SST record is characterized by a warming trend during H1
207 and the YD periods, similar to Antarctic ice core temperature records (Stenni
208 et al., 2003), and a steady thermal condition at ~27 °C during Bølling/Allerød
209 (B/A), corresponding to the Antarctic Cold Reversal (ACR) (Fig. 5A).

210 The thermal gradient between N- and S-IPWP is around 1 °C during 23 to
211 19 ka. Due to the earlier S-IPWP warming, the thermal gradient dropped from
212 1 to 0.5 °C around 19-18 ka, and persisted to the end of the H1 event. The
213 largest observed thermal gradient (1.5-2.0 °C) occurred during the B/A period,
214 and was followed by a 1 °C drop during the YD. The meridional SST gradient
215 between N- and S-IPWP over the last termination is attributed to the large

216 thermal variability in the S-IPWP (Fig. 5A). Asynchronicity between persistent
217 N-IPWP and fluctuating S-IPWP SST sequences (Fig. 5A) indicates a
218 meridionally dynamic IPWP through the last termination period. This N-S SST
219 gradient variability would also affect interhemispheric air flow and heat
220 transport (Gibbons et al., 2014; McGee et al., 2014), providing a mechanism
221 to explain heat transport between the hemispheres on a millennial timescale.

222

223 **3.4 N- and S-IPWP $\delta^{18}\text{O}_{\text{SW-IVC}}$ records**

224 Both N- and S-IPWP $\delta^{18}\text{O}_{\text{SW-IVC}}$ records feature (i) low values of -0.3-0.0‰
225 during glacial times, and (ii) increasing trends after 19 ka (Fig. 5C). The
226 gradient between N- and S-IPWP gradually increased from 0‰ to 0.2‰
227 through the termination (Fig. 5D). A similar pattern of $\delta^{18}\text{O}_{\text{SW-IVC}}$ between N-
228 and S-IPWP suggests that hydrological conditions in the two regions were
229 governed by the same factor(s), probably related to Northern Atlantic cold
230 perturbations (Shakun and Carlson, 2010). It has also been suggested that a
231 major $\delta^{18}\text{O}_{\text{SW-IVC}}$ increase during the H1 and YD periods in the IPWP region
232 likely resulted from reduced precipitation and oceanic advection in both the N-
233 IPWP and S-IPWP regions (Gibbons et al., 2014; McGee et al., 2014).

234

235 **3.5 Meridional IPWP SST gradient and the southward-shifted ITCZ 236 precipitation boundary**

237 A striking feature of the stacked SST records is the warming in the S-IPWP
238 during the H1 and YD periods (Fig. 5A). Observations over the past six
239 decades (Fig. 12 of Feng et al., 2013) show that an equatorward shift of the
240 NH convection branch of the Hadley Cell (HC) could result from an oceanic

241 warming at $\sim 10^{\circ}$ S. This equatorward shift could induce a southward ITCZ
242 shift of about 10° (Feng et al., 2013). Model simulations (Chiang and Bitz,
243 2005; Broccoli et al., 2006, Lee et al., 2011) suggest that this altered
244 circulation is a powerful teleconnection between the NH and SH climate
245 systems through a coupled tropical ocean-atmosphere pathway, and is
246 supported by marine and terrestrial hydrological proxy data (Wang et al., 2001,
247 Lea et al., 2003, Wang et al., 2007, Griffiths et al., 2009, Shakun and Carlson,
248 2010, Mohtadi et al., 2011, Meckler et al., 2012, Ayliffe et al., 2013, Carolin et
249 al., 2013, Gibbons et al., 2014; McGee et al., 2014, Fig. 6).

250 Distinctly different precipitation conditions across $8\text{--}10^{\circ}$ S in the IPWP
251 during the H1 and YD events are illustrated in Figure 6. For example,
252 enhanced terrestrial sediment flux into the Coral Sea is suggested by a
253 marine sediment thorium isotopic proxy record at 11° S (Shiau et al. 2011).
254 Lynch's crater records from northeastern Australia at 17° S (Muller et al., 2008)
255 show strong Australian summer monsoonal conditions. Stalagmite $\delta^{18}\text{O}$
256 records at Flores Island (8° S) also feature intense precipitation during H1 and
257 the YD (Griffiths et al., 2009, Ayliffe et al., 2013). However, marine and
258 stalagmite $\delta^{18}\text{O}$ evidence reveal conditions of reduced precipitation and
259 increased salinity in the northern IPWP north of $8\text{--}10^{\circ}$ S, including the South
260 China Sea (12° N, Stenike et al., 2006), Sulu Sea (8° N, Rosenthal et al.,
261 2003), Philippine Sea (6° N, Stott et al., 2002; Boillet et al., 2011), Java Island
262 (8° S, Mohtadi et al., 2011), Solomon Sea (9° S, this study), and Borneo island
263 (4° N, Meckler et al., 2012, Carolin et al., 2013) (Fig. 6). On the basis of
264 previous terrestrial and marine hydrological records and our new data, as well
265 as modern (Feng et al., 2013) and simulated (Chiang and Bitz, 2005; Broccoli

266 et al., 2006) data, we speculate a sharp precipitation boundary between the
267 maritime continents and Australia at about 8-10° S, extending from the
268 Solomon Sea, Arafura Sea and Timor Sea, to the eastern Indian Ocean
269 during H1 and the YD periods (Fig. 6). We propose that the west and east
270 boundaries are between the Java-Flores islands (Griffiths et al., 2009,
271 Mohtadi et al., 2011), and Solomon-Coral Seas, respectively (Shiau et al.,
272 2011, this study). Geographical pattern mismatch between thermal and
273 precipitation could be associated with the local convection branch shifting and
274 sea level change (Linsley et al., 2010).

275 To sum up our geochemical and composite dataset in the IPWP region
276 during the last terminations, we propose that the enlarged IPWP meridional
277 SST gradient could result in an altered HC and reduced (increased)
278 precipitation for the East Asian (Australia) monsoon territories during the H1
279 and YD periods (McGee et al., 2014). We also propose that variations in the
280 meridional IPWP SST gradient during the termination period were mainly
281 caused by the S-IPWP, which is closely linked to high-latitude climate
282 systems.

283

284 **4. Conclusions**

285 Our new MD05-2925 marine geochemical records and previous reports
286 suggest that the meridional IPWP thermal conditions are strongly linked to
287 interhemispheric high-latitude climate during the last deglaciation. Ice volume-
288 corrected $\delta^{18}\text{O}_{\text{SW}}$ stacked records show an increasing salinity gradient
289 between N- and S-IPWP over the last termination. Here we propose a new
290 process of the thermal evolution of IPWP region, which meridional differences

291 of its thermal gradient could amplify the signal from high latitude Northern
292 hemisphere climate events and radiative forcing from greenhouse gases. A
293 hypothetical precipitation boundary around 8-10°S during H1 and the YD has
294 also been proposed, which is most likely caused by the meridional IPWP SST
295 gradient and HC anomalies. More advanced high-resolution regional model
296 simulations are required to clarify (1) local precipitation variation in response
297 to the complicated sea level and convection change, (2) the role of IPWP
298 meridional thermal-hydrological gradient to an altered HC, and (3) its
299 relationship with regional and global climate systems during global climate
300 perturbation events.

