
Supplementary material to: Bayesian parameter estimation and interpretation

for an intermediate model of tree-ring width

S.E. Tolwinski-Ward, K.J. Anchukaitis, M.N. Evans

In the following we present supplementary information as referenced in the text of the

associated research article, ‘Bayesian parameter estimation and interpretation for an inter-

mediate model of tree-ring width’.

Form of error model for white and AR(1) noise models For the white noise model:

Σe = σ2
W I. For the AR(1) model, we use the approximation: Σe ≈ (I − φ1B)−1(τ 2I)

(
(I −

φ1B)T
)−1

where B is the matrix representation of the backshift operator (ones on the first

subdiagonal and zeros everywhere else). This follows from the AR(1) specification of the

error model, which can be written et−φet−1 ∼ N(0, τ 2), or in matrix form, as (I −φ1B)e ∼
N(0, τ 2I).
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Representative trace plots of MCMC chains To give readers a sense of the MCMC

output, here we show trace plots of three MCMC chains before subsampling for the PPE

with SNR = 1 at Sipsey Wilderness site, for which priors and posteriors are shown in Figure

1 of the manuscript:

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
4

5

6

7

8

Three chains, T1, before subsampling, Sipsey Wilderness site PPE

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

11

12

13

14

Three chains, T2, before subsampling, Sipsey Wilderness site PPE

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

Three chains, M1, before subsampling, Sipsey Wilderness site PPE

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.35

0.4

0.45

0.5

Three chains, M2, before subsampling, Sipsey Wilderness site PPE

Figure 1: Trace plots of three MCMC chains sampling the VS-Lite growth-response param-

eters conditioned pseudoproxy data and PRISM data co-located with the Sipsey Wilderness

site. Chains are shown before sub-sampling meant to reduce autocorrelation in the samples.
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Details of reproducibility experiments Here we provide tables of statistics computed

from two independent posterior draws which were sampled as described in the text for two

representative sites, for the setting of the PPE with SNR = 1 and the OPMC setting.

Sipsey Wilderness Site, AL Mammoth Creek Site, UT

PPE Statistic Draw 1 Draw 2 Draw 1 Draw 2

median T1 6.0591 ◦C 5.9704◦C 5.1315 ◦C 5.1552 ◦C

median T2 16.0761◦C 16.0894◦C 13.1334 ◦C 13.0954 ◦C

median M1 0.0368 v/v 0.0373 v/v 0.0485 v/v 0.0480 v/v

median M2 0.4081 v/v 0.4077 v/v 0.4125 v/v 0.4115 v/v

post/prior variance, T1 0.6891 0.7371 0.1978 0.1925

post/prior variance, T2 0.2747 0.2817 0.1407 0.1391

post/prior variance, M1 1.0461 1.0491 0..9094 1.0113

post/prior variance, M2 0.0432 0.0432 0.1389 0.1444

ˆSNR 0.5173 0.5164 0.7260 0.7259

Table 1: Posterior statistics to four decimal places, computed from two separate MCMC

draws conditioned on pseudoproxy data with SNR = 1 at the Sipsey Wilderness site in

Alabama, where the white noise model is used, and at the Mammoth Creek site in Utah,

where the AR(1) error model is employed. Estimates are for one realization of pseudoproxy

data and noise.
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Sipsey Wilderness Site, AL Mammoth Creek site, UT

OPMC Statistic Draw 1 Draw 2 Draw 1 Draw 2

median T1 4.8599◦C 4.8956◦C 6.4310◦C 6.4412◦C

median T2 12.9649◦C 13.0301◦C 16.2687◦C 16.2361◦C

median M1 0.0567 v/v 0.0559 v/v 0.0392 0.0370

median M2 0.3971 v/v 0.4006 v/v 0.4204 0.4217

post/prior variance, T1 1.1052 1.0724 1.0148 1.0348

post/prior variance, T2 0.3157 0.3527 0.4393 0.4660

post/prior variance, M1 1.0176 1.0482 1.0857 1.0868

post/prior variance, M2 0.1938 0.1904 0.4891 0.4578

ˆSNR 0.6612 0.6588 0.4531 0.4637

Table 2: As in Table 1, but for observed data.

4



Posterior to prior variance ratios for PPE with SNR = 0.25 We provide here a

map of the ratio of prior to posterior variance for the PPE with lower signal-to-noise ratio

for comparison to the one shown in the research article for SNR = 1.
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Figure 2: Ratio of posterior to prior variance for the four growth response parameters as a

measure of Bayesian learning in the pseudoproxy experiment with SNR = 0.25. Color scale

calibrated so that sites with smaller (larger) values of the ratio, indicating greater (lesser)

Bayesian learning, have darker (lighter) coloration.
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Sensitivity analysis using uniform priors Here we present parameter estimation re-

sults for the observed data model calibration using uniform priors.

