Editor Comments:

The authors have thoroughly and satisfactorily responded to the suggestions and
comments by the reviewers. Hence [ am glad to accept this manuscript for
publication in Climate of the Past.

Before final publication I would like the authors to reconsider a minor, but
potentially misleading formulation. The authors state in their conclusion (lines 701,
702) that “the simulations provide insights into key dynamics features of the
transition, ...” Time slice simulations cannot, in principle, address the dynamics of
the transition of the climate system as pointed out by reviewer 1. They can however,
as correctly replied by the authors, provide insights into different climate states, i.e.
modes of operation, or dynamics, of the atmosphere and the ocean, during the
transition. I ask the authors for modifying their formulation.

Thank you for the opportunity to revise this section to avoid confusion. We
changed our final paragraph in the conclusion from:

The eight time slice simulations depict the glacial-interglacial transition that is in
good agreement with other AOGCM simulations and compares reasonably well with
data-based climate reconstructions. The simulations provide insights into key
dynamic features of the transition, such as altered NH storm tracks and
strengthening of monsoons during the early to mid-Holocene. The data-model and
model-model comparisons give us a measure of confidence that our paleo GENMOM
simulations are reasonable on broad spatial scales and adds to the growing number
of climate models that are capable of simulating key aspects of past climate change
when constrained by a relatively small set of global boundary conditions. Future
work using the model output produced by this study will address how internal
model variability and multidecadal variability influence comparison with proxy
data, particularly in North America using dynamical downscaling techniques.

To:

The eight time slice simulations depict the glacial-interglacial transition that is in
good agreement with other AOGCM simulations and compares reasonably well with
data-based climate reconstructions. The data-model and model-model comparisons
give us a measure of confidence that our paleo GENMOM simulations are reasonable
on broad spatial scales and adds to the growing number of climate models that are
capable of simulating key aspects of past climate change when constrained by a
relatively small set of global boundary conditions. While our simulations are not
continuous across the deglaciation and do not include events such as freshwater
forcing, they do provide insights into between period changes, such as altered NH
storm tracks and strengthening of monsoons during the early to mid-Holocene and
multi-century time series that are useful, for example, to explore ecosystem
responses to changes in mean climate and the related interannual variability in the
model. Future work using the model output produced by this study will address



how internal model variability and multidecadal variability influence comparison
with proxy data, particularly in North America using dynamical downscaling
techniques.
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Abstract
We apply GENMOM, a coupled atmosphere-ocean climate model, to simulate

eight equilibrium time slices at 3000-yr intervals for the past 21,000 years forced by
changes in Earth-Sun geometry, atmospheric greenhouse gases (GHGs), continental ice
sheets and sea level. Simulated global cooling during the Last Glacial Maximum (LGM)
is 3.8 °C and the rate of post-glacial warming is in overall agreement with recently
published temperature reconstructions. The greatest rate of warming occurs between 15
and 12 ka (2.4 °C over land, 0.7 °C over oceans and 1.4 °C globally) in response to
changes in radiative forcing from the diminished extent of the Northern Hemisphere
(NH) ice sheets and increases in GHGs and NH summer insolation. The modeled LGM
and 6 ka temperature and precipitation climatologies are generally consistent with proxy
reconstructions, the PMIP2 and PMIP3 simulations, and other paleoclimate data-model
analyses. The model does not capture the mid-Holocene ‘thermal maximum’ and gradual
cooling to pre-industrial global temperature found in the data. Simulated monsoonal
precipitation in North Africa peaks between 12 and 9 ka at values ~50% greater than
those of the PI, and Indian monsoonal precipitation peaks at 12 and 9 ka at values ~45%
greater than the PI. GENMOM captures the reconstructed LGM extent of NH and
Southern Hemisphere (SH) sea ice. The simulated present-day Antarctica Circumpolar
Current (ACC) is ~48% weaker than the observed (62 versus 119 Sv). The simulated
present-day Atlantic Meridional Overturning Circulation (AMOC) of 19.3 £ 1.4 Sv on
the Bermuda Rise (33°N) is comparable with observed value of 18.7 + 4.8 Sv. AMOC at
33°N is reduced by ~15% during the LGM, and the largest post-glacial increase (~11%)

occurs during the 15 ka time slice.
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1 Introduction
The history of the climate system over the past 21,000 years reflects the combined

changes in earth-sun orbital geometry, atmospheric greenhouse gas concentrations
(GHG), the extent of the Northern Hemisphere (NH) ice sheets, and sea level. GHG
levels were lowest during the Last Glacial Maximum (LGM, ~21,000 years ago, 21 ka)
and increased thereafter to pre-industrial (PI) levels (Brook et al., 2000; Monnin et al.,
2001; Sowers et al., 2003). The LGM is further characterized by the large Laurentide
(LIS), Cordilleran (CIS) and Fennoscandian (FIS) ice sheets. The height and extent of the
ice sheets altered atmospheric circulation patterns, and the extent increased the NH
albedo thereby altering the global radiative balance. The effect of the ice sheets on
climate progressively diminished from the LGM to the early Holocene as global warming
driven by increasing GHGs combined with changes in NH summer insolation to
accelerate ice sheet ablation. Abrupt departures from the comparatively smooth transition
from the LGM through the Holocene, such as Heinrich and Dansgaard-Oeschger events,
the Bolling-Allerad (BA), and the Youger Dryas (YD), are evident in geologic records,
and these events likely influenced the overall trajectory of the deglaciation.

The climate of the past 21,000 years has been studied extensively, beginning with
three international collaborative projects: the Long range Investigation, Mapping, and
Prediction (CLIMAP; CLIMAP Project Members, 1981) and the Cooperative Holocene
Mapping Project (COHMAP; COHMAP Members, 1988), which evolved into the
Testing Earth System Models with Paleoenvironmental Observations (TEMPO) project
(Kutzbach et al., 1996a; 1998). CLIMAP focused on reconstructing the LGM climate,

COHMAP focused on reconstructing the climate of seven time periods (18, 15, 12,9, 6, 3
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ka), and TEMPO focused on reconstructing the climate of 21, 16, 14, 11 and 6 ka. These
three projects pioneered data-model comparison through integrating climate model
simulations and paleoclimatic data, which motivated the development of new techniques
for analyzing geologic data and led to improvements in general circulation models.

More recently, the Palaeoclimate Modelling Intercomparison Project (PMIP) is
actively working to advance reconstruction of LGM and 6 ka climate through
model-to-model evaluations and data-model comparisons. PMIP has now entered the
third phase (PMIP3; Braconnot et al., 2012) and is a component of phase 5 of the Climate
Model Intercomparison Project (CMIPS). In contrast to CLIMAP, COHMAP, TEMPO
and earlier PMIP model experiments that employed fixed sea surface temperatures (SST)
and mixed-layer ocean models, some of the PMIP2 experiments and all of the PMIP3
experiments include fully coupled ocean and atmospheric models. Braconnot et al. (2012)
review some of the highlights of the PMIP2 experiments and the design of the PMIP3
experiments and Harrison et al. (2013) evaluate the PMIP3 and PMIP2 simulations of
LGM and 6 ka climates with data-model comparisons. In addition, continuous
simulations of climate over the last 21 ka have been achieved with earth system models
of intermediate complexity (e.g., Timm and Timmermann, 2007), and the TraCE-21ka
project at the National Center for Atmospheric Research (NCAR) conducted continuous,
transient climate simulations from 22 ka to 6.5 ka with the coupled NCAR Community
Climate System Model (Liu et al., 2009). Singarayer and Valdes (2010) simulated the
climate of the last 120,000 years using model snapshots at 4 ka and 1 ka intervals.