301

302 **Acknowledgements**

303
304 MD05-2925 site location was selected by Min-Te Chen and Meng-Yang Lee
305 and collected during the IMAGES PECTEN Cruise, conducted by Luc
306 Beaufort and Min-Te Chen. Chien-Ju Chou, Wan-Lin Hu, and Yu-Ting Hsiao
307 helped to pick foraminifera samples. Yang-Hui Hsu helped to operate the
308 climatological database and plotted figures. Thanks to Delia W. Oppo and
309 Braddock K. Linsley for their generous offering of the non-overlapping method
310 MatLab code. This research was funded by Taiwan ROC MOST (99-2611-M-
311 002-005, 100-2116-M-002-009 and 103-2119-M-002-022 to CCS; 95-2611-M-
312 002-019 and 96-2611-M-002-019 to KYW), and National Taiwan University
313 (101R7625 to CCS).

314

315 **References**

- 316 Anand, P. A., Elderfield, H., and Conte, M. H.: Calibration of Mg/Ca
 317 thermometry in planktonic foraminifera from a sediment trap time series.
 318 *Paleoceanography*, 18, 1050, doi:10.1029/2002PA000846, 2003.
- 319
- 320 Ayliffe, L. K., Gagan, M. K., Zhao, J.-x., Drysdale, R. N., Hellstrom, J. C.,
 321 Hantoro, W. S., Griffiths, M. L., Scott-Gagan, H., Pierre, E. S., Cowley, J. A.,
 322 and Suwargadi, B. W.: Rapid interhemispheric climate links *via* the
 323 Australasian monsoon during the last deglaciation. *Nature Commun.*, 4,
 324 doi: 10.1038/ncomms3908.
- 325
- 326 Bolliet, T., Holbourn, A., Kuhnt, W., Laj, C., Kissel, c., Beaufort, L., Kienast, M.,
 327 Andersen, N., and Garbe-Schönberg, D.: Mindanao Dome variability over
 328 the last 160 kyr: Episodic glacial cooling of the West Pacific Warm Pool.
 329 *Paleoceanography*, 26, PA1208, doi: 10.1029/2010PA001966, 2011.
- 330
- 331 Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to
 332 Northern Hemisphere cooling. *Geophys. Res. Lett.*, 33, L01702, doi:
 333 10.1029/2005GL024546, 2006.
- 334
- 335 Carolin, S. A., Cobb, K. M., Adkins, J. F., Clark, B., Conroy, J. L., Lejau, S.,
 336 Malang, J., and Tuen, A. A.: Varied response of Western Pacific hydrology
 337 to climate forcings over the last glacial period. *Science*, 340, 1564-1566,
 338 2013.
- 339
- 340 Chiang, J. C. H., and Bitz, C. M.: Influence of high latitude ice cover on the
 341 marine Intertropical Convergence Zone. *Clim. Dynam.*, 25, 477–496, 2005.
- 342
- 343 Cravatte, S., Delcroix, T., Zhang, D., McPhaden, M., and Leloup, J.: Observed
 344 freshening and warming of the western Pacific Warm Pool. *Clim. Dynam.*,
 345 33, 565–589, 2009.
- 346
- 347 de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F., and Beaufort, L., (2005),
 348 Stable sea surface temperatures in the western Pacific warm pool over the
 349 past 1.75 million years. *Nature*, 433, 294–298, 2005.
- 350
- 351 Feng, J., Li, J., and Xie, F.: Long-term variation of the Principal mode of
 352 boreal spring Hadley Circulation linked to SST over the Indo-Pacific Warm
 353 Pool. *J. Clim.*, 26, 532-544, 2013.
- 354
- 355 Gibbons, F. T., Oppo, D. W., Mohtadi, M., Rosenthal, Y., Cheng, J., Liu, Z.,
 356 and Linsley, B. K.: Deglacial $\delta^{18}\text{O}$ and hydrological variability in the tropical
 357 and Indian Oceans. *Earth Planet. Sci. Lett.*, 387, 240-251, 2014.
- 358
- 359 Grenier, M., Cravatte, S., Blanke, B., Menkes, C., Joch-Larrouy, A., Durand,
 360 F., Melet, A., and Jeandel, C.: From the western boundary currents to the
 361 Pacific Equatorial Undercurrent: Modeled pathways and water mass
 362 evolutions. *J. Geophys. Res.*, 116, C12044, doi: 10.1029/JC007477, 2011.
- 363

- 364 Griffiths, M. L., Drysdale, R. N., Gagan, M. K., Zhao, J.-X., Ayliffe, L. K.,
365 Hellstrom, J. C., Hantoro, W. S., Frisia, S., Feng, Y.-X., Cartwright, I., St.
366 Pierre, E., Fischer, M., J., and Suwargadi, B. W.: Increasing Australian-
367 Indonesian monsoon rainfall linked to early Holocene sea-level rise. *Nature*
368 *Geosci.*, 2, 636–639, 2009.
- 369
- 370 Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H. W., and Stoner, J.:
371 Antarctic timing of surface water changes off Chile and Patagonian ice
372 sheet response. *Science*, 304, 1959-1962, 2004.
- 373
- 374 Lea, D. W., Pak, D. K., and Spero, H. J.: Climate impact of late Quaternary
375 equatorial Pacific sea surface temperature variations. *Science*, 289, 1719-
376 1724, 2000.
- 377
- 378 Lea, D. W., Pak, D. K., Peterson, L. C., and Hughen, K. A.: Synchronicity of
379 tropical high-latitude Atlantic temperatures over the last glacial termination.
380 *Science*, 301, 1361-1364, 2003.
- 381
- 382 Leduc, G., Schneider, R., Kim, J.H., and Lohmann, G.: Holocene and Eemian
383 sea surface temperature trends as revealed by alkenone and Mg/Ca
384 paleothermometry. *Quaternary Sci. Rev.*, 29, 989 – 1004, 2010.
- 385
- 386 Levi, C., Labeyrie, L., Bassinot, F., Guichard, F., Cortijo, E., Waelbroeck, C.,
387 Caillon, N., Duprat, J., de Garidel-Thoron, T., and Elderfield, H.: Low-
388 latitude hydrological cycle and rapid climate changes during the last
389 deglaciation. *Geochem., Geophys., Geosy.*, 8(5), Q05N12, doi:
390 10.1029/2006GC001514, 2007.
- 391
- 392 Linsley, B. K., Rosenthal, Y., and Oppo, D. W.: Holocene evolution of the
393 Indonesian throughflow and the western Pacific warm Pool. *Nature Geosci.*,
394 3, 578–583, 2010.
- 395
- 396 Lo, L., Lai, Y.-H., Wei, K.-Y., Lin, Y.-S., Mii, H.-S., Shen, C.-C.: Persistent sea
397 surface temperature and declined sea surface salinity in the northwestern
398 tropical Pacific over the past 7500 years. *J. Asian Earth Sci.*, 66, 234-239,
399 2013.
- 400
- 401 Lo, L., Shen, C.-C., Lu, C.-J., Chen, Y.-C., Chang, C.-C., Wei, K.-Y., Qu, D.,
402 and Gagan, M. K.: Determination of element/Ca ratios in foraminifera and
403 corals using cold- and hot-plasma techniques in inductively coupled plasma
404 sector field mass spectrometry. *J. Asian Earth Sci.*, 81, 115-122, 2014.
- 405
- 406 McGee, D., Donohoe, A., Marshall, J., and Ferreira, D.: Changes in ITCZ
407 location and cross-equatorial heat transport at the Last Glacial Maximum,
408 Heinrich Stadial 1, and the mid-Holocene. *Earth Planet. Sci. Lett.*, 390, 69-
409 79, 2014.
- 410
- 411 Meckler, A. N., Clarkson, M. O., Cobb, K. M., Sodemann, H., and Adkins, J. F.:
412 Interglacial hydroclimate in the tropical West Pacific through the late
413 Pleistocene. *Science*, 336, 1301-1304, 2012.