 

 

 120 °
 W  110°

 W  100
°
 W   90

°
 W   80

° W   70
°  W 

 30 °
 N 

 40 °
 N 

 50 °
 N 

T1

2

4

6

8

 

 

 120 °
 W  110°

 W  100
°
 W   90

°
 W   80

° W   70
°  W 

 30 °
 N 

 40 °
 N 

 50 °
 N 

T2

10

15

20

 

 

 120 °
 W  110°

 W  100
°
 W   90

°
 W   80

° W   70
°  W 

 30 °
 N 

 40 °
 N 

 50 °
 N 

M1

0   

0.02

0.04

0.06

0.08

0.1 

0.1

0.2

0.3

0.4

0.5

Parameter point estimates inferred with observed data constraints

 

 

 120 °
 W  110°

 W  100
°
 W   90

°
 W   80

° W   70
°  W 

 30 °
 N 

 40 °
 N 

 50 °
 N 

M2

Figure 3: As in Figure 4 in the associated article, but for parameters estimated using uniform

priors.
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Figure 4: As in Figure 5 in the associated article, but for posteriors estimated using uniform

priors.
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Medians of marginal parameter posteriors as summary statistics Although the

medians of the marginal posteriors are not in general global medians, here we present pairwise

scatterplots of the distribution of parameter draws with the pairs of marginal medians plotted

on top at a representative site. The form of our posteriors are simple enough so that the

vector of marginal parameter medians provides a reasonable representation of the center of

the distribution.
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Figure 5: Pair-wise scatter plots of growth response parameter samples, with marginal pos-

terior median values plotted on top in red.
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Sensitivity experiment results The point estimates of the parameters derived from

scientifically-based priors and uniform priors are most similar for sites with high posterior-

to-prior variance ratios, and tend to fall much closer to the boundaries of their prior support

when uniform priors are used.
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Figure 6: Posterior medians at 277 sites for the four growth response parameters esti-

mated from scientifically-informed priors versus uniform priors for the OPMC. The color

of the points gives the ratio of posterior to prior variance in the model calibration run using

literature-based priors.
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Spatial structure of calibrated model residuals Our approach treats VS-Lite resid-

uals at distinct sites as conditionally independent given the underlying spatially-covarying

climate. However, the model residuals may in practice covary across space given the limita-

tions of VS-Lite. To investigate the spatial structure of the model residuals, we compute the

maximum likelihood fit of a spatial model assuming exponential covariance structure to the

residuals of simulations performed with parameters everywhere held at the posterior medi-

ans, and to simulations using the site-by-site calibrated parameters. The ratio of “spatial

signal-to-noise” is reduced in the latter case, with the ratio of spatial process variance to

nugget variance (interpretable as measurement error) being 1.58 for the field of uncalibrated

residuals, and 1.08 for the field of calibrated residuals. The range parameter of the spatial

covariance is also reduced for the calibrated residual field (1.56 compared to 1.92, in degrees

of lat/lon), indicating that the remaining spatial structure is more localized after calibra-

tion. Here we also show a spatial plot of RMSE across all sites and simulation years, which

appears uniform to first order across space, although there are some regional deviations from

the domain-wide mean.
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Figure 7: Root-mean-squared error of VS-Lite model residuals, compared to observed TRW

series, across all simulation years, for simulations performed with parameters calibrated using

the method described in this article.
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Calibrated and uncalibrated simulated time series at two sites Here the calibrated

and uncalibrated simulated ring-width time series are plotted with the observed ring-width

time series for two sites. The first site, Geode State Park in Iowa, is an example where

calibrating the model parameters results in a dramatic improvement in skill (correlation

with observed series is ρ = −0.30 for uncalibrated simulation; ρ = 0.63 for the calibrated

simulation). The second site, Andrew Johnson Woods in Ohio, was chosen as the site whose

calibrated and uncalibrated correlations with the observed time series had the minimum

mean distance from those correlations for all the other sites (ρ = −0.13 for uncalibrated and

ρ = 0.30 for calibrated simulations). In that sense it represents a site with “typical” skill for

both the uncalibrated and calibrated simulations.
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Figure 8: Time series of VS-Lite simulations of the White Oak chronology at the Geode State

Park site in the southeastern corner of Iowa, using prior median parameters (top panel) and

parameters calibrated by the method described in this paper (bottom panel). This site was

chosen as an example where calibration makes a dramatic improvement in model simulation

skill.
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Figure 9: Time series of VS-Lite simulations of the White Oak chronology at the Andrew

Johnson Woods site in Ohio, using prior median parameters (top panel) and parameters

calibrated by the method described in this paper (bottom panel). This site was chosen as

a more typical example of the improvement in simulation skill that results from calibrating

the model parameters.
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