Here we explore past changes in late-Pleistocene climate using the coupled

Atmosphere-Ocean General Circulation Model (AOGCM) GENMOM. We simulated
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multi-century time slices that span the interval from LGM to pre-industrial (PI) every
three thousand years (21, 18, 15, 12, 9, 6, 3 ka and PI). The simulations were run with
prescribed insolation, GHG concentrations, continental ice sheets, land extent and sea
level as boundary conditions. We analyze the within and between climatology of the time
slices and compare the 21 ka and 6 ka results with terrestrial and marine climate
reconstructions and results from the PMIP2 and PMIP3 simulations. The goal of our
simulations is to adopt a methodological framework similar to that of PMIP to simulate
time slices between the LGM and mid-Holocene. The simulations also serve as a base
line for applying GENMOM to more detailed and focused studies of late-Pleistocene
climate such as quantifying the effects of freshwater forcing and dynamic vegetation

feedbacks.

2 Methods

2.1 Model description
GENMOM combines version 3 of the GENESIS atmospheric model (Pollard and

Thompson, 1997; Thompson and Pollard, 1995; 1997) with version 2 of the Modular
Ocean Model (MOM2, Pacanowski, 1996). Version 3 of GENESIS (Alder et al., 2011;
Kump and Pollard, 2008; Pollard and Thompson, 1997; Zhou et al., 2008) incorporates
the NCAR CCM3 radiation code (Kiehl et al., 1998). GENESIS has been developed with
an emphasis on representing terrestrial physical and biophysical processes, and for
application to paleoclimate experiments. Earlier versions of GENESIS (Pollard and
Thompson, 1994; 1995; 1997; Thompson and Pollard, 1995; 1997) have been applied in
a wide range of modern and paleoclimate studies (Beckmann et al., 2005; Bice et al.,

2006; DeConto et al., 2007; 2008; Horton et al., 2007; Hostetler et al., 2006; Miller et al.,
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2005; Poulsen et al., 2007a; 2007b; Ruddiman et al., 2005; Tabor et al., 2014), and
GENESIS simulations with fixed and slab ocean SSTs were included in PMIPI
(Joussaume et al., 1999; Pinot et al., 1999; Pollard et al., 1998).

In our simulations, we employ a coupled model with T31 spectral truncation,
which corresponds to a grid of 96 longitudes (3.75°) by 48 Gaussian latitudes (~3.71°).
The atmosphere is represented by 18 vertical sigma levels with mid-layers ranging from
0.993 at the surface to 0.005 at the tropopause. GENESIS includes the Land Surface
eXchange model, LSX, (Pollard and Thompson, 1995) to simulate surface processes and
to account for the exchange of energy, mass and momentum between the land surface and
the atmospheric boundary layer. MOM2 has 20 fixed-depth vertical levels and is
implemented on essentially the same T31 horizontal grid as GENESIS through cosine-
weighted distortion (Pacanowski, 1996). Sea ice is simulated by a three-layer model that
accounts for local melting, freezing, and fractional cover (Harvey, 1988; Semtner, 1976)
and includes the dynamics associated with wind and ocean current using the cavitating-
fluid model of Flato and Hibler (1992). The atmospheric and ocean models interact every
six hours without flux corrections.

GENMOM reproduces observed global circulation patterns, such as the seasonal
change in the position and strength of the jetstreams and the major semi-permanent sea
level pressure centers (Alder et al., 2011). The simulated present-day (PD) 2-m air
temperature climatology (Table 1) is 0.8 °C colder than observations globally, 0.7 °C
colder over oceans, and 0.9 °C colder over land. Similar to other AOGCMs (e.g., Lee and

Wang, 2014), GENMOM produces a split ITCZ over the equatorial Pacific Ocean.
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The pre-industrial Atlantic Meridional Overturning Circulation (AMOC)
simulated by GENMOM is 19.3 £+ 1.4 Sv, which is stronger than, but comparable to, the
observed value of 17.4 Sv (Srokosz et al., 2012). Simulated SSTs display a warm bias in
some regions of the Southern Ocean, primarily south of 50°S around Antarctica, and a
warm bias exceeding ~2 °C between 200—1000 m depth in parts of the tropics and mid-
latitudes. Alder et al. (2011) note that the warm bias in the Southern Ocean is associated
with the relatively weak Antarctic Circumpolar Current (ACC) in GENMOM (62 Sv
versus the observed value of 119 Sv) and Deacon Cell upwelling which allows excessive
vertical mixing in the present-day GENMOM simulation, and together reduce sea ice
around Antarctica, particularly during summer. Both of these features are present to some
extent in our suite of simulations. We tested the Gent-McWilliams vertical ocean mixing
scheme (Gent and Mcwilliams, 1990) in GENMOM but it did not improve the Southern
Ocean warm bias, so we did not implement it in our paleosimulations.

The climate sensitivity of GENMOM for a doubling of CO, from present day is
2.2 °C, which is in the lower range of other coupled AOGCMs (Meehl et al., 2007) and is
consistent with recent estimates of 2.7 °C based on the PMIP3 LGM simulations
(Harrison et al., 2013) and paleodata-model estimates of 2.8 °C (Annan and Hargreaves,
2013) and 2.3 °C (Schmittner et al., 2011b).

Reflecting lower GHG concentrations, the average NH 2-m temperature in our PI
simulation is 0.79 °C cooler than our PD simulation, where as the PD simulation is 1.97
°C cooler than observations and reflects the lower GHG concentrations specified in the PI
simulation (Tables 1 and 2). The PI-to-PD warming in the NH is similar to the observed

warming of ~0.6 — 0.9 °C (Brohan et al., 2006) and is in the range of response of other
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climate models (e.g., Otto-Bliesner et al., 2006b). The greatest regional warming between
the in the PD simulation (not shown) is ~3 °C over the high northern latitudes and
northern polar regions during boreal autumn, winter and spring, consistent with the
observed polar amplification (Hassol, 2004).
2.2 Experimental design

We applied GENMOM to eight time periods for 21, 18, 15, 12, 9, 6, 3 ka and pre-
industrial. We prescribed insolation at the top of atmosphere for each time slice (Fig. 1)
by specifying appropriate orbital parameter values for precession, obliquity and
eccentricity (Table 1, Berger and Loutre, 1991). The solar constant was set to 1367 W m™
for all time periods. We estimated GHG concentrations from ice-core records by applying
a £300 yr averaging window centered on the time period of interest (Table 1), and we
specified the PMIP3 GHG concentrations for our PI simulation (Braconnot et al., 2007a).

To derive continental ice sheets for the time slices, we used the ICE-4G
reconstructions (Peltier, 2002) for the Fennoscandian (FIS) and Cordilleran (CIS), and
the Oregon State University Laurentide Ice Sheet (OSU-LIS) reconstruction (Hostetler et
al., 1999; Licciardi et al., 1998) (Fig. 2). The ICE-6G reconstruction was not available for
our 8 time slices at time we began our simulations. However, the OSU-LIS
reconstruction has similar ice sheet topography to that of ICE-6G (Ullman et al., 2014)
and was available for our simulation periods. The combination of OSU-LIS and ICE-4G
enables us to use a more realistic LIS topography than that of ICE-5G, particularly over
the LIS during the deglacial, and facilitates adjusting sea level throughout our time slices.
A similar ice sheet configuration (OSU-LIS and ICES5-G) was used as a boundary

condition in the NASA GISS-E2-R LGM simulation submitted to the PMIP3 archive
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(Ullman et al., 2014). We specified the 10 ka OSU-LIS ice sheet to ensure that Hudson
Bay remained covered by the LIS at 9 ka (Dyke and Prest, 1987). The ICE-4G
reconstruction includes an Eastern Siberian Ice Sheet, which we removed because it did
not exist (Felzer, 2001).

Topographic heights of the land masses were altered to reflect relative sea-level
change in ICE-4G. We created the topography and land mask for each time slice by
applying orographic changes to the present-day Scripps global orography data set (Gates
and Nelson, 1975). Orographic changes based on ICE-4G exposed or flooded land grid
cells associated with relative sea level (e.g. Indonesia, Papua New Guinea). We set the
ocean bathymetry to modern depths for ocean grid cells.