- 414
415 Melet, A., Verron, J., Gourdeau, L., and Koch-Larrouy, A.: Equatorial
416 pathways of Solomon Sea water masses and their modification. *J. Phys.*
417 *Oceanogr.*, 40, 810–826, 2011.
- 418
419 Mohtadi, M., Oppo, D. W., Steinke, S., Stuut, J.-B. W., De Pol-Holz, R.,
420 Hebbeln, D., and Lückge, A.: Glacial to Holocene swings of the Australian-
421 Indonesian monsoon. *Nature Geosci.*, 4, 540–544, 2011.
- 422
423 Mothadi, M. Prange, M., Oppo, D. W., De Pol-Holz, R., Merkel, U., Zhang, X.,
424 Steinke, S., and Lückge, A.: North Atlantic forcing of tropical Indian Ocean
425 climate. *Nature* 509, 76-80, 2014.
- 426
427 Muller, J., Kylander, M., Wüst, R. A. J., Weiss, D., Martinez-Cortizas, A.,
428 LeGrande, A. N., Jennerjahn, T., Behling, H., Andreson, W. T., and
429 Jacobson, G.: Possible evidence for wet Heinrich phases in tropical
430 Australia: the Lynch's Crater deposit. *Quaternary Sci. Rev.*, 27, 468–475,
431 2008.
- 432
433 Northern Greenland Ice Core Project Members: High-resolution record of
434 Northern Hemisphere climate extending into the last interglacial period.
435 *Nature*, 431, 147–151, 2004.
- 436
437 Oppo, D. W., Rosenthal, Y., and Linsley, B. K.: 2,000-year-long temperature
438 and hydrology reconstructions from the Indo-Pacific warm pool. *Nature*,
439 460, 1113–1116, 2009.
- 440
441 Pahnke, K., Zahn, R., Elderfield, H., and Schulz, M.: 340,000-year centennial-
442 scale marine record of Southern Hemisphere climatic oscillation. *Science*,
443 301, 948-952, 2003.
- 444
445 Pena, L. D., Cacho, I., Ferretti, P., and Hall, M. A.: El Niño-Southern
446 Oscillation-like variability during glacial terminations and interlatitudinal
447 teleconnections. *Paleoceanography*, 23, PA3101, doi:
448 10.1029/2008PA001620, 2008.
- 449
450 Qu, T., Gao, S., and Fine, R. A.: Subduction of South Pacific tropical water
451 and its equatorward pathways as shown by a simulated passive tracer. *J.*
452 *Phys. Oceanogr.*, 43, 1551-1565, 2013.
- 453
454 Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P.
455 G., Bronk Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich,
456 M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
457 Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W.,
458 Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S.
459 M., van der Plicht, J., and Weyhenmeyer, C. E.: INTCAL09 and MARINE09
460 radiocarbon age calibration curves, 0-50,000 cal BP. *Radiocarbon* 51(4):
461 1111-1150, 2009.
- 462

- 463 Reynolds, R. W., Rayner, N. A., Smith, T. M., and Stokes, D. C.: An improved
464 in situ and satellite SST analysis for climate. *J.Clim.*, 15, 1609–1625, 2002.
465
- 466 Rosenthal, Y., Oppo, D. W., and Linsley, B. K.: The amplitude and phasing of
467 climate change during the last deglaciation in the Sulu Sea, western
468 equatorial Pacific. *Geophys. Res. Lett.*, 30(8), 1428, doi:
469 10.1029/2002GL016612, 2003.
470
- 471 Shakun, J. D., and Carlson, A. E.: A global perspective on Last Glacial
472 maximum to Holocene climate change. *Quaternary Sci. Rev.*, 29, 1801-
473 1816, 2010.
474
- 475 Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z., Otto-
476 Bliesner, B., Schmittner, A., and Bard, E.: Global warming preceded by
477 increasing carbon dioxide concentrations during the last deglaciation.
478 *Nature*, 484, 49-55, 2012
479
- 480 Shen, C.-C., Hasting, D. W., Lee, T., Chiu, C.-H., Lee, M.-Y., Wei, K.-Y.,
481 Edwards, R. L.: High precision glacial-interglacial benthic foraminiferal
482 Sr/Ca records from the eastern equatorial Atlantic Ocean and Caribbean
483 Sea. *Earth Planet. Sci. Lett.*, 190, 197-209, 2001.
484
- 485 Shen, C.-C., Chiu, H.-Y., Chiang, H.-W., Chu, M.-F., Wei, K.-Y., Steinke, S.,
486 Chen, M.-T., Lin, Y.-S., and Lo, L.: High precision measurements of Mg/Ca
487 and Sr/Ca ratios in carbonates by cold plasma inductively coupled plasma
488 quadrupole mass spectrometry. *Chem. Geol.*, 236, 339-249, 2007.
489
- 490 Shiau, L.-J., Chen, M.-T., Clemens, S. C., Huh, C.-A., Yamamoto, M., and
491 Yokoyama, Y.: Warm pool hydrological and terrestrial variability near
492 southern Papua New Guinea over the past 50k. *Geophys. Res. Lett.*, 38,
493 L00F01, doi: 10.1029/2010GL045309, 2011.
494
- 495 Shiau, L.-J., Chen, M.-T., Huh, C.-A., Yamamoto, M., and Yokoyama, Y.:
496 Insolation and cross-hemispheric controls on Australian monsoon variability
497 over the past 180 ka: new evidence from off shore southeastern Papua
498 New Guinea. *J. Quaternary Sci.*, 27, 911-920, 2012.
499
- 500 Steinke, S., Chiu, H.-I., Yu, P.-S., Shen, C.-C., Erlenkeuser, H., Löwemark, L.,
501 and Chen, M.-T.: On the influence of sea level and monsoon climate on the
502 southern South China Sea freshwater budget over the past 22,000 years.
503 *Quaternary Sci. Rev.*, 25, 1475–1488, 2006.
504
- 505 Stenni, B., Jouzel, J., Masson-Delmotte, V., Röthlisberger, R., Castellano, E.,
506 Cattani, O., Falourd, S., Johnsen, S. J., Longinelli, A., Sachs, J. P., Selmo,
507 E., Souchez, R., Steffensen, J. P., Udisti, R.: A late-glacial high-resolution
508 site and source temperature record derived from EPICA Dome C isotope
509 records (East Antarctica). *Earth Planet. Sci. Lett.*, 217, 183–195, 2003.
510

