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Abstract

To develop an in-depth understanding of the natural dynamics of the Indo-
Pacific Warm Pool (IPWP) during the last deglaciation, stacked North- (N-)
and South-IPWP (S-IPWP) thermal and hydrological records over the past 23-
10.5 thousand vyears (ka) were built using planktonic foraminiferal
geochemistry data from a new core, MD05-2925 (9.3°S, 151.5°E, water depth
1661 m) in the Solomon Sea and eleven previous sites. Ice-volume corrected
seawater 5'°0 (5'®Osw.vc) stacks show that S-IPWP &'®0sw.vc values are
indistinguishable from their northern counterpart through glacial time. The N-
IPWP SST stacked record features an increasing trend of 0.5 °Cka™ since 18
ka. Its S-IPWP counterpart shows an earlier onset of temperature increase at
19 ka and a strong teleconnection to high-latitude climate in the Southern
Hemisphere. Meridional SST gradients between N- and S-IPWP were 1 to 1.5
°C during the Bglling/Allerad period and < 0.5 °C during both Heinrich event 1
and the Younger Dryas due to a warmer S-IPWP. A warm S-IPWP during the
cold events may possibly weaken the southern hemispheric branch of the

Hadley Cell and reduce precipitation in the Asian Monsoon region.
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1. Introduction
The Indo-Pacific Warm Pool (IPWP) is the largest warm water mass in the
world, with an annual average sea surface temperature (SST) greater than 28
°C (Yan et al., 1992). Vigorous regional atmosphere circulation transports
latent heat and water moisture from the IPWP to the middle and high latitudes
(Yan et al., 1992). For the past five decades, the IPWP has experienced
surface water freshening and a westward shift in precipitation, resulting in
regional drought in East Africa and storm track changes in East Australia
(Cravatte et al., 2009; Williams and Funk, 2011). Since the early 2000s,
intensive paleoclimatological studies have been conducted to understand
long-term thermal and hydrological changes in the IPWP, associated with
glacial/interglacial (G/IG) cycles, and to constrain the relationship between
warm pool thermal and hydrological fluctuations to high latitude ice sheet and
greenhouse gas concentrations during the late Pleistocene (e.g., Lea et al.,
2000; Stott et al., 2002; Visser et al., 2003; Rosenthal et al., 2003; Stott et al.,
2004; de Garidel-Thoron et al., 2005; Steinke et al., 2006; Levi et al., 2007;
Xu et al., 2008; Linsley et al., 2010; Bolliet et al., 2011; Mothadi et al., 2014).
Stacked IPWP SST and seawater oxygen isotope (5'°Osw) records from
the last glacial to the Holocene clearly show a close link between the IPWP
SST, the Asian-Australian Monsoon (AAM) system, and sea level (Stott et al.,
2004; Oppo et al., 2009; Linsley et al., 2010). However, a complicated ocean-
island configuration and regional topography hinder the fidelity of using these
records to describe past climate changes in detail (Griffiths et al., 2009;

Mohtadi et al.,, 2011). In particular, little is known about the meridional
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thermal-hydrological dynamics between the N-IPWP and S-IPWP during the
last termination.

Here we present new oceanic proxy-inferred SST and ice volume-corrected
surface seawater oxygen isotope 8'20 (3'®Osw.ivc) records from the Solomon
Sea, Papua New Guinea (PNG) for the past 23-10.5 thousand years ago (ka,
before 1950 AD, hereafter). New SST and &'®Osw.vc stacked records since
the last termination are built for both the N- and S-IPWP to understand

regional thermal-hydrological changes and interhemispheric teleconnections.

2. Material and Methods
Site MD05-2925 (9.3°S, 151.5°E, water depth 1661 m) is located at the
northern slope of the Woodlark Basin in the Solomon Sea, which is the
passage of surface and subsurface water masses between low- and middle-
latitude South Pacific Ocean gyre and cross equatorial currents (Grenier et al.,
2011; Melet et al., 2011) (Fig. 1). The seasonal precipitation in this region (Fig.
1) is dominated by the AAM system, coupled with the intertropical
convergence zone (ITCZ) (Shiau et al., 2012, and references therein). Tests
of single species planktonic foraminifera, Globigerinoides sacculifer (> 500 pym,
total amount of 2-6 mg), at 13 selected depths were picked for accelerator
mass spectrometry (AMS) "C dating. The AMS dates were calibrated using
the CALIB 6.0.1 program (Stuiver et al., 2010, Table 1; Reimer et al., 2009) to
reconstruct an age model for a time interval from 23 to 10.5 ka.