We specified the modern distribution of vegetation (Dorman and Sellers, 1989)
for all simulations because reconstructions of global vegetation for all time slices either
do not exist or are not well constrained. We note that while setting vegetation to modern
distribution for all simulations isolates the period-to-period climate response to other
boundary conditions, we do not capture dynamic vegetation-climate feedbacks that may
be important in some regions such as North Africa (Kutzbach et al., 1996b; Timm et al.,
2010) and the high latitudes of the NH (Claussen, 2009; Renssen et al., 2004). The
vegetation type on emergent land cells is set to be the same as neighboring existing land
cells. The simulations do not include varying dust forcing across the time slices, which
may account for up to 20% of the radiative change (Kohler et al., 2010; Rohling et al.,
2012). Freshwater flux from land-based precipitation is globally averaged and spread

over the world ocean (Alder et al., 2011).
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In accordance with the PMIP3 protocol, to conserve atmospheric mass we
compensated for changes in global topography in each time slice by holding global
average surface pressure constant. At T31 resolution the Bering Strait and the Strait of
Gibraltar are closed in the default MOM2 bathymetry. We conducted sensitivity tests and
adjusted the bathymetry to ensure that key passages (e.g. Drake Passage, Norwegian Sea,
and Indonesian Throughflow) were adequately represented. Additional sensitivity testing
revealed that the modeled AMOC and salinity of the Arctic are very sensitive to the
bathymetry of the Norwegian Sea, particularly to the width of the passage between
Scandinavia and Greenland as it narrowed by the growth of the FIS. We removed Iceland
from the model to ensure that the passage remained sufficiently wide and deep to prevent
unrealistic buildup of salinity in the Arctic.

Each time slice simulation was initialized from a cold start (isothermal
atmosphere, latitudinally dependent ocean temperature profile, and uniform salinity of 35
ppt) and run for 1,100 years. We exclude the first 1,000 years from our analysis here to
allow for spin up of ocean temperatures. The temperature drift in the last 300 years of our
simulations (SFig. 1) is acceptably small (Braconnot et al., 2007a; Singarayer and Valdes,
2010) with values of -0.05 °C/century for the LGM, 0.01 °C/century for 6 ka, and -0.02
°C/century for PI. Drift in the LGM and early deglacial simulation is attributed primarily
to long-term cooling and the evolution of sea ice in the southern ocean. Simulated
AMOC exhibits decadal scale variability, but was free of drift over the last 300 years of
the simulations.

In what follows, the monthly averages of the model output are based on the

modern calendar as opposed to the angular calendar that changes with Earth-sun
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geometry (Pollard and Reusch, 2002; Timm et al., 2008). The modern calendar is

commonly used in data-model comparisons (e.g., Harrison, 2013).

3 Results

3.1 Atmospheric circulation
The boreal winter (DFJ) 500 hPa heights in the PI simulation (Fig. 3a) display the

observed high- and mid-latitude ridge-trough-ridge-trough standing wave structure (wave
number two) that arises from continent-ocean-continent-ocean geography of the NH
(Peixoto and Oort, 1992). From 21 ka to 9 ka the LIS, the FIS and Greenland ice sheets
alter the NH standing wave structure resulting in persistent, distinct troughs and cyclonic
flow tendencies over northeast Asia, the North Pacific, the continental interior of North
America, the North Atlantic and Europe (Fig. 3, maps of raw fields SFig. 2).

Consistent with previous LGM studies using comparable (Braconnot et al., 2007a)
and higher-resolution (Kim et al., 2007; Unterman et al., 2011) climate models, from 21
ka through 9 ka the western edge of the Cordilleran Ice Sheet diverts the LGM winter
polar jetstream resulting in one branch that is weaker than PI over the Gulf of Alaska and
the western and central regions of the ice sheet, and a second branch to the south of the
ice sheet that is stronger than the PI (Fig. 3a). The reorganization creates westward wind
anomalies over the North American Pacific Northwest. The LIS effectively guides the
convergence of the branches, and the meridional gradient of low and high 500 hPa height
anomalies in the North Atlantic intensifies flow over North America, the North Atlantic,
Europe and Northern Africa (Figs. 3a) thereby altering the path of storm tracks. This flow

pattern weakens progressively as the LIS recedes.
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The influence of the NH ice sheets is also evident in summer (JJA), but to a lesser
degree than in winter (Fig. 3b) due to continental heating and the absence of the strong,
mid-latitude storm tracks. Between 21 ka and 15 ka, the summer jetstream is constrained
and therefore enhanced along and to the south of the southern margin of the LIS
extending over the North Atlantic. At 18 ka, a trend toward positive JJA anomalies in 500
hPa heights emerges over the regions of the semi-permanent subtropical high pressure of
the North Pacific and central Atlantic. The regions of positive height anomalies, and their
associated anticyclonic wind anomalies, expand over central North America, peak from
12 ka through 9 ka, and diminish by 6 ka (Fig. 3). The DJF pattern of low-to-high height
anomalies over the North Atlantic is replaced during JJA by a strengthened subtropical
high. Anticyclonic flow around positive height anomalies on the western edge of the FIS
alters regional flow patterns over and south of the ice sheet. The GENMOM responses to
the NH ice sheets are similar to many previous modeling experiments that have
established that changes in tropospheric pressure—surface heights and winds are primarily
driven by changes in ice-sheet height, and secondarily by temperature and albedo
feedbacks (COHMAP Members, 1988; Felzer et al., 1996; 1998; Otto-Bliesner et al.,
2006a; Pausata et al., 2011; Pollard and Thompson, 1997; Rind, 1987).

From 21 ka to 12 ka, the largest changes in boreal winter sea-level pressure (SLP)
are associated with negative surface temperature anomalies over the continental ice
sheets, the landmasses of the NH, and areas of expanded sea ice in the North Atlantic
(Fig. 4a) where cooling increases subsidence and thus contributes to cold high surface
pressure. From 21 ka to 15 ka, high pressure over the LIS produces anticyclonic flow

across the northern Great Plains and over the Puget Lowlands of the US. Similar
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anticyclonic tendencies are simulated along the margin of the FIS. Between 12 ka and 6
ka the winter SLP around the Aleutian low in the North Pacific and the Icelandic low in
the North Atlantic is strengthened relative to PI. The Aleutian low is expanded southward
whereas the Icelandic low is confined on the northern edge by the FIS and is slightly
displaced southeastward.

From 21 ka to 9 ka, the JJA SLP anomalies remain strongly positive over the ice
sheets and sea ice, whereas from 12 ka to 6 ka the SLP anomalies over Northern
Hemisphere landmasses are negative due to enhanced continental warming (Fig. 4b). The
patterns of the JJA 500 hPa heights, SLP and the associated circulation over North
America and adjacent oceans again illustrate similar responses to time-varying controls:
changes from 21 ka to 15 ka are primarily driven by changes in the LIS, whereas from 12
ka to 6 ka the circulation changes are related to the changes in the seasonality of
Holocene NH insolation (Fig. 2).

3.2 Near-surface air temperature

Our time slice simulations clearly display surface air temperature (SAT) changes
attributed to radiative forcing from the presence of the continental ice sheets, GHGs

(Clark et al., 2012), and insolation (Fig. 5). The global average mean annual LGM
temperature simulated by GENMOM is 3.8 °C colder than the PI (Table 2, Fig. 5a),
within the range of cooling in the PMIP2 AOGCM simulations (3.1 °C to 5.6 °C and
average 4.4 °C) and the PMIP3 simulations (2.6 °C to 5.0 °C and average of 4.4 °C) that
were forced by similar boundary conditions (Harrison et al., 2013; Kageyama et al.,
2006). Our LGM cooling is also in agreement with Annan and Hargreaves (2013), who

reconciled the PMIP2 ensemble and proxy data to derive an estimated cooling of 4.0 £
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0.8 °C, but falls outside the range of Schmittner et al. (2011b) who found a median
cooling of 3.0 °C (66% probability range of 2.1 °C - 3.3 °C). GENMOM is also consistent
with three transient simulations (Liu et al., 2014) averaged over the periods simulated by
GENMOM. Excluding the BA and YD, our simulations reproduce the rate of warming
between 21 ka and 15 ka, but are consistently ~1 °C colder than the reconstruction of
Shakun et al. (2012) when sampled at the proxy sites (Fig. 5b). During these periods,
GENMOM falls at the low end or outside the range of the transient models; however,
GENMOM falls within the range of LGM and MH cooling simulated by the PMIP3
models, which have similar experimental designs and large scale boundary conditions.