- 511 Stott, L., Cannariato, K., Thunell, R., Haug, G. H., Koutavas, A., and Lund, S.:
512 Decline of surface temperature and salinity in the western tropical Pacific
513 Ocean in the Holocene epoch. *Nature*, 431, 56–59, 2004.
- 514
- 515 Stott, L., Poulsen, C., Lund, S., and Thunell, R.: Super ENSO and global
516 climate oscillations at millennial time scales. *Science*, 297, 222–226, 2002.
- 517
- 518 Stuiver, M., Reimer, P. J., and Reimer, R. W.: CALIB 6.0. (WWW program
519 and documentation), 2010.
- 520
- 521 Visser, K., Thunell, R., and Stott, L.: Magnitude and timing of temperature
522 change in the Indo-Pacific warm pool during deglaciation. *Nature*, 421,
523 152–155, 2003.
- 524
- 525 Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C.-C., and
526 Dorale, J. A.: A high-resolution absolute-dated late Pleistocene monsoon
527 record from Hulu Cave, China. *Science*, 294, 2345–2348, 2001.
- 528
- 529 Wang, X., Auler, A. S., Edwards, R. L., Cheng, H., Ito, E., Wang, Y., Kong, X.,
530 and Solheid, M.: Millennial-scale precipitation changes in southern Brazil
531 over the past 90,000 years. *Geophys. Res. Lett.*, 34, L23701,
532 doi:10.1029/2007GL031149, 2007.
- 533
- 534 Williams, A. P., and Funk, C.: A westward extension of the warm pool leads to
535 a westward extension of the Walker circulation, drying eastern Africa. *Clim.
536 Dynam.*, 37, 2417–2435, 2011.
- 537
- 538 Xu, J., Holbourn, A., Kuhnt, W., Jian, Z., and Kawamura, H.: Changes in the
539 thermocline structure of the Indonesian outflow during Terminations I and
540 II. *Earth Planet. Sci. Lett.*, 273, 152–162, 2008.
- 541
- 542 Yan, X.-H., Ho, C.-R., Zheng, Q., and Klemas, V.: Temperature and size
543 variabilities of the western Pacific warm pool. *Science*, 258, 1643–1645,
544 1992.
- 545

546 **Table 1** AMS ^{14}C dates of site MD05-2925.

Depth (cm)	^{14}C ages (years)	Error (years)	Cal. ages (years)	Error (years)
117	8823	50	9414	111
127*	10306	70	11259	159
140	10441	30	11333	80
147*	11477	70	12854	110
157	12066	60	13391	84
172*	13117	70	14973	309
180	13748	35	16283	453
192*	14080	74	16746	223
207*	15616	75	18201	175
217	16470	81	19083	90
262*	18985	94	22167	181
272*	20960	150	24411	167
292*	21650	78	25304	339

547

548 *Samples were measured in the NSF-Arizona AMS Laboratory of the
 549 University of Arizona (U. Arizona), Tucson, USA, and the others were
 550 measured in the Rafter Radiocarbon Laboratory, Institute of Geological and
 551 Nuclear Science (GNS), New Zealand.

552

553

554

555

556

557

558

559 **Table 2** Selected sites for stacked N- and S-IPWP records.

Core	Location (Latitude, and longitude)	References
North-IPWP group (orange circles in Figs 1 and 2)		
ODP 806	0.3°N, 159.4°E	Lea et al. (2000)
MD97-2140	2.0°N, 141.7°E	de Garidel-Thoron et al. (2005)
MD98-2181	6.3°N, 125.8°E	Stott et al. (2002, 2004)
MD06-3067	6.5°N, 126.5°E	Bolliet et al. (2011)
MD97-2141	8.8°N, 121.3°E	Rosenthal et al. (2003)
MD01-2390	12.1°N, 113.2°E	Stenike et al. (2006)
South-IPWP group (green circles and star in Figs 1 and 2)		
MD98-2162	4.4°S, 117.5°E	Visser et al. (2003)
MD98-2176	5.0°S, 133.4°E	Stott et al. (2004)
MD05-2925	9.3°S, 151.5°E	This Study
MD98-2165	9.7°S, 118.3°E	Levi et al. (2007)
MD98-2170	10.6°S, 125.4°E	Stott et al. (2004)
MD01-2378	13.1°S, 121.7°E	Xu et al. (2008)

560
561

562 **Figure captions**

563

564 **Fig. 1.** Climatological map of the Indo-Pacific Warm Pool (IPWP) sea surface
 565 temperature (SST, left) and precipitation (right) during 1950-2004 AD
 566 (Reynolds et al., 2002). Upper panels are June-July-August (JJA), and lower
 567 panels are December-January-February (DJF) averages of **(A, C)** SSTs and
 568 **(B, D)** precipitation distribution maps. SST and precipitation are at 0.5 °C and
 569 2 mm/day intervals. Our study site MD05-2925 is shown as the green star.
 570 Orange and green dots denote previous study sites in the IPWP region (Table
 571 2) for reconstruction of meridional thermal and precipitation variations during
 572 the glacial/interglacial change.