Forty to sixty individuals of the planktonic foraminifera Globigerinoides
ruber (white, s.s., 250-300 uym) were picked under the microscope. For Mg/Ca

measurements, 20-30 individuals were gently crushed and transported into a
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1.5 mL Teflon vial. The cleaning procedure was as follows: (1) foraminiferal
fragments were immersed in ethanol, (2) a 0.45 mL aliquot of 3% H>O, (3)
NH4CI (0.45 mL, 1.0 N), (4) NH,OH (0.45 mL, 0.01 N), and then (5) dilute
nitric acid (1 mL, 0.005 N). A sector field inductive coupled plasma mass
spectrometer (SF-ICP-MS), Thermo Electron Element Il, housed at the High-
Precision Spectrometry and Environment Change Laboratory (HISPEC),
Department of Geosciences, National Taiwan University, was used to
determine trace element/Ca ratios following the methodology developed by
Shen et al. (2007). The detailed cleaning procedure and methodology are
available in Lo et al. (2014). Two-year 1-sigma reproducibility of Mg/Ca
analyses is +0.21% (Lo et al., 2014). We used a composite Mg/Ca-SST
equation by Anand et al. (2003) to calculate SSTs.

For oxygen stable isotope analysis, 7-10 individuals were immersed in
methanol, ultrasonicated for 10 seconds, and then rinsed with deionized water
5 times. Samples were immersed afterward in a hyperchloride sodium (NaOCl)
for 24 hours, and then analyzed with an isotopic ratio mass spectrometer
(IRMS), Micromass IsoPrime, housed in the National Taiwan Normal
University. Long-term 1-sigma precision is better than +0.05%. (N = 701, Lo et
al., 2013) with respect to Vienna Pee Dee Belemnite (VPDB).

To extract seawater 8'°0 (53'Osw) values, we used a cultural based
equation, SST = 16.5 - 4.8 x (3'°0¢ - 5"°0sw) (Bemis et al., 1998) and a
constant offset of 0.27%. between carbonate VPDB and Vienna Standard
Ocean Water (VSMOW) scales. Ice volume corrected 8'®Osw (8'°Osw.ivc) was

calculated using the method proposed by Waelbroeck et al. (2002).
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The empirical orthogonal function (EOF) analysis of a modern SST dataset
(1950-2004 AD, Reynolds et al., 2002) for a sector from 20°S — 20°N, and
100°E- 180°E was conducted (Fig. 2) to determine the boundary between N-
and S-IPWP. With an equatorial border, the EOF1 factor (83.4%) clearly
resolved different SST variation groups. The EOF2 factor shows minor (9.7%)
but significant inter-annual zonal (ENSO) control on the SST patterns. EOF
results show that the geographic equator is also the thermal equator between
N-IPWP and S-IPWP (Fig. 2).

To build a stacked N- and S-IPWP record, we followed the suggestions by
Leduc et al. (2010) and considered three criteria for this dataset: (1) sites with
locations from 12°N to 15°S, which is the main IPWP range (Yan et al., 1992;
Gagan et al., 2004), and (2) usage of specific proxies, Mg/Ca-derived SST
and 5'®0c records of planktonic foraminifera, G. ruber (white, s.s.). Records
from 12 sites were selected, including this study (Table 2). We adopted the
published age model for sites ODP806, MD97-2140, MD97-2141, MD98-2162,
MD98-2170, MD98-2176, and MD98-2181. For records with available original
radiocarbon ages from sites, including MD01-2378, MD01-2390, MD98-2165,
and MDO06-3067, we recalculated the age models using the CALIB 6.0.1
program. The sea level change effect on §'®Osw was also corrected. We
divided the total data into 400-yr windows and calculated the mean and

standard error of the mean for each time window.