Neither GENMOM nor the ensemble mean of the PMIP3 models capture the
~0.5 °C the 6 ka temperature anomaly in the Marcott et al. (2013) reconstruction. The
change in the 6 ka mean annual temperature at the proxy sites in the 12 PMIP3 models
we analyzed ranged from -0.3 to 0.3 °C with a mean of ~0.0 °C. Three models simulated
slight warming, five near zero and four simulated slight cooling. Whether or not some
proxies used in the temperature reconstructions have seasonal bias which would
exaggerate the mid-Holocene warming remains an open research question (Liu et al.,
2014).

Seasonal temperature changes across our time slice simulations illustrate the
spatial and temporal effect of changing boundary conditions (Fig. 6). From 21 ka through
15 ka, both DJF and JJA exhibit cold temperature anomalies exceeding 16 °C over and
adjacent to the ice sheets in both hemispheres. With the exception of Europe and the high
latitudes of the NH, boreal winters remain generally colder than PI over the continents

until 3 ka (Fig. 6), corresponding to reduced insolation. NH atmospheric circulation
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changes induced by atmospheric blocking from the LIS (Fig. 3) sustain positive winter
and summer temperature anomalies over Beringia. Summer warming also occurs south of
the FIS across much of Asia. Although the mid-Holocene wintertime deficit in insolation
is small at high northern latitudes, changes in short-wave radiation at the surface during
boreal summer in the model are large and positive (30 — 40 Wm™) due to the precessional
shift of perihelion and changes in obliquity (SFig. 4). Substantial warming occurs
between most pairs of consecutive time slices from the LGM through the Holocene (Fig.
7, Table 2); however, over the African and Indian monsoon regions increased cloudiness
associated with enhanced summer monsoonal precipitation leads to cooling from 15 to 6
ka.

The relatively high rate of warming between 18 ka and 15 ka (1.5 °C land and
0.5 °C ocean, Fig. 7, Table 2) is commensurate with increased GHGs (Table 1). Periods
of peak annual warming from 15 ka to 12 ka (2.4 °C land and 0.7 °C ocean) and from 12
ka to 9 ka (1.6 °C land and 0.2 °C ocean) are associated with increasing GHG
concentrations, ablation of the NH ice sheets (Figs. 1 and 6a). The simulated rates of
annual global warming between the LGM and the early Holocene (Fig. 5) are in
agreement with data (Clark et al., 2012; Gasse, 2000), and the analyses by Shakun et al.
(2012) and Marcott et al. (2013) who attribute a large component of the warming to rising
GHG levels.

The DJF and JJA temperature differences in our 21 ka simulation are similar to
those of the PMIP3, allowing for differences in between our prescribed NH ice sheets
(ICE-4G+OSU-LIS in GENMOM) and the blended ice sheet of the PMIP3 simulations

that essentially combines the height of the ICE6G reconstruction with the extent of the
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Dyke and Prest (1987) reconstructions (SFigs. 5 - 10, Braconnot et al., 2012). In both
seasons, GENMOM produces 0.5 - 1 °C less cooling in the tropical oceans and greater
warming over Beringia. The positive JJA temperature anomaly south of the FIS in
GENMOM persists through 15 ka. Summer warming in the presence of the ice sheet was
identified in earlier versions of GENESIS (Pollard and Thompson, 1997) and is
associated with subsidence over the ice (Rind, 1987). Similar JJA warming also occurs in
some of the PMIP3 models, but is likely a model artifact (Pollard and Thompson, 1997;
Ramstein and Joussaume, 1995; Rind, 1987).

The DJF and JJA temperature anomalies in our 6 ka simulation are also similar to
those of the PMIP3 models (SFigs. 7 and 8). Relative to PI, GENMOM produces slightly
greater winter warming over Scandinavia than is evident in the average of the PMIP3
simulations, and is generally 0.5 - 1.0 °C cooler over Asia, Africa and South America.
During boreal summer, GENMOM simulates warming over the NH landmasses and
cooling over the North African and Indian monsoon regions, consistent with the PMIP3
models. Continental warming in GENMOM is ~ 0.5 - 1.0 °C weaker than most PMIP3
models, particularly in Europe and Asia. A portion of the weaker warming in GENMOM
is attributed to the prescribed 6 ka GHG concentrations we derived from the ice-core data
that differ slightly from those specified for the PMIP3 experiments (Table 1 caption).

3.3 Precipitation and monsoons

The simulated global precipitation anomalies display a progression from the drier
and colder conditions of the LGM to the warmer and wetter conditions of the Holocene
(Fig. 8, Table 2). The global mean annual precipitation change of -0.29 mm d™' for the

LGM is distributed as greater drying over land and ice sheets (-0.30 mm d') than oceans
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(-0.22 mm d). Regionally coherent patterns of precipitation change (Figs. 8 and 9) are
indicative of displacement and changes in the strength of storm tracks (Li and Battisti,
2008), the ITCZ and the Hadley circulation, and the onset, amplification and subsequent
weakening of the global monsoons regions (Broccoli et al., 2006; Chiang, 2009; Chiang
and Bitz, 2005).

Between the LGM and 15 ka, during DJF areas over and adjacent to the NH ice
sheets display predominately reduced precipitation arising from a combination of the
desertification-effect of the high and cold ice, lower-than-present atmospheric moisture
and cloudiness and the advection of cold, dry air off of the ice sheets (Figs. 3a, 4a, 6a and
8a). The topographic and thermal effects of the LIS and the thermal effect of sea ice

(Kageyama et al., 1999; Li and Battisti, 2008) alter 500 hPa geopotential heights
along the southern margin of the ice sheet (Figs. 3a and SFig. 2a), causing the
development of positive precipitation anomalies extending from the eastern Pacific across
the Gulf of Mexico, eastern North America and into the Northern Atlantic.
Accompanying negative precipitation anomalies over the North Atlantic and positive
anomalies over the Nordic Seas are related to changes in the location of storm tracks. The
local effect of the ice sheets on precipitation diminishes during the early and mid-
Holocene as their influence on circulation weakens and the atmosphere becomes warmer
and moister (Fig. 9a).

The negative DJF anomalies that persist from 21 ka to 15 ka during austral
summer along the equatorial and low-latitude areas of South and Central America, south-
central Africa Southeast Asia, Northern Australia, the tropical Atlantic, the Indian Ocean

and the western Pacific warm pool are caused by changes in the location of the ITCZ and
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weakened southern monsoonal circulation. This particularly affects the winter monsoon
in central South America (Cheng et al., 2012; Zhao and Harrison, 2012) and in Southeast
Asia and Indonesia where additional feedbacks in the energy and water balances over
emergent land areas occur during low sea level stands (Figs. 1 and 8a) have been shown
to alter the Walker Circulation (DiNezio and Tierney, 2013).

Precipitation for JJA also exhibits considerable change over time (Figs. 8b and
9b). Similar to DJF, generally drier conditions are simulated over and adjacent to the NH
ice sheets where anticyclonic flow tendencies suppress precipitation (Fig. 4b). Along
portions of the southern margins of the LIS and FIS, however, orographic lifting
enhances precipitation at 21 ka (Pollard and Thompson, 1997). Wetter conditions in the
North American Southwest derive from enhanced westerly flow aloft and lower level
southwesterly flow off the eastern Pacific that are associated with displacement of the
jetstream by the ice sheets and the weakened Pacific subtropical high. Between 21 ka and
12 ka the LIS causes an increased pressure gradient from a strengthened Azores-Bermuda
high and weakened subtropical high in the eastern Pacific (Figs. 3b and 4b), resulting in
amplified and displaced westward winds, drying over Central America, and wetter-than-
present conditions over northern South America. At the LGM, North Africa, Europe, and
all but the western edge of Asia, are drier than the PI, again reflecting the drier
atmosphere of the full glacial.