573

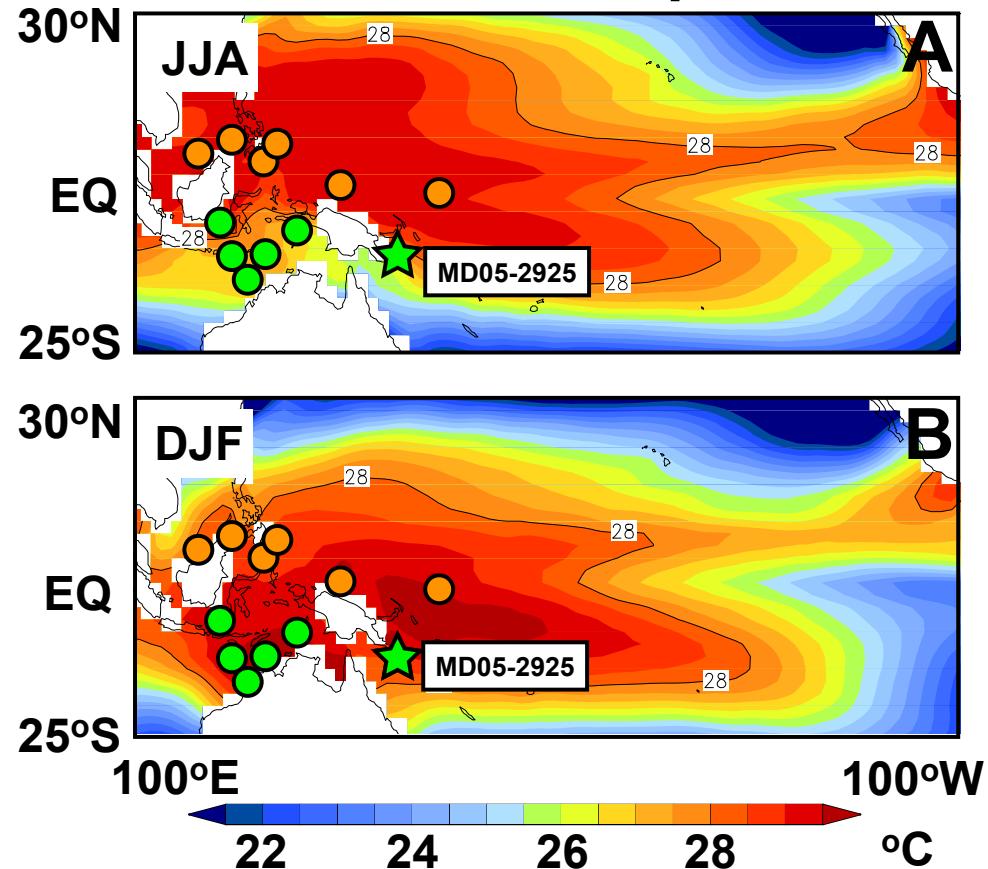
574 **Fig. 2.** EOF analysis on SST (Dataset from Reynolds et al., 2002) and
 575 selected sites (Table 2) used for stacked N- and S-IPWP records. **(A)** EOF1
 576 explains 83.4% of the total variance, which mainly represents intra-annual
 577 seasonality. **(B)** EOF2 shows a clear zonal pattern. Orange circles represent
 578 selected sites for the N-IPWP group and green ones for the S-IPWP group.
 579 The green star denotes the MD05-2925 site used in this study.

580

581 **Fig. 3.** Planktonic foraminifera *G. ruber* geochemical proxy records of site
 582 MD05-2925, including **(A)** oxygen isotope ($\delta^{18}\text{O}_c$), **(B)** Mg/Ca ratio, and **(C)**
 583 temperature corrected-only seawater oxygen isotope ($\delta^{18}\text{O}_{\text{sw}}$). Triangle
 584 symbols are corrected radiocarbon dates (Table 1).

585

586 **Fig. 4.** Geochemical proxy records of MD05-2925. **(A)** SST (red circles and
 587 line) and **(B)** $\delta^{18}\text{O}_{\text{sw-ivc}}$ (blue line) were reconstructed with *G. ruber* Mg/Ca
 588 ratios and $\delta^{18}\text{O}_c$. The cyan line denotes the Antarctica EPICA deuterium
 589 isotope record (Stenni et al., 2003), and the yellow line is the Greenland ice
 590 core NGRIP (Northern Greenland Ice Core Project Members, 2004) oxygen
 591 isotope record. The superimposed dark cyan and dark yellow lines are the
 592 200-yr smoothed records, respectively. Black triangles are AMS ^{14}C dates
 593 (Table 1). Vertical bars denote the H1 and YD periods.