3. Results and Discussion

3.1 Geochemical proxy data at site MD05-2925
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Planktonic foraminiferal geochemical proxy data for site MD05-2925 are
shown in Figure 3. G. ruber 3'®O¢ varies from -1.0 to -2.3%o and shows no
significant millennial timescale variations. Mg/Ca ratios feature stable glacial
values of ~3.5 mmol/mol and rapid increasing transitions of 0.5-1.0 mmol/mol
at ~18.5, 16.5, 14.5, and 12.8 ka. The glacial-interglacial variation of
calculated seawater 5'®0Osw changes is ~1%o. Two abrupt decreases of 0.6-

0.8%o0 are observed at 14.6 and 11.8 ka.

3.2 Solomon SST and 5'®0sw.vc records during the last termination
Mg/Ca SST records of the planktonic foraminifera G. ruber reveal a stable
glacial thermal condition during the period 23.0-18.5 ka, with a variation <1 °C
and a glacial-interglacial difference of ~3 °C between the last glacial maximum
(LGM) and the end of the Younger Dryas (YD) in the Solomon Sea (Fig. 4A).
This record is characterized by (i) the end of glacial conditions at 18.5 ka, and
(ii) rapid SST increases of 1-2 °C at 18.5-18.0, 17.0-16.0, 15.0-14.5, and 13.0-
12.5 ka.

The onset of deglacial SST increases in this region is consistent with the
timing of thermal changes in the Southern Ocean as inferred from Antarctic
ice core 0D records (Stenni et al., 2003) (Fig. 4A). This agreement indicates a
strong climatic teleconnection between low- and high-latitude realms in the
Southern Hemisphere (SH), as well as change of greenhouse gas
concentrations (Mothadi et al., 2014). There are significant SST increases of
1-2 °C during Heinrich event (H1) and the YD. Previous studies from the
Eastern Equatorial and South Pacific reveal a mechanism characterized by

early warming of South Pacific subtropical mode water (Pahnke et al., 2003;
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Lamy et al., 2004; Pena et al., 2008). This warm signal is transported along a
gyre to the east equatorial Pacific (EEP) and eventually to the west Pacific
through ocean tunneling (Pena et al., 2008; Qu et al., 2013, Fig. 4A). Our new
SST record is similar to those in the EEP (Pena et al.,, 2008) and eastern
Indian Ocean records (Xu et al., 2008; Mothadi et al., 2014) for both
termination timing (within dating error) and significant warming during the H1
and YD events. There is a slightly warming (<1 °C) interval at 14.5-13.5 ka
during the B/A period (Fig. 4A). The warming could be attributed to a possible
mixing with the warm N-IPWP surface water.

The Solomon Sea 8'®Osw.ivc record is given in Figure 4B. It varies from -
0.5 to 0.1%0 during 23.0-10.5 ka. A relatively stable condition with 1-sigma
variability of 0.1%. occurred from 23.0 to 16.0 ka. Two significant positive
excursions with 0.2-0.5%o enrichments in 5'®0 are observed in the intervals
16.8-15.0, and 13.8-11.8 ka. Two stable periods with low 8'®Osw.ivc of -0.4%o
occurred between 15.0-13.0 ka and after 11.8 ka.

The dramatic 8'®Osw.vc increases during H1 and the YD likely resulted
from a weakening and/or southward shift of the ITCZ (Chiang and Bitz, 2005;
Broccoli et al., 2006), and local evaporation may also play a role. Agreement
of 50 sequences of Greenland NGRIP ice core and the Solomon Sea
5'"®0sw.vc indicates an imprint from high latitude Northern Hemisphere (NH)

during the last termination period (Shakun and Carlson, 2010) (Fig. 4B).

3.3 Millennial timescale variations of N- and S-IPWP SST stacks
Both N- and S-IPWP stacked SSTs show the same difference of ~3 °C

between the last glacial and interglacial states (Fig. 5A). N-IPWP stacked SST
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values increased steadily since 18 ka through the termination at a rate of 0.5
°C/kyr. Millennial timescale variability is absent in this record, which is similar
to Linsley et al. (2010) and Stott et al. (2002). Although the resolution of ODP
806 and MD97-2140 are less than our request to solve millennial-timescale
event, there is no significant difference with/without their records in our N-
IPWP stacks (not shown).