The magnitude, gradients and spatial patterns of GENMOM 21 ka DIJF
precipitation anomalies are consistent with the PMIP3 experiments. Notable exceptions
are greater drying than some models in the North Atlantic and the band of positive

anomalies extending across the Gulf of Mexico and the southeast US. GENMOM
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produces positive precipitation anomalies over Australia, which is present in four of the
PMIP3 models. The 21 ka JJA precipitation anomalies are also in agreement with PMIP3,
but display weaker drying over eastern NA and slight drying over the North Africa
monsoon region.

The time evolution from LGM to PI of the African and Indian monsoons reflects
the interplay of changes in the location of the ITCZ and Hadley circulation that are linked
to the receding NH ice sheets, GHG-driven global warming, enhanced NH JJA insolation
and changing land-SST temperature contrast. The North Africa and Indian monsoons are
suppressed between 21 ka and 18 ka. After 18 ka, wetter-than-present conditions emerge
in the monsoon regions of North Africa and India where increased JJA insolation warms
the continents which amplifies the land-sea temperature contrasts that drive monsoonal
circulation (Braconnot et al., 2007b; Kutzbach and Otto-Bliesner, 1982; Zhao and
Harrison, 2012). The simulated DJF air temperatures in North Africa cool from the LGM
until 15 ka, and then warm monotonically through the rest of the deglaciation and
Holocene (Fig. 10). Wintertime precipitation over the North African region is minimal. In
contrast, JJA temperatures increase throughout the deglaciation, peak at 9 ka, decrease
slightly at 6 ka, and increase thereafter. A commensurate increase in JJA precipitation
over North Africa between 12 ka and 6 ka is associated with northward migration of the
ITCZ (Braconnot et al., 2007a; 2007b; Kutzbach and Liu, 1997), which enhances the
transport of moisture into both the North African and Indian monsoon regions.
Monsoonal precipitation peaks over both regions between 12 ka and 9 ka (Fig. 10). The
change in precipitation between 9 ka and 6 ka over India (0.9 mm d™) is nearly double

the change over North Africa (0.5 mm d), consistent with the diagnoses of the mid-
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Holocene monsoon of Marzin and Braconnot (2009) who attribute the stronger ~9 ka
monsoon to insolation related to precession and snow cover on the Tibetan Plateau. The
pattern of precipitation in the Indian monsoon region is similar to that of North Africa,
but exhibits a greater range between peak Holocene values and the PI.

The overall temporal progression and magnitude of precipitation changes in the
time slice simulations are in agreement with the PMIP2 (Braconnot et al., 2007a; 2007b)
and PMIP3 simulations at 21 and 6 ka, and with other mid-Holocene modeling studies

(Hély et al., 2009; Kutzbach and Liu, 1997; Kutzbach and Otto-Bliesner, 1982;
Timm et al.,, 2010). More specifically, the June through September GENMOM
precipitation anomaly of -0.6 mm d”' over the North Africa monsoon region during the
LGM is within the range (-0.9 to 0.1 mm d™') of 5 PMIP2 AOGCMs (Braconnot et al.,
2007a) and 7 PMIP3 models (range of -0.6 to 0.2 and average of -0.2 mm d). The
GENMOM LGM anomaly over India (-0.9 mm d™) is also within the range (-1.7 to -0.1
mm d') of the PMIP2 simulations (Braconnot et al., 2007a) and the PMIP3 simulations
(range of -1.3 to 0.0 and average of -0.7 mm d™").

The northward expansion and spatial pattern of precipitation anomalies of the 6 ka
monsoons are in very good agreement with both the PMIP2 and PMIP3 experiments.
Summer precipitation in the GENMOM simulation is enhanced by 0.9 mm d™' relative to
PI over North Africa, in agreement with the range (0.2 to 1.4 mm d') and mean
(0.7mm d™") of 11 PMIP2 AOGCMs (Zhao and Harrison, 2012) and 12 PMIP3 models
(range of 0.1 to 1.0 and average of 0.6 mm d'). Over India, the 6 ka GENMOM

precipitation anomaly of 1.1 mm d' exceeds the range (0.2 to 0.9 mm d') and mean (0.6



468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

21

mm d) of the 11 PMIP2 models (Zhao and Harrison, 2012), but is within the range of
the PMIP3 models (0.5 to 1.3 and average of 1.0 mm d™) .
3.4 Seaice

DIJF sea ice is present in the PI simulation over Hudson Bay, the Arctic Ocean,
along the coast of eastern Canada, around Greenland, the Nordic Seas and the Baltic and
North Sea (Fig. 11), in agreement with observed present-day distributions (Jaccard et al.,
2005). Ice fractions of up to 100% are simulated over the Bering Sea and the Sea of
Okhotsk. In the SH, sea ice persists through austral summer in the Weddell and Ross
Seas and a few scattered locations around Antarctica. While the locations of the ice
around Antarctica are in agreement with observations (Gersonde et al., 2005), the model
underestimates the ice extent over the Weddell Sea and between the Weddell and Ross
Seas. The lack of ice is partly attributable to a warm bias in the Southern Ocean
associated with the previously mentioned weak ACC (discussed further below). During
August and September, simulated sea ice is greatly reduced in the North Atlantic region
(Fig. 11), with remnant ice persisting in the extreme north of Baffin Bay and the east
coast of Greenland, also in agreement with observations. In the SH, the corresponding
winter sea ice grows substantially and the distribution is in generally good agreement
with observations (Gersonde et al., 2005).

The simulated annual average ice extents for the NH are 9.8x10° km?” for the
LGM, 15.8x10° km® for 6 ka and 14.1x10° km? for PI (grid cells with fractional coverage
> 15%). Compounded with climate-forcing, changes in both the distribution and areal
coverage of the NH ice also reflect the change in ocean area due to the transition of land

and ice sheets to ocean as sea level rises (Fig. 11 and SFigs. 13 - 15). For the same time
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periods, the SH ice area extents, which are minimally affected by land-sea transitions with
sea level rise, are 20.9x10° km?, 11.4x10° km” and 11.1x10° km?, respectively.

During the 21 ka boreal winter, the Arctic Ocean and Baffin Bay are fully covered
by ice and the ice around Greenland expands. The model displays increased sea ice in the
western North Atlantic and decreased ice in the eastern North Atlantic and Nordic Seas
where the prescribed FIS margin advances into the water (Fig. 2). The limit of substantial
coverage north of 55°N is in agreement with reconstructions (de Vernal et al., 2006) and
other LGM simulations (Otto-Bliesner et al., 2006a; Roche et al., 2007); however, slight
fractional cover (pack ice) in the model likely extends too far south (to ~45°N) along the
coast of North America. Fractional cover of up to 100% is simulated in the far Northwest
Pacific and the Sea of Okhotsk with a sharp, southward transition to reduced coverage. In
boreal summer of the LGM, simulated sea ice retreats to 65°N in the North Atlantic and
persists along eastern Canada, Baffin Bay and south of Greenland and the extreme
northern areas of the Nordic Seas.

The overall distribution of SH sea ice (Fig. 11) is in good agreement with
reconstructions and other model simulations (Gersonde et al., 2005; Roche et al., 2012).
The simulated LGM maximum winter sea ice area is 35.5 x10° km” (72% greater than PI)
and the LGM summer minimum is 4.8x10° km* (112% greater than PI); the winter and
summer reconstructed areas are 43.5 + 4 x10® km® and 11.1 + 4 x10° km?, respectively
(Roche et al., 2012). The seasonal amplitude (maximum minus minimum) of LGM ice
cover simulated by GENMOM (30.6 x 10° km?) is comparable with the reconstructed
amplitude (32.4 + 4x10° km?) and the LGM-to-PI change of seasonality is well within the

range simulated by the PMIP2 models (Roche et al., 2012 their Figures 2 and 3).
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3.5 Antarctic Circumpolar Current and Atlantic Meridional Overturning
Circulation

The simulated ACC of 62 Sv is ~48% weaker than the observed value of 119 Sv
through the Drake Passage (GECCO data; K6hl and Stammer, 2008). Although the T31
resolution of GENMOM is a factor in limiting flow through the Drake Passage, we
attribute the underestimate of the ACC in part to insufficient wind stress at the latitude of
the Drake Passage, which is caused by equatorward displacement of the core of the
westerly winds, a shortcoming in common with other low-resolution AOGCMs (Alder et
al., 2011; Russell et al., 2006; Schmittner et al., 2011a).