594

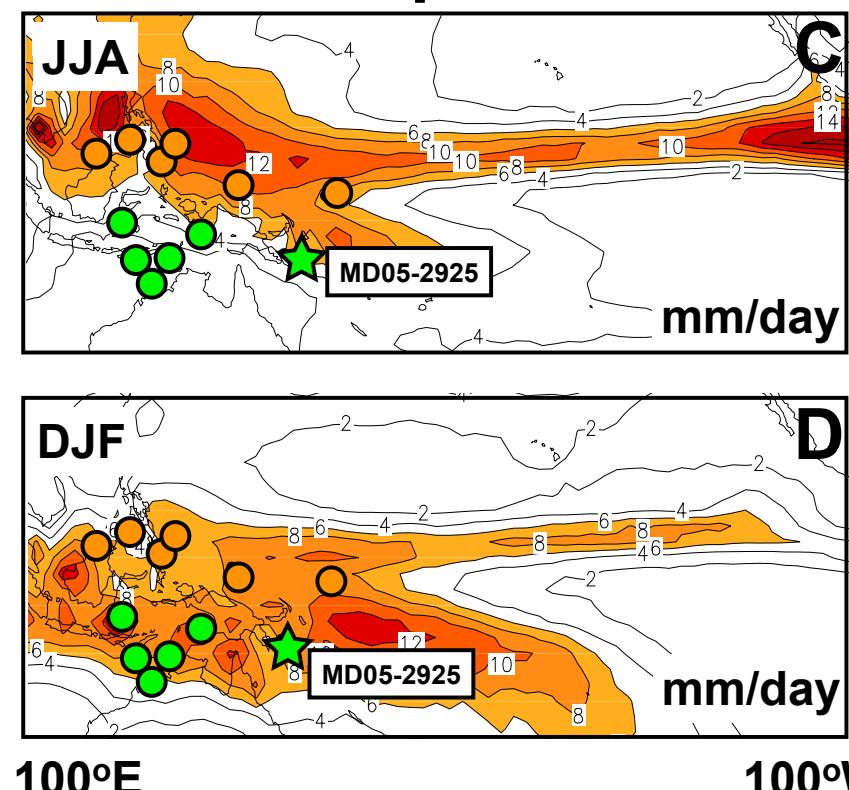
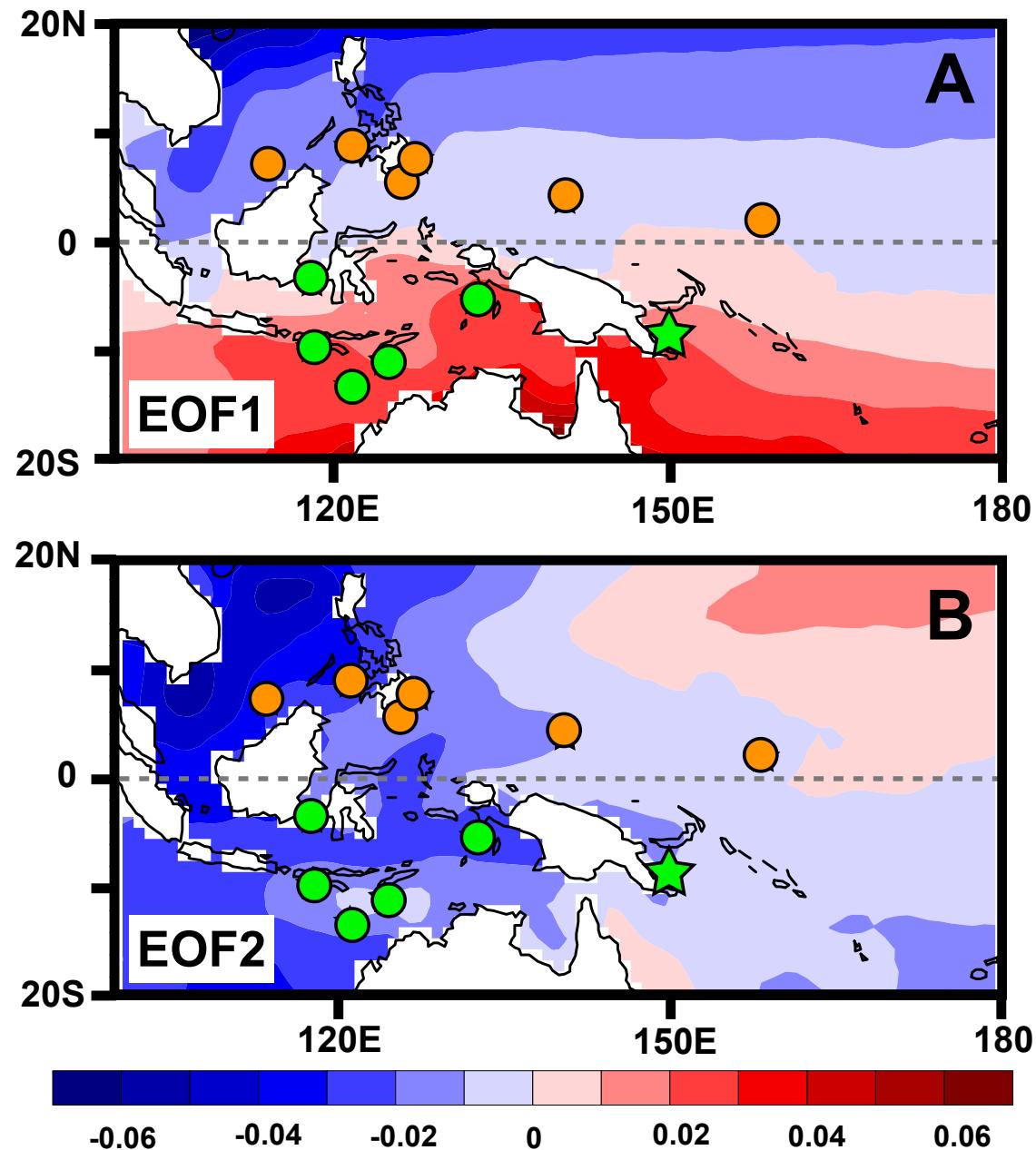
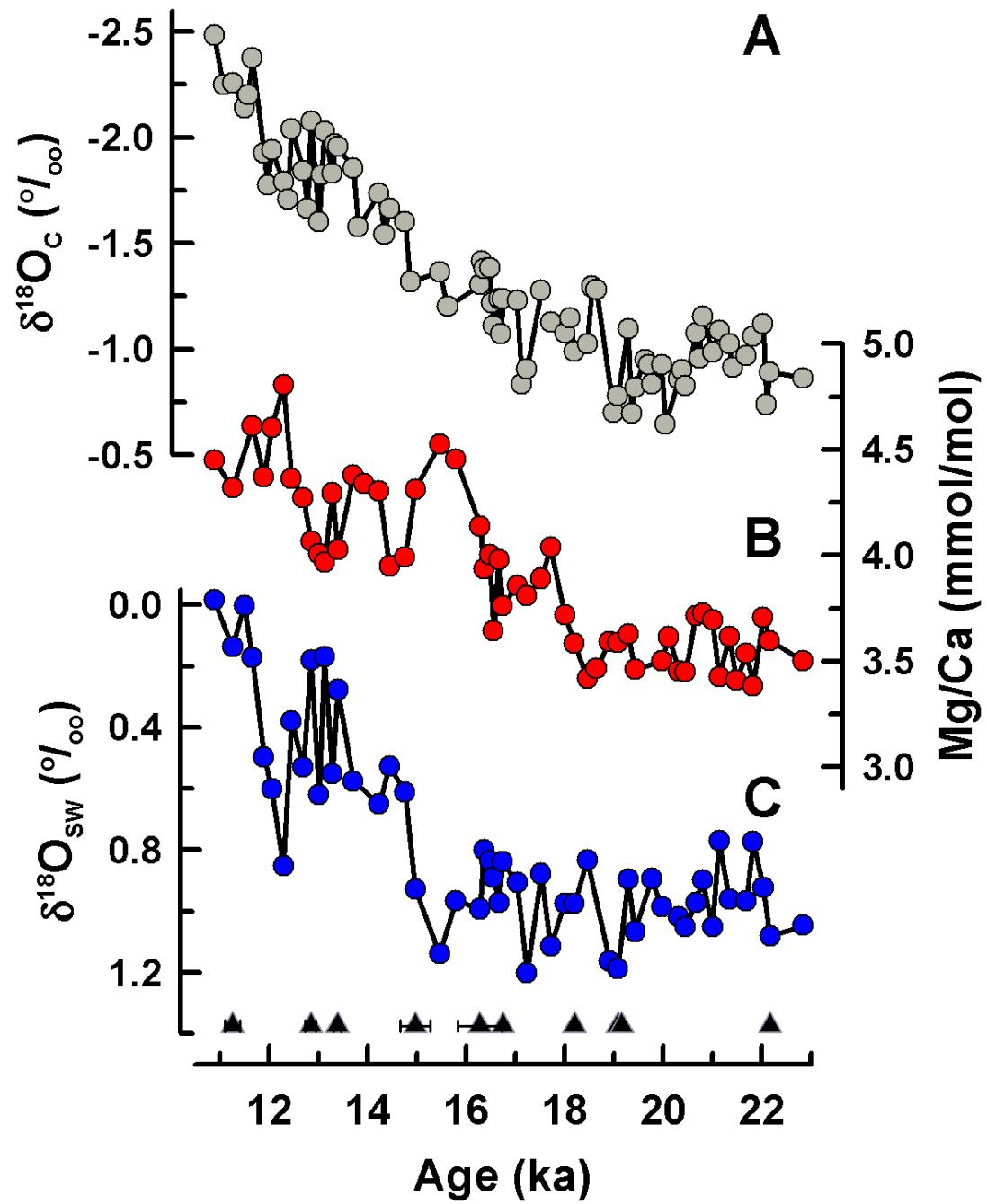
595 **Fig. 5.** Four hundred-year non-overlapping binned **(A)** SST and **(C)** $\delta^{18}\text{O}_{\text{sw-ivc}}$
 596 of N- (orange solid line) and S-IPWP (green solid line). Lower panel show the
 597 differences in **(B)** SST and **(D)** $\delta^{18}\text{O}_{\text{sw-ivc}}$ between N- and S-IPWP. The
 598 compilations of N- and S-IPWP surface water thermal and hydrological
 599 records (Table 2) were calculated with the non-overlapping binned methods
 600 (Oppo et al., 2009; Linsley et al., 2010). All dashed lines represent 1-sigma
 601 uncertainty ranges. Gray bars show the H1 and YD events.