The onset of the termination at ~19 ka in the S-IPWP stack is consistent
with temperature increases in Antarctica (Stenni et al., 2003), and occur about
1 kyr earlier than in the N-IPWP stack (Fig. 5A). This timing is synchronous
with EEP (Pena et al., 2008) and non-upwelling region eastern Indian Ocean
(Xu et al., 2008; Mothadi et al., 2014) SST records. Thus, our MD05-2925 and
S-IPWP stacked SST may not severely controlled by the equatorial upwelling
intensity. Instead of that, S-IPWP stacked SST represents broad SH
equatorial region thermal conditions under upwelling/non-upwelling, E-W
equatorial and even in the different ocean basin (Indian/Pacific Ocean). The
S-IPWP stacked SST record is characterized by a warming trend during H1
and the YD periods, similar to Antarctic ice core temperature records (Stenni
et al., 2003), and a steady thermal condition at ~27 °C during Baglling/Allerad
(B/A), corresponding to the Antarctic Cold Reversal (ACR) (Fig. 5A).

The thermal gradient between N- and S-IPWP is around 1 °C during 23 to
19 ka. Due to the earlier S-IPWP warming, the thermal gradient dropped from
1 to 0.5 °C around 19-18 ka, and persisted to the end of the H1 event. The
largest observed thermal gradient (1.5-2.0 °C) occurred during the B/A period,
and was followed by a 1 °C drop during the YD. The meridional SST gradient

between N- and S-IPWP over the last termination is attributed to the large
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thermal variability in the S-IPWP (Fig. 5A). Asynchroneity between persistent
N-IPWP and fluctuating S-IPWP SST sequences (Fig. 5A) indicates a
meridionally dynamic IPWP through the last termination period. This N-S SST
gradient variability would also affect interhemispheric air flow and heat
transport (Gibbons et al., 2014; McGee et al., 2014), providing a mechanism

to explain heat transport between the hemispheres on a millennial timescale.

3.4 N- and S-IPWP &'®Osw.vc records

Both N- and S-IPWP &'®0sw.vc records feature (i) low values of -0.3-0.0%o
during glacial times, and (ii) increasing trends after 19 ka (Fig. 5C). The
gradient between N- and S-IPWP gradually increased from 0%o. to 0.2%o
through the termination (Fig. 5D). A similar pattern of 3'®Osw.vc between N-
and S-IPWP suggests that hydrological conditions in the two regions were
governed by the same factor(s), probably related to Northern Atlantic cold
perturbations (Shakun and Carlson, 2010). It has also been suggested that a
major 8'®Osw.ivc increase during the H1 and YD periods in the IPWP region
likely resulted from reduced precipitation and oceanic advection in both the N-

IPWP and S-IPWP regions (Gibbsons et al., 2014; McGee et al., 2014).

3.5 Meridional IPWP SST gradient and the southward-shifted ITCZ
precipitation boundary

A striking feature of the stacked SST records is the warming in the S-IPWP
during the H1 and YD periods (Fig. 5A). Observations over the past six
decades (Fig. 12 of Feng et al., 2013) show that an equatorward shift of the

NH convection branch of the Hadley Cell (HC) could result from an oceanic
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warming at ~10° S. This equatorward shift could induce a southward ITCZ
shift of about 10° (Feng et al., 2013). Model simulations (Chiang and Bitz,
2005; Broccoli et al.,, 2006, Lee et al., 2011) suggest that this altered
circulation is a powerful teleconnection between the NH and SH climate
systems through a coupled tropical ocean-atmosphere pathway, and is
supported by marine and terrestrial hydrological proxy data (Wang et al., 2001,
Lea et al., 2003, Wang et al., 2007,Griffiths et al., 2009, Shakun and Carlson,
2010, Mohtadi et al., 2011, Meckler et al., 2012, Ayliffe et al., 2013, Carolin et
al., 2013, Gibbons et al., 2014; McGee et al., 2014, Fig. 6).