Considerable uncertainty exists in the proxies that are used to infer past changes
in AMOC strength (Delworth and Zeng, 2008; Lynch-Stieglitz et al., 2007). The
21pa/5°Th record from 33°N on the Bermuda Rise (Lippold et al., 2009; McManus et al.,
2004) indicates that after the LGM the strength of the AMOC began to diminish at
~18 ka, was further reduced during Heinrich Event 1 (H1) at ~17 ka, increased abruptly
during the BA at 15 ka, and weakened again during the YD cold reversal at ~12 ka. After
the YD, the AMOC strengthened again and stabilized. In climate models, a variety of
factors including the North Atlantic freshwater budget, model resolution and
parameterizations and the characteristics of simulated Antarctic Bottom Water (AABW)
give rise to a considerable simulated range of AMOC (Weber et al., 2007).

The AMOC in our PI simulation (Fig. 12) is 19.3 = 1.4 Sv at the core site of
33°N, a value similar to the present-day estimate of 18.7 + 4.8 Sv at 26.5°N (Srokosz et
al., 2012). The maximum AMOC simulated by GENMOM in the Pl is 21.3 Sv at 41°N, a
value outside the range of 13.8 to 20.8 Sv of five models in the PMIP2 experiments

(Weber et al., 2007), but within the range of 3.8 to 31.7 Sv of the [IPCC AR4
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models (Meehl et al., 2007; Schmittner et al., 2005). The newer CMIP5 models have a
narrower range of AMOC of ~14 to ~30 Sv when sampled at 30°N (Cheng et al., 2013);
GENMOM simulates 16.0 = 1.3 Sv at this location.

Our simulated LGM AMOC at the core site is 16.4 Sv, which is a ~14.7%
reduction relative to the PI. The maximum LGM AMOC is 22.4 Sv at 40.8°N, an
increase of 1.1 Sv (5.1%) relative to the PI maximum and within the considerable range
of -6.2 to +7.3 Sv in five PMIP2 simulations (Weber et al., 2007). In the deglacial
simulations (21 ka through 15 ka), the northward (positive) AMOC flow extends deeper
than that of the PI (Fig. 12) and the southward flow or AABW consequently is somewhat
weakened. The maximum AMOC in GENMOM is essentially constant at 40.8°N depth
of 1.23 km for all time slices. Although the depth of the maximum is again comparable to
the range of the PMIP2 models (1.24 + 0.20), the invariance of the location and depth in
GENMOM is likely a model-specific response.

Our time slice simulations display an increase in the strength of AMOC from the
LGM to a maximum at 15 ka, decrease to a minimum at 9 ka, and remain more-or-less
constant through the PI (Fig. 13), which is in apparent disagreement with the **'Pa/>Th
records from which greater variability is inferred (Lippold et al., 2009; McManus et al.,
2004). We do not expect to capture rapid and abrupt climate change events such as H1
(~17 ka), the BA (~15 ka) and the YD (~12 ka) with only eight time slices, because we

did not manipulate freshwater discharge to the North Atlantic in our experimental design.

4 21 ka and 6 ka data-model comparisons
We compare temperature and precipitation from our LGM and mid-Holocene

simulations with paleoclimatic reconstructions and the PMIP3 simulations. For the LGM,
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we use the pollen-based reconstructions of mean annual mean temperature (MAT) and
precipitation (MAP) from Bartlein et al. (2011) over land, and the Multiproxy Approach
for the Reconstruction of the Glacial Ocean Surface Project (MARGO) reconstructions
over oceans (Waelbroeck et al., 2009). The gridded 2° x 2° pollen data include >3,000
terrestrial pollen records from Eurasia, Africa and North America, and the global
MARGO reconstruction comprises ~700 analyses of planktonic foraminifera, diatom,
dinoflagellate cyst and radiolarian abundances, alkenones, and planktonic foraminifera
Mg/Ca from marine core sites. For 6 ka, we combine the pollen-based reconstructions of
Bartlein et al. (2011) and the GHOST SST reconstructions (Leduc et al., 2010). The 6 ka
GHOST data set contains ~100 reconstructed temperature records based on analyses of
alkenones and foraminifera Mg/Ca from marine sites located along continental margins
and the Mediterranean Sea.
4.1 21Kka

Our simulated 21 ka anomalies of MAT and MAP are comparable with the pollen
reconstructions (Fig. 14) and fall within the range of the PMIP3 models. GENMOM
captures the mixed pattern of temperature and precipitation anomalies over Beringia that
are present in the reconstructions (Fig. 14a,b) and in several of the PMIP3 simulations
(SFigs. 8,9, and 16). The GENMOM SST anomalies indicate broad cooling of the global
oceans (mean of -1.7 °C) but not as much cooling as is simulated in the PMIP3 models
(mean of -2.9 °C); although, Harrison et al. (2013) found that the PMIP3 models tended
to overestimate oceanic cooling. Sampled at the MARGO locations, GENMOM is
generally warmer, but within the range of the PMIP3 models (Harrison et al., 2013). The

overall agreement of the simulation with the MARGO data is good, but some features in
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the MARGO data are not reproduced by GENMOM. For example, similar to the PMIP3
simulations (SFigs. 5, 6 and 16) the GENMOM simulation lacks the warming over the
Greenland and Nordic Seas inferred from the data; although, while the data indicate the
Nordic Sea was ice free at the LGM, the magnitude of the warming elsewhere, if it
occurred, is somewhat unclear (de Vernal et al., 2006; Moller et al., 2013). The limited
cooling along the western coast of North America and Mediterranean in GENMOM is
attributed to the inability of the model to resolve the California Current and the
Mediterranean circulation (Alder et al., 2011).

Over the tropical ocean basins, the 21 ka GENMOM simulation is 1.6 °C colder
than the PI, in good agreement with the inferred MARGO cooling of 1.7 = 1 °C (Otto-
Bliesner et al., 2009). Average simulated SST anomalies are also similar to MARGO
over the Indian (-1.6 °C versus -1.4 = 0.7 °C) and Pacific (-1.5 °C versus -1.2 = 1.1 °C)
Oceans, but are warmer than the data in the tropical Atlantic basin (-1.9 °C versus -2.9 +
1.3 °C). In each of these regions, the anomalies simulated by GENMOM fall within the
range of six PMIP2 models analyzed by Otto-Bliesner et al. (2009). GENMOM captures
the 2 — 4 °C cooling in the eastern coastal Atlantic evident in the MARGO data, and the
SST anomalies are ~2 — 4 °C colder over the Western Pacific Warm Pool. Neither
GENMOM nor the PMIP3 simulations produce the warming over the central and eastern
tropics, or the low latitudes and the North Atlantic that is evident in the MARGO
reconstruction.

The simulated LGM MAP anomalies are also comparable with the pollen-based
reconstructions (Fig. 14c and d). The model simulates general drying of the NH and a

mix of increased and decreased precipitation in Beringia, South America, southern
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Africa, Southeast (SE) Asia and Australia. GENMOM produces strong drying over and
around the NH ice sheets, wetter-than-present conditions in the southwestern United
States and drying in Central America. The simulation fails to reproduce the drying over
eastern North America that is inferred from the pollen-based data. There is considerable
variability in the PMIP3 simulations of MAP (SFigs. 9 and 10). In common with the
PMIP3 models, GENMOM simulates a general reduction of precipitation over the NH,
the North African and Indian monsoon regions, and SE Asia, and increased precipitation
south of the LIS, southern Africa and much of Australia (SFig. 16).