602

603 **Fig. 6.** Hypothetical proxy-inferred precipitation boundary during the H1 and
 604 YD events (modified from the Linsley et al., 2010). Blue dots represent
 605 relatively increasing precipitation/ $\delta^{18}\text{O}_{\text{sw}}$ lighter condition, and brown ones a
 606 decreasing precipitation/ $\delta^{18}\text{O}_{\text{sw}}$ heavier condition. The segment between
 607 Java and Flores Islands of this sharp boundary (red dashed line) was
 608 proposed by Mohtadi et al. (2011), and the one between the Solomon and
 609 Coral Seas by this study. Black contours represent SST.

Sea surface temperature

Precipitation

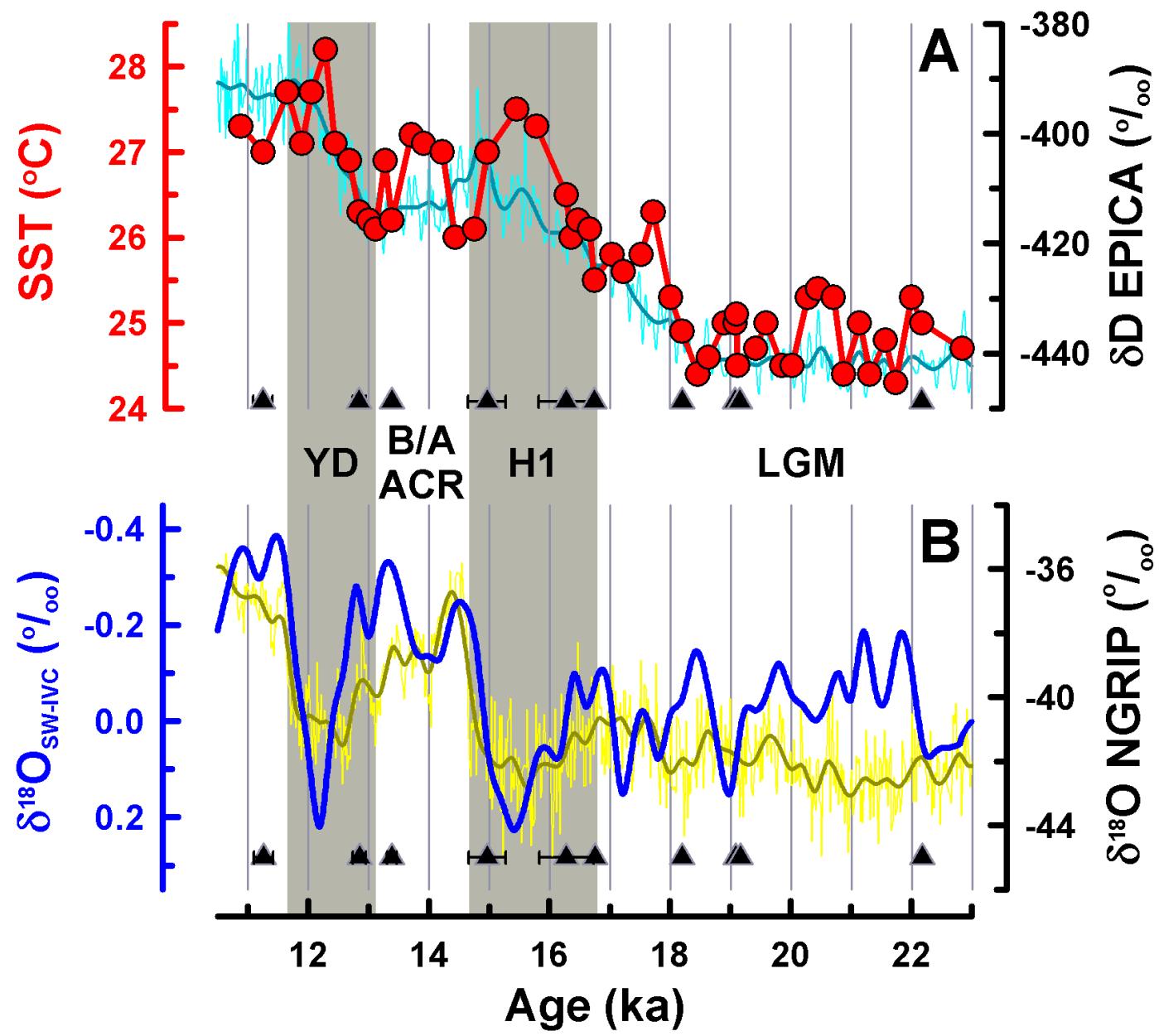

Fig. 1

Fig. 2

Fig. 3

Fig. 4

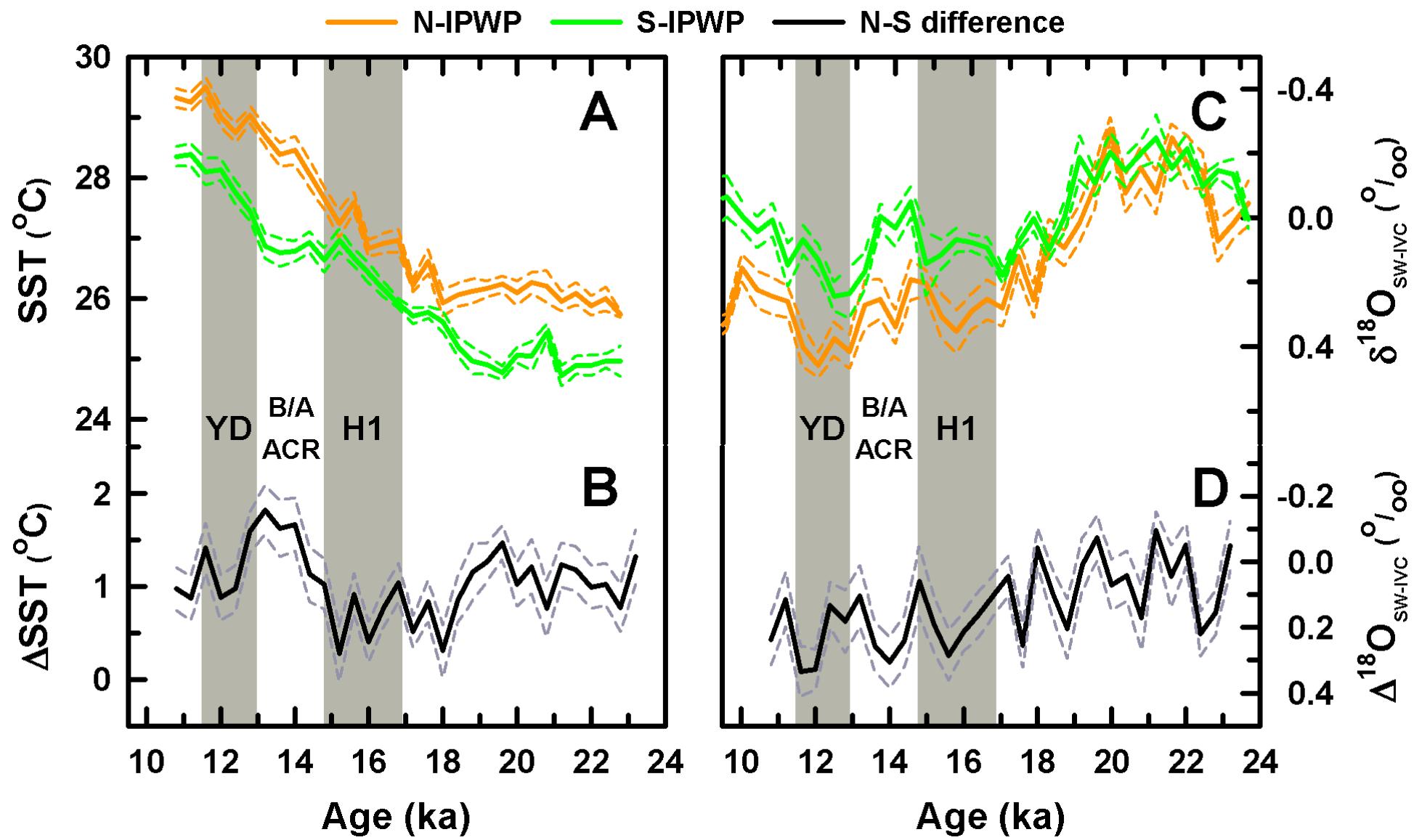
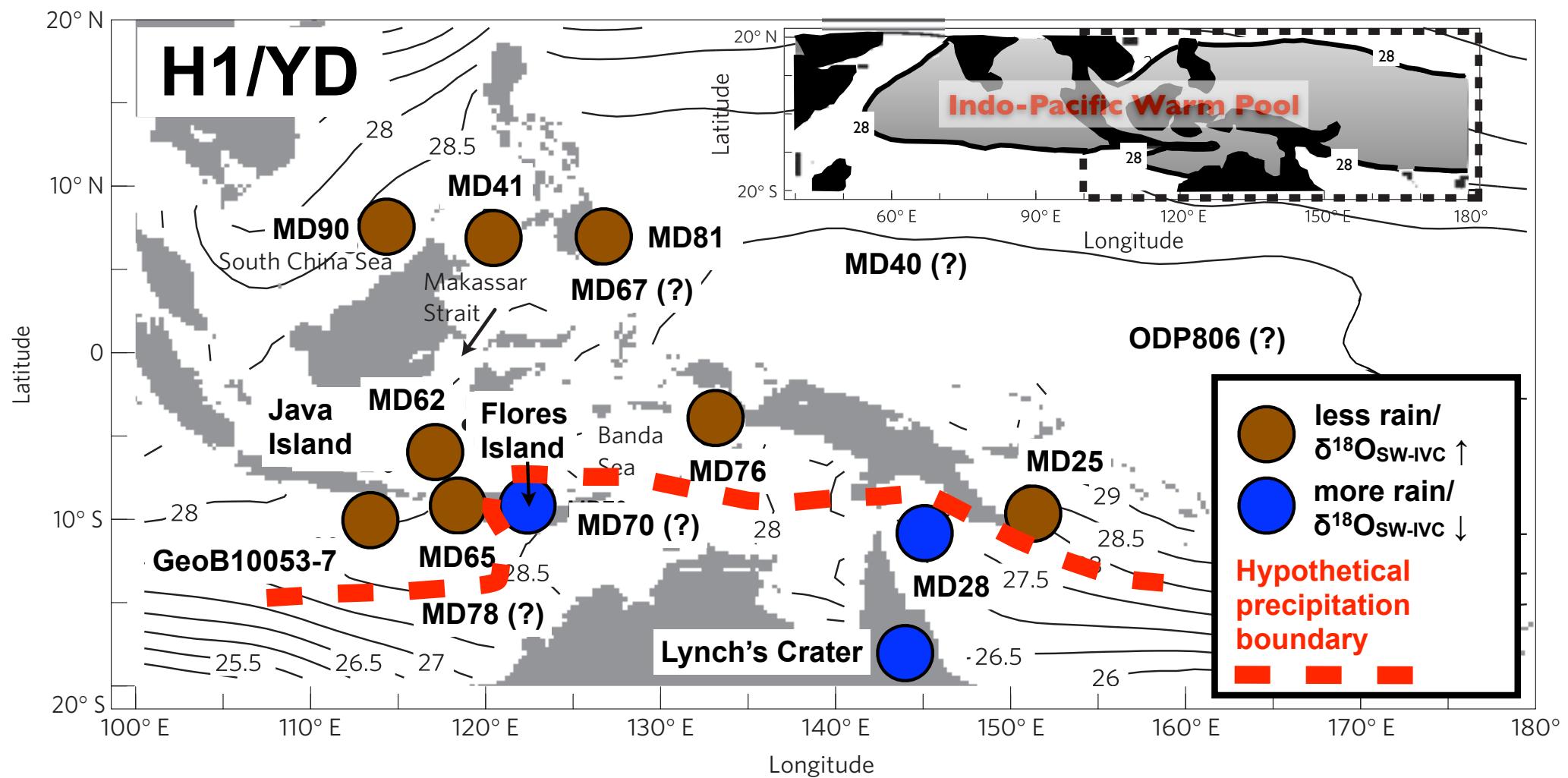



Fig. 5

Fig. 6