Distinctly different precipitation conditions across 8-10°S in the IPWP
during the H1 and YD events are illustrated in Figure 6. For example,
enhanced terrestrial sediment flux into the Coral Sea is suggested by a
marine sediment thorium isotopic proxy record at 11°S (Shiau et al. 2011).
Lynch’s crater records from northeastern Australia at 17°S (Muller et al., 2008)
show strong Australian summer monsoonal conditions. Stalagmite 5'°0
records at Flores Island (8° S) also feature intense precipitation during H1 and
the YD (Griffiths et al.,, 2009, Ayliffe et al., 2013). However, marine and
stalagmite 5'°0 evidence reveal conditions of reduced precipitation and
increased salinity in the northern IPWP north of 8-10° S, including the South
China Sea (12° N, Stenike et al., 2006), Sulu Sea (8° N, Rosenthal et al.,
2003), Philippine Sea (6° N, Stott et al., 2002; Boillet et al., 2011), Java Island
(8° S, Mohtadi et al., 2011), Solomon Sea (9° S, this study), and Borneo island
(4° N, Meckler et al., 2012, Carolin et al., 2013) (Fig. 6). On the basis of
previous terrestrial and marine hydrological records and our new data, as well

as modern (Feng et al., 2013) and simulated (Chiang and Bitz, 2005: Broccoli
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et al., 2006) data, we speculate a sharp precipitation boundary between the
maritime continents and Australia at about 8-10° S, extending from the
Solomon Sea, Arafura Sea and Timor Sea, to the eastern Indian Ocean
during H1 and the YD periods (Fig. 6). We propose that the west and east
boundaries are between the Java-Flores islands (Griffiths et al., 2009,
Mohtadi et al., 2011), and Solomon-Coral Seas, respectively (Shiau et al.,
2011, this study). Geographical pattern mismatch between thermal and
precipitation could be associated with the local convection branch shifting and
sea level change (Linsley et al., 2010).

To sum up our geochemical and composite dataset in the IPWP region
during the last terminations, we propose that the enlarged IPWP meridional
SST gradient could result in an altered HC and reduced (increased)
precipitation for the East Asian (Australia) monsoon territories during the H1
and YD periods (McGee et al., 2014). We also propose that variations in the
meridional IPWP SST gradient during the termination period were mainly
caused by the S-IPWP, which is closely linked to high-latitude climate

systems.

4. Conclusions

Our new MDO05-2925 marine geochemical records and previous reports
suggest that the meridional IPWP thermal conditions are strongly linked to
interhemispheric high-latitude climate during the last deglaciation. Ice volume-
corrected 3'°Osw stacked records show an increasing salinity gradient
between N- and S-IPWP over the last termination. Here we propose a new

process of the thermal evolution of IPWP region, which meridional differences
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of its thermal gradient could amplify the signal from high latitude Northern
hemisphere climate events and radiative forcing from greenhouse gases. A
hypothetical precipitation boundary around 8-10°S during H1 and the YD has
also been proposed, which is most likely caused by the meridional IPWP SST
gradient and HC anomalies. More advanced high-resolution regional model
simulations are required to clarify (1) local precipitation variation in response
to the complicated sea level and convection change, (2) the role of IPWP
meridional thermal-hydrological gradient to an altered HC, and (3) its
relationship with regional and global climate systems during global climate

perturbation events.
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546 Table 1 AMS '*C dates of site MD05-2925.

Depth | ™“Cages | Error | Cal.ages | Error
(cm) (years) (years) (years) (years)
117 8823 50 9414 111
127* 10306 70 11259 159
140 10441 30 11333 80
147* 11477 70 12854 110
157 12066 60 13391 84
172* 13117 70 14973 309
180 13748 35 16283 453
192* 14080 74 16746 223
207* 15616 75 18201 175
217 16470 81 19083 90
262* 18985 94 22167 181
272* 20960 150 24411 167
292* 21650 78 25304 339

547

548 *Samples were measured in the NSF-Arizona AMS Laboratory of the
549 University of Arizona (U. Arizona), Tucson, USA, and the others were
550 measured in the Rafter Radiocarbon Laboratory, Institute of Geological and
551 Nuclear Science (GNS), New Zealand.
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Table 2 Selected sites for stacked N- and S-IPWP records.
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Core . Location . References
(Latitude, and longitude)
North-IPWP group
(orange circles in Figs 1 and 2)