42 6Kka

Relative to PI, the changes in 6 ka boundary conditions are predominantly in the
seasonality of insolation (Table 1) as opposed to the stronger radiative forcing associated
with changes in GHGs and continental ice sheets from the LGM through the early
Holocene. The resulting changes in 6 ka climatology are thus more subtle than those of
the deglaciation. The changes of 6 ka MAT simulated by GENMOM are generally within
the range of +1 °C (Fig. 15b). Enhanced MAP and associated cooling are evident in the
NH monsoonal regions (Fig. 15d). Elsewhere, MAP changes are within a range of
+50 mm.

Pollen-based data reconstructions indicate highly heterogeneous changes in MAT
during 6 ka; however, there are regions with spatially consistent changes in sign, such as
warming south of Hudson Bay, areas of warming over Scandinavia and Western Europe,
and cooling in the Mediterranean region (Fig. 15a). Larger MAT changes at high-
elevation sites and regions with anomalies of mixed sign occur in the data over most

continents. The GENMOM 6 ka MAT anomalies also display a mix of warming and
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cooling in a range of about +4 °C; however, where pollen-based records exist, the
majority of the anomalies are within a narrower range of about £1.5 °C (Fig. 15b).
GENMOM, and many of the PMIP3 models (SFigs. 8, 9 and 16), produce a mixture of
warm and cold 6 ka MAT anomalies that are generally in the range of 1 °C over the
North Atlantic, Europe and Scandinavia, which underestimates the proxy-based
anomalies by >2 °C at some sites.

The Asian pollen-based reconstruction similarly displays a heterogeneous
temperature pattern that is reproduced by GENMOM and the PMIP3 models. In all of the
models, the sign of the anomalies does not vary abruptly in close proximity to the pollen
sites. We note, however, that the smooth topography in GCMs limits the ability of the
models to reproduce large and regionally spatially heterogeneous anomalies that are
characteristic of the local climate at many high elevation pollen sites in Western North
America, the Alps, the central plateau of African and Asia.

GENMOM displays cooling in the North African and Indian monsoon regions
and warming over the high northern latitudes, consistent with the PMIP3 models (Fig.
15). In contrast, GENMOM simulates weak global cooling of 0.39 °C compared to no
change in the PMIP3 model average which is partially attributed to our lower prescribed
GHG concentrations (Table 1 caption).

Precipitation anomalies inferred from the pollen-based data indicate that 6 ka was
wetter than the PI in Europe, Africa, Asia and some parts of western North America and
drier than PI in much of eastern North America and Scandinavia (Fig. 15¢). GENMOM
simulates the gradients and coherent patterns of positive and negative MAP anomalies

over North America, and North, Central and western Africa, in agreement with the data
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and the PMIP3 models. The data and GENMOM are also in agreement over the Asian
monsoon region and northwest Asia where wetter conditions prevail, but anomalies of
opposite sign are simulated over the Great Lowland Plain in north central Eurasia and
Southeast Asia. Bartlein et al. (2011) attribute cooling in Southeast Asia to a stronger
winter monsoon at 6 ka. Our results (Figs. 6a and 8a), and many of the PMIP3 models,
indicate cooler, drier winters (SFigs. 7 and 11) and regionally variable changes in the
summer (SFigs. 8 and 12).

In Africa, the model captures the increase in precipitation in the northern and
continental regions and drying along the southern coastal regions, as evident in the data.
Strengthening of the African and Indian summer monsoons during the mid-Holocene
corresponds well with the PMIP2 and PMIP3 models (Zheng and Braconnot, 2013). Both
GENMOM and the data indicate drying over central Scandinavia, wetter conditions over
east central Europe, the Iberian Peninsula and around the Mediterranean but, over
Western Europe, the simulated decrease in MAP in GENMOM clearly disagrees with the
data and some of the PMIP3 models (Figs. 15, SFigs. 7, 8 and 16); although, the
magnitude of the change in the models is very small and the sign of the change varies
among models. Wetter conditions also prevail in Indonesia, and a southwest-to-northeast

wet-dry gradient is simulated over Australia.

5 Summary
We have presented a suite of multi-century equilibrium climate simulations with

GENMOM for the past 21,000 years at 3,000-yr intervals. Each 1,100-yr simulation was
forced with fixed, time-appropriate global boundary conditions that included insolation,

GHGs, continental ice sheets and adjustment for sea level. The key drivers of climate
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change from the LGM through the Holocene are retreat of the NH ice sheets, deglacial
increased of GHG concentrations, and latitudinal and seasonal variations in insolation.

GENMOM reproduces reasonably well the LGM to Holocene temperature trends
inferred from the paleoclimate data syntheses of Shakun et al. (2012) and Marcott et al.

(2013). The evolution of global temperature change simulated by GENMOM is
consistent with three transient simulations, but is generally cooler during the deglacial
time slices than the transient simulations when sampled at the proxy locations. The global
LGM cooling of 3.8 °C simulated by GENMOM is within the range of 2.6 to 5.0 °C and
average of 4.4 °C simulated by the PMIP3 models. Simulated LGM cooling of the
tropical oceans is 1.6 °C, which is in good agreement with the MARGO reconstruction of
1.7 £ 1 °C. The weaker LGM global cooling is attributed to the sensitivity of GENMOM
to CO; (2.2 °C for a 2X increase in the present-day value).

During the LGM, simulated precipitation is reduced globally by 8.2% and
gradually increases through the Holocene to present-day values in response to loss of the
NH ice sheets, global warming and related increases in atmospheric humidity. Between
15 ka and 6 ka seasonal changes in insolation altered the NH land-sea temperature
contrasts, which, combined with shifts in global circulation, strengthened the summer
monsoons in Africa and India. Monsoonal precipitation in both regions peaked between
12 ka and 9 ka, consistent with pollen-based reconstructions. The spatial patterns of mid-
Holocene precipitation change simulated by GENMOM correspond well with the PMIP3
models, as do the 6 ka changes in monsoonal precipitation. In contrast to the pollen-based
reconstructions, GENMOM simulates slightly drier instead of slightly wetter-than-

present in Western Europe.
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The eight time slice simulations depict the glacial-interglacial transition that is in
good agreement with other AOGCM simulations and compares reasonably well with
data-based climate reconstructions. The data-model and model-model comparisons give
us a measure of confidence that our paleo GENMOM simulations are reasonable on
broad spatial scales and adds to the growing number of climate models that are capable of
simulating key aspects of past climate change when constrained by a relatively small set

of global boundary conditions. While our simulations are not continuous across the

deglaciation and do not include events such as freshwater forcing, they do provide

insights into between-period changes, such as altered NH storm tracks and strengthening

of monsoons during the early to mid-Holocene and multi-century time series that are

useful, for example, to explore ecosystem responses to changes in mean climate and the

related interannual variability in the model. Future work using the model output produced

by this study will address how internal model variability and multidecadal variability
influence comparison with proxy data, particularly in North America using dynamical

downscaling techniques.

Steve 1/28/15 11:48 AM

Deleted: The simulations provide insights into key
dynamic features of the transition, such as altered
NH storm tracks and strengthening of monsoons
during the early to mid-Holocene.
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Appendix A: List of abbreviations and acronyms

AABW
ACC
AMOC
AOGCM
BA

CIS
CLIMAP
COHMAP
DJF

FIS
GECCO
GENESIS
GHG
ITCZ

H1

JJA
LGM
LIS

LSX
MAM
MAP
MARGO

MAT
MOM2
NCAR
NCEP
NH
OSU-LIS
PD

PI
PMIP
SH

SLP
SON
SST
TEMPO
YD

Antarctic Bottom Water

Antarctic Circumpolar Current

Atlantic Meridional Overturning Circulation

Atmosphere-Ocean General Circulation Model

Bolling-Allered

Cordilleran Ice Sheet

Climate: Long range Investigation, Mapping, and Prediction
Cooperative Holocene Mapping Project

December, January and February

Fennoscandian Ice Sheet

German partner of Estimating the Circulation and Climate of the Ocean
Global Environmental and Ecological Simulation of Interactive Systems
Greenhouse gas

Intertropical Convergence Zone

Heinrich Event 1

June, July and August

Last Glacial Maximum

Laurentide Ice Sheet

Land Surface eXchange

March, April and May

Mean annual precipitation

Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface
Project

Mean annual temperature

Modular Ocean Model version 2

National Center for Atmospheric Research

National Centers for Environmental Prediction

Northern Hemisphere

Oregon State University Laurentide Ice Sheet

Present-day

Pre-industrial

Palaeoclimate Modelling Intercomparison Project

Southern Hemisphere

Sea-level pressure

September, October and November

Sea surface temperature

Testing Earth System Models with Paleoenvironmental Observations
Youger Dryas
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Table 1. Atmospheric greenhouse gas concentrations for each time slice simulation. The
21 ka through 3 ka values for CO, (Monnin et al., 2001), CH, (Brook et al., 2000) and
N2O (Sowers et al., 2003) are estimated from ice core records by averaging the gas
concentrations within a + 300 yr window centered at the time of interest. For comparison,
the PMIP3 concentrations for 6 ka are 280 ppmV, 650 ppbV, and 270 ppbV for CO,, CH4
and N,O respectively, and 185 ppmV, 350 ppbV, and 200 ppbV for 21 ka. In the table, e

is eccentricity, ®-180 is precession and ¢ is obliquity (Berger and Loutre, 1991).

CO, (ppmV) | CHy4 (ppbV) | N2O (ppbV) e »-180 £

PD 355 1714 311 0.0176 | 101.37 | 23.446

PI 280 760 270 0.0176 | 101.37 | 23.446
3ka 275 627 264 0.0183 | 50.30 23.815
6 ka 260 596 227 0.0192 | 0.01 24.100
9ka 260 677 244 0.0198 | 310.32 | 24.229
12 ka 240 500 246 0.0201 | 261.07 | 24.161
15 ka 220 500 216 0.0202 | 212.04 | 23.895
18 ka 188 382 219 0.0199 | 163.04 | 23.475
21 ka 188 392 199 0.0194 | 113.98 | 22.989
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Table 2. Annual average 2-m air temperatures and precipitation rates for the time slice
simulations. NCEP is from the National Center for Environmental Predication
NCEP/NCAR Reanalysis data set (Kalnay et al., 1996), PD2X is the 2xCO, simulation,
PD is present day and PI is pre-industrial. Parenthetical values are the changes from the

previous time slice, e.g., the global average temperature for the PD is 0.77 °C warmer

than the PI.
Temperature (K) Precipitation (mm d™)

Global Land Ocean Global Land Ocean

NCEP 287.52 281.66 289.84 3.09 2.30 3.40

(1980-2000) - - - - - -

PD2X 288.48 282.06 291.29 3.11 217 3.53
(2.2) (2.69) (1.91) (0.11) (0.10) (0.13)

PD 286.34 279.37 289.38 3.00 2.07 3.40
(0.77) (0.93) (0.70) (0.04) (0.04) (0.05)

Pl 285.57 278.44 288.68 2.95 2.03 3.36
(0.07) (-0.03) (0.15) (0.00) (-0.02) (0.02)

3ka 285.50 278.47 288.53 2.95 2.05 3.34
(0.32) (0.30) (0.33) (0.02) (0.00) (0.04)

6 ka 285.17 278.18 288.20 2.93 2.05 3.30
(0.23) (0.95) (-0.27) (0.02) (0.00) (0.02)

9ka 284.95 277.23 288.47 2.91 2.05 3.30
(0.74) (1.63) (0.22) (0.05) (0.06) (0.03)

12 ka 284.21 275.60 288.25 2.86 1.99 3.26
(1.40) (2.44) (0.70) (0.09) (0.12) (0.05)

15 ka 282.81 273.16 287.55 2.77 1.87 3.21
(0.93) (1.53) (0.53) (0.05) (0.09) (0.02)

18 ka 281.88 271.63 287.02 2.72 1.78 3.19
(0.16) (0.28) (0.06) (0.01) (0.01) (0.01)

21 ka 281.72 271.35 286.96 2.71 1.78 3.18
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Fig. 1. Boundary conditions for the time slice simulations. CO; concentrations are
relative to the PI concentration of 280 ppmV. NH ice area is the total area covered by the
continental ice sheets. June insolation anomalies are relative to PI at the indicated

latitude. Mid-month insolation data from Berger and Loutre (1991).
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1186  Fig. 2. Orography for the time slice simulations, with ice sheet height and extent derived from ICE-4G (Peltier, 2002) for the

1187  Fennoscandian, Cordilleran and Antarctic, and OSU-LIS (Licciardi et al., 1998) for the Laurentide.
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The 1o uncertainty in the reconstructions is indicated by the shaded band. Marcott et al.
(2013) is adjusted to a pre-industrial (~1850) base value rather than the original 1961-
1990. Data younger than pre-industrial are removed. The Shakun et al. (2012) and

Marcott et al. (2013) time series are joined at their 11.5 ka — 6.5 ka means.
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Fig. 6. Simulated seasonal average 2-m air temperature anomalies relative to PI. a) December, January, and February and b) June,

July, and August.
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1222 Fig. 9. Simulated seasonal average precipitation changes between consecutive time slices. a) December, January, and February and b)

1223 June, July, and August.
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Fig. 10. Time evolution of North African and Indian summer monsoons. The North
Africa monsoon region is defined as 12°N - 30°N, 20°W - 30°E and India monsoon

region is defined as 20°N - 40°N, 70°E - 100°E (Zhao and Harrison, 2012).
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1230

Fig. 11 Simulated sea-ice fraction for PI, 6 ka and 21 ka. Left two columns: February-

1231

March and right two columns: August-September. Medium gray is continental land mass

1232

and dark gray is continental ice sheet.
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Fig. 12. Simulated annual average Atlantic Meridional Overturning Circulation (AMOC)

for the eight time-slices.
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Fig. 13. Simulated Atlantic Meridional Overturning Circulation (AMOC) compared to
#1Pa/? Th proxy record at 33°N and other AOGCMs. Observations are from 26.5°N.
GENMOM values are 100-yr averages with error bars representing standard deviations.
The mean and standard deviation of the maximum AMOC in the five PMIP2 models. The
IPCC AR4 point represents the mean and standard deviation from a collection of IPCC
AR4 models. 2*'Pa/*Th data from McManus et al. (2004) and Lippold et al. (2009);
observed value from Srokosz et al. (2012), PMIP2 data from Weber et al. (2007), and

IPCC data from Schmittner et al. (2005).
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Fig. 14. Changes in 21 ka mean annual temperature (MAT) and precipitation (MAP)
inferred from data and simulated by GENMOM. a) blended sea surface temperature from
MARGO (Waelbroeck et al., 2009) and terrestrial temperature from Bartlein et al. (2011),
b) GENMOM temperature anomalies (blended sea surface temperature and 2-m air
temperature over land), ¢) precipitation from Bartlein et al. (2011), and d) GENMOM
precipitation anomalies. Grid cells with different land mask types in the 21 ka and PI
simulation are shaded in gray to avoid comparing ocean temperature to land temperature

in emergent cells.
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Fig. 15. Changes in 6 ka mean annual temperature (MAT) and precipitation (MAP)
inferred from data and simulated by GENMOM. a) blended sea surface temperature from
Leduc et al. (2010) and terrestrial temperature from Bartlein et al. (2011), b) GENMOM
temperature anomalies (blended sea surface temperature and 2-m air temperature over
land), c) precipitation from Bartlein et al. (2011) and d) GENMOM precipitation
anomalies. Grid cells with different land mask types in the 6 ka and PI simulation are
shaded in gray to avoid comparing ocean temperature to land temperature in emergent

cells.