ODP 806 0.3°N, 159.4°E Lea et al. (2000)
MD97-2140 2.0°N, 141.7°E de Garidel-Thoron et al. (2005)
MD98-2181  6.3°N, 125.8°E Stott et al. (2002, 2004)
MDO06-3067 6.5°N, 126.5°E Bolliet et al. (2011)
MD97-2141  8.8°N, 121.3°E Rosenthal et al. (2003)
MDO01-2390 12.1°N, 113.2°E Stenike et al. (2006)

South-IPWP group

(green circles and star in Figs 1 and 2)
MD98-2162 4.4°S, 117.5°E Visser et al. (2003)
MD98-2176  5.0°S, 133.4°E Stott et al. (2004)
MDO05-2925 9.3°S, 151.5°E This Study
MD98-2165 9.7°S, 118.3°E Levi et al. (2007)
MD98-2170 10.6°S, 125.4°E Stott et al. (2004)
MDO01-2378 13.1°S, 121.7°E Xu et al. (2008)
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Figure captions

Fig. 1. Climatological map of the Indo-Pacific Warm Pool (IPWP) sea surface
temperature (SST, left) and precipitation (right) during 1950-2004 AD
(Reynolds et al., 2002). Upper panels are June-July-August (JJA), and lower
panels are December-January-February (DJF) averages of (A, C) SSTs and
(B, D) precipitation distribution maps. SST and precipitation are at 0.5 °C and
2 mm/day intervals. Our study site MD05-2925 is shown as the green star.
Orange and green dots denote previous study sites in the IPWP region (Table
2) for reconstruction of meridional thermal and precipitation variations during
the glaciall/interglacial change.

Fig. 2. EOF analysis on SST (Dataset from Reynolds et al., 2002) and
selected sites (Table 2) used for stacked N- and S-IPWP records. (A) EOF1
explains 83.4% of the total variance, which mainly represents intra-annual
seasonality. (B) EOF2 shows a clear zonal pattern. Orange circles represent
selected sites for the N-IPWP group and green ones for the S-IPWP group.
The green star denotes the MD05-2925 site used in this study.

Fig. 3. Planktonic foraminifera G. ruber geochemical proxy records of site
MDO05-2925, including (A) oxygen isotope (5'°Oc¢), (B) Mg/Ca ratio, and (C)
temperature corrected-only seawater oxygen isotope (3'®Osw). Triangle
symbols are corrected radiocarbon dates (Table 1).

Fig. 4. Geochemical proxy records of MD05-2925. (A) SST (red circles and
line) and (B) 8'®Osw.ivc (blue line) were reconstructed with G. ruber Mg/Ca
ratios and 5'°0Oc. The cyan line denotes the Antarctica EPICA deuterium
isotope record (Stenni et al., 2003), and the yellow line is the Greenland ice
core NGRIP (Northern Greenland Ice Core Project Members, 2004) oxygen
isotope record. The superimposed dark cyan and dark yellow lines are the
200-yr smoothed records, respectively. Black triangles are AMS 'C dates
(Table 1). Vertical bars denote the H1 and YD periods.

Fig. 5. Four hundred-year non-overlapping binned (A) SST and (C) 3'®Osw.ivc
of N- (orange solid line) and S-IPWP (green solid line). Lower panel show the
differences in (B) SST and (D) 3'®Osw.vc between N- and S-IPWP. The
compilations of N- and S-IPWP surface water thermal and hydrological
records (Table 2) were calculated with the non-overlapping binned methods
(Oppo et al., 2009; Linsley et al., 2010). All dashed lines represent 1-sigma
uncertainty ranges. Gray bars show the H1 and YD events.

Fig. 6. Hypothetical proxy-inferred precipitation boundary during the H1 and
YD events (modified from the Linsley et al., 2010). Blue dots represent
relatively increasing precipitation/5'®Osw lighter condition, and brown ones a
decreasing precipitation/a'®Osw heavier condition. The segment between
Java and Flores Islands of this sharp boundary (red dashed line) was
proposed by Mohtadi et al. (2011), and the one between the Solomon and
Coral Seas by this study. Black contours represent SST.